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Abstract

The flow behavior of many multiphase flow applications is greatly influenced by wetting
properties and the presence of surfactants. We present a numerical method for two-phase
flow with insoluble surfactants and contact line dynamics in two dimensions. The method
is based on decomposing the interface between two fluids into segments, which are explic-
itly represented on a local Eulerian grid. It provides a natural framework for treating the
surfactant concentration equation, which is solved locally on each segment. An accurate
numerical method for the coupled interface/surfactant system is given. The system is
coupled to the Navier-Stokes equations through the Immersed Boundary Method, and we
discuss the issue of force regularization in wetting problems, when the interface touches the
boundary of the domain. We use the method to illustrate how the presence of surfactants
influences the behavior of free and wetting drops.

Keywords: Multiphase flow; Insoluble surfactant; Marangoni force; Moving contact line;
Immersed boundary method

1 Introduction

Microfluidics has become a very active area of research in fluid mechanics. In this area
flows at very small scales are considered, and at these scales the effects of surface physics
become increasingly important due to the large surface to volume ratio. The systems involved
include effects from wetting, surfactants and other phenomena, and a rapid expansion of
research objectives in computational mechanics has taken place to encompass modelling of
such systems.

This interest in microfluidics is to a large extent motivated by the development of mi-
crofluidic devices. Here, the ability to create and manipulate small bubbles, or vesicles, is
essential. A well known example is the so-called “Lab-on-a-chip” — a broad term for inte-
grated microfluidic devices that aim to perform advanced chemical synthesis or analysis on
a single chip. Experimental investigations include work by Anna and collaborators [3, 4] on
microfluidic topics.

One might expect that the multi-physics modelling required for microfluidic applications
would mostly be a fairly straight-forward matter of coupling existing solvers for the constituent
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physical systems. This is however not the case, since these systems present many specific
challenges such as fluid-fluid interfaces, strong capillary forces, interface-solid contact lines,
non-Newtonian stress models and additional physical considerations, such as heating and the
presence of surfactants. Several computational studies have been performed that take some
of these features into account.

In this article we will discuss various computational aspects of microfluidic simulations.
We discuss interface tracking from the point of view of domain decomposition and argue
that it is natural to think of on-interface modelling of e.g. surfactants in terms of calculus
on manifolds. Additionally, we shall bring modelling of wetting and contact line dynamics
to fore, and consider a system involving both contact line dynamics and surfactants. First,
though, we survey the diverse areas that we are concerned with.

1.1 Surfactants

Flow problems involving surfactants have captured the attention of many physicists for
decades. A basic observation is that the presence of surfactants changes the surface ten-
sion in free-surface flows, and hence, among other things, the way drops form, break up and
coalesce.

An example of huge practical importance is detergents, though physical interest in sur-
factants is much broader. We already mentioned that many microfluidic applications involve
manipulation of drops or bubbles on small scales. If this is to be done with high precision,
one must naturally understand the effect the presence of surfactants has on these operations,
and if it can be used to improve them. Furthermore, there appears to be genuine interest
from the medical community in the role that surfactants play in vascular disorders, such as
decompression sickness, see e.g. [10, 74].

It comes as no surprise, then, that there is large interest in computational microflows
and simulation of flows involving surfactants. It is not uncommon that 2D models are quite
sound in this context, though there are certainly many applications where a full 3D model is
required to accurately describe the flow. Regardless of dimensionality, the main computational
tasks are: (i) flow modelling (solving e.g. Stokes or Navier-Stokes equations), (i) interface
dynamics (i.e. representing and evolving dynamic interfaces), and (7ii) surfactant modelling
(i.e. how surfactant concentrations on the interface, and possibly in the bulk fluid, interacts
with the rest of the system).

The first two tasks, collectively denoted multi-phase flow methods, have been studied
computationally in a remarkable volume of work, as summarized in a recent review by Worner
[68]. Prominent surveys for each of the main families of methods are (Level-set methods)
Sethian & Smereka [55], (Front-tracking) Tryggvason et al. [66], (Volume fraction methods)
Scardovelli & Zaleski [54] and (Phase field methods) Anderson et al. [2]. The reader is
assumed a certain familiarity with these methods.

Before the third task (surfactants) is considered, it is appropriate to note that the es-
tablished interface-tracking methods, coupled to flow equations, pose numerical challenges
which must be carefully considered. One issue has to do with time-stability, and originates
from the coupling of flow equations to interface dynamics via the surface tension force, which
is proportional to the interface curvature. This proportionality necessitates differentiation
of the interface, and magnifies errors in models such as the Continuum Surface Force (CSF)
model [9], which underpins level-set, front tracking and volume-fraction methods. Much effort
has been devoted to addressing this issue and successful solution strategies now exist, see for



example Ceniceros & Fisher [12] and Sussman & Ohta [60].

Another thing to point out is that interface representation imposes natural limitations.
For instance, in level-set methods, the location of the interface is not known (as the method
is implicit), and in front-tracking the interface is represented in a point-wise sense. These
are two extremes that will pose distinct challenges to further modelling. There have been
many attempts to marry the strengths of two methods (or eliminating notable drawbacks) in
hybrid methods, such as the work by Sussman & Puckett [61, 59], Aulisa et al. [5], Enright
& Fedkiw [22], and Gaudlitz & Adams [24]. These methods add mathematical and practical
complexity to already quite complicated methods. Sophisticated methods exist that treat
interface jump conditions, such as variations on the Immersed Interface method (IIM) by
LeVeque and collaborators [38, 39, 36|, including level-set methods. Additional challenges
arise in these methods — while they are seen as more accurate (no unphysical “smearing”),
the aforementioned stability issues are more severe.

That is not to say that multi-phase simulations are intractable — to the contrary. Much
work has gone into efficient implementations of these methods that produce very impressive
computational results [35, 56, 43]. The preceding remarks aim to remind that, numerically
and in basic modelling terms, multi-phase flow is still a field where the motivation for more
research is large.

Proceeding to surfactants, the macroscopic model considers a concentration of surfac-
tants on an interface that is governed by convection and diffusion. The basic coordinate-free
equation is well known, (derived in plain terms by Wong et al. [67] following [57]),

A (1)
Here, we simply note that we are dealing with a reaction-diffusion PDE on the interface
which is non-linearly coupled to the interface itself — see Section 3 for a complete statement.
Additionally, when the surfactants are soluble, there can be a surfactant concentration in the
bulk fluid and an exchange mechanism at the interface, see e.g. Jin et al. [29].

Of particular interest among recent work is the method by Muradoglu & Tryggvason [44].
We wish to highlight this as a valuable computational tool — the results they present, as
well as subsequent work [43], clearly justifies this. Rather than being primarily a physical
investigation, they set out to give a general computational method for axisymmetric cases
that they then validate against theory and experiments. They build upon the well-established
finite difference/front-tracking (FD/FT) method by Tryggvason et al. [66], and add the
surfactant treatment (including soluble surfactants) as a bolt-on to the existing multiphase
flow solver; the solver strategy is simply to interleave Euler-forward (first order) time steps
of the interface, surfactants and flow. All time-stepping is first-order accurate, but the time
step is constrained by stability to be At ~ Axz?, because the diffusive term in the surfactant
equation (1) is handled explicitly.

A method with many similarities is given by Zhang et al. [74], in a paper that predates
Muradoglu & Tryggvason by about two years. It is, again, a front-tracking method for the
axially symmetric case, where the emphasis is more clearly on an application — which is blood
flow.

Implicit interface tracking methods have been extended to include surfactants on the
interface, such as the level-set method by Xu et al. [69, 70] and various VOF methods
[52, 28, 19]. The main concern in such methods is conservation of surfactant; [69] is largely
concerned with modifications that deal with this. Other implicit methods recently proposed
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Figure 1: Droplet wetting a solid surface, forming a contact angle 6, where o denotes the
surface tension force acting on the three interfaces.

include phase-field (Cahn-Hilliard) methods by Liu & Zhang [41] and Teigen et al. [62], as
well as a “smoothed particle hydrodynamics” method by Adami et al. [1].

In the realm of viscous (Stokes) flow, a method for the full 3D problem was introduced
early, namely the boundary-integral method by Yon & Pozrikidis [71]. Booty & Siegel [8] give
a boundary integral method that couples to a method for solving a bulk surfactant transport-
diffusion equation (in the limit of weak diffusion); and they are able to resolve a thin layer
around the interface with large surfactant gradients.

1.2 Wetting and contact line dynamics

The intersection line of two immiscible fluids with a solid is called the contact line, which in
two dimensions reduces to a contact point. Wetting generally refers to the case of a liquid-
gas-solid system when the gas is displaced by the liquid, and hence the contact line is moving.
Applications involving wetting and contact line dynamics appear in many industrial processes,
both macroscopic (oil recovery, reactor cooling, coating) and microscopic (drop manipulation
in lab-on-a-chip devices), and is clearly of great practical importance.

In the static case when the contact line is immobile, the equilibrium (or static) contact
angle! 0 formed between the fluid-fluid interface and the solid surface (cf. Figure 1) is
determined by Young’s equation,

01— 09 —0ocosfy =0, (2)

which states that the surface tensions o1, 09,0 at the fluid-fluid and solid-fluid interfaces are
in horizontal equilibrium when the contact line is at rest [16].

If the static case can be treated with relative ease; quite the opposite can be said about
the dynamic case, when the contact line is moving. We refer to the recent review articles
[6, 7] for an introduction to the problem, which still is the topic of much active research.
At the core of it lies the issue that the Navier-Stokes equations with the common no-slip
boundary condition result in a singular shear stress at the contact line. This singularity is
unphysical, and to avoid it the hydrodynamic continuum model must be modified to take
into account the molecular interactions taking place at fluid-fluid and solid-fluid interfaces.
Several approaches to numerical modelling of moving contact lines exist, all aiming to capture
the correct behavior of the drop without resolving the microscopic interactions at the contact
line. These models are mesoscopic, in that they rely on the flow being resolved in the inner
region, which is determined by the slip length. Ren and E [49, 51] derived an effective
velocity boundary condition at the contact line, relating the contact line velocity ucy, to the

n this work we consider only the apparent/macroscopic contact angle, see e.g. de Gennes [16] for an
extensive treatment.



contact angle. Conversely, Muradoglu & Tasoglu [43] simulated droplets spreading on walls
by specifying the contact angle based on the flow velocity near the wall, and then updating
the interface by fitting a cubic curve satisfying that contact angle between the wall and a
marker point near the wall. Yet another method is to move the contact line by prescribing
the contact angle to the static angle, as was done by Zahedi et al. [72].

In the presence of surfactants on the fluid-fluid interface, the wetting properties of the
system will change. The surface tension o of the interface is lowered by the surfactants,
changing the equilibrium contact angle in Young’s equation (2) (a water drop will typically
increase its wettability when surfactants are added [53]). There can also be an exchange of
surfactants between the interface and the solid surface as the contact line moves, in which case
additional difficulties arise in solving the contact line singularity [15, 48]. A numerical study
on the effects of surfactants and temperature on the spreading of a two-dimensional viscous
droplet with surfactant exchange was performed by Clay & Miksis [14], using a lubrication
approximation.

In this work we have limited ourselves to the case where there is no surfactant exchange
between interface and solid, such that the wetting properties are only changed due to the
modified equilibrium contact angle. A numerical simulation of this case was performed by
Lai et al. [33], using an immersed boundary method in two dimensions. They made use of
the Langmuir equation of state to relate the surface tension to the surfactant concentration.
To move the contact line, they then set Navier slip on the entire solid surface and applied the
unbalanced Young’s force to the contact point to obtain movement. The work by Lai et al.
is, to our knowledge, currently the only existing numerical simulation combining surfactants
with moving contact lines where the full flow problem is considered.

1.3 Structure of this paper

In this paper we present a new numerical method for insoluble surfactants on dynamic in-
terfaces in two-dimensional Navier-Stokes flow with contact line dynamics. The interface
representation used in this paper is a domain decomposition approach introduced by Lindbo
& Tornberg [40]. The method is an extension of the segment projection method by Tornberg
& Engquist [64, 21], and is able to decompose interfaces into segments in a more general
way. Here we further develop Lindbo & Tornberg’s method by extending it to treat open
interfaces, contact line problems and insoluble surfactants. The surfactant treatment is based
on the work by Khatri & Tornberg [31] for representing surfactants on interfaces using the
segment projection method. We extend this surfactant representation to fit with the method
by Lindbo & Tornberg and with open interfaces.

In Section 2 we present an interface tracking method which provides a natural framework
to pose the surfactant equations in (Section 3). An immersed boundary multi-phase Navier
Stokes method is introduced in Section 4. We then discuss the central issues in the treatment
of the contact line problem, namely what drives the movement of the contact line, and at-
tempt to shed some light on numerical issues that have been left unresolved by related work
(Sections 4.2 and 4.3). Putting the many facets of the model together, in Section 5, we discuss
numerically well-motivated strategies to compute approximate solutions to the fully coupled
interface/surfactant /flow /contact system in a segregated manner. We close with numerical
results, in Section 6.
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Figure 2: Interface split into segments (ends marked with o), with two segments drawn bold,
and their local representations.

2 Interface tracking using domain decomposition

Here we give a brief introduction to the interface tracking method proposed in [40], and
extend it to cope with on-interface PDE modelling. Let a simple plane curve of length L be
represented by I' C R2. Introduce a parametrization, s, of I at time t,

'=T(t) = {x(s,t), y(s,t):s€[0,L)}

and assume z,y € C?[0,L). Let 7(s) and 7(s) be unit vectors tangential and normal to T,
with 7 pointing inwards. We shall now split I" into a number of segments, «;, such that
r=y I’ and each segment can be represented as a single valued function with respect to a
particular coordinate system as illustrated in Figure 2. The partitioning of I' into segments is
clearly not unique, the only requirement being the representation of each segment as a single
valued function, and can be performed in many different ways. We here use the algorithm
introduced in [40, Sec. 2.6], which is based on a maximum cumulative winding angle allowed
on each segment.
To formalize the segment representation, we let, for any x € R?,

Mx:=T(O)x+b (3)
Lx := M™'x =T (-0)(x —b), (4)

where 7T is the standard unitary rotation operator, © is an angle and b an offset. It is clear
that one may decompose I' into a collection of segments ;, and to each one associate mapping
parameters (0, b), such that

M = M(0;,bj) - v — {&, f3(§) : € € (aj, b))}
As clarity permits, we shall omit subscripts, and employ the following notation:

My = (& f(§), and  L(, f(§)) = .

This, with Figure 2 in mind, is quite intuitive. More subtle details shall emerge as we
pose time-dependent differential equations, involving I', in local coordinates over the segment
collection.
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Figure 3: Schematic view of two neighboring segments that overlap (see Figure 2, segments
~v3 and 74). The mapping sequence M3L, takes data from segment four into the frame of
segment three, which can thusly be extended or given consistent “boundary” data.

2.1 Interface dynamics

The first task is to add the time-dimension and ask how interface dynamics can be expressed
in terms of segments. Let u denote a convective field that transports the interface,

dr
— =u(I'(¢), ), )
= (), (5)
where u may, possibly, be a something complicated, like an approximate solution for Navier-
Stokes equations, or something simple, such as an explicit function, u = u(I'(¢),¢). In [40],
we show that (5) is equivalent to solving a PDE

CTGE T o (6D =, (0,w) = TOuG), ), ()
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for each segment. Here we have assumed that © and b are fixed in time for each segment (see
[40] for a more general setting). The important question of boundary conditions remains. To
answer this, we need to clarify the relationship between adjacent segments.

2.2 Geometry of segments

For the segment advection PDE (6) to be meaningful, and for further modelling to be con-
sistent, we need additional structure, namely elementary manifold properties. Let there be a
finite overlap between adjacent segments. Then, we may view part of a segment as a single-
valued function from the coordinate frame of its neighbor, see Figure 3. In terms of sets we
have

(m, 9(m)) = MyL;(&5 f5(€5)), (7)

where segment j and k are adjacent, and f} denotes the interval on segment j where they
overlap. In this interval, the segments coincide, so

(n,9(m) = (& fe(&L)),

where, naturally, £, denotes the overlap interval of segment k. The operation of going from
one segment to another via a mapping to global coordinates, i.e. (7), is well-defined. Note,
however, that the relation (n,g(n)) = (&, f(§)) does not express a relationship between pa-
rameterizations. That is, given that f(§) = g(n(§)) in a point-wise sense, the map n(§) is
non-trivial.



2.3 Interface-interior boundary conditions

Now we return to the question of boundary conditions for the segment advection PDE (6).
The PDEs (6) are of first order hyperbolic type, so information will propagate across segment
boundaries. Hence, the situation demands characteristic boundary conditions on each segment
(see e.g. the textbook by LeVeque [37]). The essence is that incoming characteristics on one
segment are determined from outgoing characteristics on adjacent segments. As illustrated
in Figure 3, we can map one segment function into the frame of an adjacent segment, thus
providing the necessary boundary data to make the collective evolution of (6) consistent with

(5).

2.4 Discrete method

We discretize each segment with a uniform grid with spacing A¢ and employ finite difference
methods for all calculations. The transport equation (6) is time-stepped using an explicit
two-step Lax-Wendroff method, as in [40],

2
= e ATtv(x",t") (— Dow(x™, t")(Dou(x", ")) (Do f") + v(x", t") D4 D_ )
B At? <w(x*,t”+1) —w(x",t") v(x*, ") — u(x™, )

(8)

2 At At Dof > '

where D4, D_, and Dy are the usual one-sided and centered derivative approximations, and
="+ At(wx",t") + v(x", t") Do f™)

is an Euler step so that the time-derivatives of the coefficients (v, w) can be estimated. Recall
that we have multiple segments (at least three for closed interfaces), each characterized by
a segment function f(&,t). Hence, we time-step according to (8) on each segment. The
discrete difference operators necessitate one grid-point of “boundary data” on each end of
each segment at time ¢". Since the segments overlap, this is obtained by interpolating from
adjacent segments, as described in Section 2.3 and Figure 3. Moreover, the partition of the
interface into segments may eventually become invalid if the interface deforms sharply, in
which case it needs to be redefined. We give full details surrounding this in [40].

3 Surfactants on segments

Let the concentration of an insoluble surfactant be defined as a function p on T',

p=p(s,t), on (z(st),y(st)), se€]l0,L).
As discussed in the introduction, p satisfies an advection-diffusion equation (1),

Dp 1 _o

— Vs-u) = =—Vip, 9
that takes stretching of the interface into account (second term). Here, Per is the Peclet
number, the nondimensional parameter that governs the diffusion along the interface. The
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surface gradient operator V; is defined as Vg = (I — n ® 7)V, which in two dimensions

simplifies to
d

Vs=7(7-V)=7—.

s=1(1-V)=17 7

We now take the surfactant representation developed by Khatri & Tornberg [30, 31] for

the segment projection method and apply it to our domain decomposition framework. The

concentration is then represented locally as p = p(&,t) on each segment 7, forming the triplet

(& f(& ), p(& t)). Tt is a straight forward calculation to show that, in local terms, (9) is
equivalent to

op op ov  Owadf
o tvaz +P¢f(a*§ + € OF

ot V¢
o\ —1/2
by i <1 (%) ) , ay

and (v,w) =T (©)u(l'(¢),t). A detailed derivation is available in [30, pp. 28-31], though in a
slightly different setting.

On each segment, the surfactant equation (10) is discretized on the same uniform local
grid, A&, as the interface advection PDE (6) is in the Lax-Wendroff step (8), and the same
mechanism for boundary conditions applies. That is, the surfactant concentration on an
adjacent segment can be obtained in a small overlap region via the local-to-global mapping
(3-4) in analogy with Figure 3. At the endpoints of an open interface there is a no-flux
boundary condition, meaning that there is no surfactant exchange between the solid wall and
the interface.

It is important to emphasize that, while being far from simple, (10) is vastly easier to
deal with than (9). This is because the final problem is to solve a PDE with one spatial
dimension on a uniform grid, a problem for which many standard (and well-understood)
numerical methods are available.

The surfactant dynamics depend on the interface shape, conveyed by the presence of the
surface gradient in (9), or derivatives of f in (10). Evidently, (6) together with (10) constitute
a non-linear system of PDE’s. However there are mediating factors. For one, the p couples
to f, but not the other way around — at least not until we let u depend on p via two-way
force coupling to Navier Stokes equations. The second equation is, by itself, linear if f is
known. On the other hand, f characterizes the manifold on which p is defined, so one cannot
determine p ahead of f in time.

_ 97 9
Per 8§

dp

) (3¢

Qbf)v (10)

where

3.1 Interface forces and equations of state

In the familiar multi-phase flow setting, an interface gives rise to forces that are localized on
the interface but act on the embedding continuum. In [40] we consider only clean interfaces
(i.e. without surfactant) and only the force due to surface tension — an interface-normal force
directly proportional to the interface curvature [9],

f1(s) = or(s)n(s). (12)



The presence of surfactants is well-known to change the strength of the surface tension locally
[34, 45]. This is commonly modelled by the Langmuir equation of state [20],

o = o(p(s)) = 1+ Eln(1 - p(s)), (13)
where E = Riﬂ is the dimensionless elasticity number measuring to what extent the presence
of surfactants on the interface modifies the surface tension. In this paper p is nondimension-
alized by poo, the maximum surfactant concentration possible on the interface, and o by o,
the surface tension of a clean interface. Moreover, the presence of surfactants generates a
tangential force proportional to the surfactant gradient, known as the Marangoni stress,

. E d
fH :Vsa(p) = i

= . 14
7-l—pds (14)

These quantities are naturally computed in the local coordinate frame of each segment,

I RN
H(ﬁ) - (1 +f/(§)2)3/2’ (f) - ¢f[f (é-)v 1]7
L6 1O = ol —1E)

as this is the concrete interface representation of the present method, and a parametrization
in terms of £ is provided on a uniform grid, such that derivatives with respect to £ can be
computed using centered finite differences. The total force becomes

f(s) = £1(s) +£)(s) = alp)r(s)n(s) + %(Sh—Epjg
_7(=0) (o(ple)—I) a4 E s
=7 @)( (0(5))(1+f,(§)2)3/2 &)+ TR (g)) (15)

for any point {I'(s), p(s)} < (&, J(€). p()).

4 Two-phase Navier-Stokes system

The Navier-Stokes equations express the momentum balance and incompressibility of a fluid
subject to a body force F, here in nondimensional form,
ou 1

— +(u-Vju=-Vp+

1
2
BN Vu +

Re ReCaF’ (16)
V.ou=0, (17)

+ Boundary conditions,

where the Reynolds number Re = # is the ratio of inertial to viscous forces, and the

capillary number Ca = % is the ratio of viscous to surface tension forces, both for a fluid

with density m, viscosity u, characteristic length L and characteristic velocity U. We shall
discuss three aspects: (i) a second order accurate discretization of (16-17), (i4) an immersed
boundary method for the two-phase aspect of the problem, and (iii) the overall interface-
surfactant-flow splitting procedure (Section 5).
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An overwhelming volume of work concerns numerical methods for the Navier-Stokes equa-
tions; we shall not attempt a survey here, but focus on the class referred to as projection
methods — more precisely pressure correction methods — that time-step (16) and then apply
a correction such that (17) is (approximately) satisfied. This idea goes back to classical work
by Chorin [13], and was elegantly surveyed by Guermond et al. [26].

Here we use the incremental pressure-correction method in rotational form, due to Tim-
mermans et al. [63], discussed also in [26, Sec. 3.3]. Letting superscripts denote time level,
and introducing a provisional velocity field @, the momentum equation (16) is discretized in
time using a second order backward differentiation formula?,

1 1
— (3(1 — 4uf + uk_1> +2(u* - V)uk — (b V)b = —vpk + Va4 FREY2 (1)
2At Re
A Poisson equation is then solved for an auxiliary field, ¢,
3
2 ~ ~
— . . = 1
\% ¢ 2Atv u, n V¢’39 07 ( 9)
from which the pressure, p, and velocity, u, is updated,
2At
uttl =a - = Vo, (20)
1
R — P _—V-a 21
p ¢+p - V- (21)

In space, we employ centered finite difference approximations on a staggered grid. That this
method is second order accurate in time, given sufficient boundary regularity, was proven
by Guermond and Shen [27]. Note that if the boundary, 912, is only Lipschitz, then At3/2
appears to be the maximal convergence attainable. In the present paper a periodic channel
is used, for which second order accuracy is both implied by theory and observed in practice.
A similar method was used by Lai et al. in [32].

4.1 Immersed boundary method

Moving on to the two-phase part, we employ an immersed boundary method (IBM). That
method has its roots in cardiac simulations [46], and was surveyed in [47]. The presence of
an interface is accounted for by introducing a singular source term into the Navier-Stokes
momentum equation (16).

In terms of Lagrangian variables, the force f(s,t) generated by the interface curvature and
surfactant concentration is given in (15). The force F(x,¢) in (16) can then be computed in
terms of Eulerian variables as [47]

F(x,t) :Af(s,t)é(F(s,t);x)ds, (22)

where §(T'; -) denotes a Dirac measure on R? with support on I'. Conversely, the velocity field
that advects the interface in (5) is given by

u(F(s),t):/Szu(x,t)é(F(s,t);x)dx. (23)

2The interface forces represented by F are available at time step k + % due to the time splitting scheme
introduced in Section 5.
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Both (22) and (23) are evaluated using the trapezoidal rule. Following the treatment of
singular source terms by Tornberg and Engquist [65], we regularize the delta function to the
grid using a product of one dimensional delta function approximations,

Oe(x = T(s)) = de, (& — X(s))0e, (y = Y (5)), (X(s),Y(s)) €T, (24)

where

b (2) = { o (%), lel <e, (25)

0, ‘37| > €;.

The error when integrating by the trapezoidal rule,

E = hxhyZ/Ff(s)ég((a:i,yi)—F(s))ds—/rf(s)ds (26)

depends on the delta functions used. A one dimensional . satisfies ¢ discrete moment condi-
tions M, if

1, r=0,

0, 0<r<yg, V. (27)

Mr<5ew’z'7 h) = hZée(xZ — a’;)(xz — j;)r = {

It has been shown that E < Ch?, where h = max(hg, hy), provided J,, satisfies ¢ moment
conditions. For a partial differential equation with a singular source term — the interface force
in our case — this will contribute to an O(h?) error in the solution away from the singularity
and an O(h) error near the singularity. There are additional concerns when the source terms
are close to the boundary of the computational domain — we will discuss this in Section 4.3,
where we will also define the delta function approximation used in this work.

When using an immersed boundary method together with a pressure correction method,
as we do here, there will in general be a numerical imbalance between the pressure and the
surface tension force, resulting in spurious currents of magnitude O(h) in the solution. This
phenomenon is particularly pronounced when solving for static interfaces and high density
ratios. It is however not unique for immersed boundary methods, and improving the pressure
jump representation and reducing spurious currents is an active field of research for many
classes of methods [18, 23, 73]. The focus of the present work is the treatment of surfactants
and wetting boundary conditions, but a natural direction of future work would be the im-
provement of the pressure jump representation together with support for density and viscosity
ratios other than unity.

4.2 Wetting and boundary conditions

To drive the movement of the contact line, we have here implemented the velocity boundary
condition of Ren and E [49], which combines Navier slip on the entire wall with a set slip
velocity at the contact line. The tangential velocity of the contact line ucy, = u) ¢, is then
computed from the contact angle 8 as

Berucr = o2 — o1 — a(p) cos b,
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where B¢, is the effective friction coefficient and the right hand side is the unbalanced Young’s
force. The contact angle 0. of the clean interface can be determined by Young’s equation,
occosbs . = (02 —01). We can then write the boundary condition as

Bcrucr = occosbs . — a(p)cosb,
which when nondimensionalized by U and o, takes the form
Bucy, = cosfs . — o(p)cosb, (28)

where ucp, and o are now nondimensional and the nondimensional friction number B = /ﬁiLU
represents the relative effect of friction forces versus capillary forces at the contact line. The
behaviour of this boundary condition is illustrated in Figure 4. On the wall away from the
contact line, we have Navier slip with slip length Ag,

uH = —)\s(ﬁ : V)UH (29)

Care must be taken when implementing the boundary condition (28), since the contact line

a(p)=!
— — —o(p)=09

1.5

YI,CL/B

0.5

0 50 100 150
0
Figure 4: Velocity boundary condition (28) as a function of the contact angle for a clean in-

terface (0 = 1) and for an interface with surfactants (o = 0.9), where o is the nondimensional
surface tension. The static contact angle is here 05 . = 50°.

will almost inevitably lie between two points on the boundary of the Navier-Stokes grid. To
make the implementation consistent we have here introduced a slip width ws around the
contact line, over which the flow boundary condition varies from Navier slip to contact line
velocity as

wj = () (ucr) + (1 - B(2))(~A, (30)

o
where ®(z) = exp (—4(x — z¢r)?/w?) and z is the coordinate parallel to the wall. The slip
width is set to a number of grid sizes, ws = nAx, to minimize grid effects as the contact
line moves along the wall. We have found n = 5 to give a good compromise between a sharp
interface representation and a smooth velocity profile on the wall. This regularization of (28)
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is necessary because we are imposing a condition located at a moving point on a fixed grid,
but it does introduce a new length scale into the numerical solution, something which must
be considered when tuning parameters to a physical model. A similar regularization of the
contact line boundary condition was used by Ren & E in [50], with the difference that they
added the contact line slip to the Navier slip, whereas we use a partition of unity transition
between the two.

An alternative that exists in the literature (Lai et al. [33, p. 743]) is to apply the Navier
slip condition (29) on the entire boundary, and instead drive the motion of the contact line
by adding the unbalanced Young’s force to (15) at the contact points, e.g. at s =0, L,

f(s), se (0,L)
fy(s) =  £(0) + — (o1 — o2 — 0(0, p(0)) cos(fp))g, s =0 (31)
f(L)+ (01 — 02 —o(L,p(L))cos(fr))y, s=L.

We will comment some on this second approach, while using the first one for our own imple-
mentation.

4.3 Getting force regularization right near domain boundary

Consistent force regularization is of critical importance in the immersed boundary method,
since the regularized force is the only coupling of the interface dynamics to the underlying
flow solver. As one might suspect — from the fact that it deals with replacing a distribution
with a continuous function — this is a subtle matter. Certain commonly used approaches
have been shown [65] to introduce O(1) errors. Further complications arise in the context of
contact-line problems, where the interface force (15) is non-zero near the solid boundary. The
question is how we construct consistent d-function approximations near the boundary, and
how to maintain the consistency between force regularization and boundary conditions. The
second issue, to which we shall return shortly, relates strongly to the question of what drives
the flow: either the velocity boundary condition (28) by Ren and E [49] or the application of
the unbalanced Young’s force in the contact point, as in Lai et al. [33]%.

First though, we make a few basic points regarding consistent regularization near the
boundary. Clearly, point-wise measures of errors are meaningless, so what do we want a
d-function approximation to satisfy? Naturally one may start from,

/f(s)dSZ/F(x)é(F;x)dx.
r Q
Consider the following 1D example: Let g(z) > 0 on « € [0, L] and 6. 4(z) a regularized 6-

function with support € around y. At the least, a consistent d-function approximation should
satisfy the zeroth moment condition

/L de(x —y)de =1 Vy € [0, L. (32)
0

However, if we let d., be the linear hat function of support h (33), it is evident from the
illustration in Figure 5 that this condition will be violated if y lies near the boundary, in this
case if y < h. This was mentioned by Zahedi et al. [72] in the context of finite element based
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Figure 5: Linear hat functions as J-function approximations: &y ,(x) interior (green);
On,q(x),p < h (blue), is not compactly supported on [0, L] but some mass (gray) is “lost”;
§med(z) example of a modified function such that (32) is satisfied (orange).

level set methods, where they suggested that the surface tension force be evaluated through
a line integral along the interface to avoid this problem.

Returning to the relationship between the near-boundary force regularization and the
contact point model, we first consider the approach proposed by Lai et al. [33]: using the
Navier slip condition (29) on the wall and applying a point force (31) in the contact point.
Since it is a point force that drives the flow and causes the contact point to move, the manner in
which the force is spread to the grid, f(s) — F(x), is critical. It should be evident from Figure
5 that without special treatment near the boundary one would have [, [F(x)d(I;x)|dx <
Jr|f(s)|ds. In principle, this could cause the contact point to move at half the intended
speed. Moreover, the manner in which the Navier slip condition (29) is discretized becomes
important — in the present configuration the derivative %Z is approximated, and one notices
that this will have to take the contact point force into account (otherwise the force regularized
to a boundary point will implicitly be excluded from the discrete method by the application
of the boundary condition). Lai et al. [33] mention neither of these issues.

The approach provided by Ren and E [49], prescribing the condition (28), can, in light of
the preceding remarks, be expected to be less sensitive. The flow velocity at the contact point,
ucy, is consistent with the unbalanced Young’s force at that point. Therefore, only the force
contribution from surface tension and Marangoni stress on the interface need to be regularized
near the boundary. There is still a need to ensure the -regularization is consistent near the
boundary, but one can expect the wetting properties of the problem to be less sensitive to
the regularization used.

To make sure we have a consistent regularization near the boundary, and at the same time
avoid incorporating regularized forces into our boundary conditions, we have chosen to use a
linear combination of two different delta function — none of which will have support on the
boundary. Inside the domain we use the narrow linear hat function,

F(1-1%E), |z—z|<h,

hat ( - _
et (7, 2) —{ y W (33)

which is centered around the source point and satisfies the first two moment conditions (27).

3There exists at least two other approaches for “driving” the flow: reconstruction [43] and diffusion [72].
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Figure 6: Linear é-function approximation that satisfies two discrete moment conditions even
as the source point approaches the boundary.

For the case when the source point is near or on the boundary, we have constructed a modified
delta function by combining two hat functions centered around the two grid points closest to
the boundary. For an interval x € L discretized by x1,...,zy, where 1 and xy lie on the
boundary and h = x;11 — x;, the final delta function is then written

dap (%, z, 22, 23), T < x9,
de(z,x) = 62‘”(5}, x), o <T<wTN_1, (34)
d3, (Z,z,xN-1,ZN—-2), TN-1 < T,
where
Tqg — T
dsp (T, 2, Ta, ) = 61 (24, ) + ’ah’ (5gat(xa, x) — ghat(z,, x)) . (35)

This combination ensures that the regularization involves only interior points xs, ..., xy_1 and
that the regularization to the grid is continuous as £ moves over L. Furthermore, the resulting
delta function satisfies the first two moment conditions, i.e. ¢ =2 in (27). The shape of the
final 0. as the source point moves closer to the boundary is illustrated in Figure 6.

5 Treating the full system

We have introduced all the components of the mathematical model for the two-phase Navier-
Stokes system involving surfactants and contact point dynamics, summarized as follows:

a) Interface tracking using the domain-decomposition method in Section 2, involving the
evolution equation (6) on each segment;

b) Surfactant dynamics, which are governed by an advection-diffusion equation (10) in the
local coordinates of each segment, as discussed in Section 3;

c) Navier-Stokes equations (16, 17) using the pressure-correction method of Timmermans
et al. [63], given in Section 4;

d) Contact-point boundary conditions (30) following Ren and E [49], to account for the
contact point dynamics;
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e) Flow-interface coupling using an immersed boundary method [47], which amounts to
computing (15), (22) and (23).

We shall make the natural distinction between items (a,b) and (c¢,d), with (e) providing
the coupling between the two pairs; this constitutes a splitting method. The term “operator
splitting” abounds in computational mathematics, and takes on various related meanings.
An early reference is Strang [58] and more recent work includes informative surveys by Budd
and Iserles [11], and McLachlan and Quispel [42].

For our purposes, a productive view is given by J. Geiser, see e.g. the recent text-book
[25], where the focus is, as here, the efficient and accurate treatment of complex modelling
problems involving PDEs. The terminology is “decomposition methods”, and aptly so: the
original problem is decomposed into simpler problems and (approximate) solutions of these
problems is “composed” into a consistent approximation of the original (hard) problem. We
refer the reader to [25, pp. 33-39] for an overview of classical splitting methods, including
sequential and Strang splitting.

In this light, we split the interface tracking and surfactant problem (a,b) from the Navier-
Stokes calculation (c,d) as (a) was split from (c) in [40],

w2 _y grtl/2 using (I'", p™)
(L™, p") — (I, p ) using w172,

This can be seen as a classical Strang splitting. From Section 4 it should be clear how the
Navier-Stokes step is computed. We now turn our attention to how to tackle the interface-
surfactant problem.

5.1 Splitting the interface-surfactant system

Let g denote (f, p) so that the interface/surfactant system from (6) and (10),

{3ﬂu©+v§ﬂ&ﬂ=u) 36)
may be written as
82
Qt+ <a§78§27q>+G_0, (37)
with
P f(tag) _ AQ1 L —w
alh:8) = [P(t,f)} - Fla):= [qu + B(q1)q2 +C(q1)qJ G [ 0 }
and
A=Av) = Uﬁaﬁ

B = B(q1,v,w) := ¢y (gz + é?;g%?)

_ O (0 060
C_C@”_%r<%e+as%>
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Note that ¢ = ¢¢(¢q1) was defined in (11). We now decompose the system as follows:

0+ Qo)+ Q) =0 Q= 4] +o @m0 ). (38)

based on the observation that A + G is hyperbolic, whereas B + C' is elliptic.
A typical way to approach the decomposed system (38) is the Strang method [58]

d +Qi(¢") =0, with ¢!(t) = q(t), te (t,t+ At/2)
g’ +Qa(q") =0, with ¢'(t) = ¢’ (t + At/2), t e (tt+ At) (39)
gl +Qi(¢") =0, with ¢/(t+ At/2) = ¢/ I(t+ At), te (t+At/2,t+ At

where the final result is q(t + At) := ¢! (t + At). This method is consistently observed to be
fully second order accurate, though a proof of this is not readily available®.

The discretization of the @ steps in (39) was discussed in Section 2.4; the transport part
of the surfactant PDE (10) is of the same form as the segment advection equation. The Q2
step has the form of a heat-equation, and we use an implicit Crank-Nicholson scheme with
the usual centered difference operators on the uniform grid in local coordinates. As is natural
given that the interface tracking method is based on domain decomposition, we use a Schwarz
iteration to solve the resulting system (see [17, Sec. 6.10.2] or [31]).

6 Numerical results

In this section we report the results of three simulations performed using our method. We
show grid convergence and give examples of flow cases where the addition of surfactants to
the interface significantly influences the behavior of the flow.

The full system, as described in the previous section, contains a large number of parameters
that characterize the flow. The Navier-Stokes equations (16) are directly influenced by the
Reynolds number Re and the Capillary number Ca. The diffusion of surfactants on the
interface is governed by the Peclet number Per (9), while the elasticity number E determines
the coupling between surfactants and surface tension (13). The problems including wetting
have a contact line friction number B controlling the wetting speed (28). On the wall away
from the contact point the slip velocity is controlled by the slip length As (29). The flow
domain is discretized using a staggered grid with Ay = Az, while the segment equations (36)
are discretized using A¢ = Az. The velocity boundary condition (30) is regularized using a
slip width wg, which is kept constant when performing convergence tests, to ensure that the
same physical problem is solved for all grid refinements. The time step At is set such that
the CFL condition is satisfied; the implicit treatment of the surfactant diffusion (@2 in (39))
removes the At ~ Az? limitation that an explicit treatment would have required.

6.1 Migrating drop

To illustrate the effect of Marangoni forces on a drop, we consider the case of a circular
drop of unit diameter which initially has a locally high concentration of surfactant on one
side, leading to tangential (Marangoni) forces (14) due to surfactant gradient. At ¢t = 0, the

4An informal proof that the Strang splitting error is second order can be found in e.g. [37, p. 387] for linear
operators.
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Figure 7: Drop migrating due to Marangoni force. Interface thickness shows surfactant
concentration. Note that at the final time, the drop has moved horizontally.
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Figure 8: Left: Surfactant concentration plotted against angle from drop centre during time
stepping. Concentration at ¢ = 0 and ¢ = 5 drawn in solid lines. Center: Interface position
at the initial and final times. Right: Convergence of flow field and interface.

surfactant concentration on the drop surface is p(a)) = % exp(—a?), a being the angle from the
center of the drop to the point on the surface. The simulation is performed using Ax = 0.01
and At = Az/2 until t = 5, with dimensionless numbers Re = 10, Ca = 0.1, E = 0.5 and
Per = 100. Figure 7 shows how the Marangoni forces due to the gradient in surfactant
concentration (illustrated by line thickness) create a local flow along the interface of the drop.
The flow generates recirculation inside the drop, moving it forward. As the concentration
gets evened out the flow slows down, until the drop comes to a rest a its new position, to the
right of the initial position. Figure 8 (left and center) shows how the surfactant concentration
profiles flattens out as the drop moves to its new position.

To check the numerical convergence of our solution, we measure the difference in the flow
field at time ¢+ = 1 between consecutive refinements in L?-norm, Auy = |luy — uan||]2 and
Avy = |luy — van]|2. The convergence of the interface is measured by comparing the right
halves of the interface at time ¢t = 1 between refinements in maximum norm, Al'y = ||[I'y —
9N ]|oo- The domain (0,2) x (0,2) is discretized into N x N points, N = {32,64,128,256}.
The solutions on the two staggered grids are compared by interpolating from the refined grid
onto the coarse grid. Figure 8 (right) shows the convergence as the grid is a refined, with an
average convergence rate around 1.3.

6.2 Moving drop on solid surface

t=0.15 t=1.80

0 0
1 1.5 2 2.5 3 1 1.5 2 2.5 3

Figure 9: Drop migrating due to Marangoni force. Interface thickness shows surfactant
concentration.
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Here we simulate a drop of radius R = 0.5 which is initially at rest on a solid surface,
with contact angle 6 = 0, . = 80° and a surfactant distribution that has a maximum at the
right contact point. We set Re = 10, Ca = 0.1, E = 0.5, Per = 100, B = 1, ws = 0.05,
As = 0.05, At = Az/2 and run until ¢ = 3 in the domain (0,4) x (0,1). Figure 9 shows the
solution at different times, illustrating how Marangoni forces create a flow that redistributes
the surfactant concentration on the interface. The drop moves very slightly to the right in
the process and the contact angles also change due to the presence of surfactant, though the
visible effects are mainly in the transient flow.

To check the numerical convergence of our contact line treatment, we measure the average
difference in z-position between times ¢ = 0 and ¢ = 1 (during the transient state) as e(Azx) =
fol |x(Ax) — x(2Ax)||1dt, between refinements Az = {1/16, 1/32, 1/64, 1/128}. This is done
for the points on the interface that lie in the box {x > 2, 0 < y < 0.3}, which is the part
of the interface where the change of position is most pronounced. The results displayed in
Figure 10 indicate that the convergence is linear.

~
~
246} -
= 248t _ -
254
0 0.05 0.1 0.15
y

Figure 10: Left: Points near the right contact line (rotated by 90° in plot) at ¢ = 1 for a
number of grid refinements. The dashed line represents the interface at t = 0. Right: Average
difference in x-position between refinements.

6.3 Steady state of drop on solid surface in shear flow

We now turn our attention to a moving drop on a channel wall in shear flow, with the purpose
of investigating the effect surfactants have on the shape of the drop. The drop is initially
at rest with contact angle § = 6, . = 80° and a uniform surfactant distribution p = pg. At
time ¢ = 0 the top wall starts to move with unit velocity, and as the shear flow develops
the drop starts moving along the bottom wall. We let the simulation run until the shape
and surfactant distribution of the drop have reached a steady state, at which the drop is
simply being translated horizontally and the flow transport of surfactant along the interface
is balanced by the diffusion. We do this for a number of combinations of pg and Per, while
fixing the remaining parameters at B=1, E =1, Ay = 0.01, ws = 0.025 and Az = 0.005.
The flow field is displayed in Figure 11 with the translational velocity of the drop sub-
tracted, meaning that it is viewed from the drop’s frame of reference, where the velocity on
the interface is tangential. The addition of surfactants to the drop evidently makes the flow
undergo a sharp change at the interface; note the pronounced change in velocity profiles as
we move from left to right in the top row of the figure, corresponding to increasing the level
of surfactants on the interface while keeping the diffusion rate constant. A similar, but less
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pronounced, effect is visible on the bottom row, where the surfactant level is kept constant
while the diffusion is decreased (Per increased). The velocity change at the interface is caused
by the Marangoni force (14), which increases both when the surfactant concentration and its
surface gradient increase. Decreasing the diffusion causes a stronger surfactant gradient on
the interface (see Figure 12), hence the larger Maragoni force when Per is increased.

It is worth noting that the conservation error |R(t) — R(0)|/|R(0)|, R(t) = fI‘(t) p(s,t)ds,
is less than 1% at the final time ¢ = 5 in all of these cases, suggesting that the method shows
good conservation of surfactants even though it is not exactly numerically conservative.

Pe=100, pU=O Pe=100, p0=0,1 Pe=100, pU=OA4

0.6
05}
04}
03}
02}
0.1F

0.6
05}
04}
031
02}
0.1}

0
0

Figure 11: Drop shape at steady state with velocity field viewed from the drop’s frame of
reference. Top row: pg = 0, pp = 0.1 and pg = 0.4 with Per = 100. Bottom row: Per = 1,
Per = 10 and Per = 50 with py = 0.4.
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Figure 12: Surfactant concentration against arc length. Left: Per = 100 and varying po.
Right: pg = 0.4 and varying Per.

6.4 Spreading drop

As an illustration of what happens to a wetting drop when surfactants are added, we consider
a case where surfactants are added to the surface of an initially clean, partially wetting drop
(05, = 70°) resting on a substrate, thus increasing the wetting surface of the drop. As a
test of robustness, the same total amount of surfactants are added to the interface in two
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different initial distributions, one flat and one in the shape of a bell curve (Figure 13a). The
results of the numerical simulation, presented in Figure 13, show that there is a brief period
of transition during which the drop relaxes to a new equilibrium state with a smaller contact
angle. The same final state is reached from both initial distributions, even though the paths
taken through the transition differ, with differences between the final interface positions and
surfactant distributions of magnitude O(10~%) in maximum norm. This indicates that the
computational method is robust, in the sense the equilibrium state reached is independent
of the initial state, as long as it is symmetric (otherwise there will be a net translational
movement of the drop).

Parameters used in the simulation are Re = 10, Ca = 0.1, Per = 100, E = 0.95, B = 0.5,
As = 0.05, ws = 0.05, Az = 0.005 and At = Azx/2.

7 Conclusions

In this paper we have presented a numerical method for two-phase flow with insoluble surfac-
tant and contact line dynamics in two dimensions. We use a domain decomposition approach
to represent the interface and formulate its time-evolution. The interface is represented as
a union of segments, where each segment defines a mapping (3) to a local coordinate frame
and a function, f(&,t), that defines the interface location in local coordinates (cf. Figure 2).
On each segment, a PDE in local coordinates (6) describes the motion of the interface given
a convective field, u.

We argue that this is a natural framework to pose complex modelling problems in. To
demonstrate this, we consider a surfactant concentration, p, defined on the interface. We
apply the domain decomposition idea to the PDE that governs surfactant transport and
diffusion (1), obtaining a set of equations (10) for the surfactant concentration p(&,t) in local
coordinates on each segment.

The resulting system is a parametrization, (&, f(§),p(§)), of both the interface and its
corresponding surfactant concentration. We contend that this is a significant feature, because
a vast family of numerical methods are available, efficient and well understood for PDEs on
uniform grids. In Section 5 we deploy such methods for the resulting systems of equations,
and we are able to keep the time step At proportional to the grid size Az by solving the
surfactant diffusion equation using an implicit method. Vis-d-vis front tracking methods we
do not need to discretize equations with respect to e.g. arc-length parametrization.

Moreover, we consider the contact-point (wetting) problem [16]. This adds a solid-interface
contact angle (cf. Figure 1) that introduces an additional set of physical models to the
computation (Section 4.2). We discuss this in the context of an immersed boundary method
for the Navier-Stokes equations (Section 4). In the literature there are several approaches
to incorporating the forces generated at the contact point into the multi-phase flow solver in
a consistent manner; this is an area of ongoing research. While we do not claim to have a
contribution to the theoretical understanding of wetting, we do believe that given a model
for the contact point dynamics, such as the one by Ren and E [49], our method can be used
to study the dynamics implied by the model.

We give numerical results in Section 6, including results for the full problem with both
surfactants and contact point dynamics. We observe that the presence of surfactants can have
large effects on the dynamics of two-phase flows, mainly through the addition of Marangoni
forces tangential to the interface.
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Figure 13: Drop initially at rest spreading due to the addition of surfactants. The same total
amount of surfactants is added in two different initial distributions. The same final state is
reached in both cases. Note that the length of the interface increases during the transition,
causing a decrease in the average value of p.
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