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Abstract. This is a study of morphisms in the category of finite dimensional

absolute valued algebras, whose codomains have dimension four. We begin by
citing and transferring a classification of an equivalent category. Thereafter,

we give a complete description of morphisms from one-dimensional algebras,

partly via solutions of real polynomials, and a complete, explicit description
of morphisms from two-dimensional algebras. We then give an account of the

reducibility of the morphisms, and for the morphisms from two-dimensional

algebras we describe the orbits under the actions of the automorphism groups
involved. Parts of these descriptions rely on a suitable choice of a cross-section

of four-dimensional absolute valued algebras, and we thus end by providing

an explicit means of transferring these results to algebras outside this cross-
section.

1. Definitions and Background

An algebra A = (A, ·) over a field k is a vector space A over k equipped with a
k-bilinear multiplication A×A→ A, (x, y) 7→ xy = x · y. Neither associativity nor
commutativity is in general assumed. A is called unital if it contains an element
neutral under multiplication; in that case, such an element is unique, and will be
denoted by 1. If A is non-zero, and if for each a ∈ A \ {0}, the maps La : A →
A, x 7→ ax and Ra : A → A, x 7→ xa are bijective, A is called a division algebra.
This implies that A has no zero divisors and, if the dimension of A is finite, it is
equivalent to having no zero divisors.

An algebra A is called absolute valued if the vector space is real and equipped
with a norm ‖ · ‖ such that ‖xy‖ = ‖x‖‖y‖ for all x, y ∈ A. By [1] the norm in
a finite dimensional absolute valued algebra is uniquely determined by the algebra
multiplication if the algebra has finite dimension. The multiplicativity of the norm
imlplies that an absolute valued algebra has no zero divisors and hence, if it is
finite dimensional, that it is a division algebra. The class of all finite dimensional
absolute valued algebras forms a category A, in which the morphisms are the non-
zero algebra homomorphisms. Thus A is a full subcategory of the category D(R) of
finite dimensional real division algebras. It is known that morphisms in A respect
the norm, and are hence injective. (Injectivity in fact holds for all morphisms in
D(R).)
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1.1. Notation.

1.1.1. Complex Numbers and Quaternions. The real and imaginary part of A ∈
{C,H} will be denoted by <A and =A, respectively. We also use the notation
a = <(a) + =(a) for elements a ∈ A. The letters i, j,k denote the standard basis
of the imaginary space =H of the quaternion algebra H, and i will also be used
as the imaginary unit in C as confusion is improbable. Complex and quaternion
conjugation (negation of the imaginary part) will be denoted by x 7→ x for x ∈ C
or x ∈ H. A quaternion with vanishing imaginary part and real part r is simply
denoted by r in view of the embedding of R into H, and the notation S(H) and
S(=H) will be used for the set of quaternions of norm one and the set of purely
imaginary quaternions of norm one, respectively. For p ∈ S(H) we have p−1 = p,
and we will denote the map x 7→ pxp−1 = pxp by κp and refer to it as conjugation
by p.

1.1.2. Other Conventions. Throughout the paper, the abbreviations νc := cos ν
and νs := sin ν will be used to enhance readability, as trigonometric expressions are
abundant in many equations, where at the same time the trigonometry itself is of
little importance.

Moreover, the elements 1 and −1 of the cyclic group C2 will often be written
simply as + and −, respectively. If n is a positive integer, the notation n = {k ∈
N | 1 ≤ k ≤ n} will be used. Square brackets [ ] around a sequence of vectors
will denote their span, whereas 〈, 〉 denotes the following inner product of two
quaternions: given x = s0 + s1i + s2j + s3k and x′ = s′0 + s′1i + s′2j + s′3k, set

〈x, x′〉 =
∑3
i=0 sis

′
i. The norm of the absolute valued algebra H is then given by

‖x‖ =
√
〈x, x〉 for all x ∈ H.

Finally, given a category C, and objects A,B ∈ C, the class of morphisms in C
from A to B is denoted C(A,B). Given a group G acting from the left on a set S,
we denote by GS the category whose object class is S, and in which for x, y ∈ S, a
morphism from x to y is a triple (x, y, g) such that g · x = y. When the objects x
and y are clear from context, we will denote such a morphism simply by g to avoid
cumbersome notation.

1.2. History and Outline. In 1947, Albert characterized all finite dimensional
absolute valued algebras as follows. [1]

Proposition 1.1. Every absolute valued algebra is isomorphic to an orthogonal
isotope (A, ·) of a unique A′ ∈ {R,C,H,O}, i.e. A = A′ as a vector space, and the
multiplication in A is given by

x · y = f(x)g(y)

for all x, y ∈ A, where f and g are linear orthogonal operators on A, and juxtapo-
sition is multiplication in A′.

Moreover, Albert shows that the norm in A coincides with the norm defined in
A′.

Thus the objects of A are partitioned into four classes according to their dimen-
sion, and the class of d-dimensional algebras, d ∈ {1, 2, 4, 8}, forms a full subcat-
egory Ad of A. For d > 1 we moreover have the following decomposition due to
Darpö and Dieterich [5].
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Proposition 1.2. Let A ∈ Ad where d ∈ {2, 4, 8}. For each a, b ∈ A \ {0} it holds
that sgn(det(La)) = sgn(det(Lb)) and sgn(det(Ra)) = sgn(det(Rb)).

1 The double
sign of A is the pair (i, j) ∈ C2

2 where i = sgn(det(La)) and j = sgn(det(Ra)) for
all a ∈ A \ {0}. Moreover, for all d ∈ {2, 4, 8}, it holds that

(1.1) Ad =
∐

(i,j)∈C2
2

Aijd

where Aijd is the full subcategory of Ad formed by all objects having double sign
(i, j).

Furthermore, the following has been achieved towards obtaining a complete un-
derstanding of the category A.

• A classification of the categories A1 and A2, and a complete description of
the set A(R, B) for B ∈ A2.
• A classification of the category SO3

(SO3 × SO3), where the action is by
simultaneous conjugation, and a proof that this category is equivalent to
Akl4 for any (k, l) ∈ C2

2 . The equivalence is expressed in terms of a category
C and equivalences Fkl : C → Akl4 and G : C → SO3(SO3 × SO3). (See [7].)
• A description of the automorphism groups in A4. (See [7].)
• An explicit description of all those A ∈ A4 for which there is a morphism
φ : C → A for some C ∈ A2. (See [8].)
• Conditions for when two eight-dimensional algebras are isomorphic [2], and

partial classifications of the subcategory A8, see e.g. [4].

In the remainder of this section, the first item in this list will be summarized.
Section 2 recollects the results of the second item, and expresses it in terms of
a cross-section for A4. The main results of the present article, and consequences
thereof, are given in Section 3, where we investigate morphisms from R to absolute
valued algebras of dimension four, and in Section 4, where the same is done for
morphisms from two-dimensional absolute valued algebras. In Section 5 we study
the irreducibility of the morphisms of Section 3, and in Section 6 we determine
of the number of orbits of A(C,A) for C ∈ A2 and A ∈ A4, under the action of
the automorphism groups of C and A by composition. The final section supplies
technical arguments to carry results that have been obtained for a specific cross-
section of A4 to general four-dimensional absolute valued algebras.

1.3. Basic Results. It is known that A1 is classified by R, and that every C ∈ A2

with double sign (i, j) ∈ C2
2 is isomorphic to Cij , this being the algebra with

underlying vector space C, and multiplication

(x, y) 7→ xjyi,

where ∀c ∈ C, c+ = c and c− = c, and juxtaposition is multiplication in C.2

To describe the morphisms from R to algebras of dimension two, we recall the
following result, which will be important in the coming sections.

Proposition 1.3. Let A be a finite dimensional absolute valued algebra, and let
Ip(A) be the set of all idempotents in A \ {0}. Then

1The sign function sgn : R \ {0} → {1,−1} is defined by sgn(r) = r/|r|.
2The notation Cij is used due to practical advantages over the standard notation C = C++,

∗C = C+−, C∗ = C−+, and
∗
C = C−−.



4 S. ALSAODY

(1) Ip(A) 6= ∅, and
(2) for each algebra homomorphism ψ : R → A, ψ(1) is an idempotent, and

the map ψ 7→ ψ(1) gives a one-to-one correspondence between A(R, A) and
Ip(A).

The first item in fact holds for any finite dimensional non-zero real or complex
algebra where x2 6= 0 for each x 6= 0 [9], and the second is readily checked. For
absolute valued algebras of dimension two, it is known that Ip(Cij) = {1} for
(i, j) 6= (−,−), and Ip(C−−) = {x ∈ C | x3 = 1}. Hence, the category A≤d of
absolute valued algebras with dimension at most d is understood for d = 2, and we
intend to gain the same understanding of A≤4.

2. Absolute Valued Algebras of Dimension Four

2.1. Introduction. In view of Proposition 1.2, the categoryA4 of four-dimensional
absolute valued algebras admits the decomposition

(2.1) A4 =
∐

(k,l)∈C2
2

Akl4

where for each (k, l) ∈ C2
2 , Akl4 consists of all algebras in A4 with double sign (k, l).

Each object in A4 is isomorphic to an object with multiplication defined in terms
of quaternion multiplication as follows. [8]

Proposition 2.1. For each A ∈ Akl4 there exists A′ = (A′, ·) ∈ Akl4 and a, b ∈ S(H),
such that A ' A′ and the multiplication · is given by

(2.2)

x · y = axyb if (k, l) = (+,+),
x · y = xayb if (k, l) = (+,−),
x · y = axby if (k, l) = (−,+), and
x · y = ax yb if (k, l) = (−,−),

where juxtaposition denotes multiplication in H. Conversely, given any a, b ∈
S(H), (2.2) determines the structure of an algebra in Akl4 for each (k, l) ∈ C2

2 .

An algebra A′ ∈ Akl4 with multiplication given by (2.2) for some a, b ∈ S(H) will
be denoted by Hkl(a, b).

2.2. Classification. It was shown in [7] that for each (k, l) ∈ C2
2 there are equiv-

alences of categories

(2.3) Akl4
Fkl

←−−−−−− E(S(H)× S(H))
G−−−−→ SO3

(SO3 × SO3)

where E = C2
2 × (S(H)/{1,−1}) acts on S(H)× S(H) by

E × (S(H)× S(H))→ S(H)× S(H), ((ε, δ, p{1,−1}), (a, b)) 7→ (εpap, δpbp),

and SO3 acts on SO3 × SO3 by simultaneous conjugation

SO3 × (SO3 × SO3)→ SO3 × SO3, (ρ, (φ, ψ)) 7→ (ρφρ−1, ρψρ−1).

The functors Fkl are defined on objects by Fkl(a, b) = Hkl(a, b), and on morphisms
by

Fkl(ε, δ, p{1,−1}) = εδκp.
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The functor G is defined on objects by G(a, b) = (κa, κb), and G(ε, δ, p{1,−1}) is
the morphism defined by

(φ, ψ) 7→ (κpφκp, κpψκp)

for each (φ, ψ) ∈ SO3 × SO3. The fact that these constructions are well-defined
was shown in [7].

We begin by applying the equivalences of categories to express the classification
of SO3

(SO3 × SO3), given in [7], as a classification of all four-dimensional absolute
valued algebras, i.e. to describe the image of the given cross-section of SO3

(SO3 ×
SO3) under the functor

Fkl ◦ H
for each (k, l) ∈ C2

2 , where H is a quasi-inverse functor to G. This is the content of
the following result.

Theorem 2.2. Let u, v ∈ S(=H) be any two orthogonal elements. Let (k, l) ∈ C2
2

and A ∈ Akl4 . Then A ' Hkl(a, b) where a, b are given by

(2.4) a = αc + αsu, b = βc + βs(γcu+ γsv)

for precisely one triple (α, β, γ) satisfying one of

(1) (α, β, γ) ∈ [0, π/2]× {0} × {0},
(2) (α, β, γ) ∈ {0} × (0, π/2]× {0},
(3) (α, β, γ) ∈ (0, π/2)× (0, π)× [0, π/2),
(4) (α, β, γ) ∈ {π/2} × (0, π/2]× [0, π/2), or
(5) (α, β, γ) ∈ (0, π/2]× (0, π/2]× {π/2}.

Remark 2.3. Note that in case 1 above, the restriction on γ is for the sake of
uniqueness; indeed, when β = 0, it holds that b = 1 for any value of γ. Observe
moreover that the five cases are mutually exclusive.

Theorem 2.2 follows from the classification of SO3
(SO3 × SO3) and the explicit

description of the equivalences of categories (2.3) given in [7] and quoted above.
These use the following fact from [3]: given a quaternion q = cos θ+w sin θ, where
w ∈ S(=H), the map x 7→ qxq is a rotation in =H with axis w and angle of rotation
2θ.

We fix a pair of quaternions u, v ∈ S(=H) for the sake of definiteness as follows.

Definition 2.4. The set of all Hkl(a, b) ∈ A4, with (k, l) ∈ C2
2 and

(2.5) a = αc + αsi, b = βc + βs(γci + γsj)

with (α, β, γ) as in Theorem 2.2, is called the canonical cross-section of A4.

The particular choice of orthogonal quaternions in Definition 2.4 is made in order
to simplify calculations, and will be used throughout.

3. Morphisms from R to Four-Dimensional Algebras

3.1. Preparatory Results. We now study morphisms from the unique (up to
isomorphism) one-dimensional absolute valued algebra R to four-dimensional al-
gebras belonging to the canonical cross-section of Definition 2.4, thus acquiring
an understanding of A(R, A) for each A ∈ A4. Moreover, the results of Section
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7 below transfer details specific to algebras of the canonical cross-section to any
four-dimensional absolute valued algebra given as Hkl(a, b) for some a, b ∈ S(H).

By virtue of Proposition 1.3, for each A ∈ A4, describing A(R, A) amounts
to describing all non-zero idempotents in A. Rewriting the equations (2.2) with
y = x we thus see that these idempotents are precisely the non-zero solutions to
the quaternion equation

(3.1)
x2 = axb for A++

4 ,
x2 = axb for A+−

4 and A−+4 , and

x2 = axb for A−−4 .

To simplify the quadratic terms in the above equations, we recall the notion of
a quadratic algebra.

Definition 3.1. An algebra A over a field k is called quadratic if it is non-zero,
unital, and if for each x ∈ A there exist λ, µ ∈ k such that

x2 = λx+ µ1.

Calculating x2 for arbitrary x ∈ H proves the following result.

Lemma 3.2. H is quadratic and each x ∈ H satisfies x2 = 2<(x)x− ‖x‖21.

With this in mind, we construct for each real number a set of matrices in R4×4,
to be used as the main tool in investigating non-zero idempotents.

Definition 3.3. Given a, b ∈ S(H), and (k, l) ∈ C2
2 , the maps Mkl

a,b : R→ R4×4 are
defined by

(1) M++
a,b (r) = 2rI − LaRb

(2) M+−
a,b (r) = M−+a,b (r) = 2rI − LaRb

(3) M−−a,b (r) = 2rK − LaRb
for all r ∈ R, where I is the identity matrix in R4×4 and K the matrix of quaternion
conjugation.

Now, due to Lemma 3.2, the following proposition outlines the method that
will be used to determine the idempotents. To simplify notation we identify a
quaternion x = r + s1i + s2j + s3k with the column matrix (r, s1, s2, s3)T , and use
the notation Lc and Rc, c ∈ H, also for the matrices in the standard basis of left
and right multiplication by c, respectively.

Proposition 3.4. Given (k, l) ∈ C2
2 , and a, b ∈ S(H), let A = Hkl(a, b), and let

x = r + s1i + s2j + s3k ∈ A. Then

(1) x ∈ Ip(A) if and only if Mkl
a,b(r)x = 1 and ‖x‖ = 1, and

(2) if A belongs to the canonical cross-section, then for each fixed r, the quater-
nion equation Mkl

a,b(r)x = 1 is equivalent to a linear system of four real
equations in the variables si, i ∈ 3.

Proof. We prove the statements for (k, l) = (+,+). The other cases are proven
analogously.

(1) We have

M++
a,b (r)x = 2rx− axb.
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Assume that x ∈ H satisfies M++
a,b (r)x = 1 and ‖x‖ = 1. Then axb =

2rx − 1 = 2<(x)x − ‖x‖21, which by virtue of Lemma 3.2 implies the
equation (3.1) corresponding to (k, l) = (+,+). Hence x is non-zero and
idempotent. Conversely, if x is non-zero and idempotent, then by multi-
plicativity of the norm, ‖x‖ = 1, and

M++
a,b (r)x = 2rx− axb = 2<(x)x− ‖x‖21 + 1− axb = 1 + x2 − axb = 1

where the two rightmost equalities follow from Lemma 3.2 and (3.1).
(2) Writing out the equation componentwise, one obtains

2r2 − 1 = (αcβc − αsβsγc)r + (αsβc + αcβsγc)s1(3.2)

+ αcβsγss2 + αsβsγss3

2rs1 = −(αsβc + αcβsγc)r + (αcβc − αsβsγc)s1(3.3)

− αsβsγss2 + αcβsγss3

2rs2 = −αcβsγsr − αsβsγss1(3.4)

+ (αcβc + αsβsγc)s2 + (αsβc − αcβsγc)s3
2rs3 = αsβsγsr − αcβsγss1(3.5)

+ (αcβsγc − αsβc)s2 + (αcβc + αsβsγc)s3.

Fixing r, this is a linear system in si, i ∈ 3, with real coefficients.

�

3.2. Description of Idempotents. In order to describe the idempotents in each
four-dimensional absolute valued algebra, we split into cases according to the double
sign of the algebra, and determine the non-zero idempotents by solving the equa-
tions of Proposition 3.4(1) for the double sign in question. The results are presented
below. It turns out that the algebras having double sign (−,−) have substantially
different properties with respect to idempotents, and therefore we present this case
separately. The computations, however, are analogous to those of the other cases.

3.2.1. Idempotents in Hkl(a, b) with (k, l) 6= (−,−). In this section, the non-zero
idempotents are given either explicitly or in terms of roots of a real polynomial. To
begin with, this polynomial, together with a number of other functions to be used,
are defined.

Definition 3.5. Given (k, l) ∈ C2
2 \ {(−,−)}, let A = Hkl(a, b) be in the canonical

cross-section with a, b given in terms of (α, β, γ) by (2.5), and set σ = −kl. Define
p = pkla,b, q = qkla,b ∈ R[X] and ti = tkli,a,b ∈ R(X), i ∈ 3, by

p(X) = (4X3 − 8αcβcX
2 + (4α2

c + 4β2
c − 3)X + αsβsγc − αcβc)(4X2 − 1),

q(X) = αsβsγs(8X
3 − 4(3αcβc + αsβsγc)X

2 + (4α2
c + 4β2

c − 2)X

+ αsβsγc − αcβc),

t1(X) = σαsβsγsX
(αsβc + αcβsγc)(4X

2 + 1)− 4(αcαs + βcβsγc)X

q(X)
,

t2(X) = σαsβ
2
sγ

2
sX

αc(4X
2 + 1)− 4βcX

q(X)
, t3(X) = α2

sβ
2
sγ

2
sX

4X2 − 1

q(X)
.
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Using Proposition 3.4(1) to determine the non-zero idempotents, we arrive at
the following result.

Theorem 3.6. Given (k, l) ∈ C2
2 \ {(−,−)}, let A = Hkl(a, b) be in the canonical

cross-section with a, b given in terms of (α, β, γ) by (2.5), and set σ = −kl. Let
moreover p, q and ti, i ∈ 3, be given by Definition 3.5.

(1) If γ = 0, then x = (α + β)c + σ(α + β)si is the unique isolated non-zero
idempotent in A.

(2) If γ = 0 and α = β > π/6, then the points of the set{
1

2
+ σ

αc
2αs

i + s2j + s3k | s22 + s23 = 1− 1

4α2
s

}
are precisely the non-isolated idempotents in A.

(3) If γ 6= 0 and αcβc = αsβsγc, then σβci/αs + σαcβsγsj − αsβsγsk is a
non-zero idempotent.

(4) If γ 6= 0, and r ∈ R satisfies

p(r) = 0 6= q(r) and r2 +

3∑
i=1

ti(r)
2 = 1,

then r + t1(r)i + t2(r)j + t3(r)k is a non-zero idempotent.
(5) Every non-zero idempotent in A is given by precisely one of the cases 1–4.

Proof. We outline the main details of the computations in the case of double sign
(+,+), as again the other cases are proven analogously. To this end we solve the
equations (3.2)–(3.5) above.

For each fixed r, we take three equations among (3.2)–(3.5); our choice will be
(3.3)–(3.5). In the variables si, i ∈ 3, this gives a system of linear equations with
coefficient matrix

M =

 −αsβsγs αcβc + αsβsγc − 2r αsβc − αcβsγc
−αcβsγs αcβsγc − αsβc αcβc + αsβsγc − 2r

αcβc − αsβsγc − 2r −αsβsγs αcβsγs


and right hand side

N =

 αcβsγsr
−αsβsγsr

(αsβc + αcβsγc)r

 .

(Here, the order of the equations has been altered for computational simplicity.)
We now aim at solving, for each fixed r, the system Ms = N , with s = (s1, s2, s3)T ,
using Gauß–Jordan elimination. Thus we must distinguish those cases for which
any of the upper left block determinants of M is zero. The block determinants are
all non-zero if and only if 0 /∈ {q(r),m(r)}, where m(r) = αsβsγs(βc − 2αcr), and
we thus consider separately the cases

(1) m(r) = 0,
(2) m(r) 6= 0, q(r) = 0 and

i. n(r) = 0,
ii. n(r) 6= 0

where n(r) = det(M1 M2 N) = αsβsγsr(1− 4r2), using the notation Mi for the ith

column of M .
In case 1, Gauß–Jordan elimination cannot be completed straight-forwardly, and

in case 2.i, the system Ms = N has infinitely many solutions. In both these cases it
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turns out that the equations (3.2)–(3.5), together with the condition r2 + ‖s‖2 = 1
on the norm, can easily be solved altogether, giving a list L of idempotents for
each (α, β, γ). Computations show that L includes the idempotents of Items 1–3 of
Theorem 3.6. In case 2.ii, the system Ms = N has no solutions.

If neither case among 1–2.ii holds, then q(r) 6= 0 and Gauß–Jordan elimination
determines si, i ∈ 3 as si = ti(r), and inserting these into (3.2) gives the equation
p(r) = 0. For each r that solves this equation and satisfies r2 + ‖s‖2 = 1 it then
follows by Proposition 3.4(1) that r + s1i + s2j + s3k is a non-zero idempotent.
Moreover, the elements of L that are not given by Items 1–3 are verified to satisfy
the conditions of Item 4. This proves Items 4 and 5, and the theorem follows. �

3.2.2. Idempotents in H−−(a, b). We proceed similarly in the case of the double
sign (−,−).

Definition 3.7. Let A = H−−(a, b) be in the canonical cross-section with a, b given
in terms of (α, β, γ) by (2.5). Define p′ = p−−a,b , q

′ = q−−a,b ∈ R[X] and t′i = t−−i,a,b ∈
R(X), i ∈ 3 by

p′(X) = 16X5 + 16(αcβc + αsβsγc)X
4 − 8X3 − 8(2αcβc + αsβsγc)X

2

+ (1− 4α2
c − 4β2

c )X + αsβsγc − αcβc,

q′(X) = αsβsγs(8X
3 + 4(3αcβc + αsβsγc)X

2 + (4α2
c + 4β2

c − 2)X

+ αcβc − αsβsγc),

t′1(X) = αsβsγsX
(αsβc + αcβsγc)(4X

2 + 1) + 4(αcαs + βcβsγc)X

q(X)
,

t′2(X) = αsβ
2
sγ

2
sX

αc(4X
2 + 1) + 4βcX

q(X)
, t′3(X) = α2

sβ
2
sγ

2
sX

1− 4X2

q(X)
.

We then use Proposition 3.4(1) to determine the idempotents.

Theorem 3.8. Let A = H−−(a, b) be in the canonical cross-section with a, b given
in terms of (α, β, γ) by (2.5). Let moreover p′, q′ and t′i, i ∈ 3, be given by Definition
3.7.

(1) If γ = 0 and at least one of α, β is non-zero, then

x = cos

(
2πk + α+ β

3

)
+ sin

(
2πk + α+ β

3

)
i

for k ∈ 3 are precisely the non-zero idempotents in A.
(2) If α = β = γ = 0, then 1 is the unique isolated non-zero idempotent in A,

and the points of the set{
− 1

2
+ s1i + s2j + s3k | s21 + s22 + s23 =

3

4

}
are precisely the non-isolated idempotents.

(3) If γ 6= 0 and αcβc = αsβsγc, then −βci/αs−αcβsγsj−αsβsγsk is a non-zero
idempotent.

(4) If γ 6= 0 and α+ β = π, then{
1

2
+
γc + 1

2γs
ei +

e

2
j +

γc − 1

2γs
k | e ∈ R, e2 =

γc − (2γ)c
γc + 1

}
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contains precisely two non-zero idempotents.
(5) If γ 6= 0 and α = β ≥ π/6, then{

− 1

2
+
γc − 1

2γs
f i +

f

2
j− γc + 1

2γs
k | f ∈ R, f2 =

γc + (2γ)c
γc − 1

}
contains precisely one non-zero idempotent if α = β = π/6, and precisely
two otherwise.

(6) If γ 6= 0, and r ∈ R satisfies

p′(r) = 0 6= q′(r) and r2 +

3∑
i=1

t′i(r)
2 = 1,

then r + t′1(r)i + t′2(r)j + t′3(r)k is a non-zero idempotent.
(7) Every idempotent in A is given by precisely one of the cases 1–6.

The proof is analogous to that of Theorem 3.6.

3.3. General Remarks. In this section we comment on the results obtained above,
partly in the light of the following result from [2].

Proposition 3.9. The cardinality | Ip(A)| for an absolute valued algebra A is either
odd or infinite. If it is infinite, then Ip(A) contains a differentiable manifold of
positive dimension.

An open question is posed in [2] asking for an upper bound of the number of
non-zero idempotents in an arbitrary absolute valued algebra with finitely many
idempotents. We are now able to give a precise answer, along with additional
information in the cases where the number of idempotents is infinite.

Proposition 3.10. If A ∈ A4, then | Ip(A)| ∈ {1, 3, 5,∞}. All four cases do occur.
If | Ip(A)| = ∞, then Ip(A) contains precisely one isolated element x, and an n-
sphere with all points equidistant from x, and with n = 2 if (k, l) = (−,−), and
n = 1 otherwise.

Proof. Assume first that A belongs to the canonical cross-section of A4. The last
statement is a refolmulation of items 1 and 2 of Theorems 3.6 and 3.8, respectively,
from which it also follows that the case | Ip(A)| = ∞ does occur. Next we show
that | Ip(A)| <∞ implies | Ip(A)| ≤ 5.

Assume hence that | Ip(A)| < ∞. If A = Hkl(a, b) with a, b given in terms of
(α, β, γ) by (2.5), and γ = 0, then it follows from Theorems 3.6 and 3.8 that A
has three idempotents if (k, l) = (−,−), and a unique idempotent otherwise. If
γ 6= 0, then the number of idempotents equals the sum of the number of roots of
the quintic pkla,b and the number of idempotents given by Item 3 of Theorem 3.6

(if (k, l) 6= (−,−)) or Items 3–5 of Theorem 3.8 (if (k, l) = (−,−)). However, if r
is the real part of m idempotents given by Theorem 3.6(3) or 3.8(3)–(5), then one
verifies directly that (r −X)m|pkla,b(X) and that qkla,b(r) = 0. Thus r is not the real

part of any idempotent given by Theorem 3.6(4) or 3.8(6), and the total number of
idempotents does not exceed the number of roots of pkla,b, which is at most five.

Thus by Proposition 3.9, | Ip(A)| ∈ {1, 3, 5,∞} for each A in the canonical cross-
section. If A does not belong to the canonical cross-section, then there exists A′

in the cross-section and an isomorphism ρ : A′ → A. The idempotents of A are
precisely the images under ρ of the idempotents of A′, and | Ip(A)| ∈ {1, 3, 5,∞}
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by the above. If moreover | Ip(A′)| =∞, then the configuration of the idempotents
is preserved under ρ, as an isomorphism of absolute valued algebras respects the
norm and maps the standard basis to an orthonormal basis in A.

Finally, applying Theorem 3.6 to H = H++(1, 1) and H++(i, j), and Theorem
3.8 to H−−(i, j), one obtains that these algebras have 1, 3 and 5 idempotents
respectively. This completes the proof. �

Remark 3.11. The proposition in fact answers, for the case of dimension four,
another open question in [2], namely it gives the number of connected components
of Ip(A) in an absolute valued algebra A with | Ip(A)| =∞. This number is hence
two for all such four-dimensional algebras.

Regarding the quintic polynomials pkla,b, the reader may have noticed that when

(k, l) = (−,−), they were not expressed as products of factors of lower degree. This
calls for a comment on the issue of their solvability, which we address here.

Proposition 3.12. There exist a, b ∈ S(H) such that the polynomial p−−a,b is not
solvable by radicals.

Proof. Construct the polynomial p−−a,b where

a =
1

2
+

√
3

2
i, b =

1

4
+

√
15

4
j.

We then have that P = 8p−−a,b is a polynomial with integer coefficents. We first
prove that P is irreducible over Z, by verifying that there exist no l,m, n ∈ Z, no
Q ∈ Z[X] of degree 4 and no R ∈ Z[X] of degree 3 such that P (X) = (X + l)Q(X)
or P (X) = (X2 +mX + n)R(X).3 A well-known result by Gauß implies that P is
then irreducible over Q, and hence clearly so is p−−a,b .

By e.g. determining the zeros of the derivative, it turns out that p−−a,b has precisely

three real roots. By Lemma 14.7 in [10], the Galois group over Q of an irreducible
polynomial of prime degree p with rational coefficients, having precisely two non-
real roots, is the symmetric group on p elements, and the statement follows. �

The reader may find the statement of the proposition discouraging. In the search
for other methods to solve the idempotency problem, the author has examined
available literature on solutions of quadratic equations in H. This examination
has indicated that equations of the form x2 + cxd = 0, where c and d are given
quaternions (cf. (3.1) above), have been little studied, and an explicit method of
finding the solutions seems not to be known. In any case, the above results, even
in the cases where Proposition 3.12 holds, are useful to determine whether a given
element is an idempotent or not, or to extract various properties of the idempotents.

4. Morphisms from Two-Dimensional Algebras

In this section we explicitly determine all morphisms from any of the four non-
isomorphic two-dimensional absolute valued algebras Cij , (i, j) ∈ C2

2 , to any algebra
in the canonical cross-section of A4. As in the case of morphisms from R, Section 7
transfers those results of this section which are specific to algebras of the canonical

3This is done by evaluating both sides of each equation at X = 0, and those of the second at
X = 1, to obtain a finite list of possible values for l, m and n, and then checking that each of

these gives a non-zero remainder when P (X) is divided by X + l and X2 + mX + n, respectively.
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cross-section to any four-dimensional absolute valued algebra given as Hkl(a, b) for
some a, b ∈ S(H).

4.1. Preparatory Results. We start with the following general observation.

Proposition 4.1. Take Cij ∈ A2 and let A = (A, ·) be a real algebra with a ∈ A.
Then there is at most one algebra homomorphism φ : Cij → A such that φ(i) = a.

Proof. Assume that there are φ1 and φ2 such that φ1(i) = φ2(i) = a. Then,
denoting the multiplication in Cij by ◦, we have, since conjugation is self-inverse,
that

φ1(1) = φ1(−ii) = −φ1(ij ◦ ii) = −φ1(i) · φ1(i) = −φ2(i) · φ2(i) = φ2(1)

where juxtaposition is multiplication in C, and for each c ∈ Cij , c+ = c and c− = c.
Since φ1 and φ2 are linear and the vector space C is spanned by {1, i}, it follows
that φ1 = φ2. �

Thus the homomorphisms to be treated in this section are determined by the
image of the imaginary unit under them. In computations, however, it is often
more convenient to use the following characterization of the morphisms.

Proposition 4.2. Let C = Cij , (i, j) ∈ C2
2 , and let A = (A, ·) ∈ A4. A map

φ : C → A is an algebra homomorphism if and only if it is linear and the following
conditions hold:

(1) φ(1) · φ(1) = φ(1),
(2) φ(1) · φ(i) = iφ(i),
(3) φ(i) · φ(1) = jφ(i) and
(4) φ(i) · φ(i) = −ijφ(1).

Proof. If φ is a homomorphism, then φ is linear and respects multiplication. The
latter property, together with the definition of the multiplication in Cij , implies the
four items above. If φ is linear, to show that it is a homomorphism we need only
show that it respects the multiplication of the elements of a basis of Cij . Choosing
the basis {1, i}, this is precisely the content of the four items of the proposition. �

Since morphisms in A are always injective, the set A(Cij ,Hkl(a, b)) is non-
empty if and only if Hkl(a, b) contains a subalgebra isomorphic to Cij . For each
(i, j), (k, l) ∈ C2

2 , [8] gives a list of conditions on a, b ∈ S(H) that hold if and only if
Hkl(a, b) has a subalgebra D ' Cij . We present here its explicit concequences for
elements in the canonical cross-section.

Proposition 4.3. Given (k, l) ∈ C2
2 , let A = Hkl(a, b) be in the canonical cross-

section with a, b given in terms of (α, β, γ) by (2.5). Then there exists a morphism
φ : Cij → A precisely when
1. γ = 0, if (i, j) = (k, l),
2. α = γ = π/2,
or α = π/2, β = 0, if (i, j, k, l) = (+,+,+,−) ∨ (i, j) = (+,−) 6= (k, l),
3. β = γ = π/2
or α = 0, β = π/2, if (i, j, k, l) = (+,+,−,+) ∨ (i, j) = (−,+) 6= (k, l),
4. α = β = π/2, if (i, j, k, l) = (+,+,−,−) ∨ (i, j) = (−,−) 6= (k, l).

The results follow immediately upon applying the conditions in Proposition 3.2
in [8] to the canonical cross-section.
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4.2. Description of Morphisms. Before presenting the complete description of
the morphisms, we give the following result, which is meant to give a geometric
picture of the set of morphisms from a two-dimensional absolute valued algebra to
a four-dimensional.

Theorem 4.4. For any (i, j), (k, l) ∈ C2
2 and any a, b ∈ S(H), consider C = Cij

and A = Hkl(a, b). Then either the set A(C,A) is empty, or the map A(C,A) →
A, φ 7→ φ(i) induces a bijection

A(C,A)→
m⊔
µ=1

Sn

where m ∈ {1, 3} is the number of non-zero idempotents in C, and n ∈ {0, 1, 2}
satisfies

n =

{
0 if dim[=(a),=(b)] = 1 ∧ (i, j) = (k, l),
2− dim[=(a),=(b)] otherwise.

Remark 4.5. The statement that the map φ 7→ φ(i) induces the bijection here
means that the image of this map consists of m disjoint n-spheres embedded in A,
and the bijection is obtained by identifying this image with

⊔m
µ=1 Sn in a natural

way. The theorem follows from the description of the morphisms from each Cij
to each A = Hkl(a, b) in the canonical cross-section, given below, and holds for
arbitrary Hkl(a, b) due to the properties of isomorphisms in A4 given in [8] and
quoted in Proposition 7.1 below.

Remark 4.6. Section 6 below deals with the orbits of the actions of the automor-
phism groups of C and A on A(C,A) by composition. We will briefly return to the
above theorem and comment on it in the light of the results obtained there.

We now give the description of the morphisms to algebras in the canonical cross-
section, divided into three parts according to the value of dim[=(a),=(b)].

Proposition 4.7. Let C = Cij and let A = Hkl(a, b) be in the canocinal cross-
section with dim[=(a),=(b)] = 0. Then

A(C,A) 6= ∅ ⇐⇒ (i, j) = (k, l).

In that case φ ∈ A(C,A) if and only if

φ(i) = sin
2πµ

m
+ u cos

2πµ

m

for some u ∈ S(=H) and µ ∈ m, where m = | Ip(C)|.

Proposition 4.8. Let C = Cij and let A = Hkl(a, b) be in the canonical cross-
section with dim[=(a),=(b)] = 1 and (i, j) 6= (k, l). If A(C,A) 6= ∅, then φ ∈
A(C,A) if and only if

φ(i) = sin
2πµ

m
+ u cos

2πµ

m
for some u ∈ S(=H) ∩ [=(a),=(b)]⊥ and µ ∈ m, where m = | Ip(C)|.

Proposition 4.9. Let C = Cij and let A = Hkl(a, b) be in the canonical cross-
section with either dim[=(a),=(b)] = 1 and (i, j) = (k, l), or dim[=(a),=(b)] = 0.
If A(C,A) 6= ∅, then φ ∈ A(C,A) if and only if

φ(i) = ±
[
v sin

(α+ β − γ + 2πµ

k

)
+ w cos

(α+ β − γ + 2πµ

m

)]
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for some µ ∈ m, where m = | Ip(C)|, a, b are given in terms of (α, β, γ) by (2.5),
and the pair (v, w) is given by Table 1.

(k, l) (i, j) = (+,+) (i, j) = (+,−) (i, j) = (−,+) (i, j) = (−,−)

(+,+) (1, i) (i,−k) (j,−k) (1,−k)

(+,−) (i,k) (1,−i) (j,k) (1,−k)

(−,+) (j,k) (i,k) (1,−i) (1,−k)

(−,−) (1,k) (i,−k) (j,−k) (1,−i)

Table 1. The pair (v, w) of Proposition 4.9.

The proofs of Propositions 4.7–4.9 are computationally heavy; we give an outline
of the general ideas, and illustrate the computations by an example.

Proof. (Outlined) Take A ∈ A4 in the canonical cross-section that satisfies any
of the conditions of Proposition 4.3. We first determine the idempotents of A by
applying Theorem 3.6 or 3.8. It turns out that under the conditions of Proposition
4.3, the computations are straight-forward as the roots of the polynomials pklab of
Theorems 3.6 and 3.8 are easily found. Take now C = Cij for some (i, j) ∈ C2

2 .
According to Item 1 of Proposition 4.2, the set {φ(1) | φ ∈ A(C,A)} is a subset of
the set of all non-zero idempotents of A. Due to Proposition 4.2.(2)–(4), to each
non-zero idempotent y we solve the equations

(4.1) y · x = ix, x · y = jx, x · x = −ijy
for x. For each solution x there then exists φ ∈ A(C,A) with φ(i) = x and φ(1) = y.
(If there exist no solutions, then y is not the image of 1 under any morphism in
A(C,A).) Doing this for all idempotents y ∈ A determines A(C,A) completely. �

As an example we determine A(C+−,H−+(a, b)) for H−+(a, b)) in the canonical
cross-section with γ 6= 0.

Example 4.10. The cases with (i, j) = (+,−) and (k, l) = (−,+) fall under Item
2 of Proposition 4.3, where we also have β 6= 0 as γ 6= 0. Setting thus α = γ = π/2,
we consider Theorem 3.6. The first two items of the theorem give no idempotents,
as γ 6= 0. The third item is applicable, since γc = αc = 0, and gives the idempotent
βci − βsk. In the forth item, we obtain that the roots of p that are not roots of q
under the given conditions are ±

√
3− 4β2

c/2 when β ≥ π/6, and none otherwise.

Evaluating the functions ti(r) and computing r2 +
∑3
i=1 ti(r)

2 for each root r, we
find that there are precisely two additional idempotents

−βcj +
1− 2β2

c

2βs
k±

√
3− 4β2

c

2

(
1− βc

βs
j

)
if β > π/6, and none otherwise.

Next we solve (4.1) for each idempotent y. If ‖x‖ 6= 1, then by multiplicativity of
the norm, x does not satisfy the third equation in (4.1). Thus we require ‖x‖ = 1,
under which condition Lemma 3.2 implies that (4.1) can be rewritten as

ayb = 2<(x)x− 1, axb = −xy, axb = yx.
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This is solved by writing each equation componentwise as a system of real equa-
tions. For y = βci− βsk, one obtains two solutions x = ±(βsi + βck), while for the
other idempotents, no solution exists. Hence for each H−+(a, b) in the canonical
cross-section with γ 6= 0 we have

φ ∈ A(C+−,H−+(a, b))⇐⇒ φ(i) ∈ {±(βsi + βck)}.

5. Irreducibility

5.1. Definition and Background. A natural question to ask once a class of mor-
phisms has been described is whether the morphisms are irreducible. To begin with,
we quote the definition of irreducibility for division algebras. Recall, to this end,
that over any field k the finite dimensional division algebras form a category D(k),
in which the morphisms are the non-zero algebra morphisms. The following defini-
tion is due to Dieterich [6].

Definition 5.1. Let A and B be finite dimensional division algebras over a field
k. A morphism ψ : A → B in D(k) is irreducible if it is not an isomorphism and
if for any pair (ψ1, ψ2) of morphisms in D(k) such that ψ = ψ2ψ1, either ψ1 is an
isomorphism or ψ2 is an isomorphism. ψ is reducible if it is not an isomorphism
and not irreducible.

An immediate consequence of the definition, and the injectivity of the morphisms
in D(k), is the following proposition.

Proposition 5.2. Let A and B be finite dimensional division algebras over a field
k. Then there exists a reducible morphism ψ : A→ B only if there is a subalgebra
C ⊂ B such that dimA < dimC < dimB.

For A,B ∈ A≤4 this implies that all morphisms A → B are irreducible in case
dimA = 2 or dimB = 2. It remains to consider the morphisms R → B where
dimB = 4 and B has a two-dimensional subalgebra. As indicated in the outlined
proof of Propositions 4.7–4.9, for such algebras that moreover belong to the canon-
ical cross-section it is straight-forward to determine the idempotents explicitly, and
this will be used here to investigate the reducibility of the corresponding morphisms.

5.2. Morphisms from R to Hkl(a, b) with (k, l) 6= (−,−). Without further ado,
we describe the irreducibility of the morphisms from R to Hkl(a, b). Note that if
Hkl(a, b) has a subalgebra isomorphic to Cij for some (i, j) ∈ C2

2 , then a morphism
from R to Hkl(a, b) factors over Cij if and only if it factors over each subalgebra
of Hkl(a, b) isomorphic to Cij . In the following, we will use these two equivalent
formulations interchangeably.

Proposition 5.3. Given (k, l) ∈ C2
2 \ {(−,−)}, let A = Hkl(a, b) with a, b ∈ S(H)

such that A contains a two-dimensional subalgebra.4

(1) If a and b are purely imaginary and orthogonal, then A has a subalgebra
isomorphic to Cij for each (i, j) 6= (k, l), and none isomorphic to Ckl, and
there are precisely three morphisms R → A. All of these are reducible and
factor over C−−, and precisely one factors over each subalgebra.

4In other words, assume that A satisfies the conditions of Proposition 3.2 in [8]. If A is in the
canonical cross-section, this is equivalent to Proposition 4.3 above.
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(2) i. If a and b are purely imaginary and proportional, then A has pre-
cisely two isomorphism types of two-dimensional subalgebras, and there are
uncountably many morphisms R → A. All of these are reducible and fac-
tor over C−−, and only the unique morphism corresponding to the isolated
non-zero idempotent in A factors over each subalgebra.

ii. If one of a and b is real and the other purely imaginary, then A has
precisely two isomorphism types of two-dimensional subalgebras, and there
is precisely one morphism R→ A. This unique morphism is reducible and
factors over each subalgebra.

(3) Otherwise, A has precisely one two-dimensional subalgebra, up to isomor-
phism. Moreover,

i. if a and b are proportional with 1/2 < ‖=(a)‖ = ‖=(b)‖ < 1, then
there are uncountably many morphisms R → A. The unique morphism
corresponding to the isolated non-zero idempotent in A is reducible, and all
other morphisms are irreducible.

ii. if a and b are orthogonal, one is purely imaginary, and the other has
imaginary part z, 1/2 < ‖z‖ < 1, then there are precisely three morphisms
R→ A, and precisely one of these is reducible.

iii. in all other cases, there are precisely three morphisms R → A if
both a and b are purely imaginary, and precisely one if not. All of these are
reducible.

Proof. A morphism ψ : R→ A is reducible if and only if there exists a subalgebra
C ⊂ A of dimension two, and φ : C → A, such that ψ(1) = φ(z) for an idempotent
z ∈ C. The result follows for A in the canonical cross-section by checking, for each
ψ : R → A and C = Cij , whether or not this condition is satisfied. If Hkl(c, d)
is not in the cross-section, then evidently it has the same number of subalgebras
and morphisms as its representative, and the morphisms factor in the same way.
In addition, the conditions on isomorphisms in A4 quoted in Proposition 7.1 below
imply that if Hkl(c, d) ' Hkl(a, b), then ‖=(c)‖ = ‖=(a)‖ and ‖=(d)‖ = ‖=(b)‖,
and moreover |〈c, d〉| = |〈a, b〉|. Hence Hkl(c, d) satisfies the same condition among
1–3.iii as does Hkl(a, b), and the proof is complete. �

Note how the isolated idempotents differ in nature whenever there are infinitely
many morphisms, and how the magnitude of the imaginary part is of importance
in some cases.

5.3. Morphisms from R to H−−(a, b). The case of double sign (−,−) exhibits,
as the reader may have assumed, several fundamental differences.

Proposition 5.4. Let A = H−−(a, b) with a, b ∈ S(H) such that A contains a
two-dimensional subalgebra.

(1) If a and b are purely imaginary and orthogonal, then A has a subalgebra iso-
morphic to Cij for each (i, j) 6= (−,−), and none isomorphic to C−−, and
there are precisely five morphisms R → A. Of these morphisms precisely
one factors over each subalgebra, and all others are irreducible.

(2) If a and b are purely imaginary and proportional, or if one of a and b is real
and the other purely imaginary, then A has precisely two isomorphism types
of two-dimensional subalgebras, and there are precisely three morphisms
R → A. All of these are reducible and factor over C−−, and precisely one
factors over each subalgebra.
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(3) Otherwise, A has precisely one two-dimensional subalgebra, up to isomor-
phism. Moreover,

i. if a and b are real, then there are uncountably many morphisms
R→ A. All of these are reducible.

ii. if a and b are purely imaginary and neither proportional nor orthog-
onal, then there are precisely five morphisms R→ A when 0 < |〈a, b〉| < 1/2
and precisely three when 1/2 ≤ |〈a, b〉| < 1. In both cases precisely one of
these is reducible.

iii. if a and b are orthogonal, one is purely imaginary, and the other
having real part r, then there are precisely five morphisms R → A when
0 < |r| < 1/2 and precisely three when 1/2 ≤ |r| < 1. In both cases
precisely one of these is reducible.

iv. in all other cases, there are precisely three morphisms R→ A. All
of these are reducible.

The proof is analogous to that of Proposition 5.3.

5.4. Morphism Quivers. From Propositions 4.3, 5.3 and 5.4 we extract the fol-
lowing partitioning of the object class of A4.

Corollary 5.5. For each (k, l) ∈ C2
2 , there exist uncountably many isomorphism

classes of objects A ∈ Akl4 such that each morphism ψ : R → A is irreducible,
uncountably many isomorphism classes of objects A′ ∈ Akl4 such that there is an
irreducible morphism ψ′ : R→ A′, and a reducible morphism ψ∗ : R→ A′, and un-
countably many isomorphism classes of objects A′′ ∈ Akl4 such that each morphism
ψ′′ : R→ A′′ is reducible.

One may further combine Propositions 5.3 and 5.4 with the descriptions of mor-
phisms from one- and two-dimensional to four-dimensional absolute valued algebras,
which were given in Sections 3 and 4. In doing so, one obtains a complete picture
not only of whether the morphisms from dimension one are reducible or not, but
also of the morphisms from dimension two over which the reducible morphisms fac-
tor. A way to visualize this is by means of a quiver, the morphism quiver, for each
four-dimensional absolute valued algebra A. The nodes of the morphism quiver are
the non-zero idempotents of all canonical representatives of all subalgebras of A,
and there exists an arrow from a node n1 ∈ B1 to a node n2 ∈ B2 if and only if
there is an irreducible morphism φ : B1 → B2 such that φ(n1) = n2.

Example 5.6. Let A = H−+(i, j). Then A satisfies the conditions of Item 1 of
Proposition 5.3, and we obtain the following quiver.

· 1 ∈ R
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√
3i

2 ,− 1−
√
3i

2 ∈ C−−

· · · − k, k+
√
3

2 , k−
√
3

2 ∈ H−+(i, j)

H
HH

H
HH

H
HH

H

@
@
@

@
@

��
��

�
��

�
��

�
�
�
�
�

�
�
�
�
�
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#
#
#
#
#

�
�
�
�
�
�
��
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@

@
@
@

@
@
@

@
@

S
S
S
S
S

S
S
S
S
S

@
@
@

@
@

c
c

c
c

c
c

c
c
c

c
c
c

A
A
A
A
A

Q
Q
Q

Q
Q
Q

QQ
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Each arrow is here drawn as a line segment, for visibility, and understood to be
directed upwards.

Note that each morphism φ : D1 → D2, where D1 and D2 are division algebras
over a given field, maps the idempotents of D1 injectively to the idempotents of D2.
The morphism quiver does, as seen from Example 2, not encode which non-zero
idempotent y ∈ A satisfies y = φ(x) for a given morphism φ : Cij → A and a given
non-zero idempotent x ∈ Cij , in case there is more than one possibility. Its purpose
is to show, for each non-zero idempotent y ∈ A, all possible paths from 1 ∈ R to y,
i.e. all possible factorizations of the morphism corresponding to y into irreducible
morphisms.

Example 5.7. Let A = H++(a, a) where a = αc+αsi and π/3 < α < π/2, so that
A falls under Item 3.1 of Proposition 5.3, and Ip(A) consists of an isolated point
and a circle. The morphism quiver is as follows.

· 1 ∈ R

C++ 3 1 ·

· Ip(H++(a, a))

@
@
@
@

�
�
�
����

The thickened line segment here means that there is one arrow from 1 ∈ R to
each point on the circle.

Apart from these examples, there are several more different quivers for different
A ∈ A4. The interested reader will have no difficulty to construct these for other
algebras in A4.

6. Action of Automorphism Groups

The above description of morphisms φ ∈ A(C,A) for C,A ∈ A≤4 was done
without regard to the automorphisms of C and A. Since for any σ ∈ Aut(C) and
τ ∈ Aut(A) we have φσ, τφ ∈ A(C,A), the automorphism groups of C and A act
from the right by precomposition and from the left by postcomposition, respectively.
In this section we will consider these two group actions, and determine the number
of their orbits. In this context it is natural to also study the left group action

(Aut(C)×Aut(A))×A(C,A)→ A(C,A), ((σ, τ), φ) 7→ τφσ−1

by pre- and postcomposition. The aim of this section is to understand to what
extent the properties of the sets A(C,A) depend on the automorphism groups, and,
in a sense, how closely linked the morphisms in A(C,A) are to each other. We will
consider the cases where C ∈ A2 and A ∈ A4, as for these cases we have an explicit
description of A(C,A). We start by recalling the structure of the automorphism
groups themselves.

6.1. The Automorphism Groups in A≤4. For dimensions 1 and 2, we have the
following well-known facts.

Proposition 6.1. Let C ∈ A≤2.

(1) If C = R, then Aut(C) is trivial.
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(2) If C = Cij with (i, j) 6= (−,−), then Aut(C) is generated by complex
conjugation.

(3) If C = C−−, then Aut(C) is generated by complex conjugation and rotation
by an angle of 2π/3.

Thus for C ∈ A2, Aut(C) has 2 or 6 elements. For dimension 4, the automor-
phism groups are described for the category SO3

(SO3 × SO3) in [7]. Applying the
equivalences of categories in (2.3) to this description gives the following description
of the automorphism groups of algebras in the canonical cross-section of A4.

Proposition 6.2. Let A = Hkl(a, b) ∈ A4 be in the canonical cross-section.

(1) If dim[=(a),=(b)] = 0, then Aut(A) = {κp | p = θc + θsq; θ ∈ [0, π), q ∈
S(=H)}.

(2) If dim[=(a),=(b)] = 1, let u ∈ S(=H) be a basis vector of [=(a),=(b)]. Then
if

i. at least one of a, b is neither real nor purely imaginary, then
Aut(A) = {κp | p = θc + θsu; θ ∈ [0, π)}.

ii. each of a, b is either real or purely imaginary, then Aut(A) = {κp |
p = θc + θsu; θ ∈ [0, π)} ∪ {εκq | q ∈ S(=H) ∩ u⊥}, where ε = 1 if both a
and b are purely imaginary, and −1 otherwise.

(3) If dim[=(a),=(b)] = 2 and
i. either non of a, b is purely imaginary, or precisely one of a, b is

purely imaginary and =(a),=(b) are not orthogonal, then Aut(A) is trivial.
ii. precisely one of a, b is purely imaginary and =(a),=(b) are orthog-

onal, then Aut(A) = {Id,−κv} where v ∈ S(=H) is a basis vector of the
imaginary part of the non-purely imaginary element in {a, b}.

iii. a, b are both purely imaginary and not orthogonal, then Aut(A) =
{Id, κw}, where w ∈ S(=H) is orthogonal to a and b.

iv. a, b are both purely imaginary and orthogonal, then Aut(A) =
{Id,−κa,−κb, κw}, where w ∈ S(=H) is orthogonal to a and b.

Remark 6.3. If A = Hkl(c, d) ' Hkl(a, b) = A′, where A′ is in the canonical
cross-section and A is not, then due to the properties of isomorphisms quoted in
Proposition 7.1 below, A satisfies the conditions for the same item among 1–3.iv as
does A′. Obviously Aut(A) ' Aut(A′), but the explicit description of Aut(A) may
differ from that given above for Aut(A′).

6.2. Orbits of the Actions. We now use the results of Section 6.1 to determine
the number of orbits of the three group actions given above on the set A(C,A) for
all C ∈ A2 and A ∈ A4. We thus denote by nC the number of orbits of the right
action of Aut(C) by precomposition, by nA the number of orbits of the left action
of Aut(A) by postcomposition, and by nCA the number of orbits of the left action
of Aut(C)×Aut(A) by pre- and postcomposition.

Proposition 6.4. Let C ∈ A2 and A ∈ A4. Then nCA = 1 and the pair (nC , nA)
attains one of

(1, 1), (1, 2), (1, 3), (1, 6), (∞, 1), (∞, 3).

All of these pairs do occur for suitable C ∈ A2 and A ∈ A4.

Proof. Using Propositions 6.1 and 6.2, for each C = Cij and each A in the canonical
cross-section, the set A(C,A) can be partitioned into the equivalence classes of one
of the following equivalence relations
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(1) φ ∼1 ψ ⇔ ∃σ ∈ Aut(C);ψ = φσ,
(2) φ ∼2 ψ ⇔ ∃τ ∈ Aut(A);ψ = τφ.

Computing the number of equivalence classes of each relation gives the pair
(nC , nA).

If either nC = 1 or nA = 1, then nCA = 1. If not, then by the previous
step, (nC , nA) = (∞, 3). Denoting the three Aut(A)-orbits by ωi, i ∈ 3, taking an
arbitrary φ ∈ ω1, and precomposing φ by each of the (at most) six elements in
Aut(C), one finds that there exist ρ, σ ∈ Aut(C) such that φρ ∈ ω2 and φσ ∈ ω3.
Hence there is one single orbit.

For algebras not in the canonical cross-section, the result holds by applying the
above to their canonical representatives, as the number of orbits of any of the three
actions involved is preserved under isomorphism. �

The computations of the proof of Proposition 6.4, together with Remark 6.3, in
fact prove the following, more precise statements.

Proposition 6.5. Let C ∈ A2 and A ∈ A4.

(1) The number nC of orbits of the right action of Aut(C) by precomposition
is 1 if A(C,A) is finite, and ∞ otherwise.

(2) The number nA of orbits of the left action of Aut(A) by postcomposition
equals | Ip(C)| if A’s representative in the canonical cross-section satisfies
1, 2.ii or 3.iv of Proposition 6.2, and 2| Ip(C)| if it satisfies 2.i, 3.ii or 3.iii.
In particular, if A(C,A) is infinite, then nA = | Ip(C)|.

Case 3.i does not occur for those four-dimensional algebras that have two-
dimensional subalgebras.

Proposition 6.5 partly explains the geometric situation presented in Theorem
4.4. Namely, when n ∈ {1, 2}, each n-sphere corresponds to an orbit of the Aut(A)-
action, while each orbit of the Aut(C)-action consists of a pair of points on each
n-sphere. For the Aut(C)-action the same holds in the case n = 0, whence all
morphisms belong to the same orbit of this action.

7. Isomorphisms to the Canonical Cross-Section

Some results above were only formulated for algebras in the canonical cross-
section. In order to extend these to more general objects, either the descriptions
have to be generalized, or, given A ∈ A4, one has to explicitly construct an isomor-
phism to the algebra in the canonical cross-section isomorphic to A.

The first approach involves computational difficulties, as the computations of
the morphisms, conducted in Sections 3 and 4 above, have depended strongly on
the simplifications associated with the particular choice of a cross-section. We
therefore devote this section to the second approach; hence, given an algebra A =
Hkl(c, d) ∈ A4 with arbitrary c, d ∈ S(H), we determine its representative in the
canonical cross-section, and construct an isomorphism. We begin by the following
result from [8], supplemented in [7].

Proposition 7.1. Two four-dimensional absolute valued algebras Hkl(a, b) and

Hk′l′(c, d), with a, b, c, d ∈ S(H), are isomorphic if and only if (k′, l′) = (k, l) and
there exists p ∈ S(H) and (ε, δ) ∈ C2

2 such that c = εpap and d = δpbp. In that
case, every isomorphism ψ : Hkl(a, b)→ Hkl(c, d) is of the form x 7→ εδpxp.
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Note that Proposition 7.1 is not constructive, as p is not given explicitly. We
begin our explicit construction by determining the representatives in the cross-
section.

Lemma 7.2. Let A = Hkl(c, d) with c, d ∈ S(H) be given. Then the representative
of A in the canonical cross-section is Hkl(a, b), with a, b given in terms of (α, β, γ)
by (2.5), where

(1) α is determined uniquely by αc = |<(c)|,
(2) β is determined uniquely by

βc =

{
sgn(<(c)) sgn(〈=(c),=(d)〉)<(d) if 0 /∈ {<(c), 〈=(c),=(d)〉},
|<(d)| otherwise, and

(3) γ is then determined uniquely by αsβsγc = |〈=(c),=(d)〉| if 0 /∈ {α, β}, and
γ = 0 otherwise.

Proof. By Proposition 7.1, there exists p ∈ S(H) such that c = εpap and d = δpbp
for some (ε, δ) ∈ C2

2 . Since conjugation by p preserves the real part of a quaternion,
we have αc = ε<(c) and βc = δ<(d), hence |αc| = |<(c)| and |βc| = |<(d)|. By
Theorem 2.2, 0 ≤ α ≤ π/2, whence αc is non-negative and determines α, which
proves 1.

As for 2, the inner product on H is preserved under conjugation by a unit
norm quaternion, and hence 〈=(c),=(d)〉 = εδαsβsγc. Suppose that <(c) 6= 0
and 〈=(c),=(d)〉 6= 0. Then ε = sgn(<(c)) by the above, and αsβsγc 6= 0,
hence positive by Theorem 2.2. Now 〈=(c),=(d)〉 = εδαsβsγc impies that δ =
sgn(<(c)) sgn(〈=(c),=(d)〉), and by the above βc = δ<(d).

If <(c) = 0 or 〈=(c),=(d)〉 = 0, i.e. if αc = 0 or αsβsγc = 0, then Theorem 2.2
implies that 0 ≤ β ≤ π/2, and thus βc is non-negative. Since in all cases 0 ≤ β ≤ π,
βc determines β completely.

Regarding 3, if any of α or β vanishes, then so does γ by Theorem 2.2. If both α
and β are non-zero, then 〈=(c),=(d)〉 = εδαsβsγc determines γc up to sign. Finally,
0 ≤ γ ≤ π/2 implies that γc is non-negative and determines γ completely. �

The construction of the isomorphisms relies on the following detail.

Lemma 7.3. Assume that two quaternions x = s1i + s2j + s3k and y = ti, t > 0
satisfy ‖x‖ = ‖y‖ ≤ 1. Then

(1) if s2 = s3 = 0, then |s1| = |t|; if s1 = t, then p = 1 satisfies x = pyp, and
if s1 = −t, then p = j satisfies x = pyp;

(2) otherwise

p =

√
t+ s1

2t
− s3

√
t− s1

2t(s22 + s23)
j + s2

√
t− s1

2t(s22 + s23)
k

satisfies x = pyp.

Note that in 2, p is well-defined as t ± s1 ≥ 0 follows from ‖x‖ = ‖y‖, and
s22 + s23 6= 0.

Proof. Since ‖x‖ = ‖y‖, there exists a rotation in =H that takes y to x. Computing
the angle and axis of the rotation by elementary linear algebra, the result follows
from the fact that if u ∈ S(=H), then q = θc+θsu satisfies that z 7→ qzq is a rotation
with angle 2θ around u. (The claim can also be verified by direct computation.) �
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Once the representative of A = Hkl(c, d) in the canonical cross-section has been
determined by Lemma 7.2, the following proposition gives an explicit construction
of an isomorphism to A from its representative.

Proposition 7.4. Let A = Hkl(c, d) with c, d ∈ S(H) and let Hkl(a, b) be the rep-
resentative of A in the canonical cross-section, with a, b given in terms of (α, β, γ)
by (2.5).

If 0 ∈ {α, β, γ}, then the map ρ : Hkl(a, b) → A, z 7→ εδpzp is an isomorphism,
where (ε, δ) ∈ C2

2 and p ∈ S(H) are given as follows.

(1) If α = β = 0, then ε = sgn(<(c)), δ = sgn(<(d)), and p = 1.
(2) If α = 0 and β 6= 0, then ε = sgn(<(c)), and

i. if β 6= π/2, then δ = sgn(<(d)),
ii. if β = π/2, then δ can be chosen freely,

and p is given by Lemma 7.3 upon setting y = =(b) and x = δ=(d).
(3) If α 6= 0 and β = 0, then δ = sgn(<(d)), and

i. if α 6= π/2, then ε = sgn(<(c)),
ii. if α = π/2, then ε can be chosen freely,

and p is given by Lemma 7.3 upon setting y = =(a) and x = ε=(c).
(4) If 0 /∈ {α, β} and γ = 0, then

i. if α 6= π/2, then ε = sgn(<(c)) and δ = ε sgn(〈=(c),=(d)〉),
ii. if α = π/2 and β 6= π/2, then δ = sgn(<(d)) and

ε = δ sgn(〈=(c),=(d)〉),
iii. if α = β = π/2, then ε can be chosen freely, and

δ = ε sgn(〈=(c),=(d)〉),
and p is given by Lemma 7.3 upon setting y = =(a) and x = ε=(c).

If 0 /∈ {α, β, γ}, then ρ : Hkl(a, b)→ A, defined by

i 7→ δ=(c)

αs
, j 7→ εαs=(d)− δβsγc=(c)

αsβsγs

is an isomorphism, where

(1) if α 6= π/2, then ε = sgn(<(c)) and
i. if β 6= π/2, then δ = sgn(<(d)) sgn(βc),
ii. if β = π/2 and γ 6= π/2, then δ = ε sgn(〈=(c),=(d)〉),
iii. if β = γ = π/2, then δ can be chosen freely;

(2) if α = π/2 /∈ {β, γ}, then δ = sgn(<(d)) and ε = δ sgn(〈=(c),=(d)〉);
(3) if α = π/2 and π/2 ∈ {β, γ}, then ε can be chosen freely, and

i. if β = π/2 6= γ, then δ = ε sgn(〈=(c),=(d)〉),
ii. if γ = π/2 6= β, then δ = sgn(<(d)),
iii. if β = γ = π/2, then δ can be chosen freely.

Remark 7.5. The fact that conjugation by a unit norm quaternion preserves the
real part and inner product implies that <(c), <(d) and 〈=(c),=(d)〉 are non-zero
whenever this is required for the sign function to be defined, and that Lemma 7.3
is applicable wherever claimed.

Proof. To prove the statements where 0 ∈ {α, β, γ} it suffices, by Proposition 7.1,
to check that the given ε, δ and p satisfy c = εpap and d = δpbp, which is straight-
forward.
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For the cases where 0 /∈ {α, β, γ}, we instead use that by Proposition 7.1 there
exist such ε, δ and p, and that an isomorphism is given by z 7→ εδpzp. The image of
i under this isomorphism is then determined by =(c) = εp=(a)p, since =(a) = αsi
with αs 6= 0. This, together with =(d) = εp=(b)p, determines the image of j since
=(b) = βsγci+βsγsj with βsγs 6= 0. The listed values of ε and δ are readily checked.
Since by Theorem 2.2 there are no more cases, the proof is complete. �

Note how the construction of an isomorphism involves a number of choices, and
different choices may give different isomorphisms. This is of no importance in
this context, as any morphism φ from an absolute valued algebra C to an algebra
A = Hkl(c, d) ' Hkl(a, b) = A′ factors uniquely over any isomorphism ρ : A′ → A.
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