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Abstract 

 

The Global Positioning System (GPS) and an Inertial Navigation System (INS) 

are two basic navigation systems. Due to their complementary characters in many 

aspects, a GPS/INS integrated navigation system has been a hot research topic in 

the recent decade. Both advantages and disadvantages of each individual system 

are analyzed.  

 

The Micro Electrical Mechanical Sensors (MEMS) successfully solved the 

problems of price, size and weight with the traditional INS. Therefore they are 

commonly applied in GPS/INS integrated systems. The biggest problem of 

MEMS is the large sensor errors, which rapidly degrade the navigation 

performance in an exponential speed. By means of different methods, i.e. 

autoregressive model, Gauss-Markov process, Power Spectral Density and Allan 

Variance, we analyze the stochastic errors within the MEMS sensors. Real tests 

on a MEMS based inertial measurement unit for each method are carried out. The 

results show that different methods give similar estimates of stochastic error 

sources. These error coefficients can be used further in the Kalman filter for better 

navigation performance and in the Doppler frequency estimate for faster 

acquisition after the GPS signal outage. 

 

Three levels of GPS/IMU integration structures, i.e. loose, tight and ultra tight 

GPS/IMU navigation, are introduced with a brief analysis of each character. The 

loose integration principles are given with detailed equations as well as the basic 

INS navigation principles. 

 

The Extended Kalman Filter (EKF) is introduced as the basic data fusion 

algorithm, which is also the core of the whole navigation system to be presented. 

The kinematic constraints of land vehicle navigation, i.e. velocity constraint and 

height constraint, are presented. These physical constraints can be used as 

additional information to further reduce the navigation errors. The theoretical 

analysis of the Kalman filter with constraints are given to show the improvement 

on the navigation performance. As for the outliers in practical applications, the 

equivalent weight is introduced to adaptively reduce the influence on positioning 

accuracy.  

 

A detailed implementation process of the GPS/IMU integration system is given. 

Based on the system model, we show the propagation of position standard errors 

with the tight integration structure under different scenarios. Even less than 4 

observable satellites can contribute to the integrated system. Especially 2 satellites 

can maintain the orientation errors at a reasonable level due to the benefit of the 

tight integration. A real test with loose integration structure is carried out, and the 

EKF performance as well as the physical constraints are analyzed in detail. Also a 

test with random outliers at the resolution level is carried out to show the 

effectiveness of the equivalent weight. Finally some suggestions on future research 

are proposed. 

 

 
Keywords:  GPS, IMU, MEMS, integration, Kalman filter, physical constraint, outlier  
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1. Introduction 

Navigation deals with trajectory determination and guidance. Trajectory 

determination relates to the derivation of the state vector of an object at any given 

time. The state vector includes position, velocity, and attitude. On the other hand 

guidance forces the moving object onto a predetermined route to reach a given 

destination. 

 

GNSS and INS are two commonly used systems for vehicle navigations. In this 

chapter, the advantages and disadvantages of both systems are introduced. There 

different common integration structures are explained. Within the integration system 

the core filtering algorithm is introduced as well as the stochastic error modeling of 

Inertial Measurement Unit (IMU). 

1.1 GNSS positioning and its features 

There are two main working global navigation satellite system (GNSS) system now, 

i.e. GPS and GLONASS, plus another two under construction, i.e. Galileo and 

Compass. GPS is the most commonly used system, therefore we are going to use GPS 

in this thesis, but generally any other GNSS could also be used. 

 

The Global Positioning System (GPS) is a space-based GNSS that provides reliable 

positioning and time information in all weather and at all times and anywhere on or 

near the Earth. GPS was established in 1973 by the U.S. Department of Defense. It is 

composed of three segments: the space segment, the control segment and the user 

segment. The space segment consists of 24 satellites in six planes.  

 

The most important advantage of GPS positioning is the limited positioning errors. 

Once signals from more than 4 satellites are received with suitable PDOP (Position 

Dilution of Precision), the quality of positioning results can be guaranteed, i.e. the 

errors are limited.  

 

Other important advantages are the light weight and cheap price. As a result, since the 

beginning GPS positioning is becoming more and more popular. Nowadays GPS is 

used almost everywhere, in cell phones, cars, laptops and so on. The use of GPS (or 

GNSS) is only limited by our imaginations. Current GPS receiver chips are reaching a 

unit price of $5, which is predicted to drop to about $1in the future.  

 

However, GPS positioning has many inherent shortcomings. The most important 

problem is the signal outage. It is quite common that satellite signals are blocked in 

urban and mountainous areas, as well as indoor and underground situations. Another 
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situation is that for high dynamic movements the signal acquisition and tracking is 

difficult. The availability of satellite signals must be considered in these situations.  

 

Moreover, the security of GPS signals is also a big problem. As we all know that the 

satellite signals are vulnerable to interference and spoofing. The security of wireless 

signal including satellite signal is always a vital problem for electronics engineers, 

especially when it is related with communication and military applications. 

Theoretically a 1-W jammer located 100 km from the GPS antenna could prevent the 

acquisition of the C/A code (Schmidt, 2010).  

 

Another problem related with high dynamics applications is the low update frequency. 

The update frequency of GPS receivers is normally 1-10 Hz, which is 1-2 orders of 

magnitude lower than that of Inertial Navigation System (INS). For sport cars and air 

planes this update frequency is too low to be acceptable. With the fast development of 

CPU and the ongoing research, this problem is hoped to be solved gradually in the 

future.  

 

In real applications, if there is only one GPS receiver or one antenna there is no 

possibility to get the attitude information from GPS navigation. This is a great loss of 

sufficient information in many cases like airplane navigation.  

1.2 INS and its errors 

INS is based on the Newton’s second law and has many advantages as a means of 

navigation. The most important one is that it does not rely on external information and 

does not radiate any energy when operating. Therefore it is a kind of autonomous or 

self-contained navigation system, which is quite suitable for military applications. 

 

INS is mainly divided into two types: platform INS and strapdown INS (SINS). Now 

SINS is becoming more and more dominated with the powerful computation ability of 

embedded MCU (Micro Controller Unit). The presence of so-called MEMS 

(Micro-Electro-Mechanical Systems) significantly reduces both price and weight. 

Although the accuracy of current MEMS is still at a low level, it becomes a hot 

research topic soon after adopted in the navigation field. The accuracy performance of 

MEMS improves fast all the time and the price is very low. 

 

INS is very accurate over short periods with high update frequency. Usually the 

update frequency is at least 100 Hz. But meanwhile the cost is also high and the high 

accurate INS is heavy and with big volume. Furthermore, the fine initial alignment is 

tricky and time-consuming. 

 

The biggest problem of INS is the sensor errors, the mean value of which is not zero 

but keeps on increasing with time. We cannot completely eliminate this physical 

phenomenon, but the errors can be modeled and reduced thereafter. To get the precise 
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result of the noise parameters, usually a long time testing and recording the error data 

are needed beforehand. This part is crucial to reduce the effects of different kind of 

error sources.  

 

There are different methods to model and estimate the inertial sensor stochastic errors, 

such as Autoregressive (AR) Model (Babu et al., 2004, 2008; Nassar S., 2005), 

Gauss-Markov (GM) model (Mohammed D. and Spiros P., 2009) and Allan Variance 

(AV) (Kim et al., 2004; EI-Sheimy, 2008). Hou (2004) has verified these methods on 

modeling inertial sensors errors. In Chapter 2 these methods are applied to estimate 

the coefficients of IMU stochastic errors. 

1.3 Integrated navigation system and physical constraints 

For many aspects, GPS and INS are two complementary navigation systems, 

including the advantages each has and the positioning errors of each system. INS has 

almost no high frequency errors but the errors grow up with time, while GPS, on the 

other hand, has high frequency noise but with good long-term accuracy (i.e., small 

bias errors). 

 

There are several different architectures as to the GPS/INS integration, namely the 

loose, tight and ultra tight architecture. Initially, two broad classes of integration 

structure: loose and tight coupling were developed (Grewal et al., 2007). However, in 

the recent years a third class has been proposed, i.e. deep integration or ultra tight 

integration (Sun, 2010). 

 

The salient difference among these couplings is the different levels of combining INS 

and GPS observables. The deeper GPS and INS are integrated, the more information 

we can get, but meanwhile the more dependently they rely on each other. The detailed 

information about GPS/INS integration architectures will be given in Chapter 3. 

 

Traditionally GPS and INS are coupled through a Kalman filter for the processing of 

raw observables to obtain position, velocity and time. It is the core algorithm of the 

navigation system. As a filter we hope it to be accurate and robust. The robustness of 

the system is the ability to get rid of outliers. To avoid the influence of outliers, the 

equivalent weights are applied to the Kalman filter along with kinematic constraints to 

give smooth weights for measurement errors (Yang et al., 2010). In this way the 

outliers can be rejected and the contributions of measurements with larger errors are 

suppressed to avoid causing significant rise of the standard errors. 

 

To further reduce the navigation errors, the physical model of the Land Vehicle 

Navigation (LVN) can provide additional navigation information besides the GPS and 

IMU, which is quite helpful in specific situations. For example it is acceptable to 

adopt the height constraint, i.e. assuming that the height is constant, when there are 

only 3 observable GPS satellites in relatively flat areas. We study the kinematic model 
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of LVN under several assumptions in Chapter 4. Aiming at specific applications of 

LVN, the velocity and height constraints as well as the lever arm effect correction are 

derived and analyzed in details. All these constraints have clear physical meanings 

and contributions to improve the accuracy of the whole system in different aspects 

(see Section 4.2).   

 

With these physical models the constrained Kalman filter can be implemented, and 

the additional physical information of LVN is helpful to improve the accuracy in 

different situations as shown in Section 4.3, since Kalman filtering with state 

constraints is verified to significantly improve the estimation accuracy (Simon and 

Chia, 2002).  

1.4 My thesis work 

This thesis is aiming at designing an accurate and robust GPS/IMU navigation system 

for LVN. There are also many other types of navigation systems, e.g. image-based 

navigation, Terrestrial radio navigation, etc. In this thesis, only the MEMS based IMU 

and GPS receiver are used in the integrated system for the LVN in urban areas.  

 

First, the MEMS-based IMU (Inertial Measurement Unit) is modeled and tested with 

different methods. The detailed analysis and experiments on IMU error sources and 

estimating the coefficients are shown in Chapter 2. 

 

Among different integrated structures, three levels of GPS/IMU integrated navigation 

system are analyzed. As for the data fusion algorithm in the integrated navigation 

system, the Extended Kalman Filter (EKF) will be adopted. For the LVN applications, 

we will study the kinematic models of LVN and apply them in the constrained 

Kalman filter to further reduce the positioning errors. To eliminate the influence of 

outliers, the maximum likelihood estimation is also applied to the Kalman filter. 

 

To test the effectiveness of the methodology above, both computational simulations 

and an actual LVN experiment are carried out. We will first carry out the variance 

analysis on the tight integrated system based on double-difference GPS observations 

and IMU observations to show the influence of different numbers of observable 

satellites. Then with an MEMS based IMU and differenced GPS solutions we 

implement a loose integrated LVN system for both real-time navigation and post- 

processing analysis. The EKF as the data fusion algorithm of the integration system is 

introduced and implemented. Velocity and height constraints are analyzed based on 

the EKF integration implementation. Finally the equivalent weight is applied to the 

navigation filter to suppress the influence of outliers at the resolution level with some 

manually added outliers. 

 

Although all these methods have been discussed in parts by different papers or 

literatures as mentioned in the related references, we believe that this is the first time 
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to integrate all of them together in one specific LVN application. Here we will study 

the integrated results of the various parts of the LVN. After analysis of the 

methodology and test results, a summary is composed and some proposals for further 

research are proposed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

2. MEMS-based IMU error modeling 

Since the gyroscope behaviors of precession and nutation are known, gyroscopes are 

used to construct gyrocompasses which can replace magnetic compasses on different 

vehicles to assist in stability or be used as part of an inertial navigation system. The 

IMU are composed of two parts, i.e. three single-degree of freedom gyros and three 

mutually orthogonal accelerometers based on Newton’s second law.  

2.1 MEMS and error sources 

For a long time the IMU used in navigation systems were heavy and expensive. Then 

gradually the Micro Electrical Mechanical Sensor (MEMS) with great advantages of 

price and volume is widely used in GPS/IMU integrated systems, as shown in Fig. 2.1. 

Although the accuracy of MEMS is improved rapidly during latest years as shown in 

Fig. 2.2, the MEMS stand-alone navigation during GPS signal blockage could still 

only maintain the reasonable error within a very short time due to quickly growing 

sensor errors as shown in Fig. 2.3. 

 

 

  

 

Fig. 2.1 The Crista IMU produced by Cloud Cap Technology (Brown and Lu, 2004) 

 

The systemic errors of MEMS are estimated before used, which means that we 

roughly estimated the bias and scale errors. General stochastic error sources existing 

in inertial sensors include (IEEE STD 647, 2006): Quantization Noise, Random Walk, 

Bias Instability, Rate Random Walk and Rate Ramp. 
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Fig. 2.2 The development of MEMS INS (Schmidt, 2010) 

 

 

 

Fig. 2.3 Position errors due to unknown constant gyro drifts (Jekli, 2000, p. 147). 

( 1p
xδ and 3p

xδ are the positioning errors along north and up directions, respectively) 

 

Here we apply different methods to analyze the stochastic sensor errors, i.e. 

autoregressive (AR) modeling, Gauss-Markov (GM) process, Power Spectral Density 

(PSD) and Allan Variance (AV). Then the tests on a MEMS based IMU are carried 

out with these methods. The results show that different methods give similar 

stochastic error sources and values. These values can be use further in the Kalman 

filter for better navigation accuracy and in the Doppler frequency estimate for faster 

acquisition after GPS signal outage. 
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2.2  Methodology of MEMS error modeling 

2.2.1 Autoregressive model (AR model) 

An m-variate p-order autogressive (AR(p)) model for a stationary time series of state 

vectors
v
υ , observed at equally spaced instants v , is defined by  

                 1

p

v l v l v

l

−
=

= + +∑υ w A υ ε                            (2.1) 

or   

    
v v v

= +υ Bu ε                                   (2.2) 

where 
v
ε are uncorrelated random vectors with zero mean and covariance matrixC , 

l
A are the coefficient matrices of the AR model, w is a vector of intercept terms to 

allow for a nonzero mean of the time series and 1( ... )
p

=B w A A , 

1(1 ... )T

v v v p− −=u υ υ . From Eq. (2.1) we can see that the current sample �� can 

be estimated by the previous p samples. 

 

The first-order single-variate AR model in discrete time can be simply given as  

 

1 1k k k
x x wφ −= +                            (2.3) 

 

where x is the random variable, subscript k and k-1 is the discrete time index and wk 

is zero-mean Gaussian white noise with variance ���
� .   

                    

To use the AR model we should first determine the order and then the value of each 

coefficient. There are several methods to determine the order of the AR model. Here 

we use Schwarz’s Bayesian Criterion (SBC) is used (Schwarz, 1978), which states 

that the AR order p  should minimize the criterion 

 

( ) (1 ) log min .
p p

p

l n
SBC p N

m N
= − − =                     (2.4) 

 

where 
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log(det )
p p

l = ∆                            (2.5) 

here 
p
∆ is the residual cross-product matrix and N  is the number of samples, m  is the 

dimension of the state vector, and 1
p

n mp= +  is the dimension of the predictor
v
υ . 

 

Then the AR model parameters can be estimated using least-squares fitting, Yule- 

Walker equations (Eshel 2010) and Burg’s method (Bos et al. 2002). A stepwise 

least-squares algorithm is used to determine the AR coefficients after the order is 

fixed (Schneider et al., 2001).  

 

Here the method of least-square fitting is used. By means of the moment matrices 

 

∑ ∑ ∑
N N N

T T T

v v v v v v

v=1 v=1 v=1

U = u u ,V = υ υ , W = υ u                  (2.6) 

 

the least-squares estimates of the parameter matrix and the residual covariance matrix 

can be written as (Neumaier and Schneider, 2001) 

 

ˆ -1B = WU                             (2.7) 

1ˆ
- pN n

-1 TC = (V - WU W )                     (2.8) 

 

Where np = mp+1 is the dimension of predictor
v
υ

.
 The variance of estimation noise 

can be given as 

 

2 2

1

1
ˆ( )

k

n
d

w i i

i

x x
n

σ
=

= −∑                        (2.9) 

 

where n is the size of the sample of the stationary process, d

ix  is the known value of 

the process (desired output), and ˆ
i

x  is the corresponding estimated output.  

 

2.2.2 Gauss-Markov process (GM process) 

 

A first-order GM (GM1) process is the most frequent model used in Kalman filtering 

of an integrated system due to its simplicity. The GM process is defined by the 
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exponential Auto Correlation Function (ACF): 

 

2( )xR e
β ττ σ −

=                          (2.10) 

 

where 
2σ  is the noise variance, 1β −  is the correlation time and τ is the time 

interval. The ACF of Eq. (2.9) is shown in Fig. 2.4. From this figure we can see that 

there is a peak at zero, and there are two symmetrical descendent slopes at both sides, 

the gradient of which is getting steep if the value of � goes up, and the gradient at 

zero is discontinuous.  

 

The first-order GM process in discrete time and the variance are given as 

 

1

t

k k k
x e x wβ− ∆

−= +                            (2.11) 

22 2 (1 )k

k k

t

x w e
βσ σ − ∆= −                          (2.12) 

 

where t∆  is the discrete time sampling interval. 

 

 

Fig. 2.4 ACF of GM process 

 

and the variance is 

 

2

2

21
k

k k

w

x t
e

β

σ
σ

− ∆
=

−
                         (2.13) 

 

The GM1 process has been widely used in INS due to its bounded uncertainty 

characteristic which is suitable for modeling slowly varying sensor errors, i.e. bias 

and scale factors (El-Diasty and Pagiatakis, 2008).  
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With fixed sampling rate, the GM1 process is equal to a first order AR model. From 

equations (2.3) and (2.12), we obtain 

 

 1

te β φ− ∆ =                               (2.14) 

Therefore, the relation between these two models can be shown as 

 

1ln tβ φ= − ∆                            (2.15) 

 

However, the principle difference between the AR model and the GM process should 

be declared. The AR model does not consider the sampling interval, which may be 

considered as a sub-optimal estimation. The GM-only model needs a long data set, for 

example 200 times of the expected correlation time for 10% uncertainty (Nassar, 

2005). 

 

2.2.3 Power Spectral Density 

 

The PSD is a commonly used and powerful tool for analyzing a signal or time series. 

In statistical signal processing, the PSD describes the distribution of energy in 

frequency domain. For a finite-energy signal ( )f t , the definition of PSD is 

  

2 *1 ( ) ( )
( ) ( )

22

i t F F
S f t e dt

ω ω ω
ω

ππ

+∞
−

−∞
= =∫               (2.16) 

 

where ω is the frequency, ( )F ω and *( )F ω are the Fourier transform of ( )f t and its 

complex conjugate respectively. A key point is that the two-sided PSD ( )S ω  and 

autocorrelation function ( )K τ  are Fourier transform pairs, if the signal can be treated as 

a wide-sense stationary random process (IEEE Std. 952, 1997): 

 

( ) ( )j
S e K d

ωτω τ τ
+∞

−

−∞

= ∫                         (2.17) 

1
( ) ( )

2

j
K e S d

ωττ ω ω
π

+∞

−∞

= ∫                       (2.18) 

 

This relation also provides an approach to compute the PSD. 

 

The typical characteristic slopes for typical sensor errors of the PSD are shown in Fig. 2.3, 

where the actual units and frequency range are hypothetical. With real data, gradual 
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transitions would exist between the different PSD slopes (IEEE Std1293-1998), rather 

than the sharp transitions in Fig. 2.5, and the slopes might be different from –2, -1, 0, and 

+2 values. 

 

 

Fig. 2.5 Hypothetical Gyro in Single-sided PSD Form (IEEE Std952-1997) 

 

2.2.4 Allan Variance 

 

The Allan Variance (AV) is a method of representing root mean square (RMS) random 

drift error as a function of averaging time (Allan 1966). As a time domain analysis 

technique, it is an accepted IEEE standard for gyro specifications (IEEE STD 647, 

2006). If there are N samples of data points with sampling internal ∆t , then a group of 

n data points with  n < (N-1)/2 can be created. Each group is called a cluster n tτ = ∆ . 

Assume that the instantaneous sample of the sensor is the angular velocity ( )tΩ , and 

its integration is the angle:  

 

' '( ) ( )
t

t t dtθ = Ω∫                            (2.19) 

The average angular velocity in the k-th cluster, i.e. between time interval 
k

t and 

k
t τ+ , is 

 

1
( ) ( )

k

k

t

k

t

t dt

τ

τ
τ

+

Ω = Ω∫                        (2.20) 

and the AV is defined as  
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2 2 2 2

2 22 2

1 1 1
( ) [( ) ( )] ( 2 )

2 2 2
k n k k n k n k n k k n k n kσ θ θ θ θ θ θ θ

τ τ
+ + + + + += Ω − Ω = − − − = − +

                                                                (2.21) 

 

where the symbol < > is the infinite time average. In practice, the AV can be estimated 

with a finite number of samples by the so-called overlapped AV.  

 

2 2
2 2 2

1 22
1 1

1 1
( ( ) ( )) ( 2 )

2( 2 ) 2 ( 2 )

N n N n

k k k n k n k

k k

T T
N n N n

σ θ θ θ
τ

− −

+ + +
= =

≈ Ω − Ω = − +
− −

∑ ∑  (2.22) 

 

The principle of the overlapped AV is shown by Fig. 2. 6, which has been accepted as 

the preferred AV estimator in many standards. 

 

 

 

Fig. 2.6 Schematic algorithm of the overlapped AV (S Guerrier, 2008) 

 

There is a unique relation between the AV and the PSD of a stationary process (IEEE 

Std.952-1997) 
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= ∫                    (2.23) 

 

Table 2.1 clearly shows the relationships between the PSD and the AV with Eq.2.23. 

The detailed derivations of these noises are given in (Tehrani, 1983). Table 2.2 shows 

the relation between curve slope and coefficient values on the log-log figure of the AV. 

The detailed derivation can be found in (Hou, 2004). A typical AV plot is shown in 

Fig. 2.7.  
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Table 2.1 Summary of PSD and AV (IEEE Std.647-2006) 
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The AV of the total stochastic process can be assumed as the sum of all different error 

terms, since they are independent on different time regions. The total AV of the 

system can then be expressed as: 

 

2 2 2 2 2 ...tot quant RW Bias BRWσ σ σ σ σ= + + + +                 (2.24) 

 

Table 2.2 Summary of characteristic curve slope and coefficient value 
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Fig. 2.7 Allan variance analysis noise terms results ( IEEE Std. 952, 1997) 

 

From the AV plot, it is straightforward to identify various random processes that exist 

in the raw data and get the noise coefficients with Table 2.2. For example, it is well 

known that the random walk is the noise terms in low cost inertial sensors. The 

angular random walk process can be identified at T=1h and with a straight line of 

slope -1/2 as shown in Fig. 2.7. The noise PSD rate is represented by (IEEE Std.647, 

1998): 

 

2( )
x ARW

S f σ=                          (2.25) 

 

where 
ARW

σ  is the angular random walk coefficient from Fig. 2.7. Substituting Eq. 

(2.25) in Eq. (2.23), we get    

 

2
2 ( ) ARW

T

σ
σ τ =                          (2.26) 

 

In practice, the AV is based on a finite number of independent clusters that can be 

formed from any finite length of data. The AV of any noise terms is estimated using 

the total number of clusters of a given length that can be created. The confidence of 

the estimation improves as the number of independent clusters is increased. A 

straightforward calculation (Papoulis, 1991) shows that the percentage error is  

 
1

2[2( 1)] 100%
N

n
σ

−

= − ×                     (2.27) 
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where N is the total number of data set points, and n is the number of points in the 

cluster. 

2.3 Testing results 

The testing platform is based on ISIS-IMU from Inertial Science Inc., a six-degree of 

freedom inertial measurement unit designed for commercial use. It consists of three 

RRS75 (solid state rate sensors) and three solid state accelerometers, as shown in Fig. 

2.8. The following testing results are all based on 2 hour static data from the ISIS- 

IMU. 

 

Since there are 3 gyros and 3 accelerometers in the IMU, there would be 6p×

parameters and 6 noise variances in the whole AR model if the model is all fixed to 

p-th order. The ARMFIT
TM package (Schneider and Neumaier, 2001) is applied to 

estimate the AR model and parameters. In the test with real data, we found that the 

order of AR model that minimize the SBC would vary with different length of data 

samples as well as different sensors, while the residual variance matrix would just 

change a little.  

 

 
 

Fig.2.8  ISIS-IMU 

 

One way to check whether the estimated order is valid is to verify the whiteness of the 

model residuals. From Fig.2.9, we can see that the residuals of AR (2) for the raw data 

of the accelerometer along y-axis is nearly white noise (within 95% confidence 

interval between two horizontal lines). Therefore, we can determine a second-order 

AR model (AR (2)) can fulfill the requirement of accuracy and can be applied for all 

gyros and accelerometers.  
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Fig.2.9 ACF of AR(2) residual for Y-Accelerometer 

 

From the collected static data, we can get the PSD plot. A certain amount of noise 

would exist in the plotted curve due to the uncertainty. The PSD of the gyro along x-axis 

is shown in Fig.2.10.  

 

Fig.2.10 X-Gyro PSD 
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The bunching and flickers in high frequency of the PSD plot prevent us from further 

analysis. The frequency averaging technique (IEEE Std1293-1998) is used to average 

the points among the high frequencies of the PSD result in Fig. 2.10. 

 

Fig.2.11 X-Gyro PSD after frequency averaging 

 

The slopes of the PSD curve include –2, 0, and +2, which indicate that the X-axis 

gyro data contains rate random walk, random walk, and quantization noise, 

respectively. The acquisition of parameters for noise terms from the PSD result plot is 

complex. According to IEEE Std 952 1997, the random walk parameter is given by 

  

0 0 21 1
( / ) [( / ) / ]

60 2
Q h PSD h Hz=

                 

 (2.28) 

 

Applying this equation, we obtain the random walk parameter about 0.024 deg/h½. 

According to the specification, the random walk parameter is less than 0.5 deg/h½. 

The reason why the experiment result is much less may be that these experiments are 

carried out during static situations. In dynamic situations it may go up.  

 

The AD plot for gyros and accelerometers are shown in Fig. 2.12 and Fig. 2.14 

respectively. The standard error of each AD can be evaluated with Eq. (2.27). The AD 

and its standard errors are shown in Fig. 2.13. With these two figures, we can identify 

different error coefficients by means of Table 2.2 as listed in Table 2.3 and Table 2.4 

for gyros and accelerometers, respectively. 

 

The reason for the big quantization noise for accelerometer Z may be that the specific 
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force sensed by the accelerometer along the vertical direction is overwhelmingly 

influenced by the gravity. 

 
Fig.2.12  AD plot for 3 gyros 

 

Fig.2.13  AD plot for Y-Gyro with percentage errors (I bar) 
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Table 2.3  Error coefficients for gyros 

 

 Gyros X Gyros Y Gyros Z 

Quantisation noise 

(deg) 

2.5× 10
-3

 7.2× 10
-3

 9.1× 10
-4

 

Random walk 

(m/s/h
½

) 

4.8× 10
-2

 N/A 2.6× 10
-2

 

Bias instability 

(deg/h) 

1.4 N/A 1.2 

Rate random walk 

(m/s/h
3/2

) 

5.2 N/A 8.1 

Rate ramp (deg/h) N/A 72 N/A 

 

 

Table 2.4  Error coefficients for accelerometers 

 

 Accelerometer X Accelerometer Y Accelerometer Z 

Quantisation noise 

(deg) 

4.5× 10
-3

 2.1× 10
-3

 4.8× 10
-1

 

Bias instability 

(deg/h) 

1.4 0.9 N/A 

Rate ramp (deg/h) N/A 3.2 N/A 

 

 

 

Fig.2.14 AD plot for 3 accelerometers 
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2.4 Discussion and conclusion 

Using different models, we analyzed the sensor errors and got the parameters. We can 

use the AR model to estimate next consecutive errors, if we do not care much about 

different error components themselves and treat them totally together as stochastic 

errors. Although the optimal AR model would change its order with different sensors, 

a second-order AR model can be accepted as the unique model for all sensors of the 

IMU. Since the first-order GM process can be treated as a first-order AR model, if the 

sample interval is fixed, we do not specially analyze this most commonly used model. 

 

The PSD is also a common tool to analyze both periodic and non-periodic signals. 

Frequency averaging is needed to get the exact slopes of the curve, but the parameters 

are difficult to compute directly. Also it may be somewhat difficult for the non-system 

analyst to understand, since it is in the frequency domain. 

 

AV analysis has been widely used for MEMS stochastic modeling, due to its 

simplicity and effectiveness. It is a great advantage that the noise terms differ from 

region to region, so that we can obtain different noise coefficients at different regions 

of the AV plot (see Fig. 2.7). And there is also a relation between the AV and the PSD 

(see Eq. 2.23). However, a long static data record may be required, even dozens of 

hours, as we can see that the long-time slope is sometimes not fully determined within 

several hours of data. 

 

Although different methods may give different values of the noise coefficients, the 

similar noise sources can be verified with a specific sensor. And it is expected that 

with longer data sets and many iterations a set of more accurate coefficients can be 

estimated. After estimating the coefficients for the main stochastic errors, a better 

error model can be applied in the GPS/INS integrated system, which is of much help 

for the Doppler frequency estimate and for bounding the error drift during GPS 

outage.  
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3. Integrated navigation structures 

Due to the complementary character in many aspects, different GPS/INS integrated 

systems are hot research topics and widely applied during the last decade. With a GPS 

receiver we can obtain the position with bounded errors, while INS can provide high 

update frequency of both position and attitude information. Since the GPS positioning 

has a relatively low update rate, for high dynamic applications the measurements from 

INS can be used to determine the navigation solution between the intervals of GPS 

updates. When the new GPS update is available, we can correct the INS sensor errors 

in real time so that the errors of INS solutions are also bounded.  

3.1 Three levels of integration  

Initially, there are two broad integration structures, namely the loose and tight 

integration. In recent years there is a new structure proposed named ultra tight 

integration or deep integration. The main differences between these three integration 

structures are the different levels of integration, as shown in Fig. 3.1. There is also 

another set of terms: centralized and decentralized integration, which are used in 

many papers or literatures before. These two terms are the same with loose and tight 

integration. Since the term ultra tight integration came out, the terms loose and tight 

integration have been adopted in most recent cases. 

 

 

Fig. 3.1 Loose, tight and ultra tight GPS/INS navigation system (Babu and Wang, 

2004) 

 

For the tightly coupled system, the measurements from the INS sensors are combined 
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with the GPS pseudorange (PR) and delta pseudorange (DPR) measurements. The 

classic tight integration structure is shown in Fig. 3.2. A tightly integrated system can 

have a more accurate navigation solution, because the basic GPS observable are not as 

correlated as the position and velocity solutions, and it is possible to implement more 

sensitive fault detections and to use the GPS data even with less than 4 satellites 

available. GPS signals can help INS initial alignment, while INS data can be helpful 

to the GPS ambiguity resolution. But this integration responds more slowly to INS 

errors than the loosely coupled system.  

 

 

 

Fig. 3.2 Classic definition of GPS/INS tight integration (Gebre-Egziabher, 2007) 

(ri is the pseudorange between the receiver and satellite i) 

 

There are great differences between the loose and tight architectures. In loosely 

coupled systems, the position, velocity and time from the GPS receiver are combined 

with position, velocity and attitude from INS by a mathematical depiction of the error 

characteristics of the systems by an Extended Kalman Filter (EKF). In such instances, 

the key character is that INS and GPS are both independent navigation systems. This 

is a kind of open loop collaboration with or without feedback to correct INS sensor 

errors and the performance of a loosely coupled integrated system greatly depends on 

the solution of GPS. 

 

On the other hand in the tightly coupled system, the angular rate and specific force 

measurements from the INS are combined with the GPS pseudorange (PR) and delta 

pseudorange (DPR) measurements. In this sense, both INS and GPS are reduced to 

the basic sensors. A tightly integrated system can have more accurate navigation 

solution because the basic GPS observable are not as correlated as the position and 
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velocity solutions and more sensitive fault detection and isolation scheme can be used 

to verify the quality of PR and Doppler measurements.  

 

Moreover, it is possible to use the GPS data even with less than 4 satellites available. 

Since only with four or more GPS satellite signals we can perform the GPS 

positioning, the great benefit of the tightly coupled system is that even less than four 

tracked satellites can still help to estimate INS errors and improve the precision of 

position and attitude (Horemuz and Sjöberg, 2001). GPS signals can help INS initial 

alignment, while INS data can be helpful to the GPS ambiguity resolution. But this 

integration responds more slowly to INS errors than the loosely coupled system. On 

the other hand, loose integration has the advantage of redundancy since both INS and 

GPS can provide their navigation solution independently. 

 

A more complex and potentially more beneficial level of GPS/INS integration occurs 

at the GPS tracking-loops level named ultra-tight integration. In an ultra-tight coupled 

system, the inertial sensors are used to aid the GPS phase/frequency and code tracking 

loops directly. The measurements used are the in-phase and quadrature-phase signal. 

(For further details, we refer to Tsui, 2004.) The main feature of ultra tight integration 

is that the GPS signal tracking is combined into the estimation algorithm. Therefore 

the performances of GPS signal tracking in harsh environment and robustness can be 

improved. There is also a feedback loop to Doppler frequency estimate, by which it 

helps to regain the GPS signal tracking faster after the GPS blockage. This integration 

would offer reduced phase-tracking bandwidth, shorter acquisition time, and better 

resistance to radio frequency interference or multipath noise. Furthermore, this 

integration would be helpful to reduce phase-tracking bandwidth, less acquisition time, 

and more resistance to radio frequency interference or multipath noise. Therefore it 

has the potential to apply in high performance navigation systems where robustness to 

cycle slips is of paramount importance (Bhatti et al., 2007a; 2007b). 

 

Along the direction from the loose integration to tight integration and ultra tight 

integration, the robustness of the integrated system is strengthened. However, the 

increased robustness is at the sacrifice of system simplicity, redundancy, and 

independence of the INS and GNSS navigators (Gebre-Egziabher, 2007). 

3.2 Principle of loose integration for LVN 

In this thesis a loose GPS/INS integration structure is implemented for different kinds 

of simulations and experiments. The background introduction of the GPS 

observations and basic INS navigation principles are given below. For detailed 

implementation of the integrated system, see Chapter 5. 
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3.2.1 GPS observations and positioning accuracy 

As for GPS observations, here only basic phase and code pseudoranges are presented. 

We assume that the baselines are short, so that the atmospheric and satellite ephemeris 

errors are negligible. The phase and code observation equations are given as follows 

(Hofmann-Wellenhof et al., 2001). 

 

1 0 1 1 1

i i i i i i i

X Y Z LL a X a Y a Z Nρ δ δ δ λ ε− = + + + +
 

                  2 0 2 2 2

i i i i i i i

X Y Z LL a X a Y a Z Nρ δ δ δ λ ε− = + + + +
            (3.1) 

1 0 1

i i i i i i

X Y Z CC a X a Y a Zρ δ δ δ ε− = + + +
 

2 0 2

i i i i i i

X Y Z CC a X a Y a Zρ δ δ δ ε− = + + +
 

 

where superscript refers to satellite, subscripts 1, 2 are the signal frequencies, L and C 

are phase and code observables, respectively, 
0

iρ  is range between the receiver and 

satellite computed from approximate receiver coordinates, 
1

i
N and 

2

i
N  are 

ambiguities, 1λ  and 2λ are the wavelengths, ���� , ���� , 
1

i

Cε , 
2

i

Cε are observation 

random errors for phase and code observables at frequencies L1 and L2, respectively. 

Please note that all terms in Eq. (3.1) are double-differences when used in tight 

integration. These double-difference phase and code pseudoranges would be derived 

in Chapter 5. 

 

Assuming uncorrelated data, the covariance matrix of the double-difference 

observations is given by (Leick, 1999) 
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1 2

2 2

2
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1 0 0 0

0 0 0
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0 0 0

0 0 0
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k

λ
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σ
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λ

 
 
 
 

=  
 
 
 
 

R                   (3.2) 

 

where 1L
σ , 2L

σ , 1C
σ , 2C

σ  are the standard error of the uncorrelated and un- 

differenced phase and code observables on two frequencies, k is the ratio between 

code and phase standard error, i.e. 
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1 2

1 2

C C

L L

k
σ σ

σ σ
= =

                          (3.3) 

 

We also assume that the phase ambiguities in Eq. (3.1) are fixed, so that these terms 

can be moved to the left side of the equations. Otherwise we should add two 

ambiguities into the state vector each time one satellite is locked-on.  

 

For the GPS positioning accuracy, here we give out two example positioning curves 

with two typical GPS applications: Precise Point Positioning (PPP) and Real Time 

Kinematic (RTK). The PPP is to use a single receiver to determine the absolute 

position at one point, and an example of PPP positioning error curve is shown in Fig. 

3.3.  

 

 

 

 

Fig. 3.3 Static PPP positioning error (Chen et al., 2006).  

(DN,DE and DH are coordinate differences in north, east and height directions, 

respectively) 

 

RTK is another common technique used in land survey based on phase observation. 

The RTK configuration contains a static reference station and moving rover receivers. 

It starts with the initialization stage, during which the phase ambiguities are solved. 

Then the reference station provides the real-time corrections to the rovers, providing 

up to centimetre level accuracy. The standard RTK configuration with one reference 

station works satisfactory for rover stations within 10 km from the reference station 

(Sjöberg, 2007, p. 68). An example of RTK positioning error curve is shown in Fig. 

3.4.  
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Fig. 3.4 Precision of North coordinates in kinematic mode (Tiberius, 1998, p. 174). 

 

Please note that the “+” and “x” symbols are coincident with each other at the first 

two epochs and then with the square symbols in the following epochs.  

3.2.2 INS and navigation principle 

An INS usually contains an embedded microcomputer unit and a platform or module 

containing a set of accelerometers and gyroscopes. The initial position and attitude of 

the INS should be provided from another sources (GPS, compass etc.), and thereafter 

computes the updated position and velocity by integrating measurements from the 

accelerometers and gyroscopes. INS requires no external information to determine its 

position, velocity and orientation, once it has been initialized. Therefore it is 

autonomous, immune to jamming or deception and quite suitable for military 

applications. 

Before introducing the INS navigation principle, two basic concepts of coordinate 

frames and rotation matrix are explained. 

3.2.2.1 Coordinate frames 

When describing the position on or near the Earth’s surface, we need to define the 
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coordinate system. The commonly used frames in inertial navigation systems are 

inertial frame (i-frame), conventional terrestrial frame (e-frame), navigation frame 

(n-frame) and body frame (b-frame). 

 

By the physical definition of inertial frame, it is the coordinate system in which the 

Newton’s laws of motion hold. In real world, a global inertial system is at best an 

abstraction, since any frame in vicinity of the solar system is permeated by a 

gravitational field that possesses spatially varying gradients (Jekeli, 2001). For the 

applications, the operational i-frame is defined as: 

Origin - at the center of mass of the Earth 

z-axis - parallel to the mean spin axis of the Earth 

x-axis - pointing towards the mean vernal equinox 

y-axis - completing a right-handed orthogonal frame 

 

The e-frame is an Earth-Centered-Earth-fixed Cartesian frame, and the WGS-84 used 

by GPS as the reference coordinate system is one of the realization of e-frame. It is 

defined as: 

Origin - at the center of mass of the Earth 

z-axis - parallel to the mean spin axis of the Earth 

x-axis - pointing towards the mean meridian of Greenwich 

y-axis - completing a right-handed orthogonal frame 

 

The n-frame is commonly used to describe the navigation of a vehicle in a local 

coordinate frame. It is defined as a set of Cartesian coordinate axes too, usually in the 

direction of north-east-down (NED) as shown in Figure 3.5: 

Origin - at the origin of the sensor frame 

z-axis – aligned with the ellipsoidal normal at a point, in the down direction 

x-axis - pointing to north (parallel to the tangent to the meridian) 

y-axis – pointing to the east and completing a right-handed orthogonal frame 

 

The b-frame refers to the vehicle to be navigated and the conventional definition is 

along the forward, right and through-the-floor directions: 

Origin - at the origin of the sensor frame 

z-axis – aligned with the ellipsoidal normal at a point, in the down direction 

x-axis - pointing to forward (the direction of instant motion) 

y-axis – pointing to the right and completing a right-handed orthogonal frame 
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Fig. 3.5 The conventional terrestrial frame and the navigation frame (Shin, 2001) 

 

3.2.2.2 Rotation matrix and Euler angles 

The rotation matrix is also named direction cosine matrix which is an orthogonal 

matrix. It is the matrix that transforms the coordinates from one frame to another. That 

can be shown as 

 

                                   
A A B

B=p R p                              (3.4) 

 

where Ap and Bp are the same vector expressed in arbitrary frames A and B, 

respectively, and matrix A

BR  transforms the coordinates of a vector expressed in the 

B-frame into the coordinates of the same vector expressed in the A-frame. 

 

The relative orientation between two frames can be described by a sequence of 

rotations. The rotation matrix around each axis are given by 
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x x x
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θ θ θ
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and 

                          

cos sin 0

( ) sin cos 0

0 0 1

z z

z z z

θ θ

θ θ θ

 
 = − 
  

R

                    

(3.5 c) 

 

where ( )
i

θR  represents the rotation about the i-axis by the angle 
i

θ , positive in the 

counterclockwise sense as viewed along the axis toward the origin (right-hand rule). 

Each rotation matrix is orthogonal, i.e. 1( ) ( )T

i iθ θ− =R R . If the A-frame is the result 

of rotating the B-frame, first about the z-axis by 
z

θ , then about the new y-axis by 
yθ , 

and finally about the new x-axis by 
x

θ , we get the total transformation matrix given 

by 

 

                             
( ) ( ) ( )

A

B x y zθ θ θ=R R R R                        (3.6) 

 

And this total transformation matrix is also orthogonal. It is particularly important that 

the transformation matrix depends on the sequence of the rotations, i.e.  

 

                             
( ) ( ) ( ) ( )x y y xθ θ θ θ≠R R R R                      (3.7) 

 

The explicit form of Eq. (3.6) is given by 

cos cos sin cos sin

sin cos cos sin sin cos cos sin sin sin cos sin

sin sin cos sin cos cos sin sin sin cos cos cos

z y z y y

A

B z x z y x z x z y x y x

z x z y x z x z y x y x

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

 −
 

= − + + 
 + − + 

R

 (3.8) 

Then the Euler angles can be computed from Eq. (3.8) as  

 

                               

(2,3)
arctan

(3,3)

arcsin[ (1,3)]

(1,2)
arctan

(1,1)

x

y

z

θ

θ

θ

=

= −

=

R

R

R

R

R

                        (3.9) 

where R(i,j) is the element of A

BR  matrix at the i-th row and j-th column. R(1,1) and 

R(3,3) are not equal to zero, since the angular increments during the update interval 

are normally small angles. If the Euler angles can be treated as small angles, i.e. these 
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approximations hold 

 

                                  

sin

cos 1

θ θ

θ

�

�

                               (3.10) 

 

then Eq. (3.8) can be simplified as  

 

                        

1

1

1

z y

a

b z x

y x

θ θ

θ θ

θ θ

 −
 

= − = − 
 − 

R I E                     (3.11) 

 

where E is the skew-symmetric matrix of Euler angles: 

 

                            

0

0

0

z y

z x

y x

θ θ

θ θ

θ θ

 −
 

= − 
 − 

E                         (3.12) 

 

Two basic operations with skew-symmetric matrix are given as follows: 

 

  
TA = -A                            (3.13)   

× = −a b = Ab Ba                        (3.14)   

 

where A and B is the skew-symmetric matrices of vectors a and b, respectively.  

3.2.2.3 IMU and navigation equations  

The sensors or equipments used in an INS are called inertial measurement units 

(IMU), which are the main components of INSs used in aircraft, spacecraft, and 

watercraft, as well as guided missiles. An IMU consists of two main parts: three 

orthogonal accelerometers and three orthogonal gyroscopes, which sense the vehicle 

accelerations and angular velocities, respectively. Please note that the mechanic 

gyroscope and accelerometer is introduced in the following part just to show the basic 

principle of IMU. For MEMS, there are no such mechanic gyroscope and 

accelerometer components, but it is based on nanoelectromechanical systems and 

nanotechnology. 

A gyroscope is a device for measuring or maintaining orientation, based on the 

principles of conservation of angular momentum. An accelerometer is a device that 

measures the acceleration along a specific axis. It should be noted that the IMU 



 

accelerometers sense only specific force

vital importance in inertial navigation.

 

Fig. 3.6 The structure of a TDF gyroscope (Wikipedia, Gyroscope figure)

Gyroscope: A two-degree of freedom (TDF) rigid rotor gyro is shown in Fig. 

The rotor of a gyro is based on Newton’s second law

                            

where the notation F is the force

If we take the cross product between 

                          

And from Eq. (3.16), we can see that the left side is the moment of the force about the 

origin of the coordinate system. The right side is the time derivative of the angular 

momentum iL . As a result, th
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only specific forces in INS (See Eq. 3.20). This concept is of 

vital importance in inertial navigation.  

 

The structure of a TDF gyroscope (Wikipedia, Gyroscope figure)

degree of freedom (TDF) rigid rotor gyro is shown in Fig. 

is based on Newton’s second law 

                            

i
i dp

F
d t

=
                           

is the force, i i
p mr= � is the linear momentum.  

ake the cross product between ir  at each side of Eq. (3.15), then we

                          

i
i i i dp

r F r
dt

× = ×
                       

, we can see that the left side is the moment of the force about the 

origin of the coordinate system. The right side is the time derivative of the angular 

. As a result, this equation can also be written as 

           

i
i idL

r F
dt

= ×
                    

(See Eq. 3.20). This concept is of 

The structure of a TDF gyroscope (Wikipedia, Gyroscope figure) 

degree of freedom (TDF) rigid rotor gyro is shown in Fig. 3.6. 

                           
(3.15) 

 

), then we obtain 

                       
(3.16) 

, we can see that the left side is the moment of the force about the 

origin of the coordinate system. The right side is the time derivative of the angular 

                    
(3.17) 
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From Eq. (3.17), we can draw the conclusion that the torque applied to a particle is 

equal to the moment of force acting on it. If the particle is rotating around the origin, 

then it becomes 

                         
0

i
dL

dt
=

                     
(3.18) 

which means that L is constant. The physical meaning is that for a particle moving in 

a central field, the torque is always zero, or the angular momentum is always constant. 

This also means that the motion of such a particle is in a plane.  

That is the principle that a mechanical gyro helps to maintain a specific frame (i.e. 

navigation frame) during the motion and sense the rotations of the body frame and 

then align the axis with the gyro axis with the aid of some servo motors. 

Accelerometer: The first accelerometer was actually a gravity meter as shown in Fig. 

3.7. In fact, all kinds of gravity meters are accelerometers. Based on Newton's Second 

Law, the equation of motion is  

                        f = ma                            (3.19) 

where f is the force, m is the mass, x=a ��  is the acceleration. Therefore, 

accelerometers are built on the principle of measuring the force exerted on a test body 

of a known mass along a given axis.  

    

 

Fig 3.7 Schematic structure of an accelerometer (Horemuz 2006, p. 25) 
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The compression of the spring is given by Hooke’s Law: 
s

f kX= − , where k is the 

spring coefficient, X is the spring displacement. Therefore the equation of motion can 

be written as  

                           s
mx f kX= = −��

                       
(3.20) 

A complete force analysis can be shown as  

                  −��	
� − ��
	
� + 	�� = ���	
�                  (3.21) 

where C is the mass center, c is the damping coefficient. 

Since �	
� = �	
� + �	��, where o is the initial balance point, Eq. (3.21) can be 

rewritten as  

                  ��	
� +	 �� �	
� + �� �
	
� = � − ��	��                (3.22) 

Therefore we can see that the output of an accelerometer in the vicinity of the Earth is: � − ��	��, which is called specific force. If the accelerometer is stationary on the Earth 

surface, i.e. ��	�� = 0, the output is gravity �. 

Navigation equation: The fundamental equation for the motion in the gravitational 

field of the Earth is  

 

                           
i i i= +r f g��                          (3.23) 

 

where  r
i
 is the position vector from the origin of the inertial frame to the vehicle; 

       f
i
 is the specific force vector; 

       ig  is the gravitational acceleration vector. 

The raw observations from the strapdown INS (SINS) are two orthogonal triads of 

specific forces and angular velocities in the b-frame. Both of theem must be properly 

scaled and corrected for the systematic errors. We store the scale factors for the 

accelerometers in vector ��� = 	S��	S��	S� �, scale factors for the gyroscopes in 

�!� = 	S!�	S!�	S! �, gyro drifts in vector d and accelerometer biases in vector b. Then 

the corrected accelerometer observations are computed as 
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                     "# = $f�#f�#f #& = $f'�#S��f'�#S��f' #S� & − (                     (3.24) 

 

and the corrected gyro observations 

 

                  )ib
b = *ωibx

b

ωiby
b

ωibz
b

+ = *ω,ibx
b

Sgx

ω,iby
b

Sgy

ω,ibz
b

Sgz

+− -                    (3.25) 

 

where ."'b/, .), ib
b /  are the raw output of the accelerometers and gyroscopes, 

respectively. 

 

In the following part, we will derive a simple set of inertial navigation equations: (For 

more detailed navigation equations in different frames, we refer to Jekeli 2001, pp. 

123-138; Horemuz 2006, pp. 33-43). If the angular velocity can be assumed as 

constant during the time interval ∆t, we can get the rotation vector as  

 

              2ib
b = 3 ωib

b dt ≈ .ωibx
b ∆t ωiby

b ∆t ωibz
b ∆t/Ttk

tk51
           (3.26) 

 

where ∆t = tk − tk61. 

 

The rotation matrix in the navigation frame is then 

 

              7b	k�n = 7b	k61�n 89 − � sinθb

θb
+ �2 16cosθb

θb
2 :                 (3.27) 

 

where θb = ‖θb‖, � = $ 0 −θz θy

θz 0 −θx−θy 		θx 0

& and  

 2b = 	θbx θby θbz�T = <ωbx	tk�=ωbx	tk51�
2

∆t
ωby	tk�=ωby	tk51�

2
∆t

ωbz	tk�=ωbz	tk51�
2

∆t>T

     

(3.28) 

 

The velocity update is given as follows 

 

                      ?n	tk� = ?n	tk61� + ∆?n                      (3.29) 

 

where ∆?n = 7b
n∆?b + @n∆t and ∆?b = 1

2
<"#	tB� + "#	tB6C�>∆t and @n = 7b

n@b. 
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Finally, the position update is 

 

               Dn	tk� = Dn	tk61� + ?n	tk61�∆t + 1

2
	@n + En�∆t

2
          (3.30) 

 

where "F = 7#F <"#	tB� + "#	tB6C�> /2                                

 

Please note that these equations are valid in such situations where the sculling error 

vanishes, i.e. the angular rate and specific force is constant during the integration time 

interval, and this is no velocity rotation, i.e. the velocity direction is the same. The 

sculling error is the integrated contribution of the high-frequency content in velocity 

update (For more details about sculling error, we refer to Jekeli 2001, pp. 124-157). 

 

Inertial navigation is based on the integration of sensed specific forces and angular 

velocities with respect to time. Therefore it deals with the solution of a series of 

differential equations. Since the mathematical platform is adopted in SINS, i.e. the 

attitude matrix is derived by means of real-time computations, the attitude update 

algorithm is the crucial part in INS navigation, because it is the main factor that 

influences the navigation accuracy.  

 

There are several traditional attitude update algorithms, namely Euler angle algorithm, 

direction cosine algorithm and quaternion algorithm. Each method has its advantages 

and disadvantages. The quaternion algorithm is widely used in practice due to its 

simplicity (For more detailed information, we refer to Jekeli 2001, pp. 9-19; Horemuz 

2006, pp. 12-24). 

 

3.2.3 INS sensors calibration 

Computation of sensor biases from static observations: Using data from a static 

IMU in different positions enables us to estimate some systematic errors of the 

sensors: accelerometer biases and gyro drifts. The basic observations should be 

performed in the following way: 

1- Place the IMU on a table, as precisely leveled as possible. Orient x
b
 axis 

towards north, y
b
 axis towards east and z

b
 axis downwards (position 1). 

2- Record the static data for about 15 seconds. Compute mean values of specific 

forces ("'C�  and of angular velocities (I, 1�. 
3- Stop the recording and rotate the IMU by 180

º
 around z

b
, so now x

b
 axis points 

to the south. Then again record around 15 seconds of data. The mean values 

are denoted by "'2 and I, 2 (position 2). 
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In position 1, the accelerometers x and y should sense zero specific force, if the table 

is perfectly leveled and the accelerometers are bias-free. If these conditions are not 

fulfilled (which is usually the case), then we can write the following equations: 

 J'CK = �K + LK 

                         J'CM = �M + LM                      (3.30) 

 

Similarly for position 2: 

 J'NK = −�K + LK 

                         J'NM = −�M + LM                    (3.31) 

 

The bias can be computed:  

  
                         ( = CN ."'C + "'N/                    (3.32) 

 

The corrected measurements can be computed by: 

 

                          " = "' − (                        (3.33) 

 

In position 1, the gyroscope should sense just the north, east and down components of 

the Earth’s rotation: 

                 
                I�OP = 	QO��RS 0 −QORTUS)V               (3.34) 

 

So the gyro drifts can be computed as: 

 WK = Q,K − QO��RS 

                        WM = Q,M                           (3.35) WX = Q,X + QORTUS 

 

and the measurement angular rates are then corrected by: 

 

                         I = I, − Y                        (3.36) 

 

3.2.4 INS Initialization and Alignment 

Before an IMU gets ready to use, the b-frame axes must be aligned with the 

navigation frame axes, or the direction cosines matrix between the b-frame and n- 

frame must be established, i.e. the rotation matrix 7b
n . 
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The initial position and velocity required as integration constants in the primary 

navigation equations are simply inserted into the system as input data. Leveling a 

gimbaled platform is accomplished by monitoring the output of two mutually 

perpendicular accelerometers with their input axes parallel to the platform. If the 

platform is stationary, then the accelerometers sense only the components of the 

gravity acceleration vector. The platform is leveled when its vertical axis is aligned 

with the direction of gravity; then the horizontal accelerometers on the platform sense 

zero specific force. Thus, an approximate leveling ensures by rotating the platform 

pitch and roll gimbals using the servo motors, such that the output of each horizontal 

accelerometer vanishes.   

3.2.4.1 Coarse alignment and fine alignment 

For the strapdown IMUs a coarse alignment can be done in an analytical and 

numerical way. Assuming a stationary IMU, the accelerometers sense only the 

components of the gravity vector, and the gyros sense only the angular velocity of 

Earth rotation  

The coarse alignment procedures are shown as follows (for detailed derivation, we 

refer to Horemuz 2006, pp. 56-59): First compute the mean values of the raw data 

JK = mean.J'K/;   JM = mean.J'M/;  JX = mean.J'X/ 

             QK = mean	Q,K);   QM = mean.Q,M/;  QX = mean	Q,X)       (3.37) 

With these mean values, we can compute the direction cosines matrix between the 

b-frame and n- frame 7_P = 	7F_ )�. 

              

sin

cos cos cos

sin

cos cos cos

sin

cos cos cos

z y y zx x x

e e

y y yb x z z x
n

e e

y x x yz z z

e e

f ff f

g g g

f ff f

g g g

f ff f

g g g

ω ωω ϕ

ω ϕ ϕ ω ϕ

ω ϕ ω ω

ω ϕ ϕ ω ϕ

ω ωω ϕ

ω ϕ ϕ ω ϕ

− 
− − 

 
 −

= − − 
 
 −
 − −
  

R

           (3.38)

 

Similar with Eq. (3.8) and (3.9), we can obtain the misalignment angles from Eq. 

(3.37) 

roll = arctan dJMJX e 
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                        pitch = arctan $ ij
kil�=im�&                    (3.39) 

yaw = arctan d JXQM − JMQX�QK − JKQORTUSe 

which are the orientation angles.  

Little angle errors would be more or less left between the practical and ideal 

alignments after a coarse alignment. This is due to the systematic errors in the sensors 

that cannot be calibrated in the lab, particularly biases that have different values each 

time the system is turned on. Also there would be different kinds of stochastic errors 

in each session as shown in Chapter 2. The coarse alignment is refined based on the 

assumption that external information provides means to estimate the systematic 

instrument errors. The calibration proceeds on the basis of external observations (both 

position and velocity) in a Kalman filter.  
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4. Robust Kalman filtering with constraints 

The Kalman filter is named after Rudolf E. Kalman. In 1960 he published the classic 

paper proposing a recursive solution to the discrete-data linear filtering problem 

(Kalman, 1960). The Kalman filter is essentially a set of mathematical equations that 

implement a predictor-corrector type estimator optimally minimizing the estimated 

error covariance. From that time, the Kalman filter has been the subject of extensive 

research and application, particularly in the area of autonomous or assisted navigation 

(Welch and Bishop, 2001). 

4.1 Extended Kalman Filter 

The Kalman filter deals with the state estimate of a discrete-time process of a linear 

stochastic difference equation. But in real applications most of the process equations 

are non-linear. A Kalman filter in this linearized situation is referred to as an Extended 

Kalman Filter (EKF). The state functions need not to be linear functions of the state 

but instead be differentiable functions. 

 

For a dynamic system the state transition and observation models can be given as  

                             1 1 1( , )
k k k k

f − − −= +x x u w                     (4.1) 

                              1 1( )
k k k

h − −= +z x v                          (4.2) 

where x is the state vector, z is the measurement, the subscript is the discrete time 

index, f  and h  are the functions to compute predicted state and predicted 

measurements, respectively, wk and vk are the process and observation noises, which 

are both assumed to be zero-mean Gaussian noises with covariance Qk and Rk, 

respectively, i.e. (0, )
k k

Nw Q∼ and (0, )
k k

Nv R∼ . 

 

As the same with Kalman filter, the EKF algorithm has two main steps, i.e. predict 

and update steps: 

Predicted state estimate 
| 1 | 1 1

ˆ ˆ( , )k k k k kf− − −=x x u                                 (4.3) 

Predicted covariance estimate | 1 1 1| 1 1 1

T

k k k k k k k− − − − − −= +P F P F Q                     (4.4) 

Kalman gain 
1

| 1 | 1( )
T T

k k k k k k k k k

−

− −= +K P H H P H R                               (4.5) 



42 

 

Updated state estimate 
| | 1

ˆ ˆ
k k k k k k−= +x x K y�                                    (4.6) 

Updated covariance estimate 
| | 1( )k k k k k k −= −P I K H P                           (4.7) 

where the innovation is 
| 1

ˆ( )k k k kh −= −y z x� , and the state transition and observation 

matrices are defined by the following two Jacobians: 
1| 1 1ˆ1 ,|

k k kk

fδ

δ − − −− = x uF
x

and 

1| 1ˆ1 |
k kk

hδ

δ − −− = xH
x

. 

 

The first two equations above are the prediction, and the last two are the update, both 

of which use the Gain matrix K shown in Eq. (4.5). The circular progress of the EKF 

is shown in Fig. 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 The circular progress of EKF 

 

4.2 Land vehicle model 

For LVN we can build up a dynamic model for this specific application, so that we 

can use the dynamic model to further reduce the navigation errors. Before we build 

the LVN model, some physical assumptions must be given. We assume that the 

vehicle does not slip in the lateral direction, which is reasonable for travel in a 

Kalman Gain 

Predict state and 

covariance matrices 

Update state and 

covariance matrices 

Initial estimate 

Observations with 

covariances 
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constant direction in absence of ice or snow (Li et al., 2010). A second assumption is 

that the vehicle stays on the ground. Both of these two assumptions are fulfilled in 

most cases and we can accept them as the typical conditions for LVN. 

 

In this thesis we study the kinematic models of LVN, i.e. velocity and height 

constraints, including the lever arm correction when turning the direction. A third 

possible constraint could be obtained by map matching. Both the original nonlinear 

kinematic equations and the linearized ones for velocity and height constraints will be 

presented. Then we use these models to constrain the navigation errors and correct the 

INS error drifts in real time. In this way, better positioning accuracy and longer INS 

stand-alone period can be reached compared to not taking these constraints into 

account.  

4.2.1 Velocity constraint 

With both of the two assumptions above, the velocity of the vehicle in the direction 

perpendicular to the movement of the vehicle must be zero ( i.e. ��� =                        ��� = 0), as shown in Fig. 4.2. The IMU sensor on the vehicle is responsible for 

providing the longitudinal acceleration measurements, while the velocity constrains 

provide the assumed lateral and vertical velocities (i.e. we assume that the lateral and 

vertical acceleration measurements are just white noises, if the vehicle velocity does 

not change the direction within a short interval. If this assumption does not hold, see 

the lever arm effect in Section 4.2.3).  

 

In this way, the three-dimensional (3D) velocity update can be reached. Since this 3D 

velocity update adds the physical information of the LVN to the Kalman filter, it can 

improve the practical navigation performance. 

 

 

 

Fig. 4.2 Vehicle velocity constraints (Godha and Cannon, 2007) 
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The body-frame velocity error equation is derived as follows: 

 

                                  
( )b n T n

b=ν R ν
                       (4.8) 

Perturbing this equation, we obtain (Shin, 2001) 

 �� + 	�� = [(� − ��)���]�(�� + 	��) 

        = [��� (� − ��)�](�� + 	��) 

                           = ��� (� + ��)(�� + 	��)                 (4.9) 

 

where �� is the skew-symmetric mxtrix of misallignment angle ��. Please note that 

from Eq. (4.8) to Eq. (4.9), Eq. (3.11) is applied since �� is quite small; in Eq. (4.9), 

Eq. (3.13) is used at the end. 

 

Therefore we can get 

 	�� = ��� (	�� + ����) 

                            = ��� 	�� + ��� (�� ×)�� 

                            = ��� 	�� − ��� (�� ×)��                (4.10) 

 

where Eq. (3.14) is applied at the end. 

 

These equations indicate that the velocity constraints not only help to improve the 

velocity estimation, but also aids in attitude estimation, particularly the estimation of 

roll and pitch (Godha and Cannon, 2005). 

 

We can assume the following two constrains as measurement updates to the Kalman 

filter: 

 

                              ��� ≈ 0                             (4.11) 

                              ��� ≈ 0                             (4.12) 

 

So two misclosure elements 

 

                            �	���	���� = �00� − ��������                     (4.13) 

 

can be added in the state vector of navigation errors. 

 

Due to the misalignment angles, the practical velocities along the lateral and vertical 

directions are not just zero-mean noises. We can get the velocity attitude from the 

projection of the forward velocity with respect to the lateral and vertical directions 

(Shin, 2001). If the misalignment angle is �, then the projection components along 
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the X-axis direction are v��sin � as shown in Fig. 4. 3. From this relation we can 

approximately estimate the magnitude of the measurement noise for velocity 

constrains.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Projection of the forward velocity (Shin, 2001) 

4.2.2 Height constraint 

Since a vehicle generally stays on a road, the height of the vehicle does not vary more 

than a few tens of metres within a short period or a small region. Therefore, the height 

solution computed before a GPS outage can be used as a height constraint during the 

GPS outage. As we all know, a 3D position solution requires observations from four 

satellites to solve for the horizontal position, vertical position and the clock errors. If 

the height is constrained to a known value, then the remaining unknowns can be 

solved with one less satellite. This can potentially help to improve the overall 

horizontal solution accuracy, during periods of partial GPS outages. 

 

The relationship between the Cartesian coordinates and the geodetic coordinates is 

established as shown in Fig. 4.4 (Jekeli 2001, p. 23) 

 

                     

2

( ) cos cos

( ) cos sin

[ (1 ) ]sin

x N h

y N h

z N e h
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                    (4.14) 

 

where x,y,z are the Cartesian coordinates of the rector r = (x,y,z)
T
; 

2 2
1 sin

a
N

e φ
=

−
 

is the prime vertical radius of the curvature of the reference ellipsoid perpendicular to 

the meridian at point P; ∅, $, ℎ are the latitude, longitude and ellipsoidal height, and e 

is the first eccentricity.  

 

Then we can get the error perturbations:  
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and the term T is given by 

2
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dN ae
T

d e

φ φ

φ φ

−
= − =

−
 

 

where a is the semi-major axis of the reference ellipsoid. 

 

 

Fig. 4.4 i-frame, e-frame and geodetic coordinates (Jekeli 2001, p. 23) 
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In some tough environments like navigation in urban areas, it is quite common that 

the GPS receiver may lose the track of the signals from some satellites for a short time. 

In such cases, the height constraint can compensate for one satellite signal in 

relatively flat areas if only 3 satellite signals are tracked at the same time. Even less 

than 3 tracked satellites can still help to estimate the INS errors and improve the 

positional and attitude precision, especially the latter (Horemuz and Sjöberg, 2001). 

4.2.3 Lever arm effect 

Since the IMU can be mounted at different positions on the vehicle, there is always a 

lever arm between the mass centre of the vehicle and the IMU to the velocity 

constraints. This lever arm would cause different velocities for the GPS receiver and 

IMU, especially when the vehicle changes directions as shown in Fig. 4.5, where δ is 

the front steering angle, Ψ is the yaw angle, 1 is the side slip angle at the center of 

gravity (CG), 234567 is the lever arm between the IMU and CG of the vehicle. This 

figure illustrates a simplified 2D vehicle model, also known as the bicycle model, 

which has been used for a land vehicle model (Ouladsine et al., 2007).  

 

If the velocity constraints hold at the CG point, i.e. zero velocity, the lateral velocity 

of the INU is not zero but can be given by (Li, 2009)  

 

                          �567& = Ψ8 234567                           (4.16) 

 

Therefore the lever arm effect on lateral velocity must be compensated before 

applying velocity constraints when the vehicle changes the direction. A similar 

analysis can be applied to the vertical velocity constraint.  

 

 

Fig. 4.5 2D vehicle model (Li, 2009) 
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4.3 Constrained Kalman filter 

For the Kalman filter in GPS/INS integrated systems, there are a huge number of 

related papers. Most of these papers mainly deal with various improvements or 

applications on the algorithm itself. However, it is verified that Kalman filtering with 

state constraints can significantly improve the estimation accuracy of the filter (e.g. 

Simon and Chia, 2002).  

 

For the specific applications like LVN, the more detailed information of the physical 

system is utilized to the Kalman filter, the better navigation perform it would get. 

With the velocity constrain and height constrain as well as the lever arm effect 

correction for LVN discussed above, we can set these constrains to the Kalman filter 

in the integration system.  

 

There are various ways of implementing a Kalman filter with linear constrains, 

namely model reduction (Wen and Durrant-Whyte, 1992), perfect measurements 

(Wang et al. 2002), estimate projection (Simon and Chia, 2002), gain projection 

(Sircoulomb et al. 2008), probability density function truncation (Simon and Simon, 

2010), and system projection (Ko and Bitmead, 2007). Under certain conditions, all 

these approaches result in the same state estimate (Simon and Chia, 2002), but each 

approach itself has its own advantages and disadvantages. For example, treating state 

constraints simply by reducing the system model parameters may lose the physical 

meaning of the state variables, and the approach of perfect measurements would cause 

singular noise covariance matrix.  

 

Besides the integrated constrained Kalman filter mentioned above, there is also the 

two-stage recursive estimator, which considers measurements and constraints 

separately (Yang et al., 2010). The first step is the Kalman filtering without 

constraints, and the second step is a projecting process of the constraints.  

 

For a discrete linear system 

 

                     9: = ;:,:<=9:<= + >:                      (4.17) 

                       ?: = @:9: + A:                         (4.18) 

 

where ;:,:<= is a transition matrix, @: is a design matrix, we assume the linearized 

constraints are given by the general equation 

 

                        B:9C: − D: = 0                         (4.19) 

 

where 9C:  is the estimated state vector with covariance matrix E9CF , B:  is the 

design matrix, D: is a constant vector. Then the Lagrangian optimization condition 
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for the recursive Kalman filter is (Yang et al. 2010) 

 

Ω: = H I:J
�F

KL=
MNO:JP + N9C: − 9Q:P�E9QF<RN9C: − 9Q:P + 2TUVNBU9C: − D:P = min 

(4.20) 

 

where I: = E:<= is the weight matrix of ?:, 9Q: is the predicted state vector with 

covariance matrix E9QF = ;:,:<=E9CF ;:,:<= +
k

Q ,  OX:J = O:J/Z[FJ  is the 

standardized residual of O:J = \:J)]:J − .:J, TU is the Lagrangian vector, M(. ) is a 

convex and continuous function, satisfying that:  

 

1) it is differentiable; 

2) M(0) = 0;  

3) There exists a constant _ > 0 such that M is strictly increasing on [0, c] and 

constant on [c, ∞].  

 

Taking the partial derivative of Ω: with respective to 9C: and let the derivatives be 

zero, we can obtain (For detailed derivation, see Appendix A)  

 

   9C: = (@:� IQ:@: + I9QF)<=(@:� I:?: + I9QF9Q:) − (@:� IQ:@: + I9QF)<=B:�T:   (4.21) 

 

where I9QF = E9QF <=  is the weight matrix of predicted state vector 9Q: , IQ:  is the 

equivalent weight matrix of the measurements ?:, as the robust variation against 

outliers, which will be introduced in Eq. (4. 32).  

 

Denoting the initial condition  

 

                          9C:b = IQ9CFc
<=(@:� I:?: + I9QF9Q:)              (4.22) 

 

with covariance matrix 

 

                         IQ9CFc = (@:� I:?: + I9QF) = EQ9CFc
<=              (4.23) 

 

we can rewrite Eq. (4.21) as  

 

                            9C: = 9C:b − EQ9CFc B:�T:                   (4.24) 
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Considering the constraint equation 

 

                   B:9C: − D: = B: d9C:b − EQ9CFc B:�T:e − D: = 0        (4.25) 

 

we get the Lagrangian vector 

                

                       TU = dB:EQ9CFc B:�e<= (B:9C:b − D:)              (4.26) 

 

So the estimation in Eq. (4.21) can be rewritten as  

 

                 9C: = 9C:b − EQ9CFc B:� dB:EQ9CFc B:�e<= (B:9C:b − D:)         (4.27) 

 

Let the discrepancy vector be 

 

                            f: = B:9C:b − D:                      (4.28) 

 

Then the covariance matrix becomes  

 

                             EfF = B:EQ9CFc B:�                      (4.29) 

 

Finally we obtain (see Appendix B) 

 

                            9C: = 9C:b − EQ9CFc B:�EfF<=f:                (4.30) 

with covariance matrix 

  

                          E9CF = EQ9CFc − EQ9CFc B:�EfF<=B:EQ9CFc               (4.31) 

 

It should be mentioned that this two-stage recursive estimator is equivalent to the 

integrated constrained Kalman filter. 

 

In this thesis the two-stage recursive estimator is preferred as the implementation of 

constrained Kalman filter. For the loose GPS/INS integration, the physical constrains 

can be applied to the Kalman filter directly as the additional observation equations, 

since the filter deals with the navigation solutions from each of the systems in the 

loose integration structure. 

 

On the other hand, in the tight integration, the situation becomes more complicated. 
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With the general introduction of tight GPS/INS integration architecture in Chapter 3, 

the diagrammatical structure of the tight GPS/INS integration with velocity and height 

constraints is shown in Fig. 4.6. We do not mean to give a detailed theoretical analysis 

about this section in this thesis. For more detailed information on this part, we refer to 

Godha (2006); Godha and Cannon (2007) and Li (2009). 

 

  

 

Fig. 4.6 Kalman filter with constrains in a tight integrated system (Godha, 2006) 

 

4.4 Outliers and robust filter 

An important hazard in the navigation system is the sensor outliers, which could result 

in a great increase of the positioning error. In statistics, an outlier is an observation 

that is numerically distant from the rest of the data. An outlying observation, or outlier, 

is one that appears to deviate markedly from other members of the sample in which it 

occurs (Grubbs, 1969).  

 

There are many anomalous causes of outliers, including sensor malfunction, error data 

transmission and operating mistakes. No matter which kind of the causes, we must 

have some methods to detect and eliminate or reduce the influence of the outliers once 

they merge into the measurements. However, the standard Kalman filter is not robust 

to outliers. Therefore different variations of the Kalman filter have been proposed to 

deal with this problem. 

 

The most common way to get rid of outliers is setting a rejection threshold. However, 

simply using a rejection threshold is not a good way to eliminate them, since this 

method can cause the measurement weights to jump from the original value to zero if 

the measurement errors are located near both sides of the threshold. Moreover this 

method requires manual parameter tuning, or heuristics parameter estimation 
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procedures. Another simple approach is treating the state constraints by reducing the 

system model parameters or as perfect measurements, but this method would lose the 

physical meaning of the state variables. A third method is treating the state equality 

constraints as perfect measurements with zero measurement noise, but this would 

result in a singular measurement noise covariance matrix (Simon and Chia, 2002).  

 

To avoid these disadvantages, robust maximum likelihood estimation (M- estimation) 

is applied to the Kalman filter along with kinematic constraints to give smooth 

weights for both measurement errors and kinematic model errors (Yang et al., 2010). 

For this robust Kalman filter, the weight of each measurement is adaptively changed 

according to its standardized residual. In this way the outliers can be rejected and the 

contribution of measurements with larger errors can be suppressed by decreasing the 

weight to avoid causing significant rise of the standard errors. 

 

To obtain the robust Kalman filter, the equivalent weight is computed first. There are 

many equivalent weight functions that we can choose, such as Huber weight function 

(Huber, 1981), and bifactor reduction factor (Yang et al., 2002; Yang et al., 2010). The 

latter is given below  

 

        gh:J =
ijk
jlg:J                                                mOX:Jm ≤ _b

g:J ocp[qFJp ros<p[qFJp
os<oc t                  _b < mOX:Jm

0                                                _= < mOX:Jm
v ≤ _=              (4.32) 

 

where OX:J = O:J/Z[FJ  is the standardized residual of O:J ; _b  and _=  are two 

constants with empirical values: _b = 1.0~1.5 and _= = 4.5~8.5. There are many 

empirical rules to choose these constants, and Xu (1993) proposed a theoretical 

method, namely to determine the constants based on the confidence intervals of the 

parameter estimates. 

 

Based on all the discussion above in this chapter, both the constrained physical 

equations and the equivalent weight matrix are adopted in the EKF. As a result the 

robust constrained Kalman filter is obtained and it will, hopefully, improve the 

navigation performance for LVN applications. 
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5. Tests and analyses 

In this chapter, we give out the detailed description of the integration system model 

and the integration structure. Based on these models, we have performed a series of 

simulations and tests. 

5.1 Implementation of the integrated system with EKF 

To implement the Kalman filter for the integrated navigation system, first we should 

build up the system model, i.e. to determine the state vector and derive the system 

dynamic equations as well as observation equations. Based on the system model, the 

EKF introduced in Section 4.1 can be implemented. 

5.1.1 State vector and system dynamic equations 

The state vector contains the unknown parameters to be estimated in the Kalman filter. 

In this thesis we choose 15 parameters for the state vector of the GPS/INS integrated 

navigation system. The parameters can be divided into two groups as: 

 

T
T T

1 2
 =  x x x                                                 (5.1) 

 

where the first group contains three dimensional errors in position, velocity and 

orientation of the IMU: 

 

 
[ ]

T Te T T e T

1 i i i X Y Z X Y Z( ) ( ) ( ) x , y , z , v , v , v , , , = δ δ = δ δ δ δ δ δ ε ε ε 
ex r v ε

 (5.2) 

 

and the second group is the sensors errors: 

 

 
T

T T =  2
x d b                                        (5.3) 

 

The position and velocity of the vehicle can be computed: 

 

 

i i0 i x x0 x

i i0 i y y0 y

i i0 i z z0 z

x x x , v v v

y y y , v v v

z z z , v v v

= + δ = + δ

= + δ = + δ

= + δ = + δ                           (5.4)  

 

where i0 i0 i0x , y , z are coordinates, x0 y0 z0v , v , v  are velocities as delivered by IMU. 
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The orientation can be computed from the transformation matrix 
e

bR : 

 ( )e e e

b b
ˆ = −R I E R�

                                                
(5.5) 

 

z y

e

z x

y x

0

0

0

 −ε ε
 

= ε −ε 
 −ε ε 

E

                                  

 (5.6) 

 

and the orientation relative to the navigation frame becomes 

 

 
b b e

n e n= ⋅R R R
                                                     

(5.7) 

 

The IMU sensors errors in the second group contain two parts:  

The accelerometer’s error a(t)δ  consists of the constant (b) and random (wA) parts: 

 
Aa(t) b w (t)δ = +

                                            
 (5.8) 

where 

- b is the accelerometer bias, which is modelled as random constant. This bias 

gets a random value within certain limit, usually specified as bias repeatability. 

This bias must be determined after each start of IMU. 

- wA(t) is random walk noise of the accelerometer 

 

Similarly, the error of the gyro can be described as 

 

                   G(t) d w (t)δω = +
                                             

 (5.9) 

where 

- d is the gyro drift. The same remark holds as for b.  

- wG(t) is random walk noise of the gyro 

 

The sensor errors are defined as 

 
ˆ

â a a

ω = ω + δω

= + δ

�

�
                                             (5.10) 

The INS errors are modelled by a linear system described generally by the following 

dynamic state equation 

 

 
( ) ( ) ( ) ( ) ( )t t t t t= +x F x G u�

                                  (5.11) 

 and the measurement model 

( ) ( ) ( )t tt= +z Hx v                                                (5.13)                                       
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where x is the state vector, F is the system dynamic matrix, G is input matrix, t is time 

and u is a vector forcing function, whose elements are white noise. The discrete 

solution of Eq. (5.11) is 

 

  
, 1 1k k k k k− −= +x Φ x w

                    
                       (5.12) 

where 
, 1k k −Φ  is the transition matrix from epoch k-1 to k and 

k
w is the noise in the 

state vector. 

 

The Kalman filter can be applied iteratively based on this discrete solution. In the 

following part, we present the solutions of each key variables and steps in the Kalman 

filter. (For more information, we refer to Farrell 1999, pp. 84-86; Horemuz 2006, pp. 

68-70): 

 

The relationship between the transition matrix Φ  and dynamic matrix F can be 

expressed by  

t 2 2 3 3 4 4

k 1,k k k k k

1 1 1
e t t t t

2 3! 4!

⋅∆

+ = ≈ + ∆ + ∆ + ∆ + ∆ +F
Φ I F F F F …          (5.14) 

is the transition matrix between epochs k and k+1, where 
k 1 kt t t+∆ = −  and  

 

k 1

k k 1,

k

d

+

+ τ τ τ= τ∫w Φ G u

                                      

 (5.15) 

is the driven response at epoch k+1 due to the presence of the white noise input 

during interval t∆ . 

 

The covariance of wk, can be expressed as: 

 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

k k k

k 1 k 1

T T T

k k

k 1 k 1

T T T

k k

E

E k 1,s s s t t k 1, t dt ds

k 1,s s s t t k 1, t dt ds

+ +

+ +

 = = 

 
+ + = 

 

 + + 

∫ ∫

∫ ∫

Q w w

T G u u G T

T G E u u G T

 (5.16) 

 ( ) ( ) ( )T

d bE s t diag  = = u u Q q q                               (5.17) 

dq  and bq  are 3x3 diagonal matrices, whose elements are the noise PSD of gyros and 

accelerometers in the IMU, respectively. 

 

Using equation (5.14), the solution of the integral (5.16) can be approximated by 
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following expansion: 

                       

( )

( )

( ) ( )

2
T T

k k k G G G

3
2

2 T T

G G G

4
2 3

3 T 2 T T

G G G G

t
E t

2

t
2

6

t
3 3

24

∆
 = ≈ ∆ + + + 

∆ + + + +  

∆ + + + + +  

Q w w Q FQ Q F

F Q FQ F Q F

F Q FQ F F Q F Q F …

(5.18)

 

              

 

where 

 
T

G =Q GQG
                                                  (5.19) 

 

In the similar way, the measurement model Eq. (5.12) can be converted into the 

discrete form, i.e. 

1 1 1 1k k k k+ + + += +z H x v                                         (5.20) 

where 1k +H  is the design matrix of the system at time 1k
t + , and 1k +v  is the 

measurement noise at time 1k
t + , with a covariance matrix 1k +R . Here we use the 

double-differenced phase and code pseudoranges in the simulations and we assume 

that the baseline is short so that the atmospheric errors are negligible. 

5.1.2 Differenced GPS observation equations 

In the case of differential or relative positioning, at least two GPS receivers measure 

pseudoranges to a set of common satellites simultaneously. Let two receivers on 

points A and B measure a satellite s and the point A is a known, reference point. The 

code and phase observation equations can be written as: 

 

s

AA

s

A

ss

A

s

AA

s

AA

s

A Ntcttcttcttt λδρδλϕδδρλϕ ++=+=+− )()(ˆ)
~

()
~

( �  

       s

BB

s

B

ss

B

s

BA

s

BB

s

B Ntcttcttcttt λδρδλϕδδρλϕ ++=+=+− )()(ˆ)
~

()
~

( �        (5.21) 

A

s

A

ss

A

s

AA

s

AA

s

A tcttctPtctttP δρδδδρ +=+=+− )()(ˆ)
~

()
~

( �  

B

s

B

ss

B

s

BB

s

BB

s

B tcttctPtctttP δρδδδρ +=+=+− )()(ˆ)
~

()
~

( �  

 

where ( )s

A Atφ � , )
~

( A

s

A tP is the phase difference and pseudorange observed at time At
~

 by 

receiver A to satellite s; At
~

 is the nominal time of the signal reception measured by the 
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clock of receiver A; 
s

t
~

 is the nominal time of signal transmission measured by the 

clock of satellite s. We can omit the time t for concision, since all observables are 

correlated to the same time instance, i.e.: 

 

AtA

s

AA

s

A

s

A tttPP ˆ)()( δρ�−=  

                      
AtA

s

AA

s

A

s

A ttt ˆ)()( δρλϕλϕ �−=                                     (5.22) 

 

To reduce the atmospheric effects that are common to both stations, it is useful to 

form differenced equations. The single differences can be obtained by the difference 

equations of the two receivers towards one satellite: 

 

s

ABAB

s

AB

s

A

s

B

s

AB Ntc λδρλϕλϕλϕ ++=−=  

                     AB

s

AB

s

A

s

B

s

AB tcPPP δρ +=−=                                      (5.23) 

 

where 

 

s

A

s

BZ

s

BY

s

BX

s

B

s

A

s

B

s

AB zayaxa ρρρρρ −∆+∆+∆+=−= ,,,0  

                            ABAB ttt δδδ −=                                              (5.24) 

s

A

s

B

s

AB NNN −=  

 

In the similar way, it is possible to form double differences between two single 

differences. Let two receivers A, B observing simultaneously two satellites s and t. For 

each of the satellites a pair of single difference equation similar to (5.23) can be 

formed: 

 

s

ABAB

s

AB

s

AB Ntc λδρλϕ ++=  

                        t

ABAB

t

AB

t

AB Ntc λδρλϕ ++=                                      (5.25) 

AB

s

AB

s

AB tcP δρ +=  

AB

t

AB

t

AB tcP δρ +=  

 

By subtracting code and phase equations, respectively, we get the following double 

difference equations: 
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st

AB

st

AB

s

AB

t

AB

st

AB Nλρλϕλϕλϕ +=−=  

                        st

AB

s

AB

t

AB

st

AB PPP ρ=−=                                         (5.26) 

 

where 

 

s

AB

t

AB

st

AB ρρρ −=  

s

AB

t

AB

st

AB NNN −=                                              (5.27) 

 

From Eq. (5.26), we can see the receiver clock errors s
tδ are eliminated, which is the 

most important feature of the double differences. Taking into account linearised 

topocentric distance, the observation equations (5.26) can be written in linear form as: 

 

st

AB

st

ZB

st

YB

st

XB

st

AB

st

AB NZaYaXa λρλϕ +∆+∆+∆=− 0,  

                 ZaYaXaP
st

ZB

st

YB

st

XB

st

AB

st

AB ∆+∆+∆=− 0,ρ                            (5.28) 

 

where the pseudorange is linearised to: 
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with                                    
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5.1.3 System observation equations 

In practice, there is always an offset between the GPS antenna and the IMU as shown 

in Fig. 5.1, which therefore is required to be compensated.  
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GPS antenna 

oG 

 

Fig. 5.1 GPS antenna offset. 

 

Let us denote the vector from IMU to the GPS expressed in the body coordinate 

system as 
b

Go , the positional vector of the antenna as Gp  and the positional vector of 

the IMU as 
ip . The offset 

b

Go  can be computed by: 

 

                                       i

b b e b e e

G e G e G( )= = −o R o R p p
                                      (5.31) 

 

If vector y contains coordinates of the GPS antenna determined by GPS, then the GPS 

observation equation will be as follows: 

 

 
e e e b

G i b G
ˆˆ ˆ= − = + −y p δ p R o δ�

                                      (5.32) 

 

where δ denotes the residual vector. Taking into account the approximation

( )e e e

b b
ˆ = −R I E R� , the observation vector which is used in the Kalman filter is: 

 

 ( )e e e e b

i i b G
= + δ + − −y p p I E R o δ���                       (5.33) 

e e b e e e

i b G i G( )= − − = δ + ×L y p R o p o ε���                             (5.34) 

 

where the  misalignment angles in the e-frame 
T

e e e e

X Y Z
 = ε ε ε ε , the vector 

product can be transferred to the skew-symmetric operation by Eq. (3.14), i.e.  

 

 

( )

e e

z y

b e e

G z x

e e

y x

0 o o

o 0 o

o o 0

 −
 

× = − 
 − 

o
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With the observation equation in the Kalman filter, i.e. Eq. (5.34), we can get the 

design matrix for the loose integration in Eq. (5.13): 

 

 

e e

z y

e e

Loose z x

e e

y x

1 0 0 0 0 0 0 o o

0 1 0 0 0 0 o 0 o

0 0 1 0 0 0 o o 0

 −
 

= − 
 − 

H

          

 (5.35) 

 

To obtain the design matrix for the tight integration, rewrite Eq. (5.29) in matrix form 

 

0( ) ( )s s

A A A At tρ ρ− = AX� �                                           (5.36) 

 

where [ ]s s s

X Y Za a a=A  and [ ]X Y Z= ∆ ∆ ∆X .  

 

The left side of Eq. (5.36) is the observation vector for the tight integration as that in 

Eq. (5.34), i.e. 
0( ) ( )s s

A A A At tρ ρ= −L � � . Mmultiplying A matrix at both sides of Eq. 

(5.34), we get 

 

e e e e e

i G G( ) ( )= δ + × = + ×AL A p A o ε AX A o ε                              (5.37) 

 

From Eq. (5.37), we obtain the design matrix for the tight integration 

 

e

Tight G( ) = × H A 0 A o

          

                           (5.38) 

 

Please note that each of the 3 sub matrices in Eq. (5.38) is a matrix with 3 3× elements. 

5.1.4 Loose integration implementation 

In the real positioning experiments, we use the same MEMS-based IMU as introduced 

in Chapter 2 with the update frequency 100 Hz. On the other hand we use the double-

difference observables from a GPS receiver with update frequency 1 Hz, which means 

that during the interval of two consecutive GPS updates there are 100 INS updates. 

This provides a convenient approach to interpolate the navigation solutions in high 

dynamic situations.  

 

The integration algorithm flowchart is shown in Figs. 5.2 and 5.3, including ZVUP 

(Zero Velocity Update) initialization, INS navigation updates and integrated 

navigation update. During the ZVUP initialization stage, we know that the IMU is 
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static in the e-frame, i.e. the velocity and rotation rate should be zero. Therefore the 

3D velocities in the horizontal plane and along the vertical direction should be just 

measurement noise with small standard errors, i.e. 

 

                                                         

X

Y

Z

v 0

v 0

v 0

≈

≈

≈

                                                     (5.35) 

 

The static angular velocity estimate due to Earth rotation and misalignment can be 

given as 

 

                                            ( )b b b e b b e

eb ib e ie e e
ˆ ˆˆ ˆ ; = +ω ω R R R I E�= − ω= − ω= − ω= − ω                         (5.36) 

                                         ( )b b b e e

eb ib e ie
ˆ +d R I Eω = ω + − ωω = ω + − ωω = ω + − ωω = ω + − ω��                             (5.37) 

 

With this fact, we can estimate the initial position as well as the attitude and constraint 

the influences of the IMU sensor noises.  

 

The whole GPS/INS integration can be divided into two main parts: the initial part 

and the dynamic process part, which are shown in Figs. 5.2 and 5.3, respectively. 

During the initial stage the vehicle stays still for a period of time to get enough 

information to determine the initial orientation and sensors noise biases before the 

moving session. We record all the static data from both IMU and GPS receiver until 

the vehicle start to move. By means of these static data, ZVUP is carried out and the 

initial position and orientation are computed as the starting state for the following 

moving session (see Sections 3.2.3 and 3.2.4).  
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Fig. 5.2 Flowchart of GPS/INS integration initialization algorithm 

 

The events in the flowcharts are defined as (here we only care about these three 

events related with the LVN): 

 

EVENT 0 – start of static data (initialization) 

EVENT 5 – start of dynamic progress data (motion progress of different missions) 

EVENT 4 – end of session 

 

During the dynamic progress, each time we read the IMU observations we perform 

INS navigation update in the e-frame. After each 100 times of INS navigation update, 

we obtain one GPS difference observation. On arrival of each GPS observation we 

perform the integrated navigation update with EKF until the end of the session. If 

there is no GPS observation available, this means a GPS signal gap. In such cases, 

only INS navigation update is performed as shown in Fig. 5.3. 
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Fig. 5.3 Flowchart of GPS/INS integration dynamic process 

(The letter “N” denotes No.) 

 

5.2 Error of tight integration on simulated observations 

Using GPS double-difference phase and code pseudorange observations and IMU 

observations at the raw data level, we simulated and analyzed the standard errors of 

both position and orientation.  

 

To show the tight integration with realistic conditions, we simulate a flight path as 

shown in Fig. 5.4. The GPS/INS system is mounted on an aeroplane, which first 

accelerates and climbs up to 500 m height, then it makes a horizontal loop. After three 

90° turns, it starts to land and finally stops close to the starting point. This whole 

flight takes 680 seconds, in which we simulate a GPS signal outage of 40 seconds to 

all satellites. Therefore, only INS updates the position and attitude during this interval.  
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Fig. 5.4 Test flight path 

 

Here we only present the navigation performance in the n-frame during two typical 

situations, the position and orientation errors of INS with 4 observable satellites and 2 

satellites, i.e. INS + 4 satellites and INS + 2 satellites. For other situations and the 

detailed discussion, we refer to Horemuz and Sjöberg 2001. 

 

 

Fig. 5.5 Position errors of INS + 4 satellites with 40s GPS outage 
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Fig. 5.6 Orientation errors of INS + 4 satellites with 40s GPS outage 

 

From Fig. 5.5 and 5.6, we can see that different maneuvers during the whole progress 

only slightly affect the position errors, but they are important for yaw determination, 

since the azimuth becomes observable only in the presence of accelerations other than 

gravity, i.e. when the vehicle accelerates or turns the direction (Horemuz and Sjöberg, 

2001). 

 

Around time 300 seconds there is the period of GPS signal outage, from Fig. 5.4 we 

can draw the conclusion that the position errors grow quite rapidly during that period. 

Once the satellites are tracked again later, the position errors drop down to the normal 

values as before. However, this gap does not make significant influences on the 

orientation errors at the same time. The orientation errors maintain within a low level 

all through the whole progress (see Fig. 5.6). 
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Fig. 5.7 Position errors of INS + 2 satellites with 40s GPS outage 

 

 

Fig. 5.8 Orientation errors of INS + 2 satellites with 40s GPS outage 
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GPS signal gap, i.e. around 300 second; the position errors grow significantly fast 
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satellites. This is one representation of the benefits with tight integration: even with 

less than 4 satellites, the GPS information can still contribute to the integration system, 

especially on keeping the orientation precision.  

5.3 Positioning of loose integration on real observations 

After the computational simulations, we carried out the following data processing 

based on real experiments in the scenario of urban area navigation. We get the data set 

from Visimind AB, which is the real time data for about 10.5 minutes in total with this 

setup on the vehicle. Among the data, there are several small GPS signal gaps from 

time to time and there is a large GPS signal gap for about 2 minutes.  

 

The GPS/INS setup in the experiments is shown in Fig. 5.9. The IMU used in the 

experiment is IMU-FSAS from NovAtel Inc., which is a tactical grade (lowest 

accuracy grade) IMU.  

 

 

 

 

Fig. 5.9 Setup of GPS antenna and IMU 

(Courtesy Visimind AB) 

 

First of all we carry out EKF loose integraion in the e-frame with the IMU 

observations and GPS differenced positioning coordinates. The navigation 

performances are shown in Figs. 5.10-5.12 (all final results in the following figures 

are transferred back to the n-frame for better illustrations of their physical meanings).  

 

Based on the same raw data and this loose integration, we analyze the physical 

constraints (i.e. velocity constraint and height constraint) to the EKF as well as the 
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influence of simulated gross errors on GPS coordinates in order to test the actual 

navigation performance of the methods proposed in Chapter 4. 

 

 

Fig. 5.10 Position errors with EKF 

(The main GPS signal gap occurs roughly between 6.0 and 8.1 in the time legend.) 

 

 

Fig. 5.11 Velocity errors with EKF 
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seconds. From the beginning, the velocity standard error starts from zero due to the 

fact of ZVUP as shown in Fig. 5.11. There are several small perturbations of the 

velocity and position standard errors because of the small GPS signal gaps caused by 

occasional obstacles form the environment. As we can see from Figs. 5.10 and 5.11, 

the position and velocity errors grow up significantly when there is a long GPS signal 

gap. After the gap they drop down to the normal values as the same situation with the 

tight integration.  

 

From Fig. 5.12, we can see that the orientation errors go down from the initial values 

with time goes by during the progress, and just grow up about 5-10 arc seconds during 

the long GPS gap. Even a large GPS gap does not affect the orientation error much in 

loose integration. 

 

 

Fig. 5.12 Orientation errors with EKF 

 

From the three figures above, we can see that the error curves are quite smooth from 
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except the main one. Then during the large GPS signal outage, the position errors and 

velocity errors go up significantly, while the orientation errors go up relatively small.   
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each of the IMU sensors. From Chapter 2, we can see that this is far from the truth 

and this assumption is somewhat too simple. Another point is that the IMU sensor 

noises are changing with time due to its stochastic characters and the change of 

environment and temperature.  

 

Because of these reasons the EKF navigation may result in divergence if there are 

frequent and long periods of GPS signal outages. In such cases we could only rely on 

the simple dynamic model and the inaccurate noise information, the EKF may not 

adjust the parameters fast and accurate enough. As a result, the errors can be 

accumulated. If the error grows up to some limits, it may cause numerical problems 

and lead to the divergence.  

 

For the real time data set introduced in Section 5.3, we only get the recorded data after 

the experiment without accurate sensor noise parameters. Therefore the EKF loose 

integration is carried out in the e-frame with empirical parameters. The first minute 

and 150 seconds position errors are shown in Fig. 5.13 and 5.14, respectively. 

 

 

Fig. 5.13 Estimated positioning errors within 1 minute 
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Fig. 5.14 Estimated positioning errors within 150 seconds 

 

The three components of the position error in Fig. 5.13 and 5.14 refer to the three 

dimensional position errors in Eq. (5.2). Since we do not know the true position of the 

trajectory and the GPS solution is based on differenced phase observables, the three 

dimensional position errors, i.e. [ ]
T

i i ix , y , zδ = δ δ δr  in Eq. (5.2), can be considered as 

the estimated position errors of the EKF loose integration. Please note that all position 

and orientation errors in Fig. 5.10-5.14 are transferred into the n-frame for concise-

ness and direct viewing with their physical meanings. 

 

From Fig. 5.13 we can see that within one minute the EFK successfully manage to 

give out reasonable results. There is a gap of 4 seconds followed by 2 seconds with 

only code observations from the 41 epochs. Then there is another 4 seconds of gap 

from the 49 epochs. During the gap, the position errors grow up quickly, even 

reaching up to 4 metres within 4 seconds. We can also notice that the position errors 

during the following continuous gap accumulate based on the former one, since the 

two continuous gaps are quite close to each other in time (there is no Kalman filter 

update during the gaps). 

 

From Fig. 5.14, we can see that due to many GPS gaps the position errors grow up 

quickly. The position errors along east and down directions can still remain reasonable, 

but the north direction errors degrade faster than the other two. During the following 

period of time, the EKF continues to degrade due to some numerical problems. The 

results are not given here. But the Kalman filter divergence analysis and possible 

improvement on this key problem can be one of the further research topics. 
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As a result, during the following tests we omitted the long period of GPS signal 

outage and only test on the real data with short GPS signal outages, i.e. the first 

minute of the data. In practice, this does not influence the real navigation significantly, 

because once there is no GPS signal we can only trust the navigation solution of 

MEMS based IMU within dozens of seconds and once the GPS signal acquisition is 

obtained we can trust the positioning result. As for the gap during the navigation route, 

some backward smoothing algorithm can be used (e.g. RTS smoother; Godha and 

Cannon, 2005 & 2007). 

 

For the real data, the velocity constraint during the whole moving session can only be 

applied when the vehicle is driving along the straight direction. In practical tests, the 

vehicle would not always keep a constant direction, but it changes the direction quite 

frequently. We did the detailed theoretical analysis in Section 4.2. The physical model 

itself is quite straight forward in real applications. Since we do not have suitable real 

data right now, the test of velocity constraint would be combined with the real map 

information and would be carried out during the following research. We may simulate 

the GPS and INS observations for the vehicle with map matching, so that the map 

information can tell us whether or not it goes along a straight line or turn around. We 

can also use the map as another practical constraint to the real navigation.  

 

The height constraint within the GPS signal gap simply means that we assume the 

height did not change during the GPS signal gap. It should be noted that the height 

constraint typically do not provide much improvement during periods of complete 

outages (e.g. Godha, 2006). It helps especially when there is a partial GPS signal 

outage as explained in Section 4.2.2, i.e. there are less than 4 observable satellites. It 

is quite obvious that if the height is fixed the number of observable GPS satellites can 

be reduced by one. This situation could be helpful with the orientation errors in the 

tight integration as we can see from Fig. 5.8 (e.g. Horemuz and Sjöberg, 2001). 

5.5 Tests on the equivalent weight matrix  

In Section 4.4, we proposed to improve the robustness of the Kalman filter by means 

of the equivalent weight matrix (see Eq. 4.32). To test the performance of this robust 

Kalman filter, we take the X component of the position errors as an example. First we 

manually added several random errors with magnitudes from 3-8� every 10 seconds 

to the X component of the position errors, then we compare the differences of the 

position errors with and without the equivalent weight matrix. 

 

For conciseness, the original X component position error from Fig. (5.13) is re-drawn 

in Fig. 5.15 (i.e. without outliers). The position errors with random outliers and that 

with the equivalent weight matrix are shown in Fig. 5.16 (a) and (b), respectively. To 

compare the differences on position errors due to the equivalent weight matrix, the 

numerical results before and after equivalent weight matrix on each epoch with 

random outliers are listed in Table 5.1. 
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Fig. 5.15 Estimated position errors along north direction 

 

Table 5.1 Proportions of the position errors with random outliers. 

�0 denotes the original position errors without outliers at each epoch. �1 denotes those 

with random outliers, and � 2 denotes those with random outliers after equivalent 

weights. 

 

 10 s 20 s 30 s 40 s 50 s 60s 

(�1-	�0)/	�0 2.2 4.1 1.7 4.8 3.9 6.3 

(�2-	�0)/	�0 0.13 0.01 0.21 0.00 0.01 0.00 

 

In the table, �0 is actually the same values at every 10 seconds shown in Fig. 5.15. �1 

is the values at the same epochs in Fig. 5.16 (a), and �2 is that after equivalent weights 

in Fig. 5.16 (b). Therefore, from the value (�i-	�0)/	�0, i=1 and 2 we can evaluate the 

proportions of position errors caused by the random outliers and the improvement of 

the equivalent weight matrix. 

 

From Fig. 5.16 (a), we can see that the influence of the outliers on the original 

position error is remarkable since the outliers get into the system directly, while the 

curve in Fig. 5.16 (b) is quite smooth, i.e. the position error after equivalent weights 

can successfully reduce the influence of the added outliers. 

 

From both Table 5.1 and Fig. 5.16, it is quite straight forward to see the differences 

with and without equivalent weights. For the outliers with large magnitude, the 

equivalent weights could even be zero (i.e. these outliers are directly picked out) due 

to the fact that the position errors do not jump to a great extend compared to the 

previous ones.  
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Fig. 5.16 Estimated positioning errors with the equivalent weight matrix 

 

Here we apply the equivalent weights at the final position result level to show its 

effectiveness for the robust Kalman filter. If we want to apply it at the raw data level, 

the explicit relation between each sensor observation and the measurement residual 

should be derived first, so that from the residual variance we can change the weight 

for each observation at the raw data level. 

 

Of course there are many outlier detection algorithms, which could pick out the 

discontinuous or continuous outliers in the raw data. These outlier detection 

algorithms can cooperate with the robust Kalman filter if there are still some outliers 

that would not be easily picked out and get into the system as one of the normal 

observations. 

 

Last but not least, an important property of the Kalman filter should be mentioned: the 

error covariance matrix and the Kalman gain are independent of the actual 

measurements. They only depend on the noise models. Therefore we know that the 

outliers only influence the navigation errors, but have no influence on the error 

covariance matrix. If we know the true positions and compute the posterior error 

covariance matrix, the outliers also show great influence on it in such cases.  
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6. Summary, conclusions and recommendations 

6.1 Summary and conclusions 

The GPS/INS integrated navigation system is no doubt a hot research topic due to the 

complementary error characteristics of each navigation system. The INS position 

errors are small in a short term, but they grow without bound over time (see Fig. 2.3). 

On the other hand, GPS position errors are not so small within a short term, but the 

accuracy is bounded over time (see Fig. 3.3 and 3.4). However, the GPS signal outage 

is always a severe problem for GPS positioning (e.g. a 3-minute GPS signal outage 

can cause positioning error up to 1 km for a vehicle with speed 20 km/h). The normal 

GPS positioning update frequency is 1 Hz, and therefore it is not suitable for high 

dynamic applications individually. With INS the integrated system can provide at least 

100 updates during each GPS update interval, which is quite suitable for such high 

dynamic situations. 

 

The performance of the GPS/IMU integrated navigation system is greatly determined 

by the bridging ability of the stand-alone IMU during GPS signal outage. With better 

knowledge of the sensor stochastic errors, we can get better estimates of the 

systematic errors, i.e. the bias and drift of IMU, so that better navigation accuracy and 

longer bridging time can be reached. To analyze different types of stochastic errors, 

we tried to build up different stochastic models of the IMU sensors and the practical 

tests on a MEMS based IMU in Section 2.3 are carried out with these methods, 

including the AR model, GM process, PSD and AV analysis.  

 

Although different methods of estimating stochastic errors lead to different error 

models with different coefficients, some stochastic errors of a specific sensor can be 

verified by comparing and analyzing these methods and their results. The stochastic 

error models can be further used in the Kalman filter and applied in the GPS/IMU 

integrated system, which is helpful for bounding the error drift during GPS outage and 

the faster GPS signal reacquisition. 

 

Different levels of GPS/IMU integration are analyzed and compared in Chapter 3, i.e. 

loose, tight and ultra tight integration. In this thesis, the simulations are carried out 

with tight integration and practical tests are carried out with loose integration. 

Therefore the background of GPS observations and basic IMU navigation principles 

are introduced.      

 

The Kalman filter is a powerful tool for estimating the errors and data fusion in 

navigation systems. It can take advantage of different characteristics of both 

individual systems to provide an integrated navigation solution, which performance is 

superior to that of either subsystem. A key procedure of the Kalman filter is 

estimating the drifting parameters of the IMU sensors with the statistical information 



76 

 

of GNSS and IMU. So that the IMU can provide inertial navigation solution with 

better accuracy during GPS signals outage periods, and the improved position and 

velocity estimates from the IMU can then be used to reacquire GPS signal much faster 

when the GPS signal becomes available again. 

 

In Chapter 4, the EFK is briefly introduced for the state estimate with presence of the 

nonlinearities in practical navigation systems. Within the integrated navigation system, 

the data fusion algorithm (e.g. EKF in this thesis) is in the vital place for the whole 

system performance. The EKF can be regarded as the basic implementation of the 

GPS/IMU navigation system. Aiming at the practical problem of LVN, the physical 

model of land vehicles can be applied as additional constraints of the positioning 

errors for the navigation filter (see Fig. 4.5). As a result, the accuracy of the 

navigation system can be improved.   

 

Under different situations the kinematic models of LVN, i.e. velocity and height 

constraints as well as the lever arm correction, are proposed. The velocity constraint is 

suitable when the vehicle moves in constant direction, so the lever arm correction 

should be applied when turning the direction. When only 3 satellites are observed or 

the GPS signal outage is relatively long, the height constraint can be applied. 

 

Another practical hazards for the navigation system are sensor outliers. They can 

greatly influence the position accuracy if it is treated as a normal observation. The 

robust maximum likelihood estimation with equivalent weight function is applied to 

adaptively decrease the influence of the outliers. 

 

In Chapter 5, the detailed implementation of the EKF GPS/IMU integrated system in 

loose structure is proposed. The variance analysis of tight integration is briefly 

presented. With the GPS receiver and IMU setup on the top of a vehicle, we did the 

practical data processing based on real time data in an urban area. With these data we 

first presented the basic EKF navigation performance. Detailed filter performance 

analysis and possible reasons on the EKF divergence in the long run with this real test 

are given. The velocity constraint helps especially in urban area when there are 

frequent GPS signal outages. Under the present experiment limitations, we proposed 

to apply velocity constraint with real map information as a future research test. For 

height constraint, we show that it helps to the positioning even when there are only 3 

satellite observables. From the tight integration simulations, we can see that even 2 

satellites can provide enough information to keep the misalignment errors in a 

reasonable level when there is partial GPS signal outage.  

 

To test the effectiveness of the equivalent weights proposed in Chapter 4, we added 

some random outliers at the position error level, and compared the position errors 

under different magnitude at different epochs. The final results show that it can 

effectively reduce the influence on the sensor errors and may directly pick out some 

outliers which are far deviated from the other normal observations. Therefore it can 
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prevent the outliers from degrading the accuracy and improve the navigation 

performance. 

 

An important point that must be noted is that the GPS/IMU integrated navigation 

system is quite dependent on the accuracy of GPS, since we need GPS to correct the 

IMU sensor errors all the time. However, no GPS evaluation procedure is carried out 

in this thesis. As we all know, the GPS positioning accuracy is not high at the first 

epochs but would keep on improving during the beginning stage, and then it would be 

kept within a bounded level during the following time if not losing the track of the 

satellites (see Fig. 3.3). The accuracy of GPS can be evaluated in real time situations, 

including the satellite numbers, PDOP, multipath, etc. In addition, the GPS accuracy 

would vary from place to place. For example there are totally 11 observable satellites 

in southern Sweden but only 7 at the northern part.  

6.2 Recommendations for further research 

This thesis briefly introduces GPS/IMU integrated navigation structures, verifies 

some stochastic errors in MEMS based IMU and carries out the simulation of tight 

integration as well as the practical implementation of loose integration. However, both 

the theoretical and practical research on this topic can be improved in many aspects.  

Here we outline briefly some of them: 

 

1. The stochastic errors of the IMU sensors, especially the coloured noises. In 

this thesis we did the tests on the MEMS sensors and got different error 

models, which can be applied to augment the Kalman filter. However, the 

coloured noises should be first modeled by differential equations driven by 

white noise. 

2. Tight and ultra tight architecture issues. The tight integration structure is 

expected to be built based on simulations. Some key issues on tight and ultra 

tight integration systems can also be the further theoretical research topic, such 

as IMU aided GPS signal reacquisition. Due to the lab limitations, we do not 

plan to implement the whole tight system. 

3. The Kalman filter. In this thesis we just used EKF as the data fusion algorithm, 

which is a kind of first-order nonlinear approximation algorithm. EFK 

improvement against inaccurate system model and noise parameters can be 

continued as the research topic. There are other filters such as unscented 

Kalman filter, which can give an approximate accuracy to the second order.  

4. Another practical constraint: map match. Now it is quite common that GPS 

position works with a digital map, so map match technology can be another 

common practical constraint for LVN. The physical constraint of LVN can be 

combined with the map information in the future tests. 

 

5. System integrity: gross error and slowly growing error detection. It is better if 

we can detect these errors and pick them out before they get into the system. 
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Appendix A: Derivation of constrained Kalman filter 

 

Start from the Lagrangian optimization condition for the Kalman filter : 

 

Ω� =�	�

��


��
����
� + ���� − ����

����������� − ���� + 2�� �!���� − "�� = min 

                                                                        (A.1) 

Let the derivative of function �(. ) be denoted as )(. ), and let the equivalent weight 

be expressed as  
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 = *
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)
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                                                       (A.2) 

 

Take the partial derivative of Ω�with respect to ��� , and equate to zero. Then we 

obtain 

   

/Ω�
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  = 21��	��0� + 2���� − ����������� + 2�� !�                      (A.3) 

 

where the derivative of quadratic function  

2�30�
2� = 0� + 04�                                              (A.4) 

 

is applied. 

 

Considering the residual 

 

               1� = 0���� − 5�                                               (A.5) 

 

we obtain  

  

            (0���� − 5�)�	��0� + ���� − ����������� + �� !� = 0            (A.6) 

 

Transposing Eq. (A.6), we get 
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0��	��(0���� − 5�) + 	���(��� − ���) + !���� = 0              (A.7) 

  

 

From Eq. (A.7), we obtain the explicit solution of state estimate 

 

��� = (0��	��0� + 	���)��(0��	�5� + 	������) − (0��	��0� + 	���)��!����   (A.8) 

 

Eq. (A.8) is the same with Eq. (4.21) in Chapter 4. 

 

                                                                                                                  Q.E.D. 

 

 


