

Linköpings tekniska högskola
Linköpings universitet

581 83 Linköping

Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Evaluation of the Turbo-decoder Coprocessor
on a TMS320C64x Digital Signal Processor

Examensarbete utfört i Kommunikationssystem
vid Tekniska högskolan i Linköping

av

Johan Ahlqvist

LiTH-ISY-EX--11/4522--SE

 Linköping 2011

Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden

Evaluation of the Turbo-decoder Coprocessor
on a TMS320C64x Digital Signal Processor

Examensarbete utfört i Kommunikationssystem
vid Tekniska högskolan i Linköping

av

Johan Ahlqvist

LiTH-ISY-EX--11/4522--SE

Handledare: Reza Moosavi
 ISY, Linköpings universitet
 Khalid Goyan
 Saab AB
Examinator: Mikael Olofsson
 ISY, Linköpings universitet

 Linköping, 19 Oktober, 2011

Presentationsdatum

2011-10-14

Publiceringsdatum (elektronisk version)

2011-10-28

 Institution och avdelning
Institutionen för systemteknik

Department of Electrical Engineering

ISBN (licentiatavhandling)

ISRN

LiTH-ISY-EX--11/4522--SE

Serietitel (licentiatavhandling)

Språk

 Svenska
X Engelska

Antal sidor

84

Typ av publikation

 Licentiatavhandling
X Examensarbete
 C-uppsats
 D-uppsats
 Rapport
 Annat (ange nedan)

Serienummer/ISSN (licentiatavhandling)

URL för elektronisk version
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71656

Publikationens titel
Evaluation of the Turbo-decoder Coprocessor on a TMS320C64x Digital Signal Processor

Författare
Johan Ahlqvist

Sammanfattning
En teknik som används för att minska de fel som en signal utsätts för vid transmission över en brusig kanal är felrättande
kodning. Ett exempel på sådan kodning som ger ett mycket bra resultat är turbokodning. I några digitalsignalprocessorer, av
sorten TMS320C64xTM, finns en inbyggd coprocessor som utför turboavkodning.
Denna uppsats är utförd åt Communication Development inom Saab AB och presenterar en utvärdering av denna
coprocessor. Utvärderingen avser såväl minnesförbrukning som datatakt och innehåller även en jämförelse med en
implementering av turbokodning utan att använda coprocessorn.

One technique that is used to reduce the errors brought upon signals, when transmitted over noisy channels, is error control
coding. One type of such coding, which has a good performance, is turbo coding. In some of the TMS320C64xTM digital
signal processors there is a built in coprocessor that performs turbo decoding.
This thesis is performed on the account of Communication Developments, within Saab AB and presents an evaluation of this
coprocessor. The evaluation deals with both the memory consumption as well as the data rate. The result is also compared to
an implementation of turbo coding that does not use the coprocessor.

Nyckelord
Turbo decoding, Turbo-decoder Coprocessor, Digital Signal Processor, C64x

v

Abstract
One technique that is used to reduce the errors brought upon signals, when transmitted
over noisy channels, is error control coding. One type of such coding, which has a
good performance, is turbo coding. In some of the TMS320C64xTM digital signal
processors there is a built in coprocessor that performs turbo decoding.

This thesis is performed on the account of Communication Developments, within
Saab AB and presents an evaluation of this coprocessor. The evaluation deals with
both the memory consumption as well as the data rate. The result is also compared to
an implementation of turbo coding that does not use the coprocessor.

Sammanfattning
En teknik som används för att minska de fel som en signal utsätts för vid transmission
över en brusig kanal är felrättande kodning. Ett exempel på sådan kodning som ger ett
mycket bra resultat är turbokodning. I några digitalsignalprocessorer, av sorten
TMS320C64xTM, finns en inbyggd coprocessor som utför turboavkodning.
Denna uppsats är utförd åt Communication Development inom Saab AB och
presenterar en utvärdering av denna coprocessor. Utvärderingen avser såväl
minnesförbrukning som datatakt och innehåller även en jämförelse med en
implementering av turbokodning utan att använda coprocessorn.

vii

Acknowledgements

First of all I would like to thank my family and friends for supporting me throughout
this thesis. Special gratuity is also given to:
My supervisors Reza Moosavi, at Linköpings universitet, and Khalid Goyan, at Saab
AB, for their highly appreciated guidance and help during the thesis
My examiner Mikael Olofsson for giving me the opportunity to perform this thesis

Finally I would like to thank all the inspiring people both at Communication
Development – Saab AB and at Communication systems – Linköpings universitet.

Johan Ahlqvist
Stockholm, 2011

ix

Contents
INTRODUCTION 1

1.1 THESIS OBJECTIVES 1
1.2 PROCEDURE 2
1.3 THESIS OUTLINE 2

BACKGROUND 3

2.1 ERROR CONTROL CODING 3
2.1.1 CONVOLUTIONAL ENCODING 3
2.1.2 CONVOLUTIONAL DECODING 6
2.1.3 TURBO CODING 11
2.2 3GPP TURBO CODING STANDARDS 15
2.2.1 ENCODING 15
2.2.2 INTERLEAVING 16
2.2.3 DECODING 18
2.3 C64X DSP 19
2.3.1 INTRODUCTION 19
2.3.2 TCP 19
2.3.3 CODE COMPOSER STUDIOTM 22

PROBLEM DESCRIPTION 23

3.1 EVALUATION 23
3.1.1 CODE DENSITY 23
3.1.2 RAM USAGE 23
3.1.3 DATA RATE 23
3.2 TASKS 24
3.2.1 ENCODING 24
3.2.2 C-BASED DECODING 24
3.2.3 TCP DECODING 24

IMPLEMENTATION 25

4.1 ENCODING 26
4.1.1 INTERLEAVING 26
4.1.2 ENCODING 26
4.2 C-BASED DECODING 27
4.2.1 INTERLEAVING AND DEINTERLEAVING 28
4.2.2 CALCULATION OF EXTRINSIC OUTPUT 28
4.3 COPROCESSOR 28
4.3.1 INPUT CONFIGURATION PARAMETERS 29
4.3.2 SYSTEMATIC AND PARITY DATA 29
4.3.3 INTERLEAVER INDEX 29
4.3.4 HARD DECISION DATA 29
4.3.5 OUTPUT PARAMETERS 30
4.3.6 EDMA PROGRAMMING 30

x Contents

EVALUATION 35

5.1 PERFORMANCE 35
5.1.1 COMPARISON 36
5.1.2 MAX-LOG-MAP 37
5.2 CODE DENSITY 38
5.2.1 COMPARISON 39
5.3 RAM USAGE 40
5.3.1 COMPARISON 43
5.4 TOTAL MEMORY USAGE 44
5.4.1 COMPARISON 45
5.5 DATA RATE 46
5.5.1 OPTIMIZATION 46
5.5.2 BLOCKS 48
5.5.3 ITERATIONS 52
5.5.4 COMPARISONS 54
5.5.5 MAX-LOG-MAP ALGORITHM 54

IMPROVING THE DATA RATE 57

6.1 INTRODUCTION 57
6.2 CODE DENSITY 59
6.3 RAM USAGE 60
6.4 TOTAL MEMORY USAGE 61
6.5 DATA RATE 61
6.6 TOTAL SYSTEM 63

CONCLUSIONS 65

7.1 MEMORY 65
7.2 DATA RATE 65
7.3 ANSWERS 65

FUTURE WORK 67

BIBLIOGRAPHY 69

xi

Abbreviation
3GPP 3rd Generation Partnership Project

ALU Arithmetic Logic Unit
API Application Programming Interface

AWGN Additive White Gaussian Noise
BCJR Bahl, Cocke, Jalinek and Raviv

BPSK Binary Phase Shift Keying
C64x TMS320C64xTM

CCS Code Composer StudioTM
CSL Chip Support Library

DSP Digital Signal Processor
EDMA Enhanced Direct-Memory-Access

IDE Integrated Development Environment
MAC Multiple Accumulate

MAP Maximum a Posteriori
ML Maximum Likelihood

RAM Random Access Memory
SISO Soft Input Soft Output

SNR Signal to Noise Ratio
SOVA Soft Output Viterbi Algorithm

TCP Turbo-decoded Coprocessor
TI Texas Instruments

VLIW Very Long Instruction Words

1

Chapter 1

Introduction

When transmitting data over a noisy channel, errors will arise on the received signal.
A technique called error control coding has been shown to reduce these errors. There
are different ways of doing this, but they have one factor in common; they add
redundancy to the signal at the transmitter.

One of the error control coding techniques with a high performance is the so-called
turbo coding, which has two decoding devices, which share information over several
runs to improve the overall performance.
One problem that often makes turbo coding unusable in practice is that it has a high
computational complexity, making it slow. Therefore, there is a coprocessor, the
Turbo-decoder Coprocessor (TCP), built-in in some of the TSM320C64xTM (C64x)
digital signal processors (DSPs), which can increase the speed of the decoding.

1.1 Thesis Objectives
The main objective of this thesis is to evaluate the performance of the TCP by
comparing it to an implementation using a conventional C-algorithm. The report will
give answers to the following questions:

 Is it efficient in terms of memory usage and execution speed to use turbo
coding on a C64x DSP without using the TCP?

 How much memory usage and speed could be gained by using the TCP instead
of the C-based algorithm, if any?

 Is it practically applicable to use the TCP for turbo decoding on a C64x DSP?

2 Introduction

1.2 Procedure
The thesis project can be grouped into the following activities:

 Background studies of error control coding, with special focus on turbo coding

 Background studies of the C64x DSP and especially the TCP

 Implementation of a turbo encoder, a C-based turbo decoder and the TCP

 Evaluation of the implementations

 Comparison between the results

 Improvements of the results

 Analysis of the results

1.3 Thesis Outline
Chapter 2 provides a deeper background of error control coding, the 3rd Generation
Partnership Project (3GPP) Turbo Coding Standards and the C64x DSP. To fully
understand the upcoming chapters, it is important to read this chapter and get the main
ideas. In Chapter 3 the problem is defined and also a suggestion on how to solve it.
Chapter 4 explains the implementation and Chapter 5 presents the results of the
evaluation. In Chapter 6 an improvement of the implementation is examined. Finally
Chapter 7 states the conclusions and Chapter 8 suggests some future work.

3

Chapter 2

Background

2.1 Error Control Coding
Claude Shannon showed in 1948 that it is possible to reduce the errors brought upon
signals, when transmitted over noisy channels, to substantially low levels without
decreasing the information data rate, as long as the rate is less than the channel’s
capacity [1]. One technique that tries to accomplish this is error control coding or
channel coding, which has been an efficient way of lowering the impact of noise,
interference, fading and other channel impairments for a long time now and it has
improved the bit error rate performance of communication systems. [2, Ch.2]
The main idea of error control coding is to introduce redundancy in the transmitted
signal, which makes it possible for the receiver to detect and correct the errors from
the channel. This is performed by mapping of the information sequence, prior to the
transmission, onto an encoded sequence called a codeword. [3]
Nowadays there are many different techniques available and they are often split into
two groups: (i) block codes and (ii) convolutional codes [3]. Both of the groups
however add redundancy to the information sequence. Turbo codes are based upon
convolutional coding. Therefore block codes will not be described in this thesis and
instead the focus lies on convolutional coding.

2.1.1 Convolutional Encoding
Convolutional and turbo-like codes have a straightforward implementation and they
give a good result in terms of bit error rate, this is the reason why they have
revolutionized communication systems [3]. The output from a convolutional encoder
depends on the input at that time instant as well as on the input on previous time
instants. Therefore the implementation can be interpreted as sending the information
bits through a time discrete filter [4].
The information bit sequence is entering the encoder in k serial input streams [4]. The
encoding then consists of k different shift registers summed up in n modulo-2 adders
giving n output streams, where kn . This gives a rate, which is defined as nkR / .
Lastly a multiplexer converts the n output streams into one stream of codewords. The
encoders are often referred to as (n,k)-encoders.

4 Background

The memory mi of each shift register in the encoder is given by the number of delay
elements in each of the k shift registers [2, Ch.11]. The memory of the encoder v is
defined as the sum of all the delay elements, and the memory order m is defined as the
maximum value of all the mi:s. The memory is an important factor for convolutional
codes and it has been shown that increasing m could get a lower error probability.
An example of a convolutional encoder is given in Figure 2-1. It has one input and
two outputs, that is k = 1 and n = 2. The rate is therefore R = ½. There are also two
delay elements, which gives m = v = 2.

Figure 2-1: A rate ½ non-recursive and non-systematic convolutional encoder.

Figure 2-2: A rate ½ recursive and systematic convolutional encoder.

An encoder could be defined as systematic or non-systematic and recursive or non-
recursive [2, Ch.11]. A systematic encoding means that the first k bits of the output
are the same as the k input bits, i.e. the encoder does not affect them. These k bits are
often called systematic bits and the other kn bits parity bits. The opposite of a
systematic encoder is a non-systematic encoder, which means that the input sequence
cannot be found in the encoded sequence. An encoder is also called recursive if it uses
a feedback and non-recursive or feedforward encoder otherwise. The encoder in
Figure 2-1 is an example of a non-recursive and non-systematic encoder. On the other
hand, Figure 2-2 illustrates a recursive and systematic encoder, since v1[k] = u[k] and
it consist of a feedback loop.

The operation of a convolutional encoder could be interpreted as a state diagram,
since it consists of shift registers which are changed for every new set of k arriving
input bits [2, Ch.11]. The state of the encoder could be defined as the content in the
shift registers. The total number of states in the state diagram is related to the number
of delay elements as: vN 2 .

From the encoder in Figure 2-1, the state diagram shown in Figure 2-3 is given, which
has 42 2N states. The branches are labelled with u/v1v2, where u is the input to
the encoder in a certain state making the diagram move via that branch to the next
state and outputting v1 and v2.

5 Background

Figure 2-3: The state diagram of the encoder in Figure 2-1.

2.1.1.1 Distance properties
From the state diagram, given that it initially starts in the all-zero state, it is possible
to find the codewords from the corresponding information sequence by following the
path given by the information sequence and deriving the branch labels.

To find the Hamming weights, i.e. the number of ones in the different codewords, it is
proper to modify the state diagram so that it starts and ends in the all-zero state. This
is illustrated in Figure 2-4.
Given this modified diagram it is possible to obtain all non-zero codewords from the
different paths that start in the all-zero state and diverge from it once, and ends in the
all-zero state as they remerge with it [3].

Figure 2-4: a modified state diagram, starting and ending in the all-zero state.

6 Background

In such a path, the encoder will start outputting ones, and then it is possible to find the
minimum weight codeword by finding the path with the fewest ones that takes us
through the diagram. The free Hamming distance could now be defined as, since the
coding is linear, the non-zero codeword with the minimum Hamming weight [2,
Ch.11]. The free Hamming distance is the most important measurement of the
performance of the coding and a higher free distance gives a better code. From Figure
2-4, it is possible to follow the path that gives the fewest number of ones. Stepping
through the states: 00-10-01-00, with an input sequence of: 100, gives an output
sequence of: 111011 which have five ones, thus the free Hamming distance, for this
illustrative example, is five.

2.1.2 Convolutional Decoding
Sequential decoding, threshold decoding and Viterbi decoding are some of the
different decoding algorithms listed in [4]. The algorithm used in turbo decoding is
based on the Bahl, Cocke, Jalinek and Raviv (BCJR) algorithm, which in turn is based
on Viterbi-like algorithms; therefore these two algorithms will be described in the
following subsections.

2.1.2.1 The Viterbi algorithm
The Viterbi algorithm is said to be an optimum decoding algorithm, given that the
input bits are 0 or 1 with equal probability, since it searches through the received
sequence and finds the maximum likelihood (ML) sequence [2, Ch.12]. It is therefore
called an ML-decoding algorithm. The algorithm finds the most likely codeword in
the received sequence and minimizes the probability that the received sequence is not
equal to the encoded sequence and thus it will find the most likely codeword.

A good way of understanding the Viterbi algorithm is to start by introducing a trellis
diagram [2, Ch.12]. A trellis diagram is an expansion of the state diagram; showing
how the different input bits will affect the path between states in time, i.e. now
separate state diagrams are shown for each time instant. There will be 2k branches
entering and leaving each state, and each branch could be labelled with the output of
the encoder. Using the state diagram in Figure 2-3, the trellis diagram in Figure 2-5 is
obtained.

Figure 2-5: a trellis diagram, obtained from the convolutional encoder in Figure 2-1.

The trellis could start and end in any state, but usually the encoding is initiated with
zeros in the shift registers forcing the trellis to start in the all-zero state [4]. If m
additional zeros is appended at the end of the information sequence, the trellis

7 Background

diagram is also forced to end in the all zero state. This will make the rate of the
encoding to increase since a tail of m extra bits are sent for each block of bits.

Another way of terminating the encoding, called tail biting, does not append any extra
bits [2, Ch.12]. Instead the starting and ending states of the trellis should be the same.
This gives the decoder the opportunity to try the different starting and ending states, to
find the best choice.

Figure 2-6: A terminated trellis starting in the all-zero state.

The trellis diagram is used in the Viterbi decoding. Under the assumption that the
encoder is terminated with some tail bits, the sequence would start and end in the all-
zero state [3]. The start and end of such a trellis is shown in Figure 2-6, showing that
there are a limited number of paths through the trellis. The purpose of the algorithm is
to find the optimum path through the trellis. A useful metric in the decoding is the
branch metric, which could be calculated in two different ways, either by using the
log-likelihood function to maximize the transition probability or by minimizing the
Hamming distance. These two are given as:

)|lnP(ikik, crM ,

),(, ikik d crM .

The first metric is the log of the probability that r is received given that the codeword
c was sent and the second is the Hamming distance defined by the number of differing
bits between the received r and the sent codeword c.

It is possible to use the Viterbi algorithm for both hard decoding, i.e. using the signs
of the received sequence, as well as soft decoding, i.e. using the log-likelihood values
of the received sequence.
Along the way it is possible to discard some of the sequences by noticing that there
are several paths entering each state, so if one of these is considered better than the
others the rest could be discarded. This means that it is only necessary to keep, as
many survivors for each step through the trellis as there are number of states in the
diagram.
The following reasoning is adopted and summarized from [2, Ch.12] and [4], for a full
description refer to them. Given a received sequence corresponding from an
information sequence of length S, the Viterbi algorithm could be defined in a couple
of steps. Note that depending on which of the branch metric that is used, this is either
a maximization problem (log-likelihood function) or a minimization problem
(Hamming distance).

8 Background

Step 1: From the starting time t = m, calculate all the branch metrics entering all the
states. Keep the branch with the highest/lowest metric as the survivor and save
the metric as a state metric.

Step 2: Increase the time t to m+1, calculate all the branch metrics and add them to
the state metric from where they originate. Keep the paths with the
highest/lowest total metric as the survivor at each state and save the metric as
a state metric, discard the rest of the paths.

Step 3: If t < S + m, repeat step 2. Otherwise, choose the estimated sequence as the
path with the highest/lowest total metric. If the ending state is known, the
other states could be discarded.

In practice, to avoid the need of going backwards through the trellis to find the
estimated information sequence corresponding to a path, the information sequence
and not the surviving path is stored in step 1 and 2.

2.1.2.2 The BCJR Algorithm
The Viterbi decoder is an optimum ML-decoder in the sense that it finds the most
likely codeword, but the algorithm is not optimum in terms of bit error rate
performance so instead there was a maximum a posteriori (MAP) decoding algorithm
introduced in 1974 by Bahl, Cocke, Jalinek and Raviv, called the BCJR algorithm [3].
The BCJR algorithm does not find the most likely codeword; instead it finds the most
likely bit in each codeword by estimating the posteriori distribution of the bits, since it
is often better to minimize the bit error rate rather than the word error rate [2, Ch.12].
One way of minimizing the bit error rate is to choose an encoder, which maps low-
weight information sequences to low-weight codewords. One type of encoder that has
this behaviour is a systematic encoder.

The BCJR algorithm, based on the received signal and its predecessors, has as its
main task to estimate the posterior probability that a particular branch will be crossed
due to the transmitted codeword [3]. And from these posterior probabilities of all
branches, it is possible to calculate the posterior probabilities for each bit related to
these branches, roughly speaking.
The BCJR algorithm runs Viterbi-like algorithms twice, once forward through the
trellis and once backwards. This gives the BCJR algorithm a higher computational
complexity than the Viterbi algorithm. With a decoding that runs for several iterations
and updating the a priori probabilities of the bits in every run, the BCJR algorithm has
a better performance than the Viterbi algorithm.

Definitions
The following definitions are a summary of the reasoning given in both [2, Ch.12] and
[3]. For more details refer to them.

The BCJR algorithm is based on hypothesis testing, where a received information bit
is either 0 or 1, which gives the log-likelihood function as:

.
|1P
|0Pln)L(

i

i
i y

y
u
uu

Here, y is the received signal and ui is the information bit at time instant i. From this it
is possible to make a “hard” MAP-decision as:

9 Background

0.)L(1,
0,)L(0,ˆ

i

i
i u

u
u

A specific value of ui corresponds to crossings of specific branches in the trellis and
the posterior probability of a branch is proportional to the joint probability. From this
the log-likelihood function could be expressed as:

,
),,'P(

),,'P(
ln)L(

11ii

01ii

)s,(s 1ii

)s,(s 1ii
i

U

U

ssss

ssss
u

y

y

where U0 corresponds to the branches in the trellis where ui is zero, U1 to the branches
in the trellis where ui is one and si and si+1 are states in the two following steps in the
trellis. Given that the received signal y consists of S different received codewords as:

SS yyyy 121 ,,,y ,

and using the chain rule for joint probabilities:

),,,P(),,,|P(),,,P(1n211n21nn21 xxxxxxxxxx ,

the following expression could be derived:

).,'P(),'|,P(),,'|P(
),,'P(),,'P(

1i1i1i1ii1ii11ii1i

11ii

yssyssyssyssssy
yssssss

S

Sy

Then by using the fact that the channel is memoryless for simplicity, i.e. the received
value at time t is independent of the received values from previous times (t), it is
possible to simplify the expression to:

).,'P()'|,P()|P(
),'P(),'|,P(),,'|P(

1i1iii1i1i1i

1i1i1i1ii1ii11ii1i

yssssyssssy
yssyssyssyssssy

S

S

The following quantities are now defined:

),|P((s) 1i1ii ssy S

),'|,P(),'(ii1ii ssyssss

).,'P()'(1i1i1i ysss

It is possible to rewrite the expressions for and as:

,)'(),'((s)
'

1iii
s

sss

.)(),'()'(ii1i
s

ssss

 is called the forward metric since running through the trellis forward could derive it
and is called the backward metric since running through the trellis backwards could
derive it. Using these new notations, P(s’, s, y) could now be expressed as:

).'(),'()(),,'P(1iii ssssss y

Left to be calculated is all i, called the branch metrics. A rewriting could be done
like:

10 Background

).',|)P('|P()'|,P(),'(i1iii1iii1ii ssssyssssssyssss

The first probability of the right hand side is the a priori probability that a state s' is
traversed to s in the trellis. The second probability on the right hand side is related to
the modulation and demodulation used, as well as the channel model, which is the
same probability calculated for the branch metrics in the Viterbi algorithm.
The max* operation could be useful in the BCJR algorithm. The operation is defined
for real numbers x1, x2,…, xn as:

)eeln(e)x,,x,(x*max n21 xxx
n21 .

The operation has the property of associativity:

z)y),(x,(max*max*z)y,(x,max* .

With proof:

z)y),(x,(max*max*)eeln()eeln(ez)y,(x,max* z)eln(ezyx yx

.

For two arguments the operation could be expressed as:

)|yx|eln(1y)max(x,)yexln(ey)(x,*max ,

which is proved in [3]. In this expression the second part of the sum ranges between 0
and ln 2 and could therefore be computed via a look-up table, which would make it
more effective to compute than the original exponential expression.

The Algorithm
The BCJR algorithm, like the Viterbi algorithm, can be described in a couple of steps.
This is summarized from [2, Ch.12] and [3]. In practice, this is often done in a slightly
modified log-domain algorithm, called log-MAP, to get more effective computations:

Step 1: Initialization of the forward and backward metrics. Assuming that the
initial and the terminal states are known, these are initialized according to:

0, ,
0, 0,

))(ln()(00 s
s

ssa

0. ,
0, 0,

))(ln()(
s

s
ssb SS

Step 2: The branch metrics are calculated as:

)),'((ln),'(ii ssssg .

Step 3: The forward metrics are calculated as:

)).,'()'((*maxeln)'(),'(ln))(ln()(i1i''

)'(),'(

'
1iiii

1ii ssgsasssssa
ss

sassg

s

Step 4: The backward metrics are calculated as:

)).,'()((*maxeln)(),'(ln))'(ln()'(ii
)(),'(

ii1i1i
ii ssgsbsssssb

ss

sbssg

s

11 Background

Step 5: The log-likelihood functions are calculated for all k. With the
definitions of a, b and g, it is now possible to express),,'P(yss as:

)'(),'()(1iiie),,'P(sassgsbss y .

And the log-likelihood function as:

.)'(),'()(max)'(),'()(max

elneln)L(

1iii
*

),(1iii
*

),(

),(

)'()',()(

),(

)'()',((s)
k

11ii01ii

11ii

1iii

01ii

1iii

sassgsbsassgsb

u

UssUss

Uss

sassgsb

Uss

sassgb

Step 6: Finally the “hard” decisions could (optionally) be calculated using:

0.)L(1,
0,)L(0,

ˆ
i

i
i u

u
u

Modification
According to [2, Ch.12], it is possible to obtain a simpler algorithm if the max*
operation is approximated as:

),max(),(*max yxyx .

This is a good approximation if),max(yx is relatively large, since)eln(1 || yx is
bounded by 0 and 0.693.ln(2) Using this approximation gives an algorithm called
the Max-log-MAP algorithm.

2.1.3 Turbo Coding
Turbo coding is an error control coding with a performance that can get very close to
Shannon’s theoretical limit [3]. Its iterative decoding, where two decoding devises
share information between each other over several rounds, was a breakthrough for
error control coding. The two fundamental ideas of turbo coding are the creation of a
random-like code and iterative decoding.

2.1.3.1 Encoding
The encoding is done using two convolutional encoders, one is used to encode the
information sequence and the other one is used to encode an interleaved version of the
information sequence. It has been shown that at high signal-to-noise ratio’s (SNR's),
the bit-error rate achieved when using non-systematic encoders is lower than that with
systematic encoders while at low SNR's it is opposite [5]. Also, it has been shown that
high rate turbo codes obtained by using recursive and systematic convolutional
encoders perform better than the turbo codes obtained from non-systematic encoders
at any operating SNR.
Often both encoders are equal, this is more for convenience than performance and the
best codes often have a relatively short memory length, typically four or less [2,
Ch.16]. After the two encoders, a puncturing scheme could be introduced to get a
higher code rate, which means that some of the redundant outputs are deleted
according to a predefined pattern.

An example of a turbo encoder is shown in Figure 2-7. The two identical encoders are
recursive and systematic encoders with four memory cells each.

12 Background

Figure 2-7: Recursive Systematic codes with parallel concatenation. This figure is produced
freely from [5, Fig. 2].

2.1.3.2 Interleaving
The input bits are written to a square matrix row-wise and then read pseudo-randomly
column-wise, rearranging the bits in an irregular but pre-described way [5]. These
long interleavers are what give the code a random-like structure, which has been
proposed to gain capacity. To get a good performance the interleaving depth should
be large, often a couple of thousand bits [2, Ch.16].
One important observation is that even though the first encoder, encoding the non-
interleaved sequence, is terminated, the second encoder, due to the interleaving, might
not be terminated just by adding zeros [2, Ch.16]. This could however be modified if
desired.

2.1.3.3 Decoding
It has been shown that soft decoding is better than hard decoding, and by using the
BCJR algorithm, the turbo decoding could calculate soft a posteriori probability of
each bit based on the received signal [3]. The received signal form the first encoder of
the non-interleaved information sequence is MAP decoded and the log-likelihood
ratio outputs are used as a priori, soft inputs, to the second decoder, using an
interleaver in between.

It is then possible to improve the result by using several iterations via a feedback loop,
i.e. the second decoder outputs log-likelihood ratios, which are deinterleaved and then
fed back to the first decoder [2, Ch.16]. The loop continues for either a predefined
number of iterations or until a satisfactory convergence has been reached. Figure 2-8
shows the improvement when increasing the number of iterations in the decoding.
Herein the bit error rates of the different number of iterations have been plotted and
compared to each other at different SNRs. The encoder is the same as the ½-rate code
in Figure 2-7 and the channel is an Additive White Gaussian Noise (AWGN) channel.

13 Background

When a puncturing scheme is used, the decoder considers the punctured bits as
erasures, i.e. it considers them to be zero or one with equal probability [3].

Figure 2-8: Binary error rate given by iterative decoding (p=1,…, 18) of code of fig. 2 (Figure 2-7)
(rate:1/2); interleaving 256x256. This figure is produced freely from [5, Fig. 5].

According to section 2.1.2, there are different decoding methods that can be used for
turbo decoding. In the following section a comparison between four different
decoding algorithms will be presented. The results have been taken from [6], where
two rate R = ½, m = 4 encoders has been used to create one rate R = ¹/3 turbo encoder.
The encoded bits where modulated using Binary Phase Shift Keying (BPSK) and
transmitted through an AWGN channel. The four soft input soft output (SISO)
decoding algorithms compared are the soft output Viterbi algorithm (SOVA), the
Max-Log-MAP, the Log-MAP and the MAP algorithm. The different algorithms
could be implemented as depicted in Figure 2-9, with two decoders, using one of the
four decoding algorithms, sharing information with each other. The performance and
the computational complexity comparison between the different algorithms are given
in Figure 2-10 and 2-11. Here it has been shown that it is possible to gain a lot of time
complexity by using one of the simplified algorithms at the cost of higher bit error
rate.

14 Background

Figure 2-9: Block diagram of iterative (turbo) decoder. This figure is produced freely from [6,
Fig. 2].

Figure 2-10: Turbo decoding performance comparison among different SISO algorithms. This
figure is produced freely from [6, Fig. 4].

15 Background

Figure 2-11: Execution time comparison of different SISO algorithms. This figure is produced
freely from [6, Fig. 5].

2.2 3GPP Turbo Coding Standards
The 3GPP is a project involving six different communication bodies [7]. The project
started with the production of technical specifications and reports regarding the 3G
mobile systems. The different bodies in the project are:

 ARIB – The Association of Radio Industries and Businesses, Japan

 ATIS – The Alliance for Telecommunications Industry Solutions, USA

 CCSA – China Communications Standards Association

 ETSI – The European Telecommunications Standards Institute

 TTA – Telecommunications Technology Association, Korea

 TTC – Telecommunication Technology Committee, Japan
By now the 3GPP has produced a couple of standards for wireless transmission and in
the following subsections the turbo coding standards is presented.

2.2.1 Encoding
This section is summarized from [8] which define the encoding of the 3GPP turbo
coding.
The encoding of the 3GPP turbo coding is done in blocks of K bits, where

511440 K . It consists of two identical recursive and systematic convolutional
encoders with the rate ½. The first one encodes the input sequence and outputs X and
A, where X is equal to the input sequence. The other encoder encodes an interleaved
version of the input sequence and only outputs A', since the other output X' already
exists by interleaving X. This is illustrated in Figure 2-12.

16 Background

Figure 2-12: Structure of rate 1/3 Turbo coder (dotted lines apply for trellis termination only).
This figure is produced freely from [8, Figure 4].

The output sequence from the turbo encoding is:

 X1, A1, A'1, X2, A2, A'2, … , XK, AK, A'K

The termination is done by changing the switches to its lower position, illustrated by
the dashed line in the picture, where three zero bits is inserted by adding the fed back
bit to itself. The termination bits are outputted as:

 XK+1, AK+1, XK+2, AK+2, XK+3, AK+3, X'K+1, A'K+1, X'K+2, A'K+2, X'K+3, A'K+3

2.2.2 Interleaving
The following subsections summarize how the interleaving is presented in [8].

2.2.2.1 Initialization
The input sequence is arranged in a CR rectangular matrix, where R denotes the
number of rows and C the number of columns. The arranging of the matrix is done in
the following three steps:

1. Decide the number of rows R, numbered from 0 to R-1 from top to bottom as:

)valueother any (if 20,
 530))(481or 200)((160 if 10,

 159)(40 if 5,

K
KK

K
R

2. Determine a prime number p and the number of columns C numbered from 0
to C-1 from left to right as:

- If)530(481 K : p = C = 53.

- Otherwise, from Table 2-1, find a prime number p that fulfils:
1)(pRK and determine C as:

17 Background

C
p 1, if K R (p 1)
p, if R (p 1) K R p
p 1, if R p K

p v p v p v p v p v

7 3 47 5 101 2 157 5 223 3

11 2 53 2 103 5 163 2 227 2

13 2 59 2 107 2 167 5 229 6

17 3 61 2 109 6 173 2 233 3

19 2 67 2 113 3 179 2 239 7

23 5 71 7 127 3 181 2 241 7

29 2 73 5 131 2 191 19 251 6

31 3 79 3 137 3 193 5 257 3

37 2 83 2 139 2 197 2

41 6 89 3 149 2 199 3

43 3 97 5 151 6 211 2
Table 2-1: List of prime number p and associated primitive root v. This table is produced freely
from [8, Table 2]

3. Write the bits into the matrix row by row and end with possibly a couple of
dummy bits (0 or 1) at the end to fill the matrix.

2.2.2.2 Permutations
After the bits have been written to the matrix they are intra-row and inter-row
permuted according to six steps:

1. Depending on the prime p chosen in the initialization, choose a primitive
root v, associated to p. This could be done from Table 2-1.

2. Build a base sequence s(j) from v and s(0)=1 as:

s(j)=(v s(j-1)) mod p, j=1, 2,…, p-2.
3. Determine qi, for i=0, 1, …, R-1, for q0=1 as:

qi>6 and qi>qi-1 should be a least prime integer such that g.c.d (qi, p-1)=1.

4. Construct the sequence ri, i=0, 1, …, R-1 as:
rT(i)= qi, where T(i) is a predefined pattern shown in Table 2-2 below.

 g.c.d. is the greatest common divisor, which is the largest positive integer that divides both numbers

without a remainder.

18 Background

Number of input bits K Number

of rows R
Inter-row permutation patterns <T(0), T(1), …, T(R-1)>

40 K 159 5 <4, 3, 2, 1, 0>

(160 K 200) or (481 K 530) 10 <9, 8, 7, 6, 5, 4, 3, 2, 1, 0>

(2281 K 2480) or (3161 K 3210) 20 <19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 13, 17, 15, 3, 1, 6, 11, 8, 10>

K = any other value 20 <19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 10, 8, 13, 17, 3, 1, 16, 6, 15, 11>

Table 2-2: Inter-row permutation patterns for Turbo code internal interleaver. This table is
produced freely from [8, Table 3]

5. Perform the intra-row permutation for i=0, 1, …, R-1, for different values
of C as:

 (C=p):

Ui(j)=s[(j ri) mod (p-1)], j=0, 1, …, (p-2), and Ui(p-1)=0, where Ui(j)
is the input bit position of j-th permuted bit of row i.

 (C=p+1):

Ui(j)=s[(j ri) mod (p-1)], j=0, 1, …, (p-2), and Ui(p-1)=0 and Ui(p-
1)=0, where Ui(j) is the input bit position of j-th permuted bit of row i,
and if K=RC then UR-1(p) should be exchanged with UR-1(0).

 (C=p-1):

Ui(j)=s[(j ri) mod (p-1)]-1, j=0, 1, …, (p-2), where Ui(j) is the input bit
position of j-th permuted bit of row i.

6. Use T(i) to perform inter-row permutations, where T(i) is the rows original
position of the permuted row i.

2.2.2.3 Output
After the permutations, the matrix is read column-wise starting at column 0 and row 0
and ending at column C-1 and row R-1. The permuted values corresponding to
dummy values are removed from the output.

2.2.3 Decoding
The documentation of the 3GPP channel coding does not describe any standard
decoding method. A guess would be that as long as the decoder follows the scheme of
the encoder it could use any of the existing decoding methods. This would give the
implementer a greater freedom in designing the decoder that fits its requirements of
speed and error rate performance.

19 Background

2.3 C64x DSP
2.3.1 Introduction
The C64x DSP family is described in more detail in [9]. The C64x DSP is a
generation in the TMS320C6000TM DSP platform, in which these fixed-point DSPs
are the ones with the highest performance. They are developed by Texas Instruments
(TI) and can be used in wireless applications.

With the use of the advanced architecture of very-long-instruction-word (VLIW) and
eight independent functional units, it has cost-effective solutions. Out of the eight
functional units, two are multipliers, which are capable of producing four 16-bit or
eight 8-bit multiply-accumulates (MACs) per cycle. The other six are arithmetic logic
units (ALUs).
The DSPs also contain 64 32-bit General-Purpose Registers and some of them, e.g.
the TMS320C6416, have two built-in coprocessors, one Viterbi-decoder Coprocessor
and one Turbo-decoder Coprocessor, making it possible to speed up the channel
decoding. These two coprocessors communicate with the DSP via Enhanced Direct-
Memory-Access (EDMA).

2.3.1.1 VLIW
VLIW is an architecture that has been very successful in DSPs, thanks to its
parallelism that increases the performance of the processors [10]. Using a relatively
simple technique and without consuming especially much power, it is able to achieve
a high instruction level parallelism and run multiple operations every cycle. Instead of
running one operation each cycle, there are multiple functional units that can handle
different operations in parallel and therefore the speed of the program could be
increased [11].

2.3.1.2 MAC
In DSPs the MAC operation is important, when realizing digital filters and
convolution [12]. It is also very expensive. The operation is a multiplication of two
numbers, which are added and stored to an accumulator, according to:

C) (BAA .

2.3.1.3 EDMA
The EDMA controls the communication between the level-two cash/memory and the
device peripherals [13]. It has a programmable priority and allows data transfers
to/from addresses in the memory space, peripherals and external memory. It is also
possible to chain and link data transfers to each other.

2.3.2 TCP
For a complete description of the TCP, refer to [14]. The TCP is a coprocessor, which
is built-in in some of the TMS320C6000TM DSPs, e.g. the C6416 DSP. It has been
developed to perform the turbo decoding for the 3GPP and IS2000 wireless standards.
This thesis only deals with 3GPP turbo coding, the IS2000 standards will not be
discussed further.

20 Background

2.3.2.1 Features
The TCP comes with the following features:

 Performance:
 The TCP consists of a paralleled architecture resulting in a low

processing delay.
 The possibility of enabling a stopping criteria algorithm can reduce the

processing delay even further.
 It is possible for the TCP and the DSP to run at full speed at the same

time.
 Optimization:

 By performing the turbo decoding on the TCP, both the board space
and the power consumption is reduced.

 The TCP has an own optimized working memory.
 Flexibility:

 It accepts frame sizes from 40 up to 20730 and all the rates and
polynomials used in the 3GPP and IS2000 coding standards.

 Any kind of interleaver can be used.

2.3.2.2 Encoding
The encoding in the TCP consists of two identical systematic and recursive rate ¹/3
convolutional encoders, which use termination bits. One encodes the information
sequence and the other an interleaved version of the information sequence. The
encoded bits are then punctured and repeated before being outputted. The encoder is
illustrated in Figure 2-13.

Figure 2-13: 3GPP and IS2000 Turbo Encoder Block Diagram. This figure is produced freely
from [14, Figure 1].

Given a frame size F and the notations from Figure 2-13, the puncturing and
repetition is done according to the following scheme:

21 Background

 Data rate ½ (2×F bits):
 X0A0X1A'1X2A2X3A'3…

 Data rate ¹/3 (3×F bits):
 X0A0A'0X1A1A'1X2A2A'2X3A3A'3 …

 Date rate ¹/4 (4×F bits):
 X0A0B0B'0X1A1A'1B'1X2A2B2B'2X3A3A'3B'3…

When all the F information bits have been shifted into the encoder, the switch
switches to its lower position and the tail bits are punctured and repeated as:

 IS2000 tail rate ½ and 3GPP tail rate ¹/3: 12 bits
 XFAFXF+1AF+1XF+2AF+2X'FA'FX'F+1A'F+1X'F+2A'F+2

 IS2000 tail rate ¹/3: 18 bits (systematic bit repeated twice)
 XFXFAFXF+1XF+1AF+1XF+2XF+2AF+2X'FX'FA'FX'F+1X'F+1A'F+1X'F+2X'F+2A'F+2

 IS2000 tail rate ¹/4: 24 bits (systematic bit repeated twice)
 XFXFAFBFXF+1XF+1AF+1BF+1XF+2XF+2AF+2BF+2X'FX'FA'FB'FX'F+1X'F+1A'F+1B'F+1X'F+2X'F+2A'F+2B'F+2

2.3.2.3 Decoding
The decoding in the TCP is based on the log-MAP algorithm, which, as discussed
earlier, is an approximation of the BCJR algorithm. Two decoders iteratively decode
the two different encoder’s bits. The inputs to the decoders are the received signal and
the a priori probabilities. For the first iteration the a priori probabilities are
approximated values based on the received but corrupted information bits. The output
of the decoders are soft values of the a posteriori probabilities which are first
interleaved and passed as a priori probability inputs to the other decoder. The iteration
continues either for a predefined number of iterations or until the decoding has
reached satisfactory convergence. Finally it outputs the estimated hard values of the
information sequence. The decoding is illustrated in Figure 2-14.

Figure 2-14: 3GPP and IS2000 Turbo Decoder Block Diagram. This figure is produced freely
from [14, Figure 2].

22 Background

2.3.3 Code Composer StudioTM

Code Composer Studio (CCS) is an integrated development environment (IDE)
developed by TI for their DSPs, microcontrollers and application processors [15]. It
contains tools for developing and debugging embedded applications and includes e.g.
compilers for different TI devises, simulators, a source code editor and a debugger.

In CCS it is possible to implement applications using C, C++ or assembly code and,
once built, it is possible to simulate and step through all the instructions and view the
content of the different memories.

2.3.3.1 Optimization
There are two parameters to set the optimization for the compiler in CCS [15]. The
first represents the compilers optimization level, which speeds up the code by
removing unnecessary codes. The other represents optimization for the code size. This
does not increase the speed, but minimizes the memory needed by the code.
Each optimizer consists of a grading of five possible optimization levels. For the
optimization level the following are possible to choose:

 Nothing – no optimization

 O0 – optimizes registers

 O1 – same as O0 plus adding local optimizations

 O2 – same as O1 plus adding global optimizations

 O3 – same as O2 plus adding interprocedure optimization

23

Chapter 3

Problem Description

3.1 Evaluation
When implementing algorithms on a DSP, there are a couple of important factors that
need to be considered. These often deal with the memory usage and execution speed
of the code. The code should run as fast as possible, while using a small amount of
memory.

As the evaluation criteria, three important factors are considered: code density,
random access memory (RAM) usage and data rate.

3.1.1 Code Density
The code density is the amount of code (in bytes) that is generated when the source
code is compiled. This includes variable declaration and the list of instructions. This
value could be calculated by building the code to an out file. The size of this file is the
code density.

3.1.2 RAM Usage
The RAM usage is the amount of memory, in bytes, other than that of the actual code,
required by the application when the code executes. Here the variables that use
dynamic memory allocation, e.g. vectors and arrays, are stored. This value could be
estimated by gathering all the objects in the code which use dynamic memory
allocation and check how much memory they occupy.
The input and output buffers will be designed to contain enough memory to accept
one block of data. It is however possible to increase these buffers to be able to load
uncoded data to, and read encoded data from the buffers while the present block is
being coded. This would of course increase the RAM usage.

3.1.3 Data Rate
The data rate is one way of defining the efficiency of the code. It measures the
number of bits that could run through the algorithm without a delay. When the code is
a part of a larger system it is important that the data rate fulfils the demand of the
entire system.

24 Problem and Solution Description

The data rate R could be calculated using a functionality of CCS called Profiler, where
it is possible to collect the number of clock cycles used by each function. Taking the
number of coded bits and dividing by the number of clock cycles gives a value of how
many bits that can be coded for each clock cycle. Using the knowledge that the C64x
DSP can run in f = 600 MHz, i.e. 600 106 clock cycles per second, it is possible to
calculate the bit rate, in bits/s, of the coding according to:

fR
esclock_cycl#

bits# .

For the encoder, #bits are the number of input bits and R is a measurement of how
many bits it could encode per second. For the decoders, #bits are the number of output
bits and R is a measurement of how many bits they could decode per second. Since
the encoder will have more output bits than input bits, it is important to notice that the
output data rate will be higher than the input. The opposite holds for the decoder.

This rate does not include the delay where the system waits for the input bits, i.e. it
assumes that all the bits in the same block that should be encoded and decoded are
received at the same time. In a real system however, using large in and out buffers, as
mentioned in section 3.1.2, can minimize this delay.

3.2 Tasks
The problem is divided into four different tasks:

1. Evaluation of turbo encoding on a C64x DSP.
2. Evaluation of turbo decoding on a C64x DSP, implemented as a conventional

C-based algorithm.
3. Evaluation of turbo decoding on a C64x DSP, implemented using the TCP.
4. Comparison between the two decodings.

3.2.1 Encoding
To be able to evaluate the performance of the two different decoding, a turbo encoder
will be implemented, using a C-based algorithm.

3.2.2 C-based Decoding
The evaluation of the C-based decoding will consider the performance of turbo coding
on a C64x DSP. The implementation will follow the 3GPP wireless standards and be
implemented as a conventional C-based algorithm.

3.2.3 TCP Decoding
The evaluation of the TCP decoding will consider the performance of turbo coding on
a C64x DSP. The C64x TCP has been designed to perform the turbo decoding
operations for the 3GPP wireless standards.

25

Chapter 4

Implementation

The implementation consists of three different parts, encoding, C-based decoding and
TCP decoding. The first two are written in C++ and the last is performed with the help of
the coprocessor and EDMA communication.
The C-based algorithms are implemented based on IT++, an open source C++ library
mainly used for simulation and performance research in communication systems [16].
The IT++ library includes turbo coding and the implementation consisted of modifying
this code to cope with CCS and the C64x DSP.
The C-based decoding has been implemented for comparison with the TCP, i.e. the same
state diagram and interleaving has been used and the decoding algorithm is the log-MAP
algorithm running over several iterations.

To be able to simulate the decoding of soft data, a dummy input stream, modulation and
AWGN channel has been implemented. The input stream is a simple implementation
outputting 0 or 1, with equal probability, using an ordinary random function. Each zero is
then mapped to +1.0 and each one to -1.0, which can illustrate the use of BPSK
modulation. To simulate the AWGN channel, a white Gaussian noise is added to
represent the disturbance of the channel. The noise is implemented using an algorithm in
which it is possible to decide the variance of the noise.
The channel is also scaled at the receiver and the received data is modified to function
with the decoding. The scaling for BPSK follows the reasoning in [3], where the log-
likelihood ratio of the demodulated bit b from the corresponding received signal y is:

yAb 2channel
2)(L ,

where A is the amplitude of the signal and 2 the variance of the noise. With an amplitude
A = 1 and the one-sided power spectral density of the noise defined according to [3] as:

22
0N , this gives:

y
N

b
0

channel
4)(L .

26 Implementation

4.1 Encoding
The turbo encoding in IT++ consists mainly of two different parts, interleaving and
encoding. The encoding is done according to Figure 4-1. The input data is encoded block-
wise with a predefined block length using the encoder illustrated in Figure 4-2. The input
data is then interleaved and encoded once more. The systematic (input), parity and tail
bits are then combined according to the turbo-decoder coprocessors puncturing and
repetition scheme, using the rate R = ¹/3. The reason for this is that the IT++ library has a
“speed optimized decoder for R = ¹/3”.

Figure 4-1: Block diagram of the encoder.

Figure 4-2: The encoding part.

4.1.1 Interleaving
The interleaving can interleave binary vectors. It uses an interleaving sequence to map
each position in the input vector to the interleaved output vector according to:

out[i] = in[interleaving sequence[i]].

The interleaving sequence is built according to the 3GPP Turbo Coding Standards
described in section 2.2.2 and calculated in the initialization of the encoding.

4.1.2 Encoding
A state transition table as well as an output parity table based on the shift registers are
built in the initialization of the encoding. This has been illustrated in Figure 4-3 as a
trellis diagram. These tables, the input bit and the present state are used to find the
corresponding output bit and the next state. This is done for all the bits in the block
before it forces the state diagram to zero by inserting some additional tail bits. This part
outputs the parity and tail bits.

27 Implementation

Figure 4-3: State transition and output parities.

4.2 C-based decoding
The turbo decoding in IT++ mainly consists of three different parts, interleaving,
deinterleaving and calculation of log-likelihood values of each bit (extrinsic outputs)
using the log-MAP algorithm. The decoding is illustrated in Figure 4-4.

The turbo decoding in IT++ is a “speed optimized decoder for R=¹/3”, which receives soft
valued data. A negative value is considered to be a probable 1 and a positive value a
probable 0. It is possible to decide how many iterations the decoding should run.
The decoding starts by separating the systematic bits from the parity bits and the
systematic bits are interleaved to represent the output from the second encoder. Then
each run consists of a calculation of the extrinsic outputs of non-interleaved data,
interleaving, calculation of the extrinsic outputs of interleaved data followed by a
deinterleaving. For the first extrinsic calculation in the first iteration the a priori
probabilities (extrinsic inputs) are assumed to be all zero, illustrated by a dashed line in
Figure 4-4. Thereafter the interleaved or deinterleaved extrinsic outputs are used as
extrinsic inputs.

28 Implementation

Figure 4-4: C-based decoding.

This is performed over the predefined number of iterations. After the last run the turbo
decoder takes a hard decision based on the received data and the extrinsic output values
from the last two extrinsic calculations, which is illustrated by the dashed lines to the
hard decision block in Figure 4-4.

4.2.1 Interleaving and deinterleaving
This part is mainly the same as the one described in section 4.1.1. A deinterleaving of a
vector is performed as:

out[interleaving_sequence[i]] = in[i].

4.2.2 Calculation of extrinsic output
The calculations of the extrinsic outputs are made according to the log-MAP algorithm
described in section 2.1.2.2. The receiver uses the received data and the extrinsic inputs, a
state transition and an output parity table (calculated the same way as in the encoding) to
calculate the values. Using the initial values of and and all the values, the other
and values are calculated. The extrinsic outputs are then calculated using , and .

4.3 Coprocessor
The coprocessor can be used in two different modes, stand alone and shared-processing.
It is however recommended to use the stand alone mode for block sizes between 40 and
5114 as is the case for 3GPP turbo coding. Therefore this implementation only uses the
stand alone mode.

The stand alone mode requires three types of EDMA data transmissions namely: (i) input
configuration parameters, (ii) systematic and parities and (iii) interleaver indexes. Also
the hard decision data needs to be received. Optionally some output parameters can also
be received.

The programming is made with the help of a chip support library (CSL), which provides
an application programming interface (API) described in [17].

29 Implementation

4.3.1 Input configuration parameters
The input configuration parameters are 12 32-bit registers [14]. They are used to control
and define different parts in the decoding, e.g. mode, rate, number of iterations and block
length. Also the different tail bits are placed in these registers. For details about all the
registers refer to [14].

According to the API described in [17], the input configuration parameters could be built,
mainly using the two functions TCP_genParams(), and TCP_genIC(). These functions
use some information given by the programmer to construct all the 12 registers
represented as a struct. For details on what the functions do, refer to [17].

4.3.2 Systematic and parity data
The systematic and parity data are represented in eight bits as: SIIII.FFF where S is a sign
bit, the four I represent an integer value between 0 and 15 and the three F represent the
fraction. Together they range from -15.875 (10000000), which is a highly probable 0, to
15.875 (01111111), which is a highly probable 1.
The data should be aligned according to Table 4-1, where the systematic and parity data
represented as above are saved in the register, starting at a base address. Since it is a 32-
bit register, the data is arranged in groups of four, where “X” represent the systematic
data, “A” the parity data from the first encoder and “A'” the parity data from the second
encoder.

 Data

Address (bytes) MSB LSB

Base X1 A'0 A0 X0
Base + 4h A2 X2 A'1 A1

Base + 8h … A'2
Table 4-1: Rate ¹/3 Systematic/Parity Data. This table is produced freely from [14, Table 3].

4.3.3 Interleaver index
The interleaver index consists of 13-bit values saved as 16 bits right justified according to
Table 4-2, i.e. in groups of two indexes per address. The interleaver table is built
according to the 3GPP Turbo Coding Standard described earlier and calculated in the
initialization of the decoding.

 Data

Address (bytes) MSB LSB

Base Index1 Index0

Base + 4h Index3 Index2
Base + 8h …

Table 4-2: Interleaver data. This table is produced freely from [14, Table 5].

4.3.4 Hard decision data
The output data is received from the coprocessor as 32-bit words with the first symbols
hard decision bit in the least significant bit-position in the first word.

30 Implementation

4.3.5 Output parameters
Optionally the output parameters could be received. This is a 32-bit word, where the most
significant 16 bits represent the number of used iterations and the least significant 16 bits
are reserved.

4.3.6 EDMA Programming
There are two available EDMA channel events designated to the TCP, a receive event
and a transmission event. Each event is based on EDMA parameters, which are 32-bit
words illustrated in Figure 4-5, with the OPT field illustrated in Figure 4-6. For more
details about each field, refer to [13].

To decode using the TCP, these four (optionally five) events needs to be initiated by
creating the corresponding EDMA parameters. This is mainly done by using the API
functions EDMA_config() and EDMA_link() along with the options in the following
subsections. Finally by writing a START command to the TCP execution register
TCPEXE the EDMA transmission will start.

EDMA Channel Option Parameters (OPT)

EDMA Channel Source Address (SRC)

Array/Frame count (FRMCNT) Element count (ELECNT)

EDMA Channel Destination Address (DST)

Array/Frame index (FRMIDX) Element index (ELEIDX)

Element count reload (ELERLD) Link address (LINK)

Figure 4-5: EDMA Parameters Structure. This figure is produced freely from [14, Figure 26 (a)]

31 29 28 27 26 25 24 23 22 21 20 19 16

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

15 14 13 12 11 10 5 4 3 2 1 0

- TCCM ATCINT - ATCC - PDTS PDTD LINK FS

Figure 4-6: EDMA Channel Option Parameters (OPT). This figure is produced freely from [14,
Figure 26 (b)]

31 Implementation

4.3.6.1 Input Configuration Parameters Transfer
This transfer is a transmission event sending the 12 input configuration registers. The
parameters should be set as:

 OPT:
 ESIZE = 00
 2DS = 2DD = 0
 SUM = 01
 DUM = 00
 LINK = 1
 FS = 1

 SRC: start address of the input configuration parameters
 ELECNT: 000Ch
 FRMCNT: 0000h
 DST: TCPIC0 (5800 0000h)
 ELEIDX: does not matter
 FRMIDX: does not matter
 LINK: address to the EDMA parameters associated with the systematics and

parities
 ELERLD: does not matter

4.3.6.2 Systematic and Parities Transfer
This transfer is a transmission event sending the systematic and parity. The parameters
should be set as:

 OPT:
 ESIZE = 00
 2DS = 2DD = 0
 SUM = 01
 DUM = 00
 LINK = 1
 FS = 1

 SRC: start address of the systematic and parity words

 ELECNT:)
1)(FRMCNT8

ceil(2 RF , with F as the frame length and R the rate

 FRMCNT:

1)
4)(NWDSYPAR

ceil(RF , where NWDSYPAR is set in TCPIC3

 DST: TCPSP (5802 0000h)
 ELEIDX: does not matter
 FRMIDX: does not matter
 LINK: address to the EDMA parameters associated with the interleaver table
 ELERLD: does not matter

32 Implementation

4.3.6.3 Interleaver Indexes Transfer
This transfer is a transmission event sending the interleaver table. The parameters should
be set as:

 OPT:
 ESIZE = 00
 2DS = 2DD = 0
 SUM = 01
 DUM = 00
 LINK = 1
 FS = 1

 SRC: start address of the interleaver table

 ELECNT:)
1)(FRMCNT4

ceil(2 F , where F is the frame length

 FRMCNT: 1)
2)(NWDINTER

ceil(F , where NWDINTER is set in TCPIC3

 DST: TCPINTER (5808 0000h)
 ELEIDX: does not matter
 FRMIDX: does not matter
 LINK: address to a null EDMA parameter (with all zeros)
 ELERLD: does not matter

4.3.6.4 Hard-decision Transfer
This transfer is a receive event receiving the hard decision output bits. The parameters
should be set as:

 OPT:
 ESIZE = 00
 2DS = 2DD = 0
 SUM = 00
 DUM = 01
 LINK = 1
 FS = 1

 SRC: TCPHD (580A 0000h)

 ELECNT:)
1)(FRMCNT64

ceil(2 F , where F is the frame length

 FRMCNT: 1)
32)(NWDHD

ceil(F , where NWDHD is set in TCPIC5

 DST: start address of the output bits
 ELEIDX: does not matter
 FRMIDX: does not matter
 LINK: either an address to a null EDMA parameter (with all zeros) if output

parameters should not be sent, otherwise the address to the EDMA parameters
associated with the output parameters

 ELERLD: does not matter

33 Implementation

4.3.6.5 Output Parameters Transfer
This transfer is optional and depends on an OUTF bit in TCPIC0. It is a receive event
receiving of output parameters. The parameters should be set as:

 OPT:
 ESIZE = 00
 2DS = 2DD = 0
 SUM = 01
 DUM = 01
 LINK = 1
 FS = 1

 SRC: TCPOUT (5800 0030h)
 ELECNT: 0002h
 FSMCNT: 0000h
 DST: start address of the output parameters
 ELEIDX: does not matter
 FRMIDX: does not matter
 LINK: address to a null EDMA parameter (with all zeros)
 ELERLD: does not matter

34 Implementation

35

Chapter 5

Evaluation

5.1 Performance
To check whether the two different turbo decodings seemed reasonable or not the
following test was created. A random input vector gets encoded in blocks of 1000 bits
using the encoder, described in section 4.1, passed through the dummy channel and
then decoded, using various numbers of iterations (1, 3, 6 and 13). The noise variance
of the channel was varied to give a desired bit-SNR, given that the energy of each
input bit is one (i.e. the energy of each encoded bit is ¹/3).
The C-based decoding test was, for reduction of the simulation time, built by the g++
compiler instead of using CCS. This made it possible to use 1000000 bits as input and
the result is shown in Figure 5-1. The result is also compared to a transmission
without any coding.

Figure 5-1: Bit error rate as a function of number of iterations.

36 Evaluation

The TCP decoding where performed in CCS and for reduction of the simulation time
using only 10000 bits as input. The result is shown in Figure 5-2. This result is also
compared to a transmission without any coding.

Figure 5-2: Bit error rate as a function of number of iterations.

The plots only show the performance down to a bit error rate of 10-3, after that it
would take even more input bits to get a proper result. Unfortunately the simulation
time in code composer studio does make it hard to use more than 10000 bits as input
to the TCP decoding, making this graph a bit edgy. Despite this, the plots are good
enough to prove if the decoding works or not.
Given that the two test results resemble a lot to each other and also to Figure 2-8,
which is given in [5]; it is safe to believe that the decoding works as it should. The
difference between using one and three iterations is large, the gain of using even more
iterations decreases for each iteration. It is also noticeable that the coding is tenable
for SNRs below 0 dB, thereafter the bit error rate is rapidly decreasing compared to
the uncoded transmission, at least when using three iterations or more.

5.1.1 Comparison
Combining the bit error rate tests from both tests the result shown in Figure 5-3 is
obtained.

This result indicates that the C-based decoding is slightly better than the TCP
decoding. However, the C-based decoding uses 100 times as many bits in the test,
making it more reliable. So instead considering that six iterations of the TCP are
better than three of the C-based decoding does imply that the difference is not that
great and that their performance is approximately the same.

37 Evaluation

Figure 5-3: Comparison of the bit error rate.

5.1.2 Max-log-MAP
Since the C-based decoding, when using the log-MAP algorithm seems a bit better
than the TCP, a similar test has been run using the Max-log-MAP instead of the log-
MAP algorithm. The result, compared to the TCP and an uncoded transmission is
shown in Figure 5-4, where the different lines illustrate different iterations (1, 3, 6 and
13) as earlier. This should, according to the theory, give a faster but more inaccurate
decoding.

Figure 5-4: Comparison of the bit error rate when using the Max-log-MAP algorithm.

38 Evaluation

From this result it is easy to determine that the TCP is better than the C-based
decoding using the Max-log-MAP algorithm. This implies that the TCP is actually
using the log-MAP algorithm, even though the previous results indicated that the C-
based algorithm is slightly better.

5.2 Code density
Using all different combinations of optimization when building the code, it is possible
to get the code densities of the three codings. The result is illustrated for the encoding
in Figure 5-5, the C-based decoding in Figure 5-6 and for the TCP in Figure 5-7.
Each line in the figures represents the different code optimization levels and the x-axis
shows different optimizations for code size. The code density is displayed in kB and
an initial guess is that the optimization for code size should decrease the code density.

Figure 5-5: The code density used by the encoding.

Figure 5-6: The code density used by the C-based decoding.

39 Evaluation

Figure 5-7: The code density used by the TCP decoding.

It is obvious that the optimization for code size reduces the code density and for the
encoding and C-based decoding the optimization level also decreases the code
density. A step from no optimization to the first levels of optimization gives a large
gain in the code density while for the last levels the size does not improve especially
much. The only odd factor about the C-based decoding is that there is a dip when
using optimization level 2 and optimization 0 for code size. This behaviour is hard to
explain and might just be a coincidence.
The same holds for the code density of the TCP, it acts as expected and gains in using
both optimizations, at least for optimization levels 0-3 but remarkably, the best result
is given when using no optimization level. The reason for this is probably due to the
straightforward implementation of the TCP, giving an optimization of the code a
worse result than using none.

The encoding has a code density, without optimization, of almost 26 kB, which is
reduced down to 20 kB with high optimization. The difference of the code density for
the C-based decoding is, 35 kB as highest and the 24 kB as lowest. The highest code
density of the TCP is 7.6 kB, while the lowest is 6.6 kB.

5.2.1 Comparison
This result shows that the TCP decoding has the smallest code density. This makes
sense considering that the main part of the code is performed in the coprocessor,
which does not use any memory of the DSP. The C-based decoding has the highest
code density, which also is expected since it is the largest algorithm.
Using the C-based decoding together with the encoding would make the total code
density end up at 45-60 kB, while using the TCP decoding would give a total code
density of approximately 30 kB, which is a reduction with a factor 2.

40 Evaluation

5.3 RAM Usage
Table 5-1 to 5-3 list the different objects in the encoding, the TCP and the C-based
decoding, which use dynamic memory allocation, along with their data types and
sizes. Many of them are dependent on the length of the input block, lB.

Name Data Type Size

Input Binary (1/8 Byte) lB

Output Binary (1/8 Byte) 3lB + 12

Interleaving sequence Short (2 Bytes) lB

State transition table Char (1 Byte) 16

Output parity table Binary (1/8 Byte) 16

Interleaved input Binary (1/8 Byte) lB

Parity bits from first rscc Binary (1/8 Byte) lB + 3

Parity bits from second rscc Binary (1/8 Byte) lB + 3

Tail from first rscc Binary (1/8 Byte) 3

Tail from second rscc Binary (1/8 Byte) 3
Table 5-1: The objects used by the encoder.

Name Type Size

Input char (1 Byte) 3lB + 12

Output Binary (1/8 Byte) lB

Interleaving sequence Short (2 Bytes) lB

Input configuration 32-bit word (4 Bytes) 12

Input configuration parameters 32-bit word (4 Bytes) 6

Systematic and parity parameters 32-bit word (4 Bytes) 6

Interleaver index parameters 32-bit word (4 Bytes) 6

Hard decision parameters 32-bit word (4 Bytes) 6

Output parameters 32-bit word (4 Bytes) 6
Table 5-2: The objects used in the TCP decoding.

41 Evaluation

Name Data Type Size

Input Float (4 Bytes) 3lB + 12

Output Binary (1/8 Byte) lB

Interleaving sequence Short (2 Bytes) lB

State transition table Char (1 Byte) 16

Rev. state transition table Char (1 Byte) 16

Output parity table Binary (1/8 Byte) 16

Rev. output parity table Binary (1/8 Byte) 16

Received systematics Float (4 Bytes) lB + 3

Interleaved systematics Float (4 Bytes) lB + 3

Rec parity from first rscc Float (4 Bytes) lB + 3

Rec parity from second rscc Float (4 Bytes) lB + 3

Extrinsic input Float (4 Bytes) lB

Interleaved extrinsic input Float (4 Bytes) lB

Extrinsic output Float (4 Bytes) lB

Interleaved extrinsic output Float (4 Bytes) lB

Alpha Float (4 Bytes) 8lB + 8

Beta Float (4 Bytes) 8lB + 8

Gamma Float (4 Bytes) 16lB + 16

Log likelihood values Float (4 Bytes) lB
Table 5-3: The objects used by the C-based decoder.

Taking into account that only full bytes could be saved properly, Table 5-1 makes it
possible to derive the following relation for the encoding:

Bytes24)
8
1ceil(*4)

8
3ceil(*2RAM BBBENC lll .

Table 5-2 gives the following relation for the TCP:

Bytes156)
8
1ceil(*5RAM BBTCP ll .

Table 5-3 gives the following relation for the C-based decoding:

Bytes260)
8
1ceil(*178RAM BBC ll .

The result is shown, in kB, in Figure 5-8 (encoding), Figure 5-9 (C-based decoding)
and Figure 5-10 (TCP).

42 Evaluation

Figure 5-8: The RAM used by the encoder at different block size.

Figure 5-9: The RAM used by the C-based decoder at different block size.

43 Evaluation

Figure 5-10: The RAM used by the TCP decoding at different block size.

The RAM usages of the different codings behave like linear functions, which all
depend on the block size. The RAM usage of the encoder starts below 1 kB for small
block sizes and goes up to 14 kB for large block sizes. The C-based decoding, using a
small block size, only demands a couple of kB of RAM space and using higher block
size takes up to 900 kB RAM space. For the TCP, the smallest block sizes only need a
couple of kB, which goes up to 25 kB for the largest ones.

5.3.1 Comparison
The RAM usages from the three codings are shown together in Figure 5-11.
It is possible to see a great difference between the codings. The C-based decoding has
a lot of large objects, which in turn depends on the size of the input blocks, making it
more memory consuming. When using the TCP, these large objects seen in the C-
based algorithm, are saved in the coprocessor instead, making the processors RAM
usage much smaller. It is also easy to see that the increasing of the block size has a
very large impact on the RAM usage.

When using C-based coding, the RAM usage of the encoding would not have a very
large impact since the RAM usage of the C-based decoding is a lot greater. The RAM
usage of the TCP and the encoding are approximately the same, making the total
RAM usage about twice as high.

44 Evaluation

Figure 5-11: Comparison of the RAM usage.

5.4 Total Memory Usage
Combining the results of the code density and the RAM usage for the two decoding
methods and including the use of the encoder gives a total memory usage as
illustrated in Figure 5-12 and 5-13. The RAM usage is optimization independent,
which is not the case for the code density and these results have been calculated using
no optimization.
For the C-based decoder, it is easy to see that the code density is only a small part of
the total memory usage, at least for large block sizes. The code density of the TCP
coding influences the total memory usage a lot more, since the RAM usage is not as
high as the C-based coding.
The C-based coding has a total memory usage starting just below 100 kB and going
up to almost 1000 kB, which is almost the same as the RAM usage of the C-based
decoder. For the TCP, the total memory usage goes from 35 kB for small block sizes
and up to 70 kB.

45 Evaluation

Figure 5-12: Total memory usage of the C-based decoding with the encoding included.

Figure 5-13: Total memory usage of the TCP with the encoding included.

5.4.1 Comparison
Figure 5-14 gives a comparison of the total memory usage of the C-based coding and
the TCP coding, when both is including the memory usage of the encoding.
As can be seen, both codings have roughly the same total memory usage when using
small block sizes. Increasing the code size makes the C-based decoding a lot greater.
It is hardly any doubt that the TCP coding has the lowest overall memory usage.

46 Evaluation

Figure 5-14: Comparison between the total memory usages of the two coding.

5.5 Data Rate
The data rate might be dependent on the optimization, the number of iterations, the
block size and the number of blocks. All of the following results have been collected
with the help of the Profiler in CCS. Using the reasoning earlier, the different bit rates
where calculated, using f=600 MHz, from the number of clock cycles as:

fR
esclock_cycl#

bits# .

The results are all given in kbit/s.

5.5.1 Optimization
By encoding and decoding a block of 40 bits using different optimization levels,
Figure 5-15 to 5-17 are produced that show the resulting bit rates for the encoding, C-
based decoding and the TCP respectively.

47 Evaluation

Figure 5-15: The bit rate of the encoder using different optimizations.

Figure 5-16: The data rate of the C-based decoder.

48 Evaluation

Figure 5-17: The data rate of the TCP decoding using different optimization levels.

Using a higher optimization level increases the bit rate, first a lot when going from no
optimization to level 0, but for the highest levels there is not much difference between
the results. The optimization for code size does not affect the code rate especially
much in either direction; instead it looks a bit random if increasing this would give a
bit higher or a bit lower data rates.
The highest bit rate of the encoder is almost 120 kbit/s, while the lowest notation is
below 40 kbit/s. The C-based decoder could get as high as 0.78 kbit/s and as low as
0.65 kbit/s.

For the TCP, the optimization levels 2 and 3 corrupted the decoding and the TCP
never returned any hard decisions. For the optimizations where it worked, the bit rate
where between 780 and 865 kbit/s.

5.5.2 Blocks
To check whether the choice of block size and number of consecutive blocks
influence the data rate, two tests were performed, one based on different block sizes
and the other on different number of blocks.

5.5.2.1 Block size
In the first test, different block sizes where encoded and decoded, using only one
block. The code was built without optimization and the decoding uses one iteration.
The result is given for the encoder, C-based decoder and TCP in Figure 5-18 to 5-20.

49 Evaluation

Figure 5-18: Bit rate of the encoder using different block sizes.

The encoding gets a slightly increased bit rate by increasing the block size. This
indicates that the initializing and closuring of the encoding affects the smaller blocks
more than the larger blocks. The encoding of each bit is probably equally fast,
regardless of the block size.

Figure 5-19: Bit rate of the C-based decoder using different block sizes.

50 Evaluation

Looking at the result from the C-based decoder it is possible to see a slight decrease in
the bit rate when going from smaller to a bit larger block sizes. Otherwise the bit rate
is almost constant. This has probably to do with the fact that the decoding is very
heavy, which does not make the initialization and closuring influence that much. The
reason why it is a small decrease when increasing the block size is unclear. A guess
would be that the reading of all the large vectors used in the decoding gets slower for
larger vectors.

Figure 5-20: Bit rate of the TCP using different block sizes.

The TCP is the one that gains the most from using larger block sizes. The reason for
this must be that the coprocessor is really fast regardless of how many bits it needs to
decode. What slows down the TCP for smaller block sizes is the initialization and
closuring of the decoding.

5.5.2.2 Number of blocks
In the second test, different number of blocks where encoded and decoded, using a
block size of 40 bits. The code was built without optimization and the decoding uses
one iteration. The result is given for the encoder, C-based decoder and TCP in Figure
5-21 to 5-23.

51 Evaluation

Figure 5-21: Bit rate of the encoder using a constant block size of 40.

This result indicates that something is slowing the encoder down when it is fed too
many blocks. Since this is a loop, running through all the blocks, it must be something
inside this loop and the only factor that separates the different runs from each other is
a copying of the input bits to a temporary input vector. A guess would be that this
copying is slowing the encoder down.

The increase of the bit rate that is seen for small block sizes is more expected and if it
were not for the vector copying, this increase would probably have continued.

Figure 5-22: Bit rate of the C-based decoder using a constant block size of 40.

52 Evaluation

The data rate of the C-based decoding is not affected by how many blocks that are fed
into the decoder. This again indicates that the actual decoding is the part that is
slowing down this decoder.

Figure 5-23: Bit rate of the TCP using a constant block size of 40.

The TCP gains a bit from using several blocks. Again this indicates that the
initialization and closuring of the decoding is the slow part of the TCP and not the
work done by the coprocessor.

5.5.3 Iterations
To see how much impact the number of iterations has on the bit rate, one block of 40
bits where decoded using 1, 2, 3, 4 and 5 iterations. Figure 5-24 and 5-25 shows the
bit rate of the C-based decoder and the TCP when no optimization has been used. An
initial guess would be that 2 iterations would take approximately two times as long as
one.
The result from the C-based decoder follows the initial guess and the bit rate is
roughly halved each iteration. The data rate of the TCP is of course also decreased for
each iteration but not especially much. This, one more time, indicates that it is the
initialization and closuring done at the processor prior to the decoding and not the
coprocessor that is time consuming.

53 Evaluation

Figure 5-24: Bit rate of the C-based decoder using different number of iterations.

Figure 5-25: The bit rate of the TCP using different number of iterations.

54 Evaluation

5.5.4 Comparisons

5.5.4.1 Optimization
When using different optimizations the TCP has the highest bit rate, approximately 10
times faster than the encoder and approximately 1000 times faster than the C-based
decoder.

5.5.4.2 Blocks
Looking at the different block constellations, it is only the TCP that is gaining on
using both larger block sizes and several blocks. The encoder and the C-based
decoder are also influenced but the difference is not very large. The C-based decoder
seems to have a constant bit rate of 0.68 kbit/s using this set up, the encoder ends up
around 50 kbit/s, while the TCP could increase to almost 14 Mbit/s only by using a
block size of 1000 bits.

5.5.4.3 Iterations
Notable here is that while the bit rate of the C-based decoding is almost halved each
iteration, this is not the case for the TCP. The bit rate of the C-based decoding drops
from 0.68 to 0.15 kbit/s, when increasing the number of iterations from 1 to 5. The
TCP instead drops from 810 to 736 kbit/s. Recall that the bit error rate performance
when using only one iteration is quite bad and that the decoding would need a couple
of iterations to be really useful.

5.5.4.4 Total
One important fact to remark is that a coding system is only as fast as its slowest link,
i.e. when using the C-based decoding with the encoding the data rate can not be
higher than that of the C-based decoding; otherwise the incoming bits to the decoding
will be over flooded. Using the TCP, it is instead the encoding which seems to be the
bottleneck.
The encoding could be both optimized and make use of larger block sizes to get a bit
rate above 100 kbit/s. For the C-based decoding, it is hard to gain anything except
from the optimization, giving it a maximum bit rate of less than 1 kbit/s, when only
using one iteration. The TCP could gain the most from using larger block sizes
making it able to have a bit rate above 1000 kbit/s, when using several number of
iterations.

5.5.5 Max-log-MAP algorithm
Using the faster but more inaccurate Max-log-MAP algorithm would instead give the
bit rate shown in Figure 5-26, where 1000 bits have been decoded using different
block sizes. The number of iterations is one and it has been built using level 1
optimization and no optimization for code size.

55 Evaluation

Figure 5-26: The bit rate of the C-based decoding using the Max-log-MAP algorithm.

The gain in using the Max-log-MAP decoding is that the bit rate gets increased
roughly 10 times by changing the max*-function to the faster max-function, but it is
still slower than both the encoding and the TCP decoding.

56 Evaluation

57

Chapter 6

Improving the Data Rate

6.1 Introduction
The results from section 5.5.2.2 indicated that the use of vectors is slowing the
encoder down. Also when using a bit vector, all the bits are saved in 32-bit words,
meaning that there are a lot of bit operations, which are slow compared to using larger
data types. Therefore, a test was created, where the implementation was adjusted so
that all the bit-vectors where changed to char-arrays. Of course only one of the two
modifications could be performed independently to increase the data rates.

It is clear that the encoder is the coding with most bit vectors and should also be the
one gaining the most from the new set. The cost for this modification will of course be
a larger RAM usage. The question is, if the gain in data rate is enough to compensate
the increase of memory usage.

To see whether the data rate is increased or not, the same test same as in section 5.5.1,
was created, i.e. testing how the coding responds to the different optimizations. The
result is given in Figure 6-1 to 6-3.
Comparing these figures to Figure 5-15 to 5-17, the coding gain could be seen readily.
The encoder improves from about 100 kbit/s to almost 5000 kbit/s, the C-based
decoder from just below 0.8 kbit/s to slightly above and the TCP from a peak of 860
kbit/s to over 900 kbit/s. It is also obvious that the encoder is the only one with a
really large gain. Therefore the performance of the encoder will be deeper examined
in the following sections.

58 Improving the Data Rate

Figure 6-1: The new data rate of the encoder when using different optimizations.

Figure 6-2: The new data rate of the C-based decoder when using different optimizations.

59 Improving the Data Rate

Figure 6-3: The new data rate of the TCP when using different optimizations.

6.2 Code density
The same test as in section 5.2.1, using different optimizations, was performed for the
encoder giving the result shown in Figure 6-4. Apparently the code density of the
encoder gets reduced by approximately one third compared to the previous encoder.

Figure 6-4: The new code density of the encoder at different optimization levels.

60 Improving the Data Rate

6.3 RAM Usage
This is the part where the cost of this data rate improvement is paid. The different
object from the encoding, listed in Table 5-1 earlier, is again listed in Table 6-1 with
their new data types.

Name Data Type Size

Input Char (1 Byte) lB

Output Char (1 Byte) 3lB + 12

Interleaving sequence Short (2 Bytes) lB

State transition table Char (1 Byte) 16

Output parity table Char (1 Byte) 16

Interleaved input Char (1 Byte) lB

Parity bits from first rscc Char (1 Byte) lB + 3

Parity bits from second rscc Char (1 Byte) lB + 3

Tail from first rscc Char (1 Byte) 3

Tail from second rscc Char (1 Byte) 3
Table 6-1: The objects in the new encoding which uses dynamic memory allocation.

From this it is possible to derive the following expression for the RAM usage of the
encoder:

B 56 *8RAM BENC l .

This is illustrated in Figure 6-5, where it is possible to see an increase of the RAM
usage compared to Figure 5-8 for the previous encoder.

Figure 6-5: New RAM usage of the encoder.

61 Improving the Data Rate

6.4 Total memory usage
The totally memory usage of the encoder is gathered and compared to the previous
result in Figure 6-6, where no optimization is included.

Figure 6-6: Comparison of the previous and new encoders total memory usage.

The code density of the previous encoder is that much larger than that of the new
encoder, giving a larger total memory usage for block sizes of less than 3700 bits.
This is true regardless of that the new encoder has a lot larger RAM usage. A guess is
that, even though the memory used by the vectors is allocated from the RAM, the
creation of a vector that is included in the code density is memory consuming as well.
It has probably to do with their need for overhead information.

6.5 Data Rate
The result when using different optimizations has already been presented. The
dependency of using different block sizes and number of blocks is instead given here
in Figure 6-7 and 6-8. Using this new set gives a gain in using both larger block sizes
and several numbers of blocks. This differs from the previous encoding as can be seen
in section 5.5.2.

62 Improving the Data Rate

Figure 6-7: The new data rate of the encoder using a constant block size.

Figure 6-8: The new data rate of the encoder using different block sizes.

63 Improving the Data Rate

6.6 Total System
The C-based implementation was previously bounded by the speed of the decoder.
This could be improved a bit but not particularly much. The TCP on the other hand
was bounded by the speed of the encoder. With this new improved encoding this is no
longer the case.

The encoder is about as fast as the TCP giving an opportunity to optimize them both
to get a good result. Since the TCP can get really fast using large block sizes, Table
6-2 shows the numbers of decoding iterations allowed at different block sizes to make
the encoding and TCP equally fast. The data rate here is, when using optimization,
above 8 Mbit/s.

Iterations Block Size

1 440 bits

2 500 bits

3 550 bits

4 600 bits

5 650 bits

6 800 bits

7 900 bits

8 1100 bits

9 1300 bits

10 1450 bits

11 1800 bits

12 2300 bits

13 3000 bits

14 4000 bits

15 5114 bits
Table 6-2: The numbers of decoding iterations allowed at different block sizes.

64 Improving the Data Rate

65

Chapter 7

Conclusions

7.1 Memory
Using the TCP would give roughly half the code density compared to the C-based
decoding but neither of the code densities is especially high. Compared to the, for the
C-based decoder, larger RAM usage the code density will not occupy any greater part
of the total memory.

Since turbo coding requires a lot of memory, the TCP, which uses external memory
during the decoding, will most likely use less RAM than the C-based decoding. By
looking at the results there is not any big difference when using the smallest block
size. But the difference increases a lot, already after a small increase in the block size.

Using the new set of the encoding will not affect the total memory usage especially
much. Depending on the block size it will be either a bit decreased or increased.

7.2 Data Rate
The evaluation shows that it is possible to run the encoding and C-based decoding in a
bit less than 1 kbit/s. Using the encoding and the TCP instead, the bit rate could be
approximately 100 kbit/s, here the encoding is the bottleneck. Improving the data rate
of the encoder gave a bit rate of a couple of Mbit/s and together the encoding and TCP
could run, using several decoding iterations, in as high as 8 Mbit/s.

7.3 Answers
Given the questions in the thesis objectives these are the answers that the evaluation
has come up with:

 Is it efficient in terms of memory usage and execution speed to use turbo
coding on a C64x DSP without using the TCP?

It is not inefficient in terms of memory usage to use the C-based algorithm for turbo
coding, especially if a small block size is chosen. It is however definitely inefficient to
use the decoding in terms of execution speed. A wireless application, which runs in a
bit rate below 1 kbit/s, would not last very long, despite how good error correction it
provides.

66 Conclusions

 How much memory usage and speed could be gained by using the TCP instead
of the C-based algorithm, if any?

The gain of the memory usage depends on the block size. For a block size of 40 bits,
the gain is approximately 30 kB. Using 5114 bits as block size instead would give a
total memory gain of approximately 900 kB.
The data rate of the TCP is over 1000 times faster than the C-based decoding, which
is a large gain. Instead of running in less than 1 kbit/s it is possible to reach a couple
of Mbit/s.

 Is it practically applicable to use the TCP for turbo decoding on a C64x DSP?
Using a total memory usage of less than 100 kB and reaching a bit rate of 8 Mbit/s are
enough for many kinds of wireless application. Comparing this to the different
standards shown in Table 7-1, the coprocessor would be enough for GSM and with
the faster encoder also 3G. However, it is still too slow to use in LTE.

GSM: 14.4 kbit/s [18]

3G: Peak bit rates of 1 Mbit/s [19]

LTE: Peak bit rates of 100 Mbit/s [20]
Table 7-1: Different standards and their bit rates.

67

Chapter 8

Future Work

The first work that would be interesting to do is to implement the TCP in a real
system to see if this evaluation holds or not. Then of course it would be interesting to
try to push both the encoder and the TCP to higher data rates.
Unfortunately it would be very hard to increase the data rate of the TCP. A solution
might be to increase the frequency of the DSP. Another possibility to increase the
speed of the decoding is to use two DSPs or one DSP containing two TCPs.

There is also a newer version of the TCP called the TCP2, which is included in some
newer DSPs. It would be interesting to evaluate this decoder’s performance as well,
and a guess would be that it could reach even higher data rates than the TCP does.

68 Future Work

69

Bibliography

[1] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J.,
vol. 27, pp. 397-423, 623-656, July/Oct. 1948.

[2] S. Lin & D. Costello, Error Control Coding: Fundamentals and Applications,
Upper Saddle River, NJ: Pearson Prentice Hall, ISBN: 0-13-017073-6, 2004.

[3] U. Madhow, Fundamentals of Digital Communication, Chapter 7, New York:
Cambridge University Press, ISBN: 978-0-521-87414-4, 2008.

[4] L. Ahlin, J. Zander & B. Slimane. Principles of Wireless Communication, Chapter
6, Lund: Studentlitteratur, ISBN: 978-91-44-03080-7, 2008.

[5] C. Berrou, A. Glavieux and P. Thitimajshima. “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes,” (Proceedings of) IEEE
International Conference on Communications, Communications, vol. 2, 1993, pp.
1064-1070.

[6] Y. Tong, T-H. Yeap and J-Y. Chouinard. “VHDL Implementation of a Turbo
Decoder with Log-MAP-Based Iterative Decoding,” Transactions on Instrumentation
and Measurement, vol. 53, no. 4, August 2004, pp. 1268-1278.

[7] “3GPP - Organizational Partners,” web page, URL: www.3gpp.org/partners,
accessed 2011-10-04.

[8] “3rd Generation Partnership Project, Technical Specification Group Radio Access
Network; Multiplexing and Channel Coding (FDD),” 3GPP TS 25.212, v. 9.3.0
Release 9, Sept. 2010. URL: http://www.quintillion.co.jp/3GPP/Specs/25212-930.pdf,
accessed 2011-10-25.

[9] “TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point Digital Signal
Processors,” Dallas Texas: Texas Instruments, 2009. URL: ttp://www.ti.com/lit/ds/
symlink/tms320c6416t.pdf , accessed 2011-10-04.

[10] P. Wang, J. Yang and B. Wang. “Simple-VLIW: A Fundamental VLIW
Architectural Simulation Platform,” (Proceedings of) 7th International Conference on
System Simulation and Scientific Computing, 2008, pp. 1258-1266.

[11] J. Fisher. “Very Long Instruction Word architectures and the ELI-512,”
(Proceedings of) the 10th annual international symposium on Computer architecture,
1983, pp. 140-150.

[12] P. Stelling and V. Oklobdzija. “Implementing Multiply-Accumulate Operation in
Multiplication Time,” (Proceedings of) 13th IEEE Symposium on Computer
Arithmetic, 1997, pp. 99-106.

70 Bibliography

[13] “TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller
Reference Guide,” Dallas Texas: Texas Instruments, 2006. URL: http://www.ti.com.
cn/cn/lit/ug/spru234c/spru234c.pdf, accessed 2011-10-04.

[14] “TMS320C64x DSP Turbo-Decoder Coprocessor (TCP) Reference Guide,”
Dallas Texas: Texas Instruments, 2004. URL: http://www.ti.com/lit/ug/spru534b/
spru534b.pdf, accessed 2011-10-04.

[15] “IDEs including CCStudio,” web page, URL: http://www.ti.com/lsds/ti/dsp/
support/dev_tool/ccs_overview.page, accessed 2011-10-04.

[16] “SourceForge.net: Project itpp – About,” web page, URL: sourceforge.net/apps/
wordpress/itpp/about/, accessed 2011-10-04.

[17] “TMS320C6000 Chip Support Library API Reference Guide,” Dallas Texas:
Texas Instruments, 2004. URL: http://archer.ee.nctu.edu.tw/class/dsplab/07s/reference
/spru401i.pdf, accessed 2011-10-04.

[18] “Functionality in early GSM releases,” web page, URL: http://www.3gpp.org/
article/ functionality-in-early-gsm, accessed 2011-10-04.

[19] “Overview of 3GPP, Release 7,” v. 0.9.14, June 2011, downloadable from URL:
http://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/, accessed
2011-10-04.

[20] Beming, P et. al., “LTE-SAE Architecture and Performance,” Ericsson Review
No. 3, 2007. URL: http://www.ericsson.com/ericsson/corpinfo/publications/review/
2007_03/files/5_LTE_SAE.pdf, accessed: 2011-10-04.

