

An Introduc tion to

GPGPU Programming
- CUDA Arc hitec ture

Rafia Inam

Mälardalen Real-Time Research Centre
Mälardalen University, Västerås, Sweden

http://www.mrtc.mdh.se
rafia.inam@mdh.se

mailto:rafia.inam@mdh.se�

 2

CONTENTS

1 INTRODUCTION ... 4

1.1 BACKGROUND .. 4
1.2 CUDA .. 5

2 THE SYSTEM MODEL .. 6

2.1 THE SYSTEM MODEL ... 6
2.2 HETEROGENEOUS ARCHITECTURE ... 7
2.3 THE GRID AND BLOCK STRUCTURES ... 8
2.4 MEMORY MODEL ... 9
2.5 THREAD SYNCHRONIZATION .. 10
2.6 NUMBER OF THREADS PER BLOCK .. 10
2.7 CONTROL FLOW ... 10
2.8 TRANSFERRING DATA BETWEEN HOST AND DEVICE.. 11
2.9 RESTRICTIONS .. 12

3 SOME COMMONLY USED CUDA API ..14

3.1 FUNCTION TYPE QUALIFIERS ... 14
3.2 VARIABLE TYPE QUALIFIERS ... 14
3.3 BUILT-IN VARIABLES .. 15
3.4 MEMORY MANAGEMENT ... 15
3.5 COPYING HOST TO DEVICE .. 15
3.6 COPYING DEVICE TO HOST .. 16
3.7 DEVICE RUNTIME COMPONENT ... 16
3.8 DEVICE EMULATION MODE ... 17
3.9 AN EXAMPLE ... 17

3.9.1 Sequential Code .. 17
3.9.2 Parallel Code – 1D Grid .. 18
3.9.3 Parallel Code – 2D Grid (2 * 2) .. 19
3.9.4 Parallel Code – 2D Grid (4 * 4) .. 20

REFERENCES ...21

 3

List of Figures

FIGURE 1: COMPARING GPU TO CPU [1] ... 4

FIGURE 2: THE CUDA MEMORY MODEL ... 6

FIGURE 3: HETEROGENEOUS ARCHITECHTURE .. 7

FIGURE 4: THE CUDA GRID STRUCTURE AND BLOCK STRUCTURE. .. 9

FIGURE 5: AN EXAMPLE OF PROCESSING FLOW. ... 11

 4

1 Introduction

1.1 Background

At the start of multicore CPUs and GPUs the processor chips have become parallel
systems. But speed of the program will be increased if software exploits parallelism provided by
the underlying multiprocessor architecture [1]. Hence there is a big need to design and develop
the software so that it uses multithreading, each thread running concurrently on a processor,
potentially increasing the speed of the program dramatically. To develop such a scalable parallel
applications, a parallel programming model is required that supports parallel multicore
programming environment.

NVIDIA’s graphics processing units (GPUs) are very powerful and highly parallel. GPUs

have hundreds of processor cores and thousands of threads running concurrently on these cores,
thus because of intensive computing power they are much faster than the CPU as shown in Figure
1.

Figure 1: Comparing GPU to CPU [1]

 5

At start, they were used for graphics purposes only. But now GPUs are becoming more and

more popular for a variety of general-purpose, non-graphical applications too. For example they
are used in the fields of computational chemistry, sparse matrix solvers, physics models, sorting,
and searching etc. The programs designed for GPGPU (General Purpose GPU) run on the multi
processors using many threads concurrently. As a result, these programs are extremely fast.

Report Outline: This report is organized as follows. The rest of section 1 introduces the

CUDA. In section 2, the detailed description of the CUDA system model is given. Some
commonly used CUDA API is provided in section 3.

1.2 CUDA

CUDA stands for Compute Unified Device Architecture. It is a parallel programming
paradigm released in 2007 by NVIDIA. It is used to develop software for graphics processors and
is used to develop a variety of general purpose applications for GPUs that are highly parallel in
nature and run on hundreds of GPU’s processor cores.

CUDA uses a language that is very similar to C language and has a high learning curve. It

has some extensions to that language to use the GPU-specific features that include new API calls,
and some new type qualifiers that apply to functions and variables. CUDA has some specific
functions, called kernels. A kernel can be a function or a full program invoked by the CPU. It is
executed N number of times in parallel on GPU by using N number of threads. CUDA also
provides shared memory and synchronization among threads.

CUDA is supported only on NVIDIA’s GPUs based on Tesla architecture. The graphics

cards that support CUDA are GeForce 8-series, Quadro, and Tesla. These graphics cards can be
used easily in PCs, laptops, and servers. More details about CUDA programming model are
described in the next section.

 6

2 The System Model

2.1 The System Model

Graphics processors were mainly used only for graphics applications in the past. But now
modern GPUs are fully programmable, highly parallel architectures that delivers high throughput
and hence can be used very efficiently for a variety of general purpose applications.

NVIDIA's graphics card is a new technology that is extremely multithreaded computing

architecture. It consists of a set of parallel multiprocessors, that are further divided into many
cores and each core executes instructions from one thread at a time as described in Figure 2.

Core 1

Shared Memory

Core M

. . .

Core M ...

Core 1 ...

Shared Memory

Device

Multiprocessor 1 Multiprocessor N

Constant Cache

Texture Cache

Constant Cache

Texture Cache

Device Memory: Global, Constant, and Texture Memories

Figure 2: The CUDA Memory Model [3]

 7

Hence all those computations in which many threads have to execute the same instruction
concurrently, also called data-parallel computations, are well-suited to run on GPU.

NVIDIA has designed a special C-based language CUDA to utilize this massively parallel

nature of GPU. CUDA contains a special C function called kernel, which is simply a C code that
is executed on graphics card on fixed number of threads concurrently. For defining threads,
CUDA uses a grid structure.

2.2 Heterogeneous Architecture

CUDA programming paradigm is a combination of serial and parallel executions. Figure 3
shows an example of this heterogeneous type of programming. The simple C code runs serially
on CPU also called the host [2].

Parallel execution is expressed by the kernel function that is executed on a set of threads in

parallel on GPU; GPU is also called device. This kernel code is a C code for only one thread. The
numbers of thread blocks, and the number of threads within those blocks that execute this kernel
in parallel are given explicitly when this function is called.

Figure 3: Heterogeneous Architecture [3]

 8

The kernel function can only be invoked by serial code from CPU. To call the kernel
function, the execution configuration must be specified, i.e., the number of threads in a thread
block and number of threads within a grid. To declare grid and thread blocks CUDA has a
predefined data type dim3, an integer vector type that specifies the dimensions of the grid and
thread blocks. In the kernel function call grid and block variables are written in three angular
brackets <<< grid, block >>> as shown in Figure 3Figure 4. In this invocation, grid and thread
blocks are created dynamically. The value of this grid and block variables must be less than the
allowed sizes which are given in next section. The threads are scheduled in hardware and not in
software. Kernel function has always a return type void. It has a qualifier __global__ that means
this is a kernel function to be executed on GPU. See Figure 4 for a graphical description of grid
and thread blocks.

2.3 The Grid and block structures

The Grid consists of one-dimensional, two-dimensional or three-dimensional thread
blocks. Each thread block is further divided into one-dimensional or two-dimensional threads. A
thread block is a set of threads running on one processor. Figure 4 describes a two-dimensional
grid structure and a two-dimensional block structure. Within a thread block, threads are organized
together in warps. Normally 32 threads are grouped in one warp. All threads of a warp are
scheduled together for execution.

All threads of a single thread block can communicate with each other through shared

memory; therefore they are executed on the same multiprocessor. In this way it becomes possible
to synchronize these threads.

The CUDA paradigm provides some built-in variables to use this structure efficiently. To

access the id of a thread block the blockIdx variable (values from 0 to gridDim-1) is used and to
access its dimension the blockDim variable is used while gridDim gives the dimensions of the
grid. Each individual thread is identified by threadIdx variable, can have values from 0 to
blockDim-1. WarpSize specifies warp size in the threads. All these variables are built-in in
kernel. The maximum allowed sizes of each dimension of grid is 65535, and x, y, and z
dimensions of a thread block are 512, 512, and 64, respectively [1] [2].

The allocation of the number of thread blocks to each multiprocessor is dependent on the

necessity of the shared memory and registers by each thread block. More memory and registers
requirement by each thread block means allocation of less thread blocks to each multiprocessor.
In this case the remaining thread blocks have to wait for their turn for execution.

 9

All this threads creation, their execution, and termination are automatic and handled by the

GPU, and is invisible to the programmer. The user only needs to specify the number of threads in
a thread block and the number of thread blocks in a grid.

2.4 Memory Model

 All multiprocessors access a large global device memory for both gather and scatter
operations. Memory model is described graphically in Figure 2. This memory is relatively slow
because it does not provide caching.

Shared memory is fast as compared to device memory and normally takes the same amount
of time as required to access registers. It is also called parallel data cache (PDC). Shared memory
is “local” to each multiprocessor unlike device memory and allows more efficient local
synchronization. It is divided into many parts. Each thread block within multiprocessor accesses
its own part of shared memory and this part of shared memory is not accessible by any other
thread block of this multiprocessor or of some other multiprocessor. All threads within a thread
block that have the same life time as of the block, share this part of memory for both read and
write operations. As shared memory space is only 16KiB, so it must be used efficiently. To
declare variables in shared memory __shared__ qualifier is used and to declare in global memory
__device__ qualifier is used.

Block (0, 0) ...

 Grid

 Global Device Memory

Block (N, 0)

Block (N, M)

Block (0, M) ...

 Shared Memory

 Shared Memory Shared Memory

 Shared Memory

Block

Thread (0, 0) ...

Thread (N, 0)

 Registers

 Registers

 Registers

 Registers

Thread (0, M)

Thread (N, M) ...

 Shared Memory

Figure 4: The CUDA Grid Structure and Block Structure.

 10

Each multiprocessor also has its own read only caches to speed up read operation. These

are constant cache and texture cache memories.

Each thread also contains its own local memory. Normally local variables of the kernel

functions are allocated here. Sometimes they are allocated on global memory.

2.5 Thread Synchronization

For synchronization purpose among threads CUDA API provides a hardware thread-barrier
function syncthreads() that acts as synchronization point. As threads are scheduled in hardware,
this function is implemented in hardware. The threads will wait at the synchronization point until
all of the threads have reached at this point. The communication among threads (if required) is
possible through per-block shared memory. Hence thread synchronization is possible only at
thread block level. Since threads of a thread block may communicate with each other, these
threads must execute on same processor. That is why thread block is guaranteed to execute on
one processor.

2.6 Number of Threads per Block
To maximize the utilization of available resources, the assignment of the number of threads

per block and the number of thread blocks per grid should be done carefully. Less number of
threads per block cause load latency in device memory reads and also one block per
multiprocessor makes the multiprocessor to idle during thread synchronization. Hence there
should be at least twice as many blocks as there are multiprocessors in the device (The number of
blocks per grid should be at least 100). Also assign the number of threads per block in multiples
of the warp size, because it lessens the under-populated wraps.

2.7 Control Flow

As the kernel function runs on the device, memory must be allocated on device in advance
before kernel function invocation and if the kernel function has to execute on some data then the
data must be copied from the host memory to the device memory. Device memory can be
allocated either as linear memory or as CUDA arrays. Qualifier __device__ at the start of a
variable specifies that space for this variable is allocated on the device memory. CUDA API [2]
also has functions to allocate and de-allocate device memory at run time like cudaMalloc(),
cudaFree(), etc. Similarly, after the execution of kernel function, data from device memory must
be copied back to host memory in order to get results. To copy data to and from the device to host
CUDA API provides functions for example cudaMemCpyToSymbol(),
cudaMemCpyFromSymbol(), cudaMemCpy(), etc. Keeping all this in view the processing flow is
as follows:

 11

1. Allocate memory on host and device separately. Device memory is readable and writable

by the host through the memory copy functions.
2. Copy data from host to device using CUDA API if required.
3. Kernel function executes parallel on each core.
4. Copy data back from device to host using CUDA API.

Figure 5 illustrates an example of processing flow of CUDA. In first step two arrays of
same size are declared, one on the host and one on the device. The data from the host is copied to
the device using CUDA API cudaMemCpy(). The kernel function runs in parallel on the device
and in last step the results are copied back to the host using cudaMemCpy() function.

2.8 Transferring Data between Host and Device

Since the bandwidth between the device memory and the host memory is much less as
compared to the bandwidth between the device and the device memory which is very high, we
should try to minimize data transfer between the host and the device. Some of the efforts could be

Figure 13: The CUDA Grid Structure and Block Structure

Device

Block (0, 0)

Block (N, 0)

Block (N, M)

Block (0, M)

RAM

1. int array[total];
device int darray[total];

2. CudaMemCpy (darray,
array,…);

3. funcArray <<<grid,
block>>> (…);

4. CudaMemCpy (array,
darray,…);

1

1

2 4

3

...

...

 Figure 5: An example of processing flow [3].

 12

like moving some code from the host to the device and creating and destroying data structures in
the device memory (instead of copying them to the device) and making big transfers by batching
up many small transfers to lessen the transfer overheads.

2.9 Restrictions

To use general purpose GPU we must follow the restrictions of the CUDA programming
paradigm. Some of the restrictions are given below:

Simple C programming is supported by the CUDA compiler. It lacks the use of object-

oriented or C++ features in device code.

Heterogeneous architecture is used to make an interaction between CPU and GPU

programming models. Data may be copied from host memory to device memory and the results
are copied back to host from the device memory. Heterogeneous programming is discussed in
section 2.2 and described graphically in Figure 3.

Kernel function invocation: The grid, thread blocks, and threads are created by the kernel

function invocation from the host. This is the only way to create them. They cannot be created
inside the kernel function. The grid, and thread blocks are discussed in Figure 4. Moreover the
number of grids and thread blocks must not exceed their maximum allowed values.

The kernel functions do not return any results, i.e. its return type is always void. Further

the kernel function call is asynchronous. It means that control returns back before the completion
of the kernel function on the device. More information can be found in CUDA programming
guide [1]. All functions with the __device__ qualifier are by default inline.

Recursion is simply not allowed within kernel functions because of the large amount of

memory requirement for the thousands of thread.

The device memory allocation and de-allocation at run-time is possible only when

using host code and before calling the device code. It means that within the device code, the
device memory cannot be allocated nor de-allocated using the functions like cudaMalloc(),
cudaFree(), etc. All the allocations required for a specific kernel function are done before calling
that kernel function in the host code and similarly all that allocated device memory is de-
allocated after the completion of that kernel function in the host code.

Shared memory is shared among the threads on the same thread block only. Threads from

different thread block cannot share it. This concept is discussed in section 2.4 and graphically
shown in Figure 4.

Built-in variables such as blockIdx, threadIdx, etc, cannot be assigned any values. Further

it is not possible to take their address.

 13

The variables declared with __device__, __shared__, or __constant__ qualifiers also have
some restrictions [1]. Address of a variable with any one of these qualifiers can only be used
within the device code.

Communication and synchronization among threads are only possible at thread block

level. Communication among thread blocks is not allowed. Section 2.5 explains the thread
synchronization.

 14

3 Some Commonly used CUDA API

3.1 Function Type Qualifiers

The three main types of the function qualifiers in CUDA are device, global, and host.

1. __device__

The functions with device qualifier are executed on the device. These functions are
callable from the device only.

2. __global__

The functions with global qualifier are executed on the device but they are callable from
the host only.

3. __host__

The functions with host qualifier are executed on the host and are callable from the host
only. When no qualifier is used, it means that the function will run on the host; it is
equivalent to the function declared with the _host_ qualifier.

3.2 Variable Type Qualifiers

The three main types of the variable qualifiers in CUDA are device, constant, and shared.

1. __device__
The variables declared with __device__ reside on the device. Other type qualifiers are
optionally used together with __device__. If a variable is declared only with __device__
qualifier then this variable resides in the global memory and it has the lifetime of the
application. Since it resides in the global memory, it is accessible from all the threads
(within the grid) and host through the runtime library.

2. __constant__
This qualifier is used to allocate constants on the device. It is optionally used together
with __device__ qualifier. This constant resides in constant memory, and has the lifetime
of an application. It is accessible from all the threads (within grid) and host through the
runtime library.

3. __shared__
This qualifier is used to allocate the shared variable. It is optionally used together with
__device__ qualifier. Shared variable resides in shared memory of a thread block, and has
the lifetime of a block. It is only accessible from all the threads within the block.

 15

3.3 Built-in Variables

Following is a list of some of the built-in variables in CUDA:

1. gridDim: is of type dim3 and contains the dimensions of the grid.

2. blockIdx: is of type uint3 and contains the block index within the grid.

3. blockDim: is of type dim3 and contains the dimensions of the block.

4. threadIdx: is of type uint3 and contains the thread index within the block.

5. warpSize: is of type int and contains the warp size in threads.

3.4 Memory Management

1. Memory Allocation

float* darray;
cudaMalloc((void**)&darray, 1024 * sizeof(float));

2. Memory Deallocation

cudaFree(darray);

3.5 Copying Host to device

1. Copying host memory array to device memory:

cudaMemcpyToSymbol(const T& symbol, const void* src,
size_t count)
Example:
float cpuArray [1024];
device float dArray [1024];
cudaMemcpyToSymbol (dArray, cpuArray, sizeof(cpuArray));

2. Another method

Example:
float cpuArray[1024];
int size = sizeof(cpuArray);

 16

float* dArray;
cudaMalloc((void**)&dArray, size);
cudaMemcpy(dArray, cpuArray, size, cudaMemcpyHostToDevice);

2. Copying host memory array to constant memory:

Example:
__constant__ float constArray[1024];
float cpuArray[1024];
cudaMemcpyToSymbol(constArray, &cpuArray, sizeof(constArray));

3.6 Copying Device to Host

1. Copying device memory array to host memory:

cudaMemcpyFromSymbol(void *dst, const T& symbol, size_t
count)
Example:
float cpuArray [1024];
device float dArray [1024];
cudaMemcpyFromSymbol (&cpuArray, dArray, sizeof(dArray));

2. Another method

Example:
float cpuArray[1024];
int size = sizeof(cpuArray);
float* dArray;
cudaMalloc((void**)&dArray, size);
cudaMemcpy(cpuArray, dArray, size, cudaMemcpyDeviceToHost);

3.7 Device Runtime Component
Device runtime components are only be used in the device functions and are prefixed with

an underscore symbol __. The following is a short list of these functions:

1. Mathematical Functions:

(e.g. __sinf(x) , __cosf(x), sqrt(x), etc)

 17

2. Synchronization Function:

void __syncthreads();

3. Atomic Functions:

(e.g. atomicAdd(), etc.)

4. Texture Functions:

3.8 Device Emulation Mode

A device emulation mode is provided basically for the debugging purpose. –deviceemu
option is used with nvcc compile command. It only emulates the device, it is not the simulation.
Threads and the thread blocks are created on the host. Host’s native debugging (like Microsoft
Visual studio’s) can be used in setting break points and data inspection. It is especially helpful in
input or output operations to the files or to the screen, like the use of printf() function, that is not
possible to run on the device.

3.9 An Example

3.9.1 Sequential Code
A sequential program to calculate the distances from a specific point to the all other points

in a 2D Matrix of order N × N is given below:

const int N=16;
void main (void) {
 int i, j, x, y;
 float hgrid[N][N];

 printf("\n\tEnter the x coordinate of node : "); scanf_s("%d", &x);
 printf("\n\tEnter the y coordinate of node : "); scanf_s("%d", &y);

 // Code to find distance without using device

 for (i=0; i<N; i++){
 for (j=0; j<N; j++) {
 n = ((i-x)*(i-x))+((j-y)*(j-y)); // distance formula
 hgrid[i][j] = sqrt(n); // distance formula
 printf("\t%.0lf", hgrid[i][j]);
 }
 printf("\n\n");
 }

}

 18

3.9.2 Parallel Code – 1D Grid

Now the same program is converted to the parallel code to run on the device. A one
dimensional grid with only one thread block is used. The thread block contains 16 * 16 threads
(hence 256 threads in total) in a two dimensional form.

const int N=16;
__device__ float dgrid[N][N]; // array on device memory

 // function on device to calculate distance

 __global__ void findDistance(int x, int y){
 int i = threadIdx.x;
 int j = threadIdx.y;

 float n = ((i-x)*(i-x))+((j-y)*(j-y));
 dgrid[i][j] = sqrt(n);
 }

 void main () {
 int i, j;
 float hgrid[N][N];

 dim3 dBlock(N, N); // thread block with total 256 threads

 printf("\n\tEnter the x coordinate of node : "); scanf_s("%d", &i);
 printf("\n\tEnter the y coordinate of node : "); scanf_s("%d", &j);
 printf("\n\tDistance from a node!\n\n\n");

 findDistance<<<1, dBlock>>>(i, j); // Calling kernel function
 cudaMemcpyFromSymbol(&hgrid, dgrid, sizeof(dgrid)); //copy device memory to host

 printf("\n\n\tValues in hgrid!\n\n");
 for (i=0; i<N; i++){
 for (j=0; j<N; j++)
 printf("\t%.0lf", hgrid[i][j]);
 printf("\n\n");
 }

 }

 }

 19

3.9.3 Parallel Code – 2D Grid (2 * 2)

Now the same program is converted to the parallel code to run on the device with a two
dimensional grid (2 thread blocks in x dimension and 2 in y dimension). The thread block
contains 16 * 16 threads (hence 256 threads in total) in a two dimensional form. Hence total 1024
threads will run in parallel in the device.

const int N=16;
const int D=2;
__device__ float dgrid[N*D][N*D]; // array on device memory

 // function on device to calculate distance

 __global__ void findDistance(int x, int y){
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 float n = ((i-x)*(i-x))+((j-y)*(j-y));
 dgrid[i][j] = sqrt(n);
 }

 void main () {
 int i, j;
 float hgrid[N*D][N*D];

 dim3 dGrid(D,D); // 2D grid with total 4 thread blocks

 dim3 dBlock(N, N); // thread block with total 256 threads

 printf("\n\tEnter the x coordinate of node : "); scanf_s("%d", &i);
 printf("\n\tEnter the y coordinate of node : "); scanf_s("%d", &j);
 printf("\n\tDistance from a node!\n\n\n");

 findDistance<<< dGrid, dBlock>>>(i, j); // Calling kernel function
 cudaMemcpyFromSymbol(&hgrid, dgrid, sizeof(dgrid)); //copy device memory to host

 printf("\n\n\tValues in hgrid!\n\n");
 for (i=0; i<N*D; i++){
 for (j=0; j<N*D; j++)
 printf("\t%.0lf", hgrid[i][j]);
 printf("\n\n");
 }

 }

 }

 20

3.9.4 Parallel Code – 2D Grid (4 * 4)

The same program is converted to the parallel code to run on the device with a two
dimensional grid (4 thread blocks in x dimension and 4 in y dimension). The thread block
contains 8 * 8 threads (hence 64 threads in total) in a two dimensional form. Hence total 1024
threads will run in parallel in the device.

const int N=8;
const int D=4;
__device__ float dgrid[N*D][N*D]; // array on device memory

 // function on device to calculate distance

 __global__ void findDistance(int x, int y){
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 float n = ((i-x)*(i-x))+((j-y)*(j-y));
 dgrid[i][j] = sqrt(n);
 }

 void main () {
 int i, j;
 float hgrid[N*D][N*D];

 dim3 dGrid(D,D); // 2D grid with total 16 thread blocks

 dim3 dBlock(N, N); // thread block with total 64 threads

 printf("\n\tEnter the x coordinate of node : "); scanf_s("%d", &i);
 printf("\n\tEnter the y coordinate of node : "); scanf_s("%d", &j);
 printf("\n\tDistance from a node!\n\n\n");

 findDistance<<< dGrid, dBlock>>>(i, j); // Calling kernel function
 cudaMemcpyFromSymbol(&hgrid, dgrid, sizeof(dgrid)); //copy device memory to host

 printf("\n\n\tValues in hgrid!\n\n");
 for (i=0; i<N*D; i++){
 for (j=0; j<N*D; j++)
 printf("\t%.0lf", hgrid[i][j]);
 printf("\n\n");
 }

 }

 }

 21

References

[1] NVIDIA CORPORATION, CUDA Programming Guide,

http://developer.nvidia.com/cuda

[2] NVIDIA CORPORATION, CUDA Reference Manual,

http://developer.nvidia.com/cuda

[3] Inam, Rafia, A* Algorithm for Multi-core Graphics processors, Master’s Thesis,

Chalmers University of Technology, Göteborg, 2010,
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=129175

http://developer.nvidia.com/cuda�
http://developer.nvidia.com/cuda�
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=129175�

	1.1 Background
	1.2 CUDA
	2.2 Heterogeneous Architecture
	2.3 The Grid and block structures
	2.4 Memory Model
	2.5 Thread Synchronization
	2.6 Number of Threads per Block
	2.7 Control Flow
	2.8 Transferring Data between Host and Device
	2.9 Restrictions
	3 Some Commonly used CUDA API
	3.1 Function Type Qualifiers
	3.2 Variable Type Qualifiers
	3.3 Built-in Variables
	3.4 Memory Management
	3.5 Copying Host to device
	3.6 Copying Device to Host
	3.7 Device Runtime Component
	3.8 Device Emulation Mode
	3.9.2 Parallel Code – 1D Grid
	3.9.3 Parallel Code – 2D Grid (2 * 2)
	3.9.4 Parallel Code – 2D Grid (4 * 4)

