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Abstract

In this thesis, we study numerical analysis for random processes and fields. We

investigate the behavior of the approximation accuracy for specific linear methods

based on a finite number of observations. Furthermore, we propose techniques for

optimizing performance of the methods for particular classes of random functions.

The thesis consists of an introductory survey of the subject and related theory and

four papers (A-D).

In paper A, we study a Hermite spline approximation of quadratic mean continuous

and differentiable random processes with an isolated point singularity. We consider a

piecewise polynomial approximation combining two different Hermite interpolation

splines for the interval adjacent to the singularity point and for the remaining part.

For locally stationary random processes, sequences of sampling designs eliminating

asymptotically the effect of the singularity are constructed.

In Paper B, we focus on approximation of quadratic mean continuous real-valued

random fields by a multivariate piecewise linear interpolator based on a finite number

of observations placed on a hyperrectangular grid. We extend the concept of local

stationarity to random fields and for the fields from this class, we provide an exact

asymptotics for the approximation accuracy. Some asymptotic optimization results

are also provided.

In Paper C, we investigate numerical approximation of integrals (quadrature) of

random functions over the unit hypercube. We study the asymptotics of a stratified

Monte Carlo quadrature based on a finite number of randomly chosen observations

in strata generated by a hyperrectangular grid. For the locally stationary random

fields (introduced in Paper B), we derive exact asymptotic results together with

some optimization methods. Moreover, for a certain class of random functions with

an isolated singularity, we construct a sequence of designs eliminating the effect of

the singularity.

In Paper D, we consider a Monte Carlo pricing method for arithmetic Asian options.

An estimator is constructed using a piecewise constant approximation of an under-

lying asset price process. For a wide class of Lévy market models, we provide upper

bounds for the discretization error and the variance of the estimator. We construct

an algorithm for accurate simulations with controlled discretization and Monte Carlo

errors, and obtain the estimates of the option price with a predetermined accuracy

at a given confidence level. Additionally, for the Black-Scholes model, we optimize
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the performance of the estimator by using a suitable variance reduction technique.

Keywords: stochastic processes, random fields, approximation, numerical integra-

tion, Hermite splines, piecewise linear interpolator, local stationarity, point singular-

ity, stratified Monte Carlo quadrature, Asian option, Monte Carlo pricing method,

Lévy market models
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1 Introduction

In this thesis, we focus on numerical analysis for broad classes of random processes

and fields and investigate the achievable approximation accuracy as a function of

the number of observations. We study recovery of the continuous and differentiable

random functions and corresponding functionals by methods based on a finite num-

ber of observations only. Problems of this type arise in many theoretical and applied

areas, like random fields modelling, environmental research, geosciences, communi-

cation theory, data compression, and signal processing whenever calculations with a

continuous (time, space) model are substituted by a discrete one and the discretiza-

tion accuracy is evaluated.

The deterministic approximation theory provides an advanced apparatus for ap-

proximation of non-random functions and corresponding functionals. This includes

techniques based on trigonometric and algebraic polynomials, rational functions,

wavelets, and splines. One of central ideas when using various approximation meth-

ods is to determine the relationship between the smoothness properties of a target

function and the best corresponding approximation accuracy as well as selecting

the optimal method of approximation. Further, it is natural to require that a tar-

get function and the corresponding approximation function have similar smoothness

properties. For an extensive summary of approximation problems in deterministic

setting, we refer to, e.g., Sard (1963), Powell (1981), and Novak (1988).

Similar problems emerge in the numerical analysis for random processes and fields.

Beside the methods naturally inherited from the deterministic setting, a number of

techniques specific to approximation of random functions, e.g., linear regression in-

terpolation, Karhunen-Loéve approximation, and kriging, have been introduced.

In many cases, it is hard to determine the optimal method for any fixed number of

observation points. An often used approach is to consider the approximation error

behavior when the number of observations tends to infinity. However, to investigate

the asymptotic performance, we need to construct sequences of sampling designs that

can be consistently generated for any required number of observations. In the one-

dimensional case, regular design sequences were introduced in Sacks and Ylvisaker

(1966). In this approach, the observation points become the quantiles of a given

distribution with positive and continuous (say, regular) density. Generalizations of

this concept to higher dimension include cross regular designs (products of regular

designs) and hyperbolic cross designs (Müller-Gronbach, 1998).
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In the thesis, we study some approximation and numerical integration techniques

and investigate their accuracy for particular classes of random processes and fields.

For continuous locally stationary random functions and for processes with locally sta-

tionary quadratic mean (q.m.) derivatives, we derive an exact asymptotic behavior

of the approximation accuracy. Optimization procedures leading to asymptotically

optimal and suboptimal designs of sampling points are proposed. Additionally, we

establish upper bounds for the approximation accuracy for some Hölder classes of

random functions. The performance of the studied methods is also compared with

the best performance among all linear methods.

Another important problem studied in the thesis is approximation of random func-

tions with an isolated singularity point. The presence of such a point affects the

global smoothness properties of a function, and consequently decreases the efficiency

of standard approximation methods. We investigate some modifications of the con-

ventional techniques. Under certain conditions, these methods eliminate the effect

of the singularity and attain the optimal approximation rates.

Next, we study an approximation problem in a financial setting. We investigate the

Monte Carlo method of pricing Asian options. We analyze implications of a uniform

discretization of a time domain and the corresponding piecewise constant approx-

imation of a price process for the underlying asset. Additionally, an upper bound

for the simulation error is evaluated. For a wide class of Lévy market models, we

provide an algorithm for estimating the price of an Asian option with a predescribed

accuracy on a given confidence level.

The remaining part of the thesis consists of a survey of related theory and results

followed by four included papers (A-D). In Section 2, we introduce some notation.

Sections 3 and 4 describe the classes of random functions studied in the thesis and

the sampling point designs, respectively. In Section 5, we discuss some techniques

used in our studies. In Section 6, we consider the problem of approximating a process

with an isolated singularity point at the origin and discuss possible ways of eliminat-

ing the effect of this singularity on the approximation rate. The problem of pricing

Asian options using Monte Carlo techniques is discussed in Section 7. Section 8 con-

tains a summary of the papers included in this thesis and in Section 9, we present

conclusions and possible directions for future research.
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2 Basic notation

Let a random field X(t), t = (t1, . . . , td) ∈ [0, 1]d := D, d ≥ 1, be defined on a

probability space (Ω,F , P ). Assume that for every t, the random variable X(t) lies

in a normed linear space L2(Ω) = L2(Ω,F , P ) of real-valued random variables with

finite second moment and identified equivalent elements with respect to P . We set

|| ξ || :=
(

Eξ2
)1/2

for any ξ ∈ L2(Ω). We investigate approximation methods based on the normed

linear space Cm(D) of random fields with continuous q.m. derivatives up to order

m = 0, 1, . . .. We also write C(D) = C0(D) to denote the space of q.m. continuous

random functions. For any X ∈ Cm(D), we define the mean integrated norm by

setting

||X ||p :=
(
∫

D

||X(t) ||p
)1/p

, 1 ≤ p < ∞,

and the mean uniform norm by ||X ||
∞

:= maxt∈D ||X(t) ||. The space Cm(D),

m ≥ 0, of non-random functions with continuous derivatives up to order m can be

considered as a linear subspace of Cm(D) by the usual embedding.

3 Some classes of random functions

In this section, we introduce some general classes of random functions used through-

out the thesis. For a random process X ∈ C([a, b]), we say that:

(i) X is Hölder continuous if there exists 0 < α ≤ 2 such that

||X(t+ s)−X(t) ||2 ≤ C|s|α for all t, t+ s,∈ [a, b],

for a positive constant C;

(ii) X is locally stationary if there exist 0 < α ≤ 2 and a positive continuous function

c(t), t ∈ [a, b], such that

||X(t+ s)−X(t) ||2

|s|α
→ c(t) as s → 0 uniformly in t ∈ [a, b].

In our studies, we also consider q.m. differentiable stochastic processes with q.m.

derivatives satisfying the above conditions. The concept of local stationarity is in-
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troduced in Berman (1974). An investigation of some properties of random processes

from this class can be found, e.g., in Hüsler (1990).

Now we extend the definitions of the introduced classes to the (time) multivariate

case. Let X(t), t = (t1, . . . , td) ∈ D = [0, 1]d, d ≥ 2, be a q.m. continuous real-valued

random field. For k ≤ d, let l = (l1, . . . , lk) be a vector of positive integers such that
∑k

j=1 lj = d, and let Li :=
∑i

j=1 lj, i = 1, . . . , k, L0 = 0, be the sequence of its cumu-

lative sums. Then the vector l defines the decomposition of D into D1 × . . . × Dk,

with the lj-cube Dj = [0, 1]lj , j = 1, . . . , k. For any s ∈ D, we denote by sj the

coordinates vector corresponding to the j-th component of the decomposition, i.e.,

sj = sj(l) := (sLj−1+1, . . . , sLj
) ∈ Dj, j = 1, . . . , k.

For a vector α = (α1, . . . ,αk), 0 < αj ≤ 2, j = 1, . . . , k, and the decomposition

vector l = (l1, . . . , lk), let

|| s ||
α
:=

k
∑

j=1

∣

∣

∣

∣ sj
∣

∣

∣

∣

αj for all s ∈ D

with the Euclidean norms ||sj||, j = 1, . . . , k.

For a hyperrectangle A = [a1, b1]× . . .× [ad, bd] ⊂ D and a random field X ∈ C(A),

analogously to the one-dimensional case, we say that:

(i) X is Hölder continuous if for some α, l, and a positive constant C,

||X(t+ s)−X(t) ||2 ≤ C || s ||
α

for all t, t+ s ∈ A;

(ii) X is locally stationary if for some α, l, and a vector function c(t) = (c1(t), . . . ,

ck(t)),
||X(t+ s)−X(t) ||2
∑k

j=1 cj(t) || sj ||
αj

→ 1 as s → 0 uniformly in t ∈ A,

with positive and continuous functions c1(·), . . . , ck(·). We assume additionally that

for j = 1, . . . , k, the function cj(·) is invariant with respect to permutations of coor-

dinates within the j-th component.
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4 Regular and cross regular sequences of sampling

designs

In this section, we describe sequences of sampling designs determining the location

of observation points used to construct the approximation methods studied in the

thesis. Let us begin with the one-dimensional setting, i.e., D = [0, 1]. Consider

designs consisting of n+ 1 distinct points Tn = {t0, t1, . . . , tn}, including the ends of

the unit interval, i.e., 0 = t0 < t1 < . . . < tn = 1. Following Sacks and Ylvisaker

(1966), we introduce the regular sequences of designs Tn = Tn(h) generated by a

positive continuous density function h(t), t ∈ [0, 1], via

∫ ti

0

h(t)dt =
i

n
, i = 0, . . . , n.

Define the related distribution functions

H(t) :=

∫ t

0

h(u)du, G(t) := H−1(t) =

∫ t

0

g(v)dv, t ∈ [0, 1], (1)

i.e., G(·) is a quantile function for the distribution H . Then by definition,

ti = G

(

i

n

)

, i = 0, . . . , n,

i.e., the knots are i/n-quantile points of H . In particular, if h(·) is uniform over [0, 1]

(h(t) ≡ 1, t ∈ [0, 1]), then G(t) = t, t ∈ [0, 1], and the regular sampling becomes the

conventional equidistant sampling including the endpoints.

Consider now D = [0, 1]d, d ≥ 2. Let hj(s), s ∈ [0, 1], j = 1, . . . , d, be positive and

continuous density functions, say, withindimensional densities, and set

h(t) := (h1(t1), . . . , hd(td)),

Moreover, let π : → d be a vector function determining the interdimensional

knot distribution:

π(N) := (n1(N), . . . , nd(N)),
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such that limN→∞ nj(N) = ∞, j = 1, . . . , d, and the condition

d
∏

j=1

(nj(N) + 1) = N (2)

is satisfied. The cross regular sequence of sampling designs corresponding to h(·) and
π(·) is defined by

TN =TN(h, π)={ti=(t1,i1 , . . . , td,id) : i=(i1, . . . , id), 0 ≤ ik ≤ nk(N), k=1, . . . , d},

where
∫ tj,i

0

hj(v)dv =
i

nj(N)
, i = 0, . . . , nj(N), j = 1, . . . , d.

Equation (2) ensures that the total number of observation points is N . We suppress

the argument N for nj = nj(N), j = 1, . . . , d, when doing so causes no confusion.

Observe that a cross regular design TN may be expressed as a product of regular

designs, i.e.

TN (h, π) = Tn1
(h1)× . . .× Tnd

(hd).

The hypercube D is partitioned into
∏d

j=1 nj disjoint hyperrectangles Di, i ∈ I,

where I := {(i1, . . . , id), 0 ≤ ik ≤ nk − 1, k = 1, . . . , d}. Let 1d = (1, . . . , 1) denote

a d-dimensional vector of ones. The hyperrectangle Di is determined by the vertex

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

t(0,0)

t(0,1)

t(0,2)

t(0,3)

t(0,4)

t(0,5)

t(1,0)

t(1,1)

t(1,2)

t(1,3)

t(1,4)

t(1,5)

t(2,0)

t(2,1)

t(2,2)

t(2,3)

t(2,4)

t(2,5)

D(0,0)

D(0,1)

D(0,2)

D(0,3)

D(0,4)

D(1,0)

D(1,1)

D(1,2)

D(1,3)

D(1,4)

Figure 1: A two dimensional cross regular grid with h(t) = (1+ 1/2t1, 1), t ∈ [0, 1]2,
n1 = 2 and n2 = 5.

ti = (t1,i1 , . . . , tj,id) and the main diagonal ri = ti+1d
− ti, i.e.,

Di :=
{

t : t = ti + ri ∗ s, s ∈ [0, 1]d
}

,
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where ′∗′ denotes the coordinatewise multiplication, i.e., for x = (x1, . . . , xd) and

y = (y1, . . . , yd), x ∗ y := (x1y1, . . . , xdyd). Figure 1 presents an example of two

dimensional cross regular grid with h(t) = (1 + 1/2t1, 1), t ∈ [0, 1]2, n1 = 2 and

n2 = 5.

The introduced notation for the observation points and the coordinates of a vector

t is not completely unambiguous. As an example, ti in the one-dimensional setting

refers to the i-th element of a sampling design, while in the multivariate case, it refers

to the i-th coordinate of a parameter t. Nevertheless, in what follows, the meaning

of the symbol should be clear from the context.

5 Approximation techniques

In this section, we define the approximation techniques used throughout the thesis

and present shortly our results obtained for the introduced classes of random func-

tions. We begin with a one-dimensional piecewise linear interpolator and present

its generalization, namely, Hermite interpolation spline and a multivariate piecewise

linear interpolator. Further, we discuss a stratified Monte Carlo quadrature in the

context of numerical integration of random fields.

5.1 Piecewise linear interpolation

Let X(t), t ∈ [0, 1], be a continuous stochastic process. The conventional linear

interpolator based on two observations in points t = 0 and t = 1 is given by

H1(X, {0, 1})(t) := X(0)(1− t) + tX(1), t ∈ [0, 1].

Moreover, for any design Tn = {t0, . . . , tn}, 0 = t0 < . . . < tn = 1, a piecewise linear

interpolator (PLI) is defined by

H1(X, Tn)(t) := X(ti)(1− ti) + tiX(ti+1), t ∈ [ti, ti+1], (3)

where ti = (t−ti)/hi, hi = ti+1−ti, i = 0, . . . , n−1. We express (3) in a probabilistic

setting by introducing an auxiliary random variable, i.e.,

H1(X, Tn)(t) = EηiX(ti + hiηi), t ∈ [ti, ti+1], (4)
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where ηi is a Bernoulli random variable with mean ti, i = 0, . . . , n−1. Piecewise linear

interpolation and its application to approximation of random processes have been

widely studied. For locally stationary processes, an exact asymptotic behavior of the

approximation accuracy is derived in Seleznjev (2000). Seleznjev (1999) shows that

for a wide class of processes satisfying a Hölder condition, PLI attains the optimal

rate of convergence among all linear methods.

5.2 Hermite interpolation splines

To obtain approximations attaining the optimal approximation rates for smooth

functions, we need more advanced methods. If besides values of the process, it

is possible to sample its q.m. derivatives, then Hermite interpolation splines are a

feasible technique. Recall that for any f ∈ Cm([0, 1]), m ≥ 0, the piecewise Hermite

polynomial Hk(t) = Hk(f, Tn)(t) of degree k = 2r + 1, 0 ≤ r ≤ m, is the unique

solution of the interpolation problem

H(j)
k (ti) = f (j)(ti), i = 0, . . . , n, j = 0, . . . , r.

Analogously, assuming that for X ∈ Cm([0, 1]), the process and its first r ≤ m

derivatives can be sampled, we write Hk(X, Tn) with k = 2r + 1 ≤ 2m + 1 to de-

note a corresponding stochastic Hermite spline. Observe that the piecewise linear

interpolator is a special case of Hermite interpolation splines (r = 0). Hermite spline

interpolation for q.m. continuous and smooth random functions is studied in Selezn-

jev (1999) and Hüsler et al. (2003). Seleznjev (2000) determines an exact asymptotics

of the corresponding approximation error for processes with locally stationary q.m.

derivatives. General results for approximation of q.m. continuous and differentiable

random processes by linear methods can be found, e.g., in Ritter (2000) and Buslaev

and Seleznjev (1999).

5.3 Multivariate piecewise linear interpolation

Now we turn to the approximation of real-valued random fields. The piecewise linear

interpolator expressed in terms of an auxiliary random variable by (4) is naturally

extendable to higher dimensions. Consider a random field X(t), t ∈ D = [0, 1]d,

d ≥ 2. Let TN be a cross regular sequence of designs. We define a multivariate

8



piecewise linear interpolator (MPLI) with knots TN

XN(X, TN)(t) := Eηi
X(ti + ri ∗ ηi), t ∈ Di, t = ti + ri ∗ s,

where ηi = (ηi,1, . . . , ηi,d) and ηi,1, . . . , ηi,d are auxiliary independent Bernoulli ran-

dom variables with means s1, . . . , sd, respectively, i.e., ηi,j ∈ Be(sj), j = 1, . . . , d,

i ∈ I. Such an interpolator is continuous and piecewise linear along all coordinates.

We study the behavior of MPLI for continuous locally stationary random fields in

Paper B. For such fields, we derive the exact asymptotics of the approximation error.

A method is proposed for determining the asymptotically optimal interdimensional

knot distribution for such error. We also study optimality of knot allocation along

coordinates of the sampling grid. An explicit formula for the asymptotically optimal

density is derived for one-dimensional components. Additionally, for some classes of

q.m. continuous and continuously differentiable random fields, we determine upper

bounds for the approximation accuracy.

The performance of MPLI is optimal in a certain sense: the corresponding approxi-

mation error is of the same order as the minimal error for linear methods for random

fields satisfying Hölder type conditions (see, e.g., Ritter, 2000). An upper bound

for the approximation error for isotropic random fields satisfying Hölder type condi-

tions is given in Ritter et al. (1995). An optimal allocation of the observations for

Gaussian random fields with product type kernel is investigated in Müller-Gronbach

and Schwabe (1996). Benhenni (2001) provides exact asymptotics of MPLI approx-

imation accuracy for stationary spatial process when the estimator is based on an

equidistant sampling.

5.4 Stratified Monte Carlo quadrature

In this section, we consider the numerical integration problem, i.e., an approximation

of

I :=

∫

D

X(t)dt,

where X(t), t ∈ D = [0, 1]d, d ≥ 1, is a q.m. continuous random field. We evaluate

the performance of a stratified Monte Carlo quadrature, introduced in a deterministic

setting by Haber (1966) to overcome approximation rate limitations of conventional

Monte Carlo methods. The quadrature is defined by N stratified random observa-

tions with the partition generated by a cross regular design. To control the number

9



of the hyperrectangular strata, rather than the number of grid vertices, we replace

equation (2) in the definition of a cross regular sampling with

d
∏

j=1

nj(N) = N. (5)

Recall that I = {i = (i1, . . . , id) : 0 ≤ ij ≤ nj − 1, j = 1, . . . , d} and let |Di| denote
the volume of the hyperrectangle Di, i ∈ I. For a random field X ∈ C(D), define

a stratified Monte Carlo quadrature (sMCQ) on the partition generated by a cross

regular design TN :

IN(X, TN) :=
∑

i∈I

X(ηi)|Di|,

where ηi, i ∈ I, are independent random variables and ηi is uniformly distributed in

the hyperrectangle Di, i ∈ I. Such a quadrature is a modification of the well known

midpoint quadrature (see, e.g., Evans and Swartz, 2000). In paper C, we study

the behavior of the corresponding approximation accuracy for q.m. continuous ran-

dom fields. For locally stationary random fields, we provide the exact asymptotics

of the mean squared error of the integral approximation. We discuss the optimal

interdimensional distribution of knots resulting in an increased rate of convergence,

compared to the uniform distribution. For stochastic processes, the optimal withindi-

mensional density which minimizes the constant for the asymptotic approximation

error is determined. An upper bound for the approximation accuracy for the class

of Hölder continuous random functions is derived.

Analogously to the multivariate piecewise interpolation problem, the obtained ap-

proximation rate is optimal for the class of random fields satisfying Hölder condition

(see, e.g., Wasilkowski, 1994). Monte Carlo numerical integration techniques have

an advantage over deterministic product rules, namely, these techniques do not suf-

fer the curse of dimensionality. While the approximation rate of the deterministic

methods decreases when dimension d increases, the Monte Carlo methods guaran-

tee convergence not slower than N−1/2. Regular sampling designs for estimating

the intergrals of stochastic processes are studied in Benhenni and Cambanis (1992).

Random designs of sampling points, including stratified sampling for stochastic pro-

cesses, are investigated in Schoenfelder and Cambanis (1982); Cambanis and Masry

(1992). Approximation of integrals of stationary random fields using the observations

on a lattice is discussed in Stein (1995b). Quadratures for smooth isotropic random

functions are investigated in Ritter and Wasilkowski (1997); Stein (1995a). Multi-
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variate numerical integration of random fields satisfying Sacks-Ylvisaker conditions

is studied in Ritter et al. (1995).

6 Point singularities

6.1 Motivation

Regular sequences of designs are powerful and convenient tools in approximation

theory. However, in the case of an isolated point singularity it is beneficial to con-

sider slightly different designs. We illustrate this with a deterministic example of a

piecewise linear interpolation presented in Rice (1969).

Example 1. Let f(t) =
√
t, t ∈ [0, 1], and consider the piecewise linear interpolator

H1(f, Tn)(t), t ∈ [0, 1] with n + 1 knots Tn. We compare the maximum approxi-

mation error en(Tn, f) = maxt∈[0,1] |f(t) − H1(f, Tn)(t)| for uniformly spaced knots

Tn,1 = {ti = i/n : i = 0, . . . , n} and for Tn,2 = {ti = (i/n)4: i = 0, . . . , n}. Fig-

ure 2 demonstrates the plots of the function f(·) together with the piecewise linear

interpolators H1(f, Tn,1)(·) and H1(f, Tn,2)(·) for n = 4. For both designs, the obser-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

 

 

f (·)
H1(Tn,1, f )(·)
H1(Tn,2, f )(·)

Figure 2: Plots of f(·) (solid line), H1(f, Tn,1)(·) (dashed line), and H1(f, Tn,2)(·)
(dotted line) for n = 4.

vation points are the percentile points of generating densities h1(t) = 1, t ∈ [0, 1],

and h2(t) = 1/4t−3/4, t ∈ (0, 1], respectively. Direct calculation shows that

en(Tn,1, f) =
1

4n1/2
,

en(Tn,2, f) ≤
1

2n2
.
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Hence, relaxing the condition of continuity of a generating density on the whole unit

interval and allowing unboundedness in the singular point result in a significant gain

in the approximation rate. In principle, the main idea is well-known for nonlinear

approximation of deterministic functions (see, e.g., de Boor, 1973; DeVore, 1998,

and references therein). We use a finer mesh where the target function is singular

and a coarser mesh where it is smooth.

6.2 Quasi regular sequences of designs

In Paper A, we introduce a modification of the regular sequences, namely, the quasi

regular sequences (qRS) of sampling designs Tn = Tn(h). We assume that h(t) is con-

tinuous for t ∈ (0, 1], and allow h(·) to be unbounded in t = 0. If h(t) is unbounded

in t = 0, then h(t) → +∞ as t → 0+. The corresponding quantile density function

g(t) defined in (1) is assumed to be continuous for t ∈ [0, 1] with the convention that

g(0) = 0 if h(t) → +∞ as t → 0+.

In Paper C, we study numerical integration of random functions with a point singu-

larity. For random processes, we provide some conditions for the density generating

the quasi regular sequences of designs. Under these conditions, the sMCQ asymptot-

ically attains the convergence rate corresponding to the numerical integration of a

process without the singularity. Moreover, for one component random fields (d ≥ 2),

we show that the effect of the singularity might be eliminated by the sMCQ with

sampling points determined by cross regular sequences of designs.

6.3 Composite Hermite splines

In Paper A, we examine the case when due to the point singularity, the construction

of a Hermite spline attaining the optimal convergence rate on [0, 1] is not possible.

Consider a stochastic process X(t), t ∈ [0, 1], and let X ∈ Cl([0, 1]), l ≥ 0. Further-

more, let X ∈ Cm([a, b]) for any [a, b] ⊂ (0, 1], l < m. Assume also that existing

q.m. derivatives are sampled. Using the introduced definition of the interpolation

Hermite spline, we can only construct the splines of maximum order q = 2l + 1. To

solve this problem, in Paper A, we introduce the following adaptation of a Hermite

spline. We define Hq,k(X, Tn), q = 2l + 1 < k = 2m+ 1, to be a composite Hermite

spline

Hq,k(X, Tn)(t) :=

{

Hq(X, Tn)(t), t ∈ [0, t1],

Hk(X, Tn)(t), t ∈ [t1, 1].

12



In this way, we are able to use all available information about a target function.

Nevertheless, such an interpolator does not attain the optimal rate of approximation

when regular design sequences are used, since the main input to the error comes

from the interval [0, t1]. On the other hand, combining composite Hermite splines

and appropriate quasi regular sequences of designs leads to elimination of the effect of

the singular point. In Paper A, we investigate the accuracy of such an approximation

for a wide class of stochastic processes. Further, the formula for the asymptotically

optimal density is derived. Under certain conditions, such density not only attains

the optimal rate of convergence but also minimizes the asymptotic constant.

7 A financial application: Asian option pricing

The log-returns model based on the Wiener process, called the Black-Scholes model,

was developed by Black and Scholes (1973). The price process describing the evolu-

tion of a risky asset on the market is modelled by

S(t) = S(t; r, σ, S0) := S(0)e(r−σ2/2)t+σW (t), S(0) = S0, t ≥ 0,

where W (t), t ≥ 0, is a Brownian motion, S0 is a given initial price of the asset, r > 0

denotes a risk free rent, and σ > 0, called volatility, is an asset specific parameter

measuring the variation. To ensure that there is no arbitrage on the market, a

discounted price process e−rtS(t), t ≥ 0, must be a martingale. Recent studies

reveal discrepancy between empirical data and theoretical properties of the normal

approximation of log-returns. The imperfection of Gaussian models is studied, e.g.,

in Schoutens (2003). Modern modelling is based on a wide class of Lévy processes

with stationary and independent increments. Such models capture the negative

skewness, exceeding kurtosis, and heavy tails properties. A stochastic process L(t) =

L(t;Ξ), t ≥ 0, L(0) = 0, with a set of parameters Ξ is called a Lévy process if it

has independent and stationary increments and it is stochastically continuous (i.e.,

lims→t P (|L(t) − L(s)| > ε) = 0 for all t ≥ 0, ε > 0). For Lévy models, we assume

that the price process can be written as

S(t) = S(t;Ξ, S0, m) := S(0)emt+L(t,r;Ξ), S(0) = S0, t ≥ 0.

The requested martingale property is obtained by setting a location parameter m∗ =

m∗(Ξ, r) such that ES(t) = ertS0, t ∈ R+.
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Options are among the most widely used derivatives on the stock market. An option

is a right, not an obligation, to buy or sell an asset at a strike price at a given time

with respect to an initial price. An execution of a classic option, called vanilla option,

depends on the price only at a terminal time. To prevent manipulations of a market

close to an execution date, Asian options are constructed. An Asian option takes

the average (arithmetic or geometric) of prices during some period. Formally, the

price of an arithmetic call Asian option with European type of execution is given by

A = A(Ξ, S0, m
∗, r, T,K) := e−rTE

(

1

T

∫ T

0

S(t;Ξ, S0, m
∗)dt−K

)

+

,

where T > 0 refers to a maturity time measured in years, K > 0 is an exercise price,

and for any a ∈ R, (a)+ := max(a, 0).

Even in the Black Scholes model, pricing arithmetic Asian options is still an open

question. Approximate closed-form solutions are suggested in, e.g., Milevsky and

Posner (1998) and Zhang (2004). In Paper D, the accuracy of Monte Carlo pricing

method for the class of Lévy markets is studied. We investigate the implication of

a uniform time discretization and corresponding piecewise constant approximation

of the price process. We calculate an upper bound for the variance of the estimator

and consequently obtain a bound for the simulation error. This allows us to perform

accurate simulations with controlled discretization and simulation errors. Further-

more, the sufficient numbers of discretization points and Monte Carlo replications to

obtain the option price estimates with a predescribed accuracy (at a given confidence

level) are provided. Moreover, for the Black Scholes model, we investigate the control

variate variance reduction technique and obtain a more efficient pricing algorithm.

For an extensive summary of Monte Carlo methods in financial engineering, we refer

to Glasserman (2004).

8 Summary of papers

In this section, we present the four papers included in the thesis. A Hermite spline

approximation of stochastic processes with a singularity is investigated in Paper

A. In Paper B and C, we deal with approximation and numerical integration of

continuous random fields, respectively. In paper D, we consider an approximation

problem applied to financial mathematics, namely, Monte Carlo evaluation of prices

of arithmetic Asian options. Each study is completed with numerical experiments
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illustrating the obtained results.

8.1 Paper A: Spline approximation of a random process with

singularity

Let a random process with finite second moment be observed in finite number of

points and have different quadratic mean smoothness at the origin (i.e., an isolated

singularity). In this paper, we consider approximation of such processes by a com-

posite Hermite interpolation spline. A quasi regular sequence of sampling designs is

constructed to improve the asymptotic approximation performance eliminating the

effect of the singularity point. Furthermore, we provide the formula for the generat-

ing density that under certain condition minimizes the constant for the asymptotic

approximation accuracy. The proposed technique can be applied also to random

processes with a finite number of isolated singularity points.

8.2 Paper B: Multivariate piecewise linear interpolation of

a random field

In this paper, we consider multivariate piecewise linear interpolation of a continuous

random field on a unit hypercube. The approximation performance is measured

by the integrated mean squared error. A multivariate piecewise linear interpolator

is defined by N field observations located on a cross regular grid (design). We

investigate the class of locally stationary random fields and find the asymptotic

approximation accuracy for large N . Moreover, for certain classes of continuous and

continuously differentiable fields satisfying Hölder type conditions, we provide the

upper bound for the approximation accuracy.

8.3 Paper C: Stratified Monte Carlo quadrature for random

functions

In this paper, we consider the problem of numerical approximation of integrals of

random fields over a unit hypercube. We use a stratified Monte Carlo quadrature

rule and measure the approximation performance by the mean squared error. The

quadrature is defined by N stratified randomly chosen observations with the strata

generated by a cross regular design. For the class of locally stationary random fields

the asymptotic approximation accuracy for large N is derived. For the Hölder class
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of random functions, we provide an upper bound for the approximation error. Addi-

tionally, for a certain class of isotropic random functions with an isolated singularity

at the origin, a sequence of designs eliminating the effect of the singularity point is

constructed.

8.4 Paper D: On the error of the Monte Carlo pricing me-

thod for Asian option

In this paper, we consider a Monte Carlo method for pricing a continuous arithmetic

Asian option with a given precision. Piecewise constant approximation and plain

simulations are used for a wide class of models based on Lévy processes. We give

bounds on the possible errors due to discretization and simulation. According to

some criteria, we give the sufficient numbers of discretization points and simulations

to obtain the price estimate with the required precision on a given confidence level.

To demonstrate the developed general approach, the Black-Scholes model is studied

in more detail.

9 Concluding remarks and future research

In this thesis, we study methods for approximation and numerical integration of

stochastic processes and random fields. Further, we investigate some applications in

the context of financial mathematics. The obtained results can be used for develop-

ing asymptotically optimal sampling designs in many applied fields. We performed

numerical studies based on simulations, however it could be rewarding to examine

the results in connection to real data.

The construction of the interpolating Hermite splines requires the knowledge of q.m.

derivatives. As presented in Paper A, it is possible to obtain an exact asymptotics

for the corresponding approximation accuracy in case of a finite number of singular

points. One of the possible directions for future research is developing similar results

for higher order approximation techniques without sampling of derivatives.

In Paper B, we investigate the multivariate piecewise linear interpolator. The method

is in a certain sense optimal for the q.m. continuous and continuously differentiable

random functions. It would be of interest to investigate the exact asymptotics for

higher order approximation techniques and generalize the concept of the local sta-

tionarity for smooth random fields.
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The performance of the stratified Monte Carlo quadrature for smooth functions can

be improved by making use of antithetic variables (Haber, 1967). It is relevant to

investigate this modification in the context of numerical integration of random fields

and to obtain asymptotic expressions for the numerical integration accuracy for spe-

cific classes of random fields.

The Monte Carlo pricing method with controlled accuracy investigated in Paper D

can be applied for a wide class of financial derivatives. Possible future work would

be to develop a robust collection of results for various types of options and contracts

in a Lévy market model setting.

The techniques used to obtain the results of Paper A are based on the Peano ker-

nel theorem. The theorem provides a representation for approximation errors for a

general class of linear methods. It would be of great interest to apply this general ap-

proach to problems in a random setting and derive results for various linear operators

used in approximation, numerical integration, and numerical differentiation.
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