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1 Introduction 
 

 

1.1 Background    
 

At the start of multicore CPUs and GPUs the processor chips have become parallel 
systems. But speed of the program will be increased if software exploits parallelism provided by 
the underlying multiprocessor architecture [1]. Hence there is a big need to design and develop 
the software so that it uses multithreading, each thread running concurrently on a processor, 
potentially increasing the speed of the program dramatically. To develop such a scalable parallel 
applications, a parallel programming model is required that supports parallel multicore 
programming environment.  

 
NVIDIA’s graphics processing units (GPUs) are very powerful and highly parallel. GPUs 

have hundreds of processor cores and thousands of threads running concurrently on these cores, 
thus because of intensive computing power they are much faster than the CPU as shown in Figure 
1.  

 

 
Figure 1: Comparing GPU to CPU [1] 
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At start, they were used for graphics purposes only. But now GPUs are becoming more and 

more popular for a variety of general-purpose, non-graphical applications too. For example they 
are used in the fields of computational chemistry, sparse matrix solvers, physics models, sorting, 
and searching etc. The programs designed for GPGPU (General Purpose GPU) run on the multi 
processors using many threads concurrently. As a result, these programs are extremely fast.  

 
Report Outline: This report is organized as follows. The rest of section 1 introduces the 

CUDA. In section 2, the detailed description of the CUDA system model is given. Some 
commonly used CUDA API is provided in section 3.  

 
  

1.2 CUDA 
 

CUDA stands for Compute Unified Device Architecture. It is a parallel programming 
paradigm released in 2007 by NVIDIA. It is used to develop software for graphics processors and 
is used to develop a variety of general purpose applications for GPUs that are highly parallel in 
nature and run on hundreds of GPU’s processor cores.  

 
CUDA uses a language that is very similar to C language and has a high learning curve. It 

has some extensions to that language to use the GPU-specific features that include new API calls, 
and some new type qualifiers that apply to functions and variables. CUDA has some specific 
functions, called kernels. A kernel can be a function or a full program invoked by the CPU. It is 
executed N number of times in parallel on GPU by using N number of threads. CUDA also 
provides shared memory and synchronization among threads.  

 
CUDA is supported only on NVIDIA’s GPUs based on Tesla architecture. The graphics 

cards that support CUDA are GeForce 8-series, Quadro, and Tesla. These graphics cards can be 
used easily in PCs, laptops, and servers. More details about CUDA programming model are 
described in the next section. 
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2 The System Model 
 

2.1 The System Model 

Graphics processors were mainly used only for graphics applications in the past. But now 
modern GPUs are fully programmable, highly parallel architectures that delivers high throughput 
and hence can be used very efficiently for a variety of general purpose applications. 

 

 
 
 
NVIDIA's graphics card is a new technology that is extremely multithreaded computing 

architecture. It consists of a set of parallel multiprocessors, that are further divided into many 
cores and each core executes instructions from one thread at a time as described in Figure 2. 

 

 
Core 1 

Shared Memory 

 
Core M 

. . . 

 
Core M ...  

Core 1 ... 

Shared Memory 

Device 

Multiprocessor 1 Multiprocessor N 

Constant Cache 

Texture Cache 

Constant Cache 

Texture Cache 

Device Memory: Global, Constant, and Texture Memories 

Figure 2: The CUDA Memory Model [3] 
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Hence all those computations in which many threads have to execute the same instruction 
concurrently, also called data-parallel computations, are well-suited to run on GPU.  

 
NVIDIA has designed a special C-based language CUDA to utilize this massively parallel 

nature of GPU. CUDA contains a special C function called kernel, which is simply a C code that 
is executed on graphics card on fixed number of threads concurrently. For defining threads, 
CUDA uses a grid structure.  
 
 

2.2 Heterogeneous Architecture 
 

CUDA programming paradigm is a combination of serial and parallel executions. Figure 3 
shows an example of this heterogeneous type of programming. The simple C code runs serially 
on CPU also called the host [2].  

 
 

 
 

 
 
 
Parallel execution is expressed by the kernel function that is executed on a set of threads in 

parallel on GPU; GPU is also called device. This kernel code is a C code for only one thread. The 
numbers of thread blocks, and the number of threads within those blocks that execute this kernel 
in parallel are given explicitly when this function is called.     
 

Figure 3: Heterogeneous Architecture [3] 
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The kernel function can only be invoked by serial code from CPU. To call the kernel 
function, the execution configuration must be specified, i.e., the number of threads in a thread 
block and number of threads within a grid. To declare grid and thread blocks CUDA has a 
predefined data type dim3, an integer vector type that specifies the dimensions of the grid and 
thread blocks. In the kernel function call grid and block variables are written in three angular 
brackets <<< grid, block >>> as shown in Figure 3Figure 4. In this invocation, grid and thread 
blocks are created dynamically. The value of this grid and block variables must be less than the 
allowed sizes which are given in next section. The threads are scheduled in hardware and not in 
software. Kernel function has always a return type void. It has a qualifier __global__ that means 
this is a kernel function to be executed on GPU. See Figure 4 for a graphical description of grid 
and thread blocks. 

 
 

2.3 The Grid and block structures 
 

The Grid consists of one-dimensional, two-dimensional or three-dimensional thread 
blocks. Each thread block is further divided into one-dimensional or two-dimensional threads. A 
thread block is a set of threads running on one processor. Figure 4 describes a two-dimensional 
grid structure and a two-dimensional block structure. Within a thread block, threads are organized 
together in warps. Normally 32 threads are grouped in one warp. All threads of a warp are 
scheduled together for execution.    

 
All threads of a single thread block can communicate with each other through shared 

memory; therefore they are executed on the same multiprocessor. In this way it becomes possible 
to synchronize these threads.  

 
The CUDA paradigm provides some built-in variables to use this structure efficiently. To 

access the id of a thread block the blockIdx variable (values from 0 to gridDim-1) is used and to 
access its dimension the blockDim variable is used while gridDim gives the dimensions of the 
grid. Each individual thread is identified by threadIdx variable, can have values from 0 to 
blockDim-1. WarpSize specifies warp size in the threads. All these variables are built-in in 
kernel. The maximum allowed sizes of each dimension of grid is 65535, and x, y, and z 
dimensions of a thread block are 512, 512, and 64, respectively [1] [2].  

 
The allocation of the number of thread blocks to each multiprocessor is dependent on the 

necessity of the shared memory and registers by each thread block. More memory and registers 
requirement by each thread block means allocation of less thread blocks to each multiprocessor. 
In this case the remaining thread blocks have to wait for their turn for execution.  
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All this threads creation, their execution, and termination are automatic and handled by the 

GPU, and is invisible to the programmer. The user only needs to specify the number of threads in 
a thread block and the number of thread blocks in a grid. 

 
 

2.4 Memory Model 
 

 All multiprocessors access a large global device memory for both gather and scatter 
operations. Memory model is described graphically in Figure 2. This memory is relatively slow 
because it does not provide caching.  

Shared memory is fast as compared to device memory and normally takes the same amount 
of time as required to access registers. It is also called parallel data cache (PDC). Shared memory 
is “local” to each multiprocessor unlike device memory and allows more efficient local 
synchronization. It is divided into many parts. Each thread block within multiprocessor accesses 
its own part of shared memory and this part of shared memory is not accessible by any other 
thread block of this multiprocessor or of some other multiprocessor. All threads within a thread 
block that have the same life time as of the block, share this part of memory for both read and 
write operations. As shared memory space is only 16KiB, so it must be used efficiently. To 
declare variables in shared memory __shared__ qualifier is used and to declare in global memory 
__device__ qualifier is used. 
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  Grid 

 Global Device Memory 

 
Block (N, 0) 

 
Block (N, M) 

 
Block (0, M) ... 

 Shared Memory 

 Shared Memory  Shared Memory 

 Shared Memory 
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Thread (0, 0) ...  

Thread (N, 0) 

 Registers 

 Registers 

 Registers 

 Registers 

 
Thread (0, M) 

 
Thread (N, M) ... 

 Shared Memory 

Figure 4: The CUDA Grid Structure and Block Structure. 
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Each multiprocessor also has its own read only caches to speed up read operation. These 

are constant cache and texture cache memories.  
 
Each thread also contains its own local memory. Normally local variables of the kernel 

functions are allocated here. Sometimes they are allocated on global memory. 
 
 

2.5 Thread Synchronization 
 

For synchronization purpose among threads CUDA API provides a hardware thread-barrier 
function syncthreads() that acts as synchronization point. As threads are scheduled in hardware, 
this function is implemented in hardware. The threads will wait at the synchronization point until 
all of the threads have reached at this point. The communication among threads (if required) is 
possible through per-block shared memory. Hence thread synchronization is possible only at 
thread block level. Since threads of a thread block may communicate with each other, these 
threads must execute on same processor. That is why thread block is guaranteed to execute on 
one processor.  
 
 

2.6 Number of Threads per Block 
To maximize the utilization of available resources, the assignment of the number of threads 

per block and the number of thread blocks per grid should be done carefully. Less number of 
threads per block cause load latency in device memory reads and also one block per 
multiprocessor makes the multiprocessor to idle during thread synchronization. Hence there 
should be at least twice as many blocks as there are multiprocessors in the device (The number of 
blocks per grid should be at least 100). Also assign the number of threads per block in multiples 
of the warp size, because it lessens the under-populated wraps. 

 
 

2.7 Control Flow 
 

As the kernel function runs on the device, memory must be allocated on device in advance 
before kernel function invocation and if the kernel function has to execute on some data then the 
data must be copied from the host memory to the device memory. Device memory can be 
allocated either as linear memory or as CUDA arrays. Qualifier __device__ at the start of a 
variable specifies that space for this variable is allocated on the device memory. CUDA API [2] 
also has functions to allocate and de-allocate device memory at run time like cudaMalloc(), 
cudaFree(), etc.  Similarly, after the execution of kernel function, data from device memory must 
be copied back to host memory in order to get results. To copy data to and from the device to host 
CUDA API provides functions for example cudaMemCpyToSymbol(), 
cudaMemCpyFromSymbol(), cudaMemCpy(), etc. Keeping all this in view the processing flow is 
as follows: 
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1. Allocate memory on host and device separately. Device memory is readable and writable 

by the host through the memory copy functions. 
2. Copy data from host to device using CUDA API if required. 
3. Kernel function executes parallel on each core.  
4. Copy data back from device to host using CUDA API. 

 
 

 
 

Figure 5 illustrates an example of processing flow of CUDA. In first step two arrays of 
same size are declared, one on the host and one on the device. The data from the host is copied to 
the device using CUDA API cudaMemCpy(). The kernel function runs in parallel on the device 
and in last step the results are copied back to the host using cudaMemCpy() function. 

 

 

2.8 Transferring Data between Host and Device 
 

Since the bandwidth between the device memory and the host memory is much less as 
compared to the bandwidth between the device and the device memory which is very high, we 
should try to minimize data transfer between the host and the device. Some of the efforts could be 

Figure 13: The CUDA Grid Structure and Block Structure 
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 Figure 5: An example of processing flow [3]. 
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like moving some code from the host to the device and creating and destroying data structures in 
the device memory (instead of copying them to the device) and making big transfers by batching 
up many small transfers to lessen the transfer overheads. 

 
 

2.9 Restrictions 
 

To use general purpose GPU we must follow the restrictions of the CUDA programming 
paradigm. Some of the restrictions are given below: 

 
Simple C programming is supported by the CUDA compiler. It lacks the use of object-

oriented or C++ features in device code. 
 
Heterogeneous architecture is used to make an interaction between CPU and GPU 

programming models. Data may be copied from host memory to device memory and the results 
are copied back to host from the device memory. Heterogeneous programming is discussed in 
section 2.2 and described graphically in Figure 3.  

 
Kernel function invocation: The grid, thread blocks, and threads are created by the kernel 

function invocation from the host. This is the only way to create them. They cannot be created 
inside the kernel function. The grid, and thread blocks are discussed in Figure 4. Moreover the 
number of grids and thread blocks must not exceed their maximum allowed values.   

 
The kernel functions do not return any results, i.e. its return type is always void. Further 

the kernel function call is asynchronous. It means that control returns back before the completion 
of the kernel function on the device. More information can be found in CUDA programming 
guide [1]. All functions with the __device__ qualifier are by default inline. 

 
Recursion is simply not allowed within kernel functions because of the large amount of 

memory requirement for the thousands of thread.  
 
The device memory allocation and de-allocation at run-time is possible only when 

using host code and before calling the device code. It means that within the device code, the 
device memory cannot be allocated nor de-allocated using the functions like cudaMalloc(), 
cudaFree(), etc. All the allocations required for a specific kernel function are done before calling 
that kernel function in the host code and similarly all that allocated device memory is de-
allocated after the completion of that kernel function in the host code.  

 
Shared memory is shared among the threads on the same thread block only. Threads from 

different thread block cannot share it. This concept is discussed in section 2.4 and graphically 
shown in Figure 4. 

 
Built-in variables such as blockIdx, threadIdx, etc, cannot be assigned any values. Further 

it is not possible to take their address. 
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The variables declared with __device__, __shared__, or __constant__ qualifiers also have 
some restrictions [1]. Address of a variable with any one of these qualifiers can only be used 
within the device code.   

 
Communication and synchronization among threads are only possible at thread block 

level. Communication among thread blocks is not allowed. Section 2.5 explains the thread 
synchronization. 
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3 Some Commonly used CUDA API 
 

3.1 Function Type Qualifiers 
 
The three main types of the function qualifiers in CUDA are device, global, and host.  
 

1. __device__ 

The functions with device qualifier are executed on the device. These functions are 
callable from the device only. 

2. __global__ 

The functions with global qualifier are executed on the device but they are callable from 
the host only. 

3. __host__ 

The functions with host qualifier are executed on the host and are callable from the host 
only. When no qualifier is used, it means that the function will run on the host; it is 
equivalent to the function declared with the _host_ qualifier.  

 

3.2 Variable Type Qualifiers 
 

The three main types of the variable qualifiers in CUDA are device, constant, and shared.  
 

1. __device__ 
The variables declared with __device__ reside on the device. Other type qualifiers are 
optionally used together with __device__. If a variable is declared only with __device__ 
qualifier then this variable resides in the global memory and it has the lifetime of the 
application. Since it resides in the global memory, it is accessible from all the threads 
(within the grid) and host through the runtime library. 

2. __constant__  
This qualifier is used to allocate constants on the device. It is optionally used together 
with __device__ qualifier. This constant resides in constant memory, and has the lifetime 
of an application. It is accessible from all the threads (within grid) and host through the 
runtime library. 

3. __shared__ 
This qualifier is used to allocate the shared variable. It is optionally used together with 
__device__ qualifier. Shared variable resides in shared memory of a thread block, and has 
the lifetime of a block. It is only accessible from all the threads within the block.  
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3.3 Built-in Variables 
 
Following is a list of some of the built-in variables in CUDA:  
 

1. gridDim: is of type dim3 and contains the dimensions of the grid. 

2. blockIdx: is of type uint3 and contains the block index within the grid. 

3. blockDim: is of type dim3 and contains the dimensions of the block. 

4. threadIdx: is of type uint3 and contains the thread index within the block. 

5. warpSize: is of type int and contains the warp size in threads. 

 

3.4 Memory Management 
 
1. Memory Allocation  

float* darray;  
cudaMalloc((void**)&darray, 1024 * sizeof(float));  
 

2. Memory Deallocation  

cudaFree(darray); 
 

3.5 Copying Host to device 
 
1. Copying host memory array to device memory: 

cudaMemcpyToSymbol( const T& symbol, const void* src, 
size_t count) 
Example: 
float cpuArray [1024]; 
_device_ float dArray [1024]; 
cudaMemcpyToSymbol (dArray, cpuArray, sizeof(cpuArray)); 
 

2. Another method  

Example: 
float cpuArray[1024]; 
int size = sizeof(cpuArray); 
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float* dArray; 
cudaMalloc((void**)&dArray, size); 
cudaMemcpy(dArray, cpuArray, size, cudaMemcpyHostToDevice); 
 

2. Copying host memory array to constant memory: 

Example: 
__constant__ float constArray[1024]; 
float cpuArray[1024]; 
cudaMemcpyToSymbol(constArray, &cpuArray, sizeof(constArray));  
 

 

3.6 Copying Device to Host 
 
1. Copying device memory array to host memory: 

cudaMemcpyFromSymbol( void *dst, const T& symbol, size_t 
count) 
Example: 
float cpuArray [1024]; 
_device_ float dArray [1024]; 
cudaMemcpyFromSymbol (&cpuArray, dArray, sizeof(dArray)); 
 
 

2. Another method  

Example: 
float cpuArray[1024]; 
int size = sizeof(cpuArray); 
float* dArray; 
cudaMalloc((void**)&dArray, size); 
cudaMemcpy(cpuArray, dArray, size, cudaMemcpyDeviceToHost); 
 

 

3.7 Device Runtime Component 
Device runtime components are only be used in the device functions and are prefixed with 

an underscore symbol __. The following is a short list of these functions: 
 

1. Mathematical Functions:  

(e.g. __sinf(x) , __cosf(x),  sqrt(x), etc) 
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2. Synchronization Function:  

void __syncthreads(); 

3. Atomic Functions:  

(e.g. atomicAdd(), etc. ) 

4. Texture Functions:  

 

3.8 Device Emulation Mode 
 

A device emulation mode is provided basically for the debugging purpose. –deviceemu 
option is used with nvcc compile command. It only emulates the device, it is not the simulation. 
Threads and the thread blocks are created on the host. Host’s native debugging (like Microsoft 
Visual studio’s) can be used in setting break points and data inspection. It is especially helpful in 
input or output operations to the files or to the screen, like the use of printf() function, that is not 
possible to run on the device. 

 
  

3.9 An Example 

3.9.1 Sequential Code 
A sequential program to calculate the distances from a specific point to the all other points 

in a 2D Matrix of order N × N is given below:   
 
const int N=16;  
void main (void) { 
    int i, j, x, y; 
    float hgrid[N][N];    
  
    printf( "\n\tEnter the x coordinate of node : " ); scanf_s("%d", &x); 
    printf( "\n\tEnter the y coordinate of node : " ); scanf_s("%d", &y); 
 
   // Code to find distance without using device 

     for (i=0; i<N; i++){ 
          for (j=0; j<N; j++) { 
               n = ((i-x)*(i-x))+((j-y)*(j-y));       // distance formula 
               hgrid[i][j] = sqrt(n);                       // distance formula 
               printf("\t%.0lf", hgrid[i][j]);    
          } 
          printf("\n\n");       
      } 

}  
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3.9.2 Parallel Code – 1D Grid 
 

Now the same program is converted to the parallel code to run on the device. A one 
dimensional grid with only one thread block is used. The thread block contains 16 * 16 threads 
(hence 256 threads in total) in a two dimensional form. 

 
 
 
const int N=16; 
__device__ float dgrid[N][N];  // array on device memory 

 
         // function on device to calculate distance  

 __global__ void findDistance( int x, int y){    
       int i = threadIdx.x; 
       int j = threadIdx.y; 

 
     float n = ((i-x)*(i-x))+((j-y)*(j-y)); 
        dgrid[i][j] = sqrt(n); 
          }  

 
 
 

          void  main () { 
     int i, j; 
     float hgrid[N][N]; 

 
     dim3 dBlock(N, N);   // thread block with total 256 threads  
 
     printf( "\n\tEnter the x coordinate of node : " ); scanf_s("%d", &i); 
     printf( "\n\tEnter the y coordinate of node : " ); scanf_s("%d", &j); 
     printf( "\n\tDistance from a node!\n\n\n" ); 

 
     findDistance<<<1, dBlock>>>(i, j);   // Calling kernel function 
     cudaMemcpyFromSymbol( &hgrid, dgrid, sizeof(dgrid));  //copy device memory to host  
     
     printf( "\n\n\tValues in hgrid!\n\n" ); 
     for (i=0; i<N; i++){ 
             for (j=0; j<N; j++)  
              printf("\t%.0lf", hgrid[i][j]);     
          printf("\n\n"); 
         } 

 } 
    

          } 
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3.9.3 Parallel Code – 2D Grid (2 * 2) 
 

Now the same program is converted to the parallel code to run on the device with a two 
dimensional grid (2 thread blocks in x dimension and 2 in y dimension).  The thread block 
contains 16 * 16 threads (hence 256 threads in total) in a two dimensional form. Hence total 1024 
threads will run in parallel in the device. 

 
 
 
const int N=16; 
const int D=2; 
__device__ float dgrid[N*D][N*D];    // array on device memory 

 
         // function on device to calculate distance  

 __global__ void findDistance( int x, int y){    
       int i =  blockIdx.x * blockDim.x + threadIdx.x; 
        int j =  blockIdx.y * blockDim.y + threadIdx.y; 
         
     float n = ((i-x)*(i-x))+((j-y)*(j-y)); 
        dgrid[i][j] = sqrt(n); 
          }  

 
 

          void  main () { 
     int i, j; 
     float hgrid[N*D][N*D]; 

 
     dim3 dGrid(D,D);   // 2D grid with total 4 thread blocks 

   dim3 dBlock(N, N);   // thread block with total 256 threads  
 
     printf( "\n\tEnter the x coordinate of node : " ); scanf_s("%d", &i); 
     printf( "\n\tEnter the y coordinate of node : " ); scanf_s("%d", &j); 
     printf( "\n\tDistance from a node!\n\n\n" ); 

 
     findDistance<<< dGrid, dBlock>>>(i, j);   // Calling kernel function 
     cudaMemcpyFromSymbol( &hgrid, dgrid, sizeof(dgrid));  //copy device memory to host  
     
     printf( "\n\n\tValues in hgrid!\n\n" ); 
     for (i=0; i<N*D; i++){ 
             for (j=0; j<N*D; j++)  
              printf("\t%.0lf", hgrid[i][j]);     
          printf("\n\n"); 
         } 

 } 
    

          } 
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3.9.4 Parallel Code – 2D Grid (4 * 4) 
 

The same program is converted to the parallel code to run on the device with a two 
dimensional grid (4 thread blocks in x dimension and 4 in y dimension).  The thread block 
contains 8 * 8 threads (hence 64 threads in total) in a two dimensional form. Hence total 1024 
threads will run in parallel in the device. 

 
 
 
const int N=8; 
const int D=4; 
__device__ float dgrid[N*D][N*D];    // array on device memory 

 
         // function on device to calculate distance  

 __global__ void findDistance( int x, int y){    
       int i =  blockIdx.x * blockDim.x + threadIdx.x; 
        int j =  blockIdx.y * blockDim.y + threadIdx.y; 
         
     float n = ((i-x)*(i-x))+((j-y)*(j-y)); 
        dgrid[i][j] = sqrt(n); 
          }  

 
 

          void  main () { 
     int i, j; 
     float hgrid[N*D][N*D]; 

 
     dim3 dGrid(D,D);   // 2D grid with total 16 thread blocks 

   dim3 dBlock(N, N);   // thread block with total 64 threads  
 
     printf( "\n\tEnter the x coordinate of node : " ); scanf_s("%d", &i); 
     printf( "\n\tEnter the y coordinate of node : " ); scanf_s("%d", &j); 
     printf( "\n\tDistance from a node!\n\n\n" ); 

 
     findDistance<<< dGrid, dBlock>>>(i, j);   // Calling kernel function 
     cudaMemcpyFromSymbol( &hgrid, dgrid, sizeof(dgrid));  //copy device memory to host  
     
     printf( "\n\n\tValues in hgrid!\n\n" ); 
     for (i=0; i<N*D; i++){ 
             for (j=0; j<N*D; j++)  
              printf("\t%.0lf", hgrid[i][j]);     
          printf("\n\n"); 
         } 

 } 
    

          } 
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