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Abstract—In this paper we propose an adaptation mechanism
for robot behaviors to make robot-human interactions run more
smoothly. We propose such a mechanism based on reinforcement
learning, which reads minute body signals from a human
partner, and uses this information to adjust interaction distances,
gaze meeting, and motion speed and timing in human-robot
interaction. We show that this enables autonomous adaptation
to individual preferences by an experiment with twelve subjects.

Index Terms—policy gradient reinforcement learning
(PGRL), human-robot interaction, behavior adaptation,
proxemics.

I. INTRODUCTION

When humans interact in a social context, there are many
factors apart from the actual communication that need to
be considered. Previous studies in behavioral sciences have
shown that there is a need for a certain amount of personal
space [2] and that different people tend to meet the gaze of
others to different extents [3]. For humans, this is mostly
subconscious, but when two persons interact, there is an
automatic adjustment of these factors to avoid discomfort.
When a conversational partner stands too close, we tend to
move away, and when we are stared at, we tend to avert our
eyes [9].

There have been a few studies of how to apply this sort
of behavior to robots, e.g. [7] [10] [8], but so far, none of
them have addressed the problem of adapting to individual
preferences in these matters. In order to facilitate human-robot
interaction, a robot must be able to read small discomfort
signals in humans and adjust its behavior accordingly, just
like a human would.

We also note that it is important for a robot to be able to
perform this kind of adaptation autonomously. A system that
requires tuning by a specialist is not only cumbersome in the
start-up phase, but for a robot that would meet new people on
a daily basis, it would be very unreasonable to require per-
sonal adjustment before interaction could start. Autonomous
adjustment would be especially important for robots working
in a public environment, for example performing guide tasks.
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Incremental learning of behavior decision through inter-
action with a human [6] has been proposed. They used a
kind of teaching method which requires conscious answers
from a human user. This kind of learning will be important
for a task completion. However, an adaptation method, which
reads subconscious responses from the human, is required for
smooth human-robot communication.

The matters are further complicated by the fact that hu-
man preferences seem to be interdependent. The discomfort
of personal space invasion is lessened if gaze-meeting is
avoided [9]. Where human-robot interaction is concerned,
studies also show that a person’s feeling of comfortable
distance for a robot varies with how menacing the robot’s
actions are perceived, i.e. the robot’s movement speed [7].
This means that in order to construct a system that adapts
to personal preferences, several parameters have to be con-
sidered simultaneously, resulting in a large multi-dimensional
space that needs to be searched in order to find the optimum.

Another requirement for a system for this kind of adapta-
tion is that it performs reasonably well during the adaptation
process. Especially in a public setting, for example in a
school or a museum, it is very important that the robot does
not exhibit antisocial behavior during the initial phases of
adaptation.

In this paper, we propose a behavior adaptation system
based on reinforcement learning to solve this problem. Using
small discomfort signals from the human partner as input to
the reward function, it finds the behavior that minimizes these
signals, and thereby also minimizes the actual discomfort
experienced by the human. In the following, we first show
the proposed behavior adaptation system. Then we show the
experimental setup and results. Finally we give the discus-
sions and conclusions.

II. THE BEHAVIOR ADAPTATION SYSTEM
A. Behavior adaptation

Our robot behavior adaptation system monitors subcon-
scious responses from a human partner that indicate discom-
fort, and changes the robot’s behavior in order to minimize
these signals. The signals that are monitored are the amount
of body repositioning done and the time spent averting gaze



by the human. These values are then used as the reward that
is to be minimized by the system. The system consists of
the policy gradient reinforcement learning (PGRL) algorithm,
that minimizes this reward by changing its policy, which in
turn determines the robot’s behavior. In PGRL, the policy is
directly adjusted to minimize the reward. Other reinforcement
learning techniques, such as Q-learning, learn an action-value
function which the policy will be extracted from. We used a
policy that consists of six adapted parameters, three classes
of interaction distances and three interaction parameters.
The following sections will explain in detail the adapted
parameters, the PGRL algorithm, and the reward function.

B. Adapted Parameters

In this experiment, we used six different parameters. These
were the interaction distance for each of three classes of
interaction (detailed explanation in III-A), the extent to which
the robot would meet a human’s gaze, waiting time between
utterance and action, and the speed at which motions were
carried out. We chose these parameters since they seem to
have large impacts on interaction and low implementation
costs and we could keep the number of parameters small and
thereby the dimensionality of the search space at a minimum.

The distances were measured as the horizontal distance
between robot and human foreheads. For gaze-meeting, the
robot would meet human gaze, and then look away, with
a cycle length of 5 seconds, which is the average cycle
length in human-human interaction, according to [3]. The
gaze-meeting parameter is the proportion of the cycle spent
meeting the human subject’s gaze. The speed of the robot
was divided into two parameters. One controlled how long
the robot would wait between utterance and action (e.g. the
waiting time between saying “let’s shake hands” and reaching
out with its right arm), and the other controlled the actual
speed of the motion itself.

C. The PGRL Algorithm

The learning algorithm used in this experiment is policy
gradient reinforcement learning (PGRL), a reinforcement
learning method that directly adjusts the policy without cal-
culating action value functions (detailed descriptions can be
found in [1] and [5]). Figure 1 shows the algorithm [5] in
pseudo code. The © indicates the current policy which has
n parameters. A total of T perturbations of ® are generated,
tested with a person, and the reward function is evaluated.
Perturbation ©" of © is generated by randomly adding ¢;,
0, or —¢; to each element 6; in ©. The step sizes ¢; are set
independently for each parameter.

When all T pertubations have been run, the gradient A of
the reward function in the parameter space is approximated
by calculating the partial derivatives for each parameter.
Thus, for each parameter 6;, the average reward when ¢;
is added, no change is done and when ¢; is subtracted are
calculated. The gradient in dimension j is then regarded as
0 if the reward is greatest for the unperturbed parameter, and
regarded as the difference between the average rewards for

1 ®={6;} « Initial parameter set vector of size n
©' = {0} : Perturbed vector derived from ©
3 € < parameter step size vector of size n
4 n < overall step size
5 while (not done)
6 fort = 1toT
7 for j = 1ton
8 r <« wunbiased random choice
from {-1, 0, 1}
0F — 0; + €1,
10 Run system using parameter set @,
evaluate reward
11 forj = 1lton
12 Avgie; <« average reward for all ©!
with positive perturbation in dimension j
13 Avgy; <« average reward for all O
with zero perturbation in dimension j
14 Avg_.; <« average reward for all O
with negative perturbation in dimension j

Ne)

15 if (Avgo,; > Avgyc;) AND
(Avgo,; > Avg—c;)

16 aj «— 0

17 else

18 a; — (Avgye; — Avg_cj)

19 A — ﬁ x N

20 aj < Gj* €5, VJ

21 ® — 6 + A

Fig. 1. PGRL Algorithm

the perturbed parameters otherwise. When the gradient A has
been calculated, it is normalized to overall step size 7 and for
the individual step sizes € in each dimension. The parameter
set ® is then adjusted by adding A.

This method is guaranteed to converge towards a local
optimum given a static reward function (for a more stringent
analysis of the algorithm, see [1]). Given a stochastic value
function, that possibly evolves over time, PGRL will continu-
ously move towards the vicinity of the current local optimum,
but of course, no convergence guarantees can be given. The
main advantage over other reinforcement learning methods,
is that little knowledge of the dynamic model behind the
system is required (as compared to dynamic programming),
and that since large tables, e.g. those of Q-learning, need not
be calculated, learning should be considerably quicker.

D. Reward Function

The reward function was based on the amount of movement
of the subject and the propotion of the time spent gazing
directly at the robot in one interaction,

R = 0.2 x (movement[mm]) + 500 x (gazing prop.). (1)

Figure 2 shows the block diagram. These two features were
chosen as they are typical discomfort signals in interaction,
which are easy to measure. When we feel that a conversational
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partner is standing too close for current interaction, we have
tendency to move away, and when we are stared at too much,
we tend to avert our eyes [9]. We also assume that we avert
our eyes from the partner when the interaction is boring
or unrecognizable, for example, when a robot’s behavior is
too slow or too fast. Human body movement analysis [11]
also reports that the evaluation from subjects had positive
correlation with the length of the gazing time and negative
correlation with the distance which the subject moved. The
weights that balanced them were chosen so that in a typical
case the contributions of the two factors were of equal size.
The movement factor was given a negative weight, since it
represents a sign of discomfort.

The movement was measured as the translation of the
subject’s forehead in the horizontal plane. The movement
measure was first filtered with a lowpass filter in order to get
rid of high frequency noise. This means that only movements
on the scale of 5 Hz or slower were considered. The gazing
factor was calculated as the percentage of time that the
subject’s face was turned towards the robot, with an allowance
of £10 degrees (Figure 2). Face direction was chosen over
actual eye direction as it is easier to measure accurately, and
as it tends to follow eye direction closely in face-to-face
communication.

III. THE EXPERIMENT
A. The environment and the robot

This experiment was conducted in a space approximately
3.5 x 4.5 meters in the middle of a room, the limits being
set by the area that can accurately be perceived by the
motion capture system used for sensoring. Figure 3 shows
the experimental setup. The robot was initially placed in the
middle of this area, and the subjects were asked to stand in
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Fig. 3. Experimental setup

front of the robot and to interact with it in a relaxed, natural
way. Apart from this, and an explanation of the limits of the
motion capture system, the subjects were not told to behave
or react in any particular way.

For the purpose of this study, we used the humanoid
communication robot Roboviell (see Figure 4), developed at
ATR [4]. Its size is approximately that of a human child,
with a height of 120 cm. It is fitted with a two-wheeled base
that uses differential drive for locomotion. The robot has two
arms, each with four degrees of freedom, that can be moved in
most ways that a human arm can. The head is mounted with
three degrees of freedom, and the two camera eyes mounted
on it have two degrees of freedom each, enabling the robot
to direct its eyes in any frontal direction, making it capable
of meeting the gaze of a human subject. The robot’s head is
fitted with a speaker and microphone, in order to produce and
recognize speech.

The software platform used in Roboviell consists of several
separate behaviors. Each behavior consists of a single action
or set of actions that naturally fit together to form an inter-
action unit. The behaviors that we used were grouped into
three different categories, according to their interaction class:
intimate, personal and social (Table I). These are the terms
used by Hall to describe the three closest types of interaction
distances in his work on proxemics [2]. The sorting into
classes was determined by a prestudy in which we exposed
8 subjects to the behaviors, and let the subjects choose
what distance they were comfortable with for each of these.
In normal human interaction, casual conversation is usually
classed as social, but our prestudy showed that the subjects
preferred a closer distance, equaling that of the touch-based
interactions found in the personal group. This is mainly due
to limitations of the robot’s speech capabilities. There are of
course variations of preferences for each person within the
same class, but these tend to be small.

The measurements for this experiment were done using
a motion capture system with 12 cameras. This allowed
for acquiring of position data of robot and subject alike in
millimeter accuracy. Head and shoulder positions where used
to calculate locations of the foreheads of the robot and the
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TABLE I
BEHAVIOR CLASSES

Class Name
intimate ~ Hug
personal  Shake hands

personal  Ask where person comes from
personal  Ask if robot is cute

personal  Ask person to touch robot
social Play paper-scissors-stone
social Play pointing game

social Perform arm-swinging exercise
social Hold “thank you” monologue
social Look at human without speaking

subject. We assumed that the averaged gazing direction equals
to the direction of the foreheads. Then, we used the direction
of the foreheads as the gazing direction. The motion capture
data were forwarded to the robot’s onboard computer via
TCP/IP, resulting in data lags of at most 0.1 seconds in this
experiment, ensuring sufficient response speed.

B. Experimental procedure

The interaction experiment lasted for 30 minutes, during
which the robot executed the behaviors at random. It repeat-
edly proposed different typical Japanese children’s games,
asking questions or demanding to be touched, hugged, or
shake hands. This was accompanied by motions of the robot’s
arms and head. For example, when the robot demands to be
hugged, it reaches out with open arms, and closes the arms
in an embracing motion if the subject is in a position within
reasonable distance in front of the robot. During this time,
the adaptation system was running on the robot in real-time,
adapting to the subject’s reactions. The initial values and the
search step sizes used for the different parameters can be seen
in Table II.

The reward function was calculated once per executed
action of the robot, or roughly once every ten seconds. A total
of ten different parameter combinations were tried before the
gradient was calculated and the parameter values upgraded.

TABLE II
PARAMETER VALUES AND STEP SIZES

#  Parameter Initial value  Step size €
I intimate distance 50 cm 15 cm

2 personal distance 80 cm 15 cm

3 social distance 100 cm 15 cm

4 gazing ratio 0.7 0.1

5  waiting time 0.17 s 03s

6 speed factor 1.0 0.1

This means that an iteration of the algorithm took 1 minute
and 40 seconds on an average.

After this session, the subjects were asked their impression
of the robot’s movements and general behavior. More detailed
measurements followed, in which the subjects were asked to
stand in front of the robot, at the distance they felt was the
most comfortable for a representative action for each of the
three distances studied: intimate, personal and social. They
were also asked to indicate how close the robot could come
without the interaction becoming uncomfortable or awkward,
as well as how far away the robot could be without disrupting
the interaction. These distances were measured using the same
motion capture system.

Furthermore, each subject was shown the robot’s behavior
performed in turn with three different values - one low, one
average and one high - for each of the remaining parame-
ters, gaze-meeting, timing and motion execution speed. The
remaining parameters were at this time set to fixed values.
The subjects were asked to indicate which of the three shown
behaviors they felt comfortable with. A few subjects indicated
several values for a single parameter, and some indicated
preferences between or outside the shown values.

A total of 15 subjects were used in this experiment: all
except one were japanese, and all understood the spoken
utterances of the robot. The subjects were of ages 20-35,
most in the range 20-25. Six of the subjects were female. All
subjects were employees or interns at ATR, meaning that they
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for acceptable distance and longer bars show the preferred value.

had a certain familiarity with Roboviell. Three of the subjects
did not react in the way we had anticipated. They neither
averted gaze nor shifted position however inappropriate the
robot’s behavior got, but showed their discomfort in words
and facial expression. The system did not have any success
in adapting to these subjects, but as these reaction types do
not fit our model of friendly interaction with the robot, we
do not include these results in our evaluation.

IV. EXPERIMENTAL RESULTS
A. The results

For most of our subjects, the parameters reached reasonable
convergence to stated preferences within 15-20 minutes, or
approximately 10 iterations of the PGRL algorithm.

In Figure 5 we show the learned values for the distances
as compared to the stated preferences for 12 subjects. The
learned distance is here calculated as the average parameter
value during the last fourth (about 7.5 minutes) of each exper-
iment run, since the algorithm keeps searching the optimum
value. The bars show the interval for acceptable distance and
the preferred value, and the asterisks are the learned values.
Figure 6 shows the remaining three parameters, where circles
show what values the subjects indicated as preferred. Some
subjects indicated a preference in-between two values, these
cases are indicated with a triangle showing that preferred
value. The asterisks again show the learned values as the mean
values for the last quarter of the experiment runs.

As can be seen, there is a large difference in success
rate between different parameters. This is due to the fact
that all parameters are not equally important for successful
interaction. It is a typical trait for PGRL that parameters that
have a larger impact on the reward function are adjusted
faster, while parameters that have a lesser impact will be
adjusted at a slower rate.

When we compared the results of the learning with the
comments given by our subjects in connection to the ex-
periments, we found that some of the subjects to whose
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TABLE III
AVERAGE DEVIATION FROM PREFERRED VALUE (NORMALIZED TO
STEPSIZE UNITS)

parameter  average deviation  initial deviation
intimate 0.9 1.8
personal 1.3 1.6
social 1.3 1.2
gaze 1.0 2.4
wait 0.8 L.5
speed 1.1 1.4

preferences the robot made the best adaptation were also
the ones on which the robot’s adaptation made the least
impression. We see this as a well-adapted behavior being
considered as natural by the subjects.

In order to get an overview of the general performance,
we calculated the average deviation for each parameter over
all subjects (Table III). The rightmost column of this table
shows how much the initial values deviated from the stated
preference, as a reference. All values have been normalized
for step size.

Most parameters converged to within one step size, the
exceptions being the personal and social distance parameters.
It should be noted, that for these parameters, the average
stated tolerance (the difference between the closest comfort-
able distance and the farthest) was of a size corresponding
to several step sizes. For example, for personal distance, the
average stated tolerance was 3.02 step sizes and for social
distance it was 5.01. As Figure 5 shows, for all subjects but
one, the learned social distance parameter values falls within
the stated acceptable interval.

That the parameters converge to a value within one step
size of the learning algorithm is an indication of successful
learning. In order to achieve better results, it would be
necessary to decrease the step size, either as a fixed value, or
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to let the step size become smaller as the parameters start to
converge.

As can be seen in Table III, the initial values are not far
(in step size units) from the preferred values. That the system
takes in the order of 10 iterations or more to converge is
due to the stochastic behavior of the human subjects. As can
be seen in Figures 5 and 6, for some subjects some values
did not converge to the desired values for the entire duration
of the experimental runs. If the subjects always reacted in
an unambiguous and consistent manner, convergence should
theoretically be reached in 3 to 4 iterations.

In the following, we show more details of how the system
behaved for different groups of subjects. We have divided
the results into five groups, successful, partial success with
content subjects, successful but discontent subjects, partially
successful, and unsuccessful runs.

B. Successful experimental runs

There were three subjects for whom the system performed
very well. Not only were the subjects themselves content with
the performance, but all parameters had a good convergence
to their stated preferences. Common for all of them was a
tendency to be very interested in interaction with the robot,
and they had a very positive interaction pattern, much as when
interacting with another human.

The tenth subject (Figure 7) was impressed by the robot’s
behavior and said that it quickly became much better. The
plots support this, as all parameters are adjusted to well
within stated preference, except personal distance, which is
but slightly farther. This subject stated a preference for an
interval of waiting times, hence the two lines in the plot
showing the borders of this interval.

C. Partial success - content subject

The next group consists of two subjects that were content
with the robot’s behavior, even though analysis of the results
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show that some parameters were far from stated preference.

The experimental run for the fifth subject (Figure 8)
resulted in good adaptation for the distance parameters, but
less successful adaptation for the remaining parameters. This
subject stated that all shown values for waiting were equally
good, so this parameter cannot be evaluated in this case.

Interestingly though, this subject stated content with the
gaze-meeting results, even though it is obvious from the
plots that these were far from his stated preference. He was
also satisfied with the speed parameter, which is as much
as 20% off from specified preference. It is possible that this
discrepancy can be explained by different conditions during
the experimental run and when measuring the preferences
afterward, or simply the fact that the subject actually accepted
a fairly wide range of parameter values.

This subject showed a slightly different behavior pattern
than the others. He preferred touching the robot even dur-
ing normal speech interaction and robot monologues. This
resulted in a shorter social distance than the other subjects,
but the system did not seem to have any problems to adapt
to this unexpected behavior.

D. Successful run - discontent subject

One subject, the seventh (Figure 9), was discontent with the
robot even though the values seem to converge to her stated
preference. She described her first impression of the robot’s
behavior as “tentative”, but that it became more active as time
passed. She also stated that she thought that it tended to get
too close, which is a bit surprising when actual distances are
compared to preference in the plots. A guess as to why this is
so is that during the experiment the robot raised its movement
speed in accordance with the subject’s preference, while the
preference measurements were conducted at default speed.
The subject might actually prefer a farther distance when the
speed is higher.
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Fig. 10. Results achieved for subject 1.

Most parameters can be said to eventually converge accept-
ably, though the adaptation is slow, taking approximately 25
minutes, which accounts for the subjects discontent.

E. Partially successful runs

There were five subjects for which the system only per-
formed partially well. These subjects were content with the
aspects that worked, and discontent with the ones that did
not.

The experiment with the first subject (Figure 10) was
aborted after 21 minutes due to technical problems, and as
such might be less significant than then the other runs that
lasted the entire planned 30 minutes.

The distances for personal and social interaction stay
well within the stated preferences, whereas the distance for
intimate interaction never enters the stated preference interval.
Since all distances tested in this case are outside the preferred
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interval, the algorithm gains little or no information on
the reward gradient for this parameter. The subject stated
discontent with the intimate distance.

The gaze-meeting parameter stays around 80%, which
should be deemed as acceptable as the subject indicated 100%
as being preferable to 50% or 75%. The waiting parameter
is however fairly far from the indicated preference. This
particular subject did not show much of an interest for speed
and timing issues, and could not indicate any speed as being
preferable to any other.

The third subject (Figure 11) stated a discontent with the
personal distance for the first half of the experiment, which
correlates well with the plot, as the value is initially at the
outer limit of what was indicated as acceptable. She was also
content with the gaze-meeting, even though the actual values
achieved were closer to 75% than her specified preference of
100%.

The plot of the intimate distance shows the lower limit
of 15 cm that the system has for safety reasons. This sub-
ject stated a fairly wide preference interval for the waiting
parameter, thus making the results for this more difficult to
evaluate.

The only other remarkable result of this experimental run
is that the speed parameter is far away from the stated
preference, something the subject also complained about.
Observations of the actual experiment showed that as the
robot increased its movement speed, the subject seemed to
watch the movements carefully and fix her gaze at it. This is
a weakness of the reward function.

F. Unsuccessful run

The results attained for the ninth subject (Figure 12) are
not very good. As can be seen, apart from the personal
distance and gazing parameters, the results are far from stated
preference. There were no observable problems with this
subject’s behavior, so the reason for these poor results are
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still unclear. It is possible that this subject was not clear in
showing his dislike when the robot behaved in an unwanted
manner. It is also noteworthy that the subject said that he
felt as if the robot didn’t like him, but forced itself to be
somewhat polite and talk to him anyway.

V. DISCUSSIONS AND CONCLUSIONS

We have shown that the robot adapted to individual pref-
erences for the most of the subjects in the experiment. Here
we conclude that a robot can adapt its behavior parameters
to individuals by policy gradient reinforcement learning. We
also note that the comments by the subjects suggested that
well-adapted robot behavior is perceived as natural. This is
an important step towards making robots that are as easy to
interact with as humans.

We found several issues to be solved however. First, it is
very difficult to measure true preferences since the parameters
are interdependent as we stated earlier. The fifth subject
was content with the learned parameters even though they
are far from the stated preferences. On the contrary, the
seventh subject claimed that the robot got too close though
the distance were near to her stated preference. Although
this issue may not influence the adaptation itself, it makes it
difficult to evaluate how well the system works for a person.

Second, the method could not find the gradient and cannot
find the direction to the local optimum for some parameters of
some subjects. The reason is that the behaviors of the subject
did not show any difference to the small perturbed values if
the current parameter is too far from the preferred values.

Third, there were subjects whose behaviors were different
from our expectation. The third subject had tendency to fix
her gaze to the robot when the motion speed was higher
than her preference. The ninth subject did not show his
preference in his behaviors. Then the robot could not have any
preference measure from his movements. We need different
reward functions for people who have different reactions.

To overcome the second and third issues, grouping of the
people will be a solution. By grouping, it will be possible to
start the adaptation from parameters nearer to optimum ones,
adapt faster, and select the appropriate reward function for the
person. Of course, we have many open questions. How many
and what kind of reward functions are needed? How does the
robot know what reward function is appropriate for a person?
How many groups should there be? How does the robot know
a person is in a certain group? How many parameters does
the robot have to adapt for humans? It will also require a
way to identify individuals, as the system needs to switch
between different parameter sets as different people approach
the robot.

For other future work, it would be interesting to take this
experiment out of the laboratory and give it a field try in a
public setting. In order to do this, all measurements, including
the face direction detection, will have to be done with the
robot’s onboard systems, which have a lower accuracy than
the motion capture system presently used. This may require
a new reward function. In the public setting, faster adaptation
and adaptation in multiple interactions of shorter period will
be required. A small-scale prestudy indicates that our subjects
tend to keep the same preferences over time. This supports
the possibility of dividing the learning process over multiple
sessions. This would remove the need for lengthy interaction
sessions in this experiment, and enable the robot to “get to
know” people over time.
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