KAREN HAANDRIKMAN* - LEO J.G. VAN WISSEN**

Regional variation in short distance homogamy

1. INTRODUCTION

Geographical distance is a critical factor in partner choice. Most people choose a partner who lives within a short distance, and the Netherlands is no exception (Haandrikman, et al., 2008a). This geographical similarity between partners has been referred to as spatial homogamy, in addition to for instance social, educational, occupational, ethnic, religious and linguistic homogamy, which have been observed for most populations (e.g. Hendrickx, 1994; Kalmiijn, 1994; Schwartz and Mare, 2005; Stevens and Schoen, 1988; Uunk, 1996). A recent study (Haandrikman, et al., 2011) established considerable regional variation in the geographical distances between partners before cohabitation in the Netherlands, and it attributed most of the spatial differences to compositional effects, in particular socioeconomic characteristics of partners and to value orientations that are regionally differentiated. Less is known about the explanatory factors in those regions in which the extent of spatial homogamy, or short distance homogamy, is most explicit. The key question addressed in this study is therefore: which factors explain regional differences in choosing partners from the same area?

The spatial dimension of the partner market gives an indication of the extent of social contact between groups. High rates of spatial homogamy may indicate a high level of cohesion within a spatially defined group, while increasing spatial heterogamy indicates decreasing social distance between groups and increasing social openness (following Kalmiijn, 1998; Smits, 1996). In addition, decreases in spatial homogamy may impact processes of integration, as well as contribute to the development of networks, lifestyles, and the transcendence of national identities.

2. THE SPATIAL DIMENSION OF PARTNER CHOICE

The spatial dimension of the partner market has been addressed in a number of studies, the bulk of which were published in the 1940s and 1950s, in the UK and the US. Most studies found that the number of marriages declines as the distance between potential spouses increases. In the Netherlands, spatial

* Department of Human Geography, Stockholm University, Sweden
** Netherlands Interdisciplinary Demographic Institute, University of Groningen, Netherlands
Corresponding author: Karen Haandrikman; e-mail: Karen.haandrikman@humangeo.su.se
homogamy has been addressed in a number of historical studies, as discussed by Van Poppel and Ekamper (2005). In the 21st century, the Dutch still choose spatially homogamous partners: half of all new cohabiters find their partner within a 6-kilometre radius (Haandrikman et al., 2008a). These short distances are due to a number of factors. Firstly, proximity increases the likelihood of spontaneous encounters, and therefore distance decay strongly influences interaction, and hence partner choice. Moreover, notwithstanding increases in mobility, educational enrollment, and leisure time, bridging distance (still) involves time, energy and costs, and therefore partner choice occurs mostly at the local level. As a third factor, physical barriers, population density and degree of urbanisation influence the access to potential partners and therefore impact meeting opportunities. Living in peripheral areas and having to cross water bodies increases the average travel distances between partners. Fourthly, the spatial pattern of potential candidates with certain characteristics influences partner choice. Geographical clustering of socio-economic attributes or of religion, dialect or other cultural assets may give rise to feelings of cultural proximity among people, leading to the preference of a spatially homogamous partner. The preference for a partner with the same cultural qualities stimulates the choice of a partner from the same or a culturally related region, since people in the same or related regions share the same language and are assumed to share the same ideas concerning partnerships, family, and religion (Van Poppel and Ekamper, 2005).

Regional variation in partner choice results from different processes. Four sets of determinants have been identified: geographical, socioeconomic, demographic and cultural factors. The following sections describe these factors and discuss the expectations at the outset of the current study.

2.1 Geographical influences

Regional variation in partner choice may partly be explained by geographical factors. Theoretically, spatial homogamy might be expected to be stronger with increasing levels of urbanisation, due to high concentrations of people, jobs, educational opportunities and places of entertainment in urban areas. These concentrations mean a larger pool of potential partners and abundant meeting opportunities. On the other hand, increasing urbanisation widens the extent of social circles, implying an increasing distance at which partners are found (e.g. Blau, 1977). In a micro level analysis, distances to partners were found to be significantly longer for people living in peripheral and low density areas (Haandrikman et al., 2008a). However, in a spatial analysis explaining distances to partners, controlling for location and other factors such as education, income and culture, no effect of urbanisation was found (Haandrikman et al., 2011). Possibly, this might have been partly caused by an over-estimation of distances to partners in centrally located areas. The current paper offers the opportunity to investigate the effect of urbanisation on distances between partners without further distortion.
Living in a border area may also affect the distance at which partners are found. Spatial homogamy may be smaller in such areas, as the partner market theoretically extends across the border. However, national borders often coincide with linguistic borders, imposing a spatial barrier in partner choice.

Another pure geographical factor is the size of the region under study. We expect that with increasing size of an (administrative) area, spatial homogamy increases. For instance, if the spatial unit is the municipality, one would expect that in bigger municipalities, relatively more partners are found within municipal borders.

2.2 Socioeconomic influences

Many studies have found that the higher social classes tend to find partners at greater distances from their place of origin (e.g. Clegg et al., 1998; Coleman and Haskey, 1986; Ekmper et al., 2011; Fornasin, 2011; Haandrikm an et al., 2008b; Küchemann et al., 1974; Van Poppel and Ekmper, 2005). A combination of preferences, strong norms to marry within the class, and geographically extensive opportunities to meet partners might lead to greater distances. Especially in the past, the lower social classes were more often locally oriented, partly because of limited means, including the means of travel. As people with the same characteristics tend to cluster in space (Goode, 1982; Winch, 1971), regional differences in marital distances between different socio-economic groups may result. Indeed, Haandrikman, van Wissen, and Harmesen (2011) found that regional educational and income differences explained a major part of regional differences in distances between partners. Based on these findings, we expect more short distance homogamy in areas with a concentration of lower social classes.

2.3 Demographic influences

Opportunities are a key element in the partner choice process. The availability of potential partners in certain age groups affects meeting and mating opportunities (De Graaf et al., 2003; Van Poppel et al., 2001). The most extreme case is the so-called ‘marriage squeeze’, where men or women face a shortage of partners their age because of variations in birth numbers (Ni Bhrolcháin, 2001). For the current study we expect that in areas with a relatively low share of potential partners, the share of partners chosen from that area will be smaller.

2.4 Cultural influences

In the past, regional differences in nuptiality have been found to be related to cultural factors. Regions with similar cultural characteristics showed similar
patterns of marriage, even after controlling for the level of modernisation (Coale and Watkins, 1986). Regional cultural differences in religion, language and value orientations are among the most studied and important variables in this regard. Nowadays, religion still serves as a strong predictor of spatial demographic differences in the Netherlands (Sobotka and Adigüzel, 2002). In spite of the ongoing secularisation process, some Christian denominations still have a marked influence on demographic behaviour through the shaping of attitudes concerning family matters. A recent study by Haandrikman, et al. (2008a) found that spatial homogamy is particularly high in the Bible belt, a strip of towns and villages stretching from the southwest to the north of the Netherlands (see also Knippenberg, 2005). The Dutch tend to marry within their religious group and the level of endogamy differs per denomination (Hendrickx, 1994). Members of Protestant denominations are especially endogamous when compared with the more liberal denominations. Therefore, we expect religiosity to exert a strong effect on the regional distribution of spatial homogamy.

As linguistic differences act as broad cultural borders, linguistic groups may be created (e.g. Van Langevelde, 1999). Speaking a dialect or a regional language may induce a preference for partners from the same language group, as was found in the US (Stevens and Schoen, 1988). Language then acts as a factor that fosters cultural proximity. In the Netherlands, there are three officially recognized regional languages (as stated in the European Charter for Regional or Minority Languages) besides standard Dutch, namely Frisian, Low Saxon, and Limburgish. Regional language speakers are geographically clustered, which is clearly illustrated by the dialect map of Daan and Blok (1969) that identified 28 geographically clustered dialect groups on the basis of the perception of dialect speakers. Heeringa (2004) showed that the three recognized languages are spoken in areas with significant borders around them, as measured by dialect distances. We therefore expect that speaking a regional language increases the likelihood of spatial homogamy.

As demographic behaviour has been found to be influenced by value changes (e.g. Van de Kaa, 2001), differences in value orientations may lead to different levels of spatial homogamy. Brons (2006) studied dimensions of regional Dutch culture and found considerable regional variation in value orientations. His measurement of value orientations is derived from indirect measures of demographic behaviour, religious adherence, and voting behaviour, and it is based on Hofstede’s (1980; 1991) study of national cultures. Two dimensions of regional culture are expected to have an impact on spatial homogamy: post-materialism and classic individualism. High scores on these indices are related to modernisation, as they indicate an increased focus on self-development, little religious influence, and reduced focus on traditional households and families. To be exact, high scores on post-materialism are associated with a focus on self-development and self-expression, co-operation and egalitarianism, (very) small households, high voting support for progres-
sive parties and environmental consciousness, while low scores are associated with a focus on material wellbeing, competitiveness and authority, large households, and high vote counts for conservative parties. High scores on classic individualism are associated with more importance for the individual, postponement of marriage and childbirth and many votes for liberal parties, while low scores are associated with more importance for national or collective interests and relatively early marriage and childbirth (Brons, 2006). Haandrikman et al. (2011) found that distances to partners are significantly higher in areas with high scores on these dimensions. Modernisation thus impacts the distance at which partners are found. We therefore expect that with high scores on these modernisation indices, the extent of spatial homogamy will be less.

3. DATA AND METHODS

To measure the extent of short distance homogamy, aggregated population register data were used. In addition to selecting all new married couples in the year 2004, all new unmarried cohabiters in that year were included, based on household positions assigned by Statistics Netherlands. All those who were cohabiting on 1 January 2005, and who were not cohabiting the year before, were considered. The resulting dataset contains 326,000 individuals, or 163,000 couples. Geographic origin of partners was measured by the address before cohabitation, i.e. on 1 January 2004. The municipality is the spatial unit of analysis, and there were 483 municipalities in the Netherlands in 2004. Short distance homogamy was measured as the proportion of chosen partners from the same municipality. We use the logit transformation of the proportion

\[
\text{logit}(p) = \ln \frac{p}{1-p}
\]

as the dependent variable. This transformation guarantees that predicted proportions always fall within the range 0-1.

Using standard linear regression of the logit of the proportion choosing a partner from the own municipality has two potential problems. First, the logit transformation introduces heteroscedasticity in the error terms, which can be remedied using weighted regression. We used weights equal to \(\sqrt{p(1-p)}\) which were rescaled to match the original sample. A second potential problem, common to all spatial analyses, is the presence of spatial autocorrelation. Spatial autocorrelation may bias the estimates of the standard errors of the regression coefficients. In the models, the spatial autoregressive coefficient, as measured by the statistic Moran’s I, was found to be significant but very
small: 0.182, using a spatial weights matrix based on Queen’s second-order contiguity. The model coefficients, with and without correcting for spatial autocorrelation, were highly similar. Therefore, we present the simplest models, without correcting for spatial autocorrelation.

As the main interest in this paper is in the spatial differences in partner choice behaviour and its potential explanatory factors, a spatial analysis was conducted, using aggregate data. This type of analysis entails the risk of ecological fallacies, and care is needed in the interpretation of results.

Data on explanatory variables were derived from several sources. Geographical variables included the size of a municipality, the average surrounding address density of an area that was used as a measure of degree of urbanisation (both derived from Statistics Netherlands), and a dummy indicating whether a municipality borders Germany or Belgium or not. A second set of socio-economic status variables included educational level and income. As a proxy for the level of education, the proportion of cohabiters that ever studied at an institute of higher education was included. This choice was made as Statistics Netherlands does not provide useful municipal data on the educational level of inhabitants. The current variable was constructed based on linkage of our cohabiters file with a micro dataset from the so-called CRIHO files, which lists all persons who studied at an institute of higher education in the Netherlands during the period 1986-2004. Matching the CRIHO files with the cohabiters file, the educational level of a person was approximated by creating a dummy variable for ‘ever studied at a university or vocational training institute’. Regional income statistics were derived from the Regional Income Distribution 2004\(^1\) from Statistics Netherlands. Income was operationalised as the total financial income from all jobs and other resources, such as real estate revenues and other assets. For the regional analysis, the proportion of inhabitants in the lowest (less than Euro 6,700 per annum) and the highest (more than Euro 24,300 per annum) income group in each municipality were included. The data include everyone living in one of the 467 municipalities on 1 January 2005; due to municipal redistributions since 2004, some adaptations were made\(^2\). Thirdly, a demographic variable that was included to capture eligible partners is the proportion of 20-to-30-year olds that are currently unmarried, as most new partnerships are formed in this age group. Finally, the following cultural indicators were included: a measure of religiosity, the earlier-mentioned dimensions of core value orientations proposed by Brons (2006) and three regional language indicators. Religiosity was measured as the total proportion of people in an area that said to be either Catholic, Dutch Reformed, Re-reformed or Muslim according to surveys held by Sta-

1 The data are based on registers from the Ministry of Finance and the population register (GBA), combined with a sample of 1.9 million households.

2 For 20 municipalities that ceased to exist per 1 January 2005, mostly in the province of Gelderland, income data from the Regional Income Distribution 2003 was used instead.
tistics Netherlands\(^4\). The dimensions post-materialism and classic individual-
ism are measured at municipal level, and they are based on demographic, reli-
gious and voting behaviour in the period from 1997 to 2003\(^4\). They were
matched to the municipality where cohabiters resided before they started liv-
ning together with their partner.

Regional language was operationalised by distinguishing three core
areas in which Frisian, Low Saxon, and Limburgish is spoken. Frisian is
widely spoken in the province of Friesland, whereas Limburgish is the region-
al language of Limburg. Low Saxon is spoken in a larger area, namely in
Groningen, Drenthe, Overijssel and parts of Gelderland, which were classi-
ified as Low Saxon-speaking areas.

4. RESULTS

Table 1 displays some descriptive statistics of the independent variables
included in the analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Range</th>
<th>Valid N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border municipality</td>
<td>0.15</td>
<td>0.4</td>
<td>0.0 - 1.0</td>
<td>483</td>
</tr>
<tr>
<td>Area of land (hectares/1,000)</td>
<td>6.99</td>
<td>6.4</td>
<td>0.2 - 46.0</td>
<td>483</td>
</tr>
<tr>
<td>Surrounding address density/1,000</td>
<td>0.88</td>
<td>0.7</td>
<td>0.1 - 6.0</td>
<td>483</td>
</tr>
<tr>
<td>Socioeconomic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion higher educated</td>
<td>25.53</td>
<td>7.1</td>
<td>10.2 - 61.5</td>
<td>483</td>
</tr>
<tr>
<td>Proportion lowest income group (<€ 6,700)</td>
<td>10.76</td>
<td>1.5</td>
<td>7.0 - 19.0</td>
<td>479(^4)</td>
</tr>
<tr>
<td>Proportion highest income group (≥€ 24,300)</td>
<td>21.01</td>
<td>5.0</td>
<td>9.0 - 44.0</td>
<td>481(^4)</td>
</tr>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of 20-30 year old population who are unmarried</td>
<td>82.31</td>
<td>6.0</td>
<td>51.6 - 94.2</td>
<td>483</td>
</tr>
</tbody>
</table>

\(^1\) In the POLS surveys that were held over the years 2000-2002, people responded to the question “To which denomination do you adhere?”, after which one of the above-mentioned categories, plus either “other denomination” or “no denomination” could be chosen. The data are provided for each of the 40 COROP regions (NUTS-3) (Statistics Netherlands 2011), which were then connected to municipalities. Here, the Dutch word ‘gereformeerd’ is translated as ‘Re-reformed’ while ‘Nederlands hervormd’ is translated as ‘Dutch reformed’.

\(^2\) In 2004, 11 municipalities ceased to exist and were merged into 5 new municipalities. The indices for the new municipalities were recalculated by weighing the indices with the population of the old municipalities in 2003.
Figure 1 shows the regional variation in short distance homogamy in 2004. On average, a third of all persons that started cohabiting chose a part-
ner from their own municipality; with regional variation ranging from 0 in the small municipality of Rozendaal to 84 percent in Urk. A cursory visual assessment demonstrates a pattern of high values in cities and large municipalities, in the north and east of the country and on the islands, and a clustering of low values in the western part of the country and in smaller municipalities.

Table 2 shows the results of the weighted regression analysis of short distance homogamy. At each step, a set of explanatory variables is added to the analysis. In the first model, only geographic variables are entered. Geography explains a major part of the regional variation in short distance homogamy, as seen from the model fit statistics. Scale is particularly important. With increasing size of an area, short distance homogamy increases, as was expected. The relation between urbanisation and short distance homogamy is straightforward from this analysis: with increasing degree of urbanisation, as measured by the surrounding address density, short distance homogamy increases. This points to a sufficient number of eligible partners in urban areas, and wider partner recruitment areas in rural areas. Moreover, living in a border municipality increases the probability of finding a partner within the same municipality in the first model, but this effect disappears when adding more explanatory variables. This might be caused by a combination of both increased short distance homogamy due to linguistic or other cultural borders, and partner choice across the border, levelling out the total effect.

Table 2 - Weighted regression of short distance homogamy (N=483)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border municipality</td>
<td>St. B 0.12</td>
<td>T 3.17 ***</td>
<td>St. B 0.05</td>
<td>T 1.45</td>
</tr>
<tr>
<td>Area of land (hectares/1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrounded address density/1,000</td>
<td>0.45 11.31 ***</td>
<td>0.31 8.88 ***</td>
<td>0.30 8.77 ***</td>
<td>0.32 8.88 ***</td>
</tr>
<tr>
<td>Socioeconomic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion higher educated</td>
<td></td>
<td></td>
<td>-4.56 ***</td>
<td>-0.12 -2.86 **</td>
</tr>
<tr>
<td>Proportion lowest income group</td>
<td>5.70 ***</td>
<td>0.19 4.72 ***</td>
<td>0.19 4.39 ***</td>
<td></td>
</tr>
<tr>
<td>Proportion highest income group</td>
<td>-9.17 ***</td>
<td>-0.36 -9.30 ***</td>
<td>-0.31 -6.65 ***</td>
<td></td>
</tr>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion 20-30 years-olds unmarried</td>
<td>-0.10 -2.73 **</td>
<td>-0.06 -1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of religious inhabitants</td>
<td>0.11 2.39 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index for post-material</td>
<td>0.05 1.54 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index for classic individualism</td>
<td>-0.12 -3.08 **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living in Frisian-speaking area</td>
<td>0.11 2.73 **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living in Low Saxon-speaking area</td>
<td>0.01 0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living in Limburgish-speaking area</td>
<td>-0.10 -2.18 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.27 0.49</td>
<td>0.50 0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F change</td>
<td>60.82 ***</td>
<td>69.46 ***</td>
<td>7.46 ***</td>
<td>5.23 ***</td>
</tr>
</tbody>
</table>

Note: Columns represent standardized betas, t-statistics and levels of significance (* p<0.05 **p<0.01 ***p<0.001) for each model.
As expected, socio-economic determinants make a difference in short distance homogamy. The higher the concentration of individuals with a low income, the higher the degree of short distance homogamy. At the other end of the spectrum, high educational level and especially high average income of people within an area lead to decreased short distance homogamy. Both are in line with our expectations and the literature.

Many studies have shown that the opportunities to meet partners play an important role in the partner choice process. In this analysis, we have measured opportunity by the proportion of unmarried persons among the ages of 20 to 30 in a region. The analysis shows that opportunity significantly decreases the probability of finding a partner in the same area, which is unexpected. However, when cultural factors are added in the next model, the effect disappears.

The set of cultural factors shows some mixed results. As expected, religiosity increases the chances for short distance homogamy. In the other direction, high scores on classic individualism lower the extent of spatial homogamy. We find no effect for post-materialism. Speaking a regional language also increases the chances of finding a partner nearby, at least for those living in the Frisian- and Limburgish-speaking areas of the Netherlands.

Regional variation in short distance homogamy is primarily governed by geographic and socio-economic determinants, as can be seen from the model fit statistics. From the literature on marital distances it was known that the higher social classes tend to find partners further away, but the important role of geography has not been reported before.

5. DISCUSSION

The analysis of regional differences in short distance homogamy suggests a variety of determinants of the spatial dimension of partner choice. Spatial variation in short distance homogamy is largely explained by a combination of geographical and socio-economic factors, with a smaller but also significant portion explained by cultural factors. The socio-economic explanation of distances to partners is the most documented, whereas our findings that geography and culture contribute to regional differences in spatial homogamy is relatively new. The greater the size of an area and the higher the degree of urbanisation, the more partners are found within the area. Although no effect of living in areas bordering Germany or Belgium was found, language does matter. In the Frisian-speaking and the Limburgish-speaking areas, more partners are chosen from within the area compared to other less homogamous language areas. Language creates borders between groups of people with otherwise similar cultural characteristics. These are not that easily overcome as shown by the low level of intermarriage.
The socio-economic explanation is one of the oldest and most documented in studies on marital distances (e.g. Clegg et al., 1998; Coleman and Haskey, 1986; Haandrikman et al., 2008b; Küchemann et al., 1974; Van Poppel and Ekamper, 2005). This study also found that education and income influence the distance at which partners are found. In areas with concentrations of persons with low income, short distance homogamy tends to be more pronounced. The reasons might be related to limited means for travelling, combined with the local orientation of the lower social classes (see for instance Haandrikman and Hutter, 2011). On the other hand, in areas with high proportions of the higher educated and of those with the highest incomes, fewer partners are found close by. These groups tend to have more contacts with people outside of their own community, in part due to greater openness to the outside world in general and a greater likelihood of means to travel.

Living in cities clearly influences the geographical origin of partners. High density and thus high concentrations of people, jobs, schools, and places of entertainment offer increased opportunities for interaction between individuals, causing higher rates of short distance homogamy, thereby confirming earlier findings (Haandrikman et al., 2008a) but contradicting another study (Haandrikman et al., 2011), where the geographical distance between partners was first corrected for location and then explained, but in which no other geographic variables were included. Although partners in cities are found nearby, it does not mean that they were also born nearby, as many urban dwellers have different geographical origins. Not only do cities accommodate many international migrants, internal migrants make up a large share of the population as well (for Amsterdam, see Harmsen and Van Agtmaal-Wobma, 2007). In a historical study on nineteenth century Italy, Fornasin (2011) documented substantial differences in distance homogamy between geographic areas, and attributed part of these differences to internal mobility and international migration. Van de Putte (2003) in a study on nineteenth century Flemish cities found that rural migrants in larger cities tend to marry each other. Future studies should therefore also consider the migration histories of partners.

It has been argued that modernisation leads to a more open partner choice, in which geographical origin is no longer of importance (Beekink et al., 1998; Van de Putte, 2003). The broadening of ideological horizons affects the preferences for partners and the norms for partner choice. Indeed, in this study we find that in areas with a high proportion of religious people, short distance homogamy is the rule, while in areas characterized by individualists, partners from further away are preferred. Other authors have claimed that modernisation enhances homogamy of ethnic origin, as globalisation has increasingly enabled non-western groups to maintain regular contact with and to visit their country of origin (Esveldt and Van Poppel, 2005).
The main interest of this paper has been in the regional differences in short distance homogamy and its explanatory factors. We therefore chose to conduct a multivariate regression, taking into account not only socioeconomic and demographic covariates, but also geographic and cultural factors. As the data were mostly aggregated from micro-level data, we should note that conclusions could only be made on the aggregated units of analysis, i.e. municipalities, instead of on individual persons. This problem of ecological fallacy can be overcome by using a multilevel model, in which individual and group characteristics are separately specified. A recent example is the marriage market study by Maas and Zijdeman (2001).

From this study we have learned that regional cultural indicators partly account for patterns of short distance homogamy, where culture is defined by language, religion and modernisation. The spatial proximity of different cultural groups leads to an endogamous partner choice, which indicates higher levels of cohesion within the group, but decreasing openness to others. Culture, geography and socio-economic class determine the predominant spatial patterns of social contact, including the choice of a life partner.

References

REGIONAL VARIATION IN SHORT DISTANCE HOMOGAMY

DAAN J., BLOK D.P. (1969), Van Randstad tot landrand; toelichting bij de kaart: Dialekten en naamkunde, volume XXXVII or bijdragen and mededelingen der dialektencommissie van de Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam [From the Randstad to the border; explanation to the map: Dialects and the study of names, volume XXXVII of contributions and communications of the dialect committee of the Royal Dutch Academy of Sciences in Amsterdam], Noord-Hollandsche Uitgevers Maatschappij, Amsterdam.

UUNK W. (1996), Who marries whom? The role of social origin, education and high culture in mate selection of industrial societies during the twentieth century, Katholieke Universiteit Nijmegen, Nijmegen.

