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Abstract— The objective of this paper is to present the
statistical properties of the IEEE-STD-1057/IEEE-STD-
1241 sine-wave fitting algorithms. The proper Cramér-Rao
bound is derived for both the three-parameter and four-
parameter algorithms. Further, we investigate the residual,
and derive its statistical properties, in both the three-
and four-parameter fitting case. In a practical setup were
the frequency is almost known, we derive an analytical
expression for the mean of the residual. By analysis we
compare the two methods and state in which case one
should use one over the other. Finally, we present some
numerical evaluations confirming our analytical findings.

Index Terms— IEEE-STD-1057, IEEE-STD-1241,
Cramér-Rao Bound, three-parameter sine-wave fitting,
four-parameter sine-wave fitting, ADC testing, parsimony
principle, multi sine-wave fitting.

I. INTRODUCTION

Tone frequency estimation has been extensively stud-
ied in the literature. An early paper is [1], and a
comprehensive list of references can be found in [2].

In testing digital waveform recorders and analog-to-
digital converters (ADCs), an important part is to fit
a sinusoidal model to the recorded data, as well as to
calculate the parameters that in least-squares result in
the best fit. Algorithms have been standardized in IEEE
Standard 1057 and IEEE Standard 1241 [3], [4]. For
easy reference, the three- and four-parameter sine-wave
fit algorithms of [4, Sect. 4.1.4] are hereafter denoted
as the three- and four-parameter algorithm, respectively.
Software implementations of the four-parameter algo-
rithm can be found in [5], [6], and investigations of its
performance is the main topic in [7]–[9].

The aim of this paper is to study tone frequency esti-
mation in general, and the performance of the standard-
ized three- and four-parameter algorithms in particular.

II. SIGNAL MODEL AND PROBLEM SET-UP

Assume that the data record contains the sequence
of samples y = (y1, . . . , yN )T taken at time instants
t1, . . . , tN . It is further assumed that data can be modeled
by

yn[ϑ] = A cos(ωtn) + B sin(ωtn) + C (1)

where A, B, C and ω are (known or unknown) con-
stants. Stressing the dependence of yn[ϑ] on the generic
parameter vector ϑ turns out to be convenient for the
following discussion, where the unknown parameters are
gathered in ϑ. Throughout this paper ϑ represents either

the set of three parameters (A,B,C), or the set of four
(A,B,C, ω), depending if the frequency ω is known or
not. The sine-wave fit problem is solved by minimizing
the sum-squared-error

V (ϑ) =
1

N

N
∑

n=1

(yn − yn[ϑ])2 (2)

with respect to the unknown parameters ϑ. Consider the
signal model where the measurements are described by

yn = yn[ϑ0] + en (3)

where yn is the observation, yn[ϑ0] the underlying sine-
wave (1) described by the true parameter vector ϑ0. The
process en describes the modeling error, noise, etc, and is
assumed to be zero-mean white Gaussian with variance
σ2.

By employing a vector notation where ϑ
T = (θT , ω),

with
θ =

[

A B C
]T

(4)

and

D(ω) =







cos ωt1 sinωt1 1
...

...
...

cosωtN sin ωtN 1






(5)

the sum-squared-error (2) can be written as

V (ω, θ) =
1

N
(y − D(ω) θ)T (y − D(ω) θ). (6)

When the frequency ω is known, (6) is minimized in
least-square sense by solving the set of linear equations
D(ω)θ = y, giving the solution

θ̂ = (D(ω)T D(ω))−1D(ω)T y. (7)

When the frequency is unknown, the criterion (6) can
be concentrated with respect to θ by plugging in the
least-squares solution (7) into (6). Thus,

V (ω) =
1

N

(

yT y − yT Π(ω)y
)

(8)

where

Π(ω) = D(ω)(D(ω)T D(ω))−1D(ω)T . (9)

It is straightforward to show that ω can be found by
a one-dimensional search for the maximum of [9]

g(ω) = yT D(ω) (D(ω)T D(ω))−1D(ω)T y (10)



The dependency of (10) on ω is non-trivial. Although,
efficient algorithms exists for this class of non-linear
least squares problems.

Once (10) has been maximized and the corresponding
argument (say ω̂) has been determined, the unknowns in
θ are obtained by a least-squares fit (7).

III. CRAMÉR-RAO BOUND

A lower bound on the accuracy (covariance) of any
unbiased estimator is given by the CRB. The covariance
of any unbiased estimator of the parameters is bounded
by the CRB, that is

Cov(ϑ̂) ≥ CRB(ϑ) (11)

where ≥ is to be interpreted as the difference Cov(ϑ̂)−
CRB(ϑ) is positive semidefinite. In the full paper, we
derive the asymptotic (N >> 1) CRB for the estimated
parameters. This will be performed for both the three-
and four-parameter model, respectively. These results are
an extension (by adding the constant C in the signal
model) of the well known results of [1]. By a re-
parameterization of the sine-wave model, i.e

yn[α, φ,C, ω] = α sin(ωtn + φ) + C (12)

we will also show that the CRB on φ is lower for a
three-parameter model (known frequency) than for the
four-parameter model. The parameter accuracy effects
the sine-wave fitting performance. Further discussions
on the topic is made in Section V, as well as in the full
paper.

IV. THE PARSIMONY PRINCIPLE

Consider the criterion (2) for the signal (3). Then

E[V (ϑ0)] =
1

N

N
∑

n=1

E[(yn − yn[ϑ0])
2] = σ2 (13)

where E[·] denotes statistical expectation. Thus, when the
estimate (say, ϑ̂) is ϑ̂ = ϑ0, the residual is white noise
and has minimum variance. In a practical scenario ϑ0 is
replaced by an estimate ϑ̂. By the parsimony principle it
is possible to show that the residual mean value evaluated
with the estimated parameter ϑ̂ is given by [10]

E[V (ϑ̂)] ' σ2

(

1 +
p

N

)

(14)

where p = dim[ϑ]. The result (14) holds in a large
sample scenario (N >> 1). A more thorough derivation
will be given in the full paper.

V. THREE VS. FOUR PARAMETER MODEL

In Section III we outlined that the CRB is lower
for the parameters in a three-parameter model than for
the ones in a four-parameter model. Further, from eq
(14) it is clear that the three-parameter fit results (in
mean) in a smaller sum-squared-error (2) than the four-
parameter model, i.e a better fit of the sine-wave is
obtained. However, a three-parameter method requires
that the frequency ω is known. In ADC measurements
a sine-wave generator is used to excite the device under

study. In this case the frequency may not be completely
known, i.e it may slightly differ from the preset value.
However, if the frequency error is small we may assume
it to be known in favor of using the four-parameter
model. In the full paper, it is shown how the mean value
of the residual (14) for a three-parameter model depends
on the frequency error. From this study we can answer
the question whether to use a three-parameter fit instead
of a four-parameter fit, when fitting a sine-wave to a
given set of data. That is, an answer to the question how
large deviation from the nominal frequency is allowed,
before the four-parameter method outperforms the tree-
parameter method.

VI. SIMULATIONS

The mean value of the residual using both the three-
and four-parameter model is evaluated for some data
sets. In the three-parameter case, the frequency used in
the sine-wave fit is varied around the nominal frequency.
This to illustrate the behavior of the residual value when
the frequency knowledge is not perfect, as well as to
show the agreement between the theoretical results and
simulations.

VII. SUMMARY OF CONTRIBUTIONS

The contributions in this paper are:
• Derivation of the asymptotic Cramér-Rao bound on

the variance of the parameters of the three- and
four-parameter sine-wave models.

• Analysis of the statistics of the sine-wave fit cri-
terion, resulting in an analytic expression for the
residual in the three- and four-parameter cases.

• The answer to the question: “When to use a three-
parameter fit in favor of a four parameter fit?”
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