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Abstract— A noisy message-passing decoding scheme is 
considered for low-density parity-check (LDPC) codes over 
additive white Gaussian noise (AWGN) channels. The internal 
decoder noise is motivated by the quantization noise in digital 
implementations or the intrinsic noise of analog LDPC decoders. 
We modelled the decoder noise as AWGN on the exchanged 
messages in the iterative LDPC decoder. This is shown to render 
the message densities in the noisy LDPC decoder inconsistent. 
We then invoke Gaussian approximation and formulate a two-
dimensional density evolution analysis for the noisy LDPC 
decoder. This allows for not only tracking the mean, but also the 
variance of the message densities, and hence, quantifying the 
threshold of the LDPC code. According to the results, a decoder 
noise of unit variance, increases the threshold for a regular ሺ૜, ૟ሻ 
code by 1.672dB. 
 
Keywords—Low-Density Parity-Check (LDPC) codes, decoder 
noise, density evolution, consistency, Gaussian approximation. 

I. INTRODUCTION 
ow-Density Parity-Check (LDPC) codes– first discovered 
by Gallager  [1],  [2] and more recently rediscovered by 

Spielman et al.  [3] and MacKay et al.  [4],  [5]– has attracted 
much research interest due to their outstanding performance. 
These codes have also been included in recent wireless 
communication standards  ٠,  [7]. Effective decoding of LDPC 
codes is accomplished by iterative message-passing schemes 
such as the sum-product or the belief-propagation (BP) 
algorithm and the min-sum algorithm  [8].  
The sum-product algorithm is set up based on elementary 
computations using sum-product modules  [9]. The digital 
realization of sum-product modules for LDPC decoding 
involves implementation of approximate real-number 
arithmetic using quantization. In  [10], a digital hardware 
implementation of LDPC codes is described and a low 
complexity encoder implementation is suggested. It is 
experimented in  [11] that the sum-product algorithm requires 
a larger number of quantization bits when compared to its 
logarithmic alternative for a digital implementation. The 
quantization effect in LDPC decoding is also considered 
in  [12], where it is shown that the decoder performance is 
strongly influenced by the quantization. The quantization error 
is often modelled by an additive noise and under certain 
conditions is assumed Gaussian [13]. 

Loeliger et al. in  [9] introduced sum-product modules 
based on simple analog transistor circuits using soft XOR 
gates. Specifically, they have shown that the entire family of 
sum-product modules can be implemented by variations of a 
single simple circuit. With these circuits, any network of sum-
product modules, in particular, iterative decoding of LDPC 
codes can be directly implemented in analog VLSI. They 
expressed that such decoding networks could outperform 
comparable digital implementations in terms of speed or 
power consumption. 

In analog decoders, the exchanged messages are in general 
subject to an additive intrinsic noise which depends in part on 
the chip temperature  [14]. To capture this phenomenon, 
in  [14], a channel is considered that is subject to additive 
white Gaussian noise whose power is a weighted sum of the 
power of the channel input prior to the current time instant. 
This channel is motivated by point-to-point communication 
between two terminals that are embedded in the same chip. 
The variance of this noise can be considered constant when 
the heat-sink is ideal  [22]. Therefore, in addition to the 
communication channel noise, the internal decoder noise may 
affect the communication of soft gates, and hence degrade the 
performance of the iterative analog decoder. 

The performance of LDPC codes is characterized by a 
threshold on the communication channel quality. For channels 
whose quality is better than the threshold, the code performs 
well; otherwise, it incurs a non-negligible probability of error. 
This is first observed in the case of binary symmetric channels 
(BSC) and regular LDPC codes in  [1] by Gallager. Luby et 
al.  [15] have shown that irregular codes outperform regular 
codes, while their performance still exhibit a threshold effect. 
Richardson and Urbanke  [16] generalized and analyzed this 
concept using density evolution (DE) and considered various 
channels including binary erasure, binary symmetric, Laplace 
and AWGN channels and message-passing decoding 
algorithms.  

As discussed, practical digital or analog LDPC decoders are 
in general subject to quantization or thermal noise, 
respectively. Therefore, the effects of noise in iterative 
decoding process must be investigated. Varshney analyzed the 
performance of LDPC bit-flipping decoding over a BSC using 
a noisy message-passing algorithm, whose messages are 
subject to another binary symmetric channel  [17] [18]. 
Specifically, it is observed that the performance degrades 
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smoothly as the decoder noise increases. In this work, we 
analyze the performance of LDPC codes over an AWGN 
communication channel, when a sum-product decoding 
algorithm is employed whose exchanged messages are 
degraded by an independent additive white Gaussian noise. 
For such a setting, we invoke a density evolution analysis to 
track the probability distribution of exchanged messages 
during decoding. Specifically, we observe and quantify a 
threshold in decoding performance that depends both on the 
noise power of the communication channel and the decoder.  

 
 The rest of this paper is organized as follows. In section II, 

we present the definitions and models for noisy message-
passing decoder. Then, in section III, the consistency of the 
messages passed in the noisy decoder is investigated. In 
section IV, using Gaussian approximation we derive the 
density evolution equations for the noisy message-passing 
decoder. Numerical and simulation results are presented in 
section V. Finally, section VI concludes the paper. 

II. NOISY  MESSAGE-PASSING DECODING-BACKGROUND 
Consider a regular binary ሺ݀௩, ݀௖ሻ LDPC code with length 

݊ and parity check matrix, ܪ. This parity check matrix and the 
LDPC decoding can be described using a bipartite graph with 
݊  variable nodes and ݊ሺ݀௩/݀௖ሻ  check nodes. Each variable 
node is connected to ݀௩ check nodes and each check node is 
connected to ݀௖ variable nodes, corresponding to the columns 
and rows of ܪ, respectively. Fig. 1 shows a bipartite graph for 
a regular ሺ2,4ሻ DLPC code with length 6. Any two connected 
nodes are known as neighbors.  

 

 
 

Figure 1. Bipartite graph of the regular (2,4) LDPC code, 
where  denotes a check node and  denotes a variable node.

 
The message-passing decoding algorithm involves 

exchanging of the outputs of the check nodes and variable 
nodes in an iterative manner. Specifically, every check node 
receives messages from its ݀௖ neighbors and after processing 
sends them back the results after processing. Similarly, the 
variable nodes do this by receiving the messages from their ݀௩ 
check node neighbors.  

We consider log likelihood ratios (LLRs) as variable nodes 
and check nodes messages, where the sign of the variable 
node messages specifies the bit estimate and the magnitude 
indicates its level of reliability. For the output message of a 
variable node we have 

 

ݒ ൌ log
ݔ|ݕሺ݌ ൌ 1ሻ

ݔ|ݕሺ݌ ൌ െ1ሻ 

where ݔ and ݕ are respectively, the bit value of the node and 
all the information available to the variable node up to the 
present iteration obtained from edges other than the one 
carrying ݒ   [8]. Similarly, for a check node with ݑ  as the 
output, we have 

ݑ ൌ log
ᇱݔ|ᇱݕሺ݌ ൌ 1ሻ

ᇱݔ|ᇱݕሺ݌ ൌ െ1ሻ 

 
with equivalent definitions for ݔᇱ and ݕԢ. 

 According to the sum-product decoding algorithm, the 
message ݒሺ௟ሻ  at iteration ݈  from a variable node to a check 
node is given by 

ሺ௟ሻݒ ൌ ෍ ௜ݑ
ሺ௟ିଵሻ

ௗೡିଵ

௜ୀ଴

 
 

(1) 

 
where ݑ௜, ݅ ൌ 1, … , ݀௩ െ 1,  are incoming LLRs from the 
neighbors of the variable node, except the check node that is 
to receive the message ݒ,  and ݑ଴  is the incoming LLR 
message from the channel. Also, the updating rule for check 
node can be obtained as follows: 

tanh
ሺ௟ሻݑ

2 ൌ ෑ tanh
௝ݒ

ሺ௟ሻ

2

ௗ೎ିଵ

௝ୀଵ

 
 

(2) 

 
where ݒ௝’s are defined similar to ݑ௜’s for check nodes. Figures 
2(a) and (b) shows message-passing through a variable node 
and a check node, respectively. 
For a noisy decoding system that is subject to additive white 
Gaussian noise, the model can be updated as in Figure 3, 
where ݊௜

௨  and ݊௜
௩  denote the additive white Gaussian noise 

affecting the output messages of the soft gates of check nodes 
and variable nodes, respectively. Hence, ௜ߛ  ’s and ௝ߤ  ’s are 
noisy versions of ݒ௜ ’s and ݑ௝ ’s, respectively. Therefore, the 
incoming LLRs to variable nodes and check nodes are now 
given by 

 
௜ߤ

ሺ௟ሻ ൌ ௜ݑ
ሺ௟ሻ ൅ ݊௜

௨                                (3) 
 

௜ߛ
ሺ௟ሻ ൌ ௜ݒ

ሺ௟ሻ ൅ ݊௜
௩                                (4) 

 
where, ݊௜

௨ and ݊௜
௩  are independent and identically distributed 

(iid) as ܰሺ0, ௗߪ
ଶሻ. 

 
 
 
 
 
 
 
 
 
 

Fig. 2. (a) message flow through a variable node, (b) message flow 
through a check node. 
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Fig. 3. The model of (a) a variable node (b) a check node in noisy 
belief propagation decoder. 

 
Based on the sum-product algorithm, the decoding is now set 
up based on the following updating rules at iteration ݈ 

ሺ௟ሻݒ ൌ ଴ݑ ൅ ෍ ௜ߤ
ሺ௟ିଵሻ

ௗೡିଵ

௜ୀଵ

 
 

(5) 

 

tanh ௨ሺ೗ሻ

ଶ
ൌ ∏ tanh

ఊೕ
ሺ೗ሻ

ଶ
ௗ೎ିଵ
௝ୀଵ . 

 
(6) 

In the next sections, we propose an approach for 
performance analysis of the presented noisy message-passing 
decoding algorithm for LDPC codes. 

III. CONSISTENCY FOR GAUSSIAN APPROXIMATION 
The density evolution is an analytical method to understand 

the limits and predict the performance of LDPC decoders  [19]. 
For an AWGN channel and a LDPC sum-product decoder, we 
can approximate the densities of the messages exchanged 
between the check and variable nodes as Gaussian  [8], [20]. 
Hence, these densities may be characterized only with their 
mean and variance. A Gaussian random variable whose 
variance is twice its mean is said to be consistent  [19]. The 
assumption of consistency, allows for setting up density 
evolution as a one-dimensional equation based on the mean of 
the message densities. In  [8], this assumption is used for DE 
analysis of a (noiseless) LDPC decoder over an AWGN 
channel, and subsequently, quantifying the threshold of the 
code.  

In density evolution, the key assumption is that the code 
block length is sufficiently large, based on which it may be 
assumed that the LDPC code Tanner graph is cycle free. Since 
the code is linear and the channel is symmetric, considering 
the transmission of an all-one codeword using a BPSK 
modulation, the LLRs received over an AWGN channel are 
Gaussian distributed with mean ݉଴ ൌ 2 ௡ߪ

ଶ⁄  and 
variance ଴ߪ 

ଶ ൌ 4 ௡ߪ
ଶ⁄ ,  where ߪ௡

ଶ  is the variance of channel 
noise [8]. Now if ௜ݑ  ’s are Gaussian, independent and 
identically distributed, then the result of their summation is 
also Gaussian, and for regular LDPC codes we can assume the 
variables ݑ, ,ݒ  .௜ are all Gaussianݒ ௜ andݑ

First we check the purport of consistency for a noisy sum-
product LDPC decoder. To this end, we consider the expected 
values of both sides of (3) and (5) and obtain 

 
݉௩

ሺ௟ሻ ൌ ݉଴ ൅ ሺ݀௩ െ 1ሻ݉௨
ሺ௟ିଵሻ                      (7) 

 
where ݉௩ and ݉௨ denote the mean of variable nodes and 
check nodes, respectively. The index ݅ is omitted as ݑ௜’s are 
iid. Next, if we compute the variances of both sides of (3), we 
have 
 

ߪ
ఓ೔

ሺ೗ሻ
ଶ ൌ ߪ

௨೔
ሺ೗ሻ

ଶ ൅ ௗߪ
ଶ.                                (8) 

 
And for the variance of variable node output we obtain 
 

௩ሺ೗ሻߪ
ଶ ൌ ଴ߪ

ଶ ൅ var ቌ ෍ ௜ߤ
ሺ௟ିଵሻ

ௗೡିଵ

௜ୀଵ

ቍ ൅ 2cov ቌݑ଴, ෍ ௜ߤ
ሺ௟ିଵሻ

ௗೡିଵ

௜ୀଵ

ቍ. 

(9) 
 

Since ߤ௜’s are Gaussian and iid, we have 
 

var ቌ ෍ ௜ߤ
ሺ௟ିଵሻ

ௗೡିଵ

௜ୀଵ

ቍ ൌ ෍ var൫ߤ௜
ሺ௟ିଵሻ൯

ௗೡିଵ

௜ୀଵ

ൌ ሺ݀௩ െ 1ሻߪఓሺ೗షభሻ
ଶ . 

(10) 
 

The last term in (9) is zero, as the code Tanner graph is 
assumed cycle-free and ݑ଴ is independent of the noisy 
messages which add to it to construct the outgoing ݒ  . 
Therefore, the variance of a variable node output is simplified 
to 

 
௩ሺ೗ሻߪ

ଶ ൌ ଴ߪ
ଶ ൅ ሺ݀௩ െ 1ሻߪ௨ሺ೗షభሻ

ଶ ൅ ሺ݀௩ െ 1ሻߪௗ
ଶ      (11) 

 
Note that the index ݅ is omitted as the ݑ௜’s and ߤ௜’s are iid. 

 
To examine whether a noisy LDPC decoder is consistent, 

we consider ߪ௩ሺ೗ሻ
ଶ ൌ 2݉௩

ሺ௟ሻ and ߪ௨ሺ೗షభሻ
ଶ ൌ 2݉௨

ሺ௟ିଵሻ  in (11) and 
compare it with (7). It is clear that as long as ߪௗ

ଶ is non-zero, 
the two are not equivalent and hence the noisy LDPC sum-
product decoder is not consistent. As a result, it does not 
suffice to track only the mean values of the nodes outgoing 
messages in iterations, and it is required to quantify both the 
mean and variance of random variables. The simulation 
results in  [21] show a similar situation, when there is an 
incorrect estimate of the channel signal-to-noise ratio (SNR) 
at a (noiseless) LDPC decoder; i.e., the ratio of the variance to 
the mean changes with iteration and therefore, the consistency 
is violated. 

 

ௗೡିଵ ݊ଵݑ
௨ ݒௗ೎ିଵ 

 (b) 

...

ௗ೎ିଵߛ

 ଶߛ
ଵߛ

 ଵݒ
ଶݒ

ݑ

݊ଵ
௩

݊ௗ೎ିଵ
௩  ݊ଶ

௩

݊௨

 ଴ݑ

ଵݑ

 ଶݑ

ݒ

... 

 ௗೡିଵߤ

 ଶߤ
 ଵߤ

݊ௗೡିଵ
௨  ݊ଶ

௨ 

݊௩ 

 (a) 
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ܧ ቈtanh ቆ
ܰ൫݉௨ሺ೗ሻ , ௨ሺ೗ሻߪ

ଶ ൯
2 ቇ቉ ൌ ቌܧ ቎tanh ቌ

ܰ ቀ݉଴ ൅ ሺ݀௩ െ 1ሻ݉௨
ሺ௟ିଵሻ, ଴ߪ

ଶ ൅ ሺ݀௩ െ 1ሻߪ௨ሺ೗షభሻ
ଶ ൅ ݀௩ߪௗ

ଶቁ
2 ቍ቏ቍ

ௗ೎ିଵ

 

ܧ ቈtanhଶ ቆ
ܰ൫݉௨ሺ೗ሻ , ௨ሺ೗ሻߪ

ଶ ൯
2 ቇ቉ ൌ ቌܧ ቎tanhଶ ቌ

ܰ ቀ݉଴ ൅ ሺ݀௩ െ 1ሻ݉௨
ሺ௟ିଵሻ, ଴ߪ 

ଶ ൅ ሺ݀௩ െ 1ሻߪ௨ሺ೗షభሻ
ଶ ൅ ݀௩ߪௗ

ଶቁ
2 ቍ቏ቍ

ௗ೎ିଵ

 

(15) 

 

 

IV. DENSITY EVOLUTION FOR NOISY  MESSAGE-PASSING 
In the case of a noisy LDPC decoder, we have shown that 

consistency does not hold and we should track both the mean 
and the variance of outgoing LLRs. To this end, we use the 
key equations (3)-(8) and (11). 

By computing the expected value of both sides of tanh rule 
(6), and noting the independence of ߛ௝’s, we have 
 

ܧ ቆtanh
ሺ௟ሻݑ

2 ቇ ൌ ܧ ቌෑ tanh
௝ߛ

ሺ௟ሻ

2

ௗ೎ିଵ

௝ୀଵ

ቍ ൌ ቌܧ ቆtanh
ሺ௟ሻߛ

2 ቇቍ

ௗ೎ିଵ

 

(12) 
where, from (4) we have 
 

ሺ௟ሻ~ܰሺ݉௩ߛ
ሺ௟ሻ, ௩ሺ೗ሻߪ

ଶ ൅ ௗߪ
ଶሻ. (13) 

 
Next, by computing the expected value of squared tanh rule, 

and noting the independency of ߛ௝ ’s, we obtain the second 
major equation as follows 
 

ܧ     ቆtanhଶ ቀ௨ሺ೗ሻ

ଶ
ቁቇ ൌ ൭ܧ ቆtanhଶ ቀఊሺ೗ሻ

ଶ
ቁቇ൱

ௗ೎ିଵ

 
 

(14) 

 
The density evolution can be obtained by simultaneously 

solving equations (12) and (14). Specifically, representing  
ሺ௟ሻ using (13) and ݉௩ߛ

ሺ௟ሻ, ௩ሺ೗ሻߪ
ଶ  from (7) and (9), we obtain the 

DE for check nodes in (15). Therefore, the equations in (15) 
can be used to track ݉௨ሺ೗ሻ  and  ߪ௨ሺ೗ሻ

ଶ  in decoding iterations of a 

regular ሺ݀௩, ݀௖ሻ LDPC and for given values of channel and 
decoder noise variance. As evident in (15), the effect of 
decoder noise appears in the check-node DE, with degree of 
variable nodes, ݀௩, as a factor.  

V. NUMERICAL AND SIMULATION RESULTS 
We solved the density evolution equations in (15) 

iteratively for a ሺ3,6ሻ regular code considering ݉௨
ሺ଴ሻ ൌ 0 and 

௨ሺబሻߪ
ଶ ൌ 0 as initial conditions. This provides us with the mean 

and variance of the check nodes and allows for the 
computation of the threshold for the given variances of 
decoder and channel noise.  

 
Figure 4 shows the evolution of probability of error as a 

function of iteration for several values of channel SNR and a 
noisy decoder with ߪௗ

ଶ ൌ 2. It is evident that the threshold is 
3.635dB in which for values above it, the probability of error 
converges to zero and for values below it, the probability of 
error converges to a non-zero value. The threshold for a 
noiseless decoder is 1.163dB. 

 
Figure 5 shows the relation between the threshold and the 

LDPC decoder noise standard deviation. It is observed that the 
SNR threshold increases as the decoder noise standard 
deviation increases. This is in line with a similar observation 
in  [17] and  [18] on the performance of bit-flipping LDPC 
decoding in the presence of noisy message-passing over BSC 
channels, where it deteriorates as the cross over probability of 
decoder noise increases. The interpolation of numerical results 
follows a linear function as ܶݎ ൌ 1.163 ൅  .ௗߪ 1.7448

Fig. 4. Evolution of error probability as a function of iteration for ሺ3,6ሻ regular code with decoder noise ߪௗ
ଶ ൌ 2 
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Fig. 5. Relation between the threshold and the standard deviation of 
decoder noise ߪௗ. 

 
Figure 6 depicts the simulation results for the performance 

of a ሺ3,6ሻ regular LDPC code with length 1008. It is evident 
that the simulation results follow the analytical results 
reasonably closely even for finite length codes. Also, the 
thresholds obtained analytically in Figure 5 coincide with 
those in simulations of Figure 6 with good approximation.  

 

VI. CONCLUSIONS 
The performance of a noisy belief propagation scheme for 

the decoding of LDPC codes over AWGN channels is 
investigated. Observing the inconsistency of exchanged 
message densities in the iterative decoder, a density evolution 
scheme is formulated to track both the mean and variance of 
message densities. The results quantify the increase of the 
decoding threshold as a consequence of the decoder internal 
noise. In this work, we modeled the decoder noise as AWGN 
on the exchanged messages, however, an interesting future 
step is to incorporate other noise models possibly directly 
obtained from practical decoder implementations. We are also 
considering extending the current results for regular codes to 
irregular LDPC codes.  

 

ACKNOWLEDGEMENT 
This work has been supported in part by the Iran 

Telecommunications Research Center. 
 

REFERENCES 
[1] R. G. Gallager, “Low-density parity-check codes”, IRE Trans. 

Inform. Theory, vol. IT-8, Jan. 1962. 
[2] R. G. Gallager, “Low-density parity-check codes”, Cambridge, MA: 

MIT Press, 1963. 
[3] M. Sipser and D. A. Spielman, “Expander codes”, IEEE Trans. 

Inform. Theory, vol. 42, Nov. 1996. 
[4] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance 

of low-density parity-check codes”, Electron. Lett. vol. 32, Aug. 
1996. 

[5] D. J. C. MacKay, “Good error-correcting codes based on very sparse 
matrices”, IEEE Trans. Inform. Theory, vol. 45, Mar. 1999. 

 
 

[6] M. Eroz, FW. Sun, LN. Lee, “DVB-S2 low density parity check 
codes with near Shannon limit performance”, International Journal 
Of Satellite Communications and Networking, vol. 22, no. 3, 2004. 

[7]  “Part 16: Air interface for fixed and mobile broadband wireless 
access systems amendment for physical and medium access control 
layers for combined fixed and mobile operation in licensed bands”, 
IEEE P802.16e-2005, October 2005. 

[8]  S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of 
sum-product decoding of low-density parity-check codes using a 
Gaussian approximation”, IEEE Trans. Inform. Theory, vol. 47, no. 2, 
pp. 657–670, Feb. 2001. 

[9] H.-A. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarköy, 
“Probability propagation and decoding in analog VLSI”, IEEE 
Trans. Inform. Theory, vol. 47, pp. 837–843, Feb. 2001. 

[10] T. Pegoraro et al. “Design, simulation and hardware implementation 
of a digital television system: LDPC channel coding”, IEEE 19th Int. 
symp. on spread spectrum techniques and applications, 2006. 

[11] H. Wymeersch, H. Steendam and M. Moeneclaey, “Computational 
complexity and quantization effects of decoding algorithms for non-
binary LDPC codes”, Proceeding of IEEE Int. Conf. on Acoustics, 
Speech and Signal Processing, Montreal, Canada, May 2004. 

[12] Z. Zhang, L. Dolecek, M. Wainwright, V. Anantharam and B. 
Nikolic, “Quantization effects in low-density parity-check decoders” 
IEEE Int. Conf. Commun., pp. 6231-6237, Glasgow, Scotland, 2007. 

[13] D. H. Lee and D. L. Neuhoff, “Asymptotic distribution of the errors 
in scalar and vector quantizers,” IEEE Trans. Inf. Theory, vol. 42, no. 
2, 1996. 

[14] T. Koch, A. Lapidoth, P. Sotiriadis, “A channel that heats up,” IEEE 
Int. Symp. on Inform. Theory, Nice, France, 2007. 

[15] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, 
“Analysis of low density codes and improved designs using irregular 
graphs”, 30th Annu. ACM Symp. Theory of Computing, 1998. 

[16] T. J. Richardson and R. Urbanke, “The capacity of low-density 
parity check codes under message-passing decoding”, IEEE Trans. 
Inform. Theory, vol. 47, Feb. 2001. 

[17] L. R. Varshney, “Performance of LDPC codes under noisy message-
passing decoding”, IEEE Inform. Theory Workshop, Sept. 2007. 

[18] L. R. Varshney, “Performance of LDPC codes under faulty iterative 
decoding”, available at: arxiv.org-arXiv:0806.1215, 2008. 

[19] T. K. Moon, Error correction coding: mathematical methods and 
algorithms. Wiley-Interscience, 2005. 

[20] H. El Gamal and J. A. Roger Hammons, “Analyzing the turbo 
decoder using the Gaussian approximation”, IEEE Trans. Inform. 
Theory, vol. 47, no. 2, pp. 671-686, Feb. 2001. 

[21] H. Saeedi and A. H. Banihashemi, “Performance of belief 
propagation for decoding LDPC codes in the presence of channel 
estimation error”,  IEEE Trans. Commun., vol. 55, no. 1, Jan. 2007. 

[22] H. Farhadi, F. Lahouti, S. Y. Ahmadi, “Thermal effects on the 
analog decoders performance,” Analog Decoding Workshop, 
Montreal, QC, Canada, May 24-25, 2007. 

 
Fig. 6. Performance of (3,6) regular finite length code with decoder noise 
variance ߪௗ

ଶ. 

ௗߪ
ଶ Threshold 

/௕ܧ ଴ܰ (dB) Threshold ߪ௡ 

0 1.163 0.8744 

1 2.835 0.7215 

2 3.635 0.6580 

3 4.185 0.6177 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1

1.5

2

2.5

3

3.5

4

4.5

Standard deviation of decoder's noise

Th
re

sh
ol

d 
va

lu
e 

of
 c

ha
nn

el
 S

NR
 (d

B)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10-5

10-4

10-3

10-2

10-1

100

SNR (dB)

BE
R

 

 

σ2
d=0

σ2
d=1

σ2
d=2

σ2
d=3

393

 2010 6th International Symposium on Turbo Codes & Iterative Information Processing


