
Licentiate Thesis

Predictions of Effective Models in Neutrino

Physics

Johannes Bergström

Theoretical Particle Physics, Department of Theoretical Physics,
School of Engineering Sciences

Royal Institute of Technology, SE-106 91 Stockholm, Sweden

Stockholm, Sweden 2011



Typeset in LATEX
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Abstract

Experiments on neutrino oscillations have confirmed that neutrinos have small,
but non-zero masses, and that the interacting neutrino states do not have definite
masses, but are mixtures of such states. The seesaw models make up a group of
popular models describing the small neutrino masses and the corresponding mixing.
In these models, new, heavy fields are introduced and the neutrino masses are
suppressed by the ratio between the electroweak scale and the large masses of the
new fields. Usually, the new fields introduced have masses far above the electroweak
scale, outside the reach of any foreseeable experiments, making these versions of
seesaw models essentially untestable. However, there are also so-called low-scale
seesaw models, where the new particles have masses above the electroweak scale,
but within the reach of future experiments, such as the LHC.

In quantum field theories, quantum corrections generally introduce an energy-
scale dependence on all their parameters, described by the renormalization group
equations. In this thesis, the energy-scale dependence of the neutrino parameters
in two low-scale seesaw models, the low-scale type I and inverse seesaw models, are
considered.

Also, the question of whether the neutrinos are Majorana particles, i.e., their
own antiparticles, has not been decided experimentally. Future experiments on
neutrinoless double beta decay could confirm the Majorana nature of neutrinos.
However, there could also be additional contributions to the decay, which are not
directly related to neutrino masses. We have investigated the possible future bounds
on the strength of such additional contributions to neutrinoless double beta decay,
depending on the outcome of ongoing and planned experiments related to neutrino
masses.

Keywords: Neutrino mass, lepton mixing, Majorana neutrinos, effective field the-
ory, Weinberg operator, seesaw models, low-scale seesaw models, inverse seesaw,
right-handed neutrinos, renormalization group, threshold effects, neutrinoless dou-
ble beta decay.
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Preface

This thesis is divided into two parts. Part I is an introduction to the subjects that
form the basis for the scientific papers, while Part II consists of the three papers
included in the thesis and listed below.

Part I of the thesis is organized as follows. In Chapter 1, a general introduction
to the subject of particle physics is given. Chapter 2 deals with the standard
model of particle physics and some simple extensions of it, with emphasis put
on neutrino masses and lepton mixing. Chapter 3 gives an overview of the seesaw
models, treating in some detail the type I and inverse versions. Chapter 4 introduces
the concepts of regularization and renormalization in quantum field theories and
discusses renormalization group equations in seesaw models. In Chapter 5, the
process of neutrinoless double beta decay and its connection to neutrino masses is
briefly reviewed, while Chapter 6 is a short summary of the results and conclusions
found in the papers of Part II. Finally, in Appendix A, all the renormalization
group equations of the type I seesaw model are given.

Note that Part II of the thesis should not be considered as merely an appendix,
but as being part of the main text of the thesis. The papers include discussion
and interpretation of the result presented in them. Since simple repetition of this
material seems unnecessary, the reader is referred to the papers themselves for
the results and the discussion, except for a short summary in Chapter 6. The
background material presented in the first five chapters contains both a more broad
introduction of the considered topics, as well as a more detailed and technical
description of the models and methods considered in the papers. Hence, although
there is necessarily some overlap with the corresponding sections in the papers,
the more detailed discussion should be of help to the reader unfamiliar with those
topics.

List of papers included in this thesis

[1] J. Bergström, M. Malinský, T. Ohlsson, and H. Zhang
Renormalization group running of neutrino parameters in the inverse seesaw
model
Physical Review D81, 116006 (2010)
arXiv:1004.4628
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[2] J. Bergström, T. Ohlsson, and H. Zhang
Threshold effects on renormalization group running of neutrino parameters in
the low-scale seesaw model
Physics Letters B698, 297 (2011)
arXiv:1009.2762

[3] J. Bergström, A. Merle, and T. Ohlsson
Constraining new physics with a positive or negative signal of neutrino-less
double beta decay
Journal of High Energy Physics 05, 122 (2011)
arXiv:1103.3015

List of papers not included in this thesis

[4] J. Bergström and T. Ohlsson
Unparticle self-interactions at the Large Hadron Collider
Physical Review D80, 115014 (2009)
arXiv:0909.2213

The contributions of the author of the thesis to the papers
Besides discussing methods, results, and conclusions of all the papers together with
the other authors, the main contributions to the articles are

[1] I did a substantial part of the numerical computations, produced many of the
plots, and did some of the analytical computations. I revised the manuscript
and wrote some parts of it.

[2] I did all the analytical computations and wrote the corresponding sections
of the manuscript. The contents of the manuscript and its revisions were
decided upon together with the other authors.

[3] I did many of the numerical computations as well as the few analytical calcu-
lations which were involved. I wrote some parts of the manuscript and revised
it.

Notation and Conventions

The metric tensor on Minkowski space that will be used is

(gµν) = diag(1,−1,−1,−1) (1)

Dimensionful quantities will be expressed in units of ~ and c. Thus, one can effec-
tively put ~ = c = 1. As a result, both time and length are expressed in units of
inverse mass,

[t] = T = M−1, [l] = L = M−1.
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Also, the Einstein summation convention is employed, meaning that repeated in-
dices are summed over, unless otherwise stated.

Erratum

In paper I [1], there are factors of v2, where v is the vacuum expectation value
of the Higgs field, missing in Eq. (32). It should read

“ mν

∣

∣

Mi−1

≃ bv2
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Chapter 1

Introduction

It is an amazing fact that Nature supplies us with interesting physical phenomena
on all accessible scales: from the large size and age of the Universe to the very small
distances and time scales associated with heavy elementary particles. Physics, in its
most general sense, is the study of the constituents of Nature and their properties.

Since physics is a science, its practitioners should follow the scientific method.
In its most basic form, it specifies the relation between experiment and theory and
how a theory is supposed to be validated or falsified. For a theory to be scientific it
must be falsifiable, i.e., it must be possible to conduct experiments which disagree
with the predictions of the theory. The falsifiability should exist in practise and
not only in principle.

The goal of physics is to describe the various phenomena and properties of
physical objects with the help of theories or models, which are generally specified
and analyzed using mathematics. For a theory to be a valid theory, its predictions
should agree with the experimental data collected to date. Also, it should be able
to make new predictions which can be compared to future experimental data. It is
important, however, to realize that the validity of a theory is defined only within a
certain range or set of phenomena. A theory can be perfectly valid within one range
but not within others. For example, non-relativistic classical mechanics is perfectly
valid when all objects have small velocities compared to the speed of light, but
not when they are comparable to it. Inherent in the above definition of a theory
is the fact that a theory can never be prooved in a rigorous or tautological sense
as theorems of mathematics can. Instead, it is based on certain assumptions or
postulates, the validity of which can only be supported by the agreement of the
theory’s predictions with experiments.

Elementary particle physics is the study the most fundamental building blocks
of the Universe, of which all other objects are composed. The elementary particles
are the particles for which there exists no evidence of substructure. Thus, the prop-
erty of being elementary is not fixed, and particles once thought to be elementary
could turn out not to be so in the future. Since, generally, high energies are needed

3



4 Chapter 1. Introduction

in order to study the elemetary particles, the field also goes under the name of
high-energy physics. These highly energetic particles can be created in man-made
particle accelerators, but also in natural environments in the Universe, such as stars,
galaxies, and supernovae. A very good way to test theories of particle physics is
to build machines, particle accelerators, that collide particles together and then
observing what comes flying out in what directions and with what energies. One
such is the Large Hadron Collider (LHC), which has been built in a circular tun-
nel 27 kilometers in circumference beneath the French-Swiss border near Geneva,
Switzerland. It has at the time of the writing of this thesis been taking data for
some time, and when the it becomes fully operational, it will perform proton-proton
collision at a center of mass energy of

√
s = 14 TeV.

To be able to do physics at all scales, one needs to use different appropriate
descriptions of Nature in different circumstances. The corresponding theory is then
an effective theory, which needs to capture all the relevant physics, but also needs
to disregard all the irrelevant physics. For example, when studying the ballistics of
golf balls, one should not have to take into account neither the radius of the Milky
Way, nor the mass the mass of the top quark.

More precisely, the common idea is that if there are parameters which are either
very large or very small compared to the physical quantities one is interested in,
one should set the small parameters to zero and the large to infinity. Hopefully,
this will lead to a simpler theory, which can then be used to perform calculation
with reasonably good accuracy. If one then wants to improve the accuracy of
these calculations, one can include the effects of the large and small parameters by
treating them as perturbations about this simple initial analysis.

Another very important concept in science is Occam’s razor, which in its most
basic form states that a theory which makes fewer assumptions is to be preferred
over one that makes more. In other words, when choosing between two descriptions
of a set of phenomena, one should choose the simpler one over the more complex
one. However, when comparing two theories it might not always be clear which
of them is simpler, although usually theories having more free parameters can be
considered as more complex. Bayesian model selection is a rigorous method to
determine which of two models is to be prefered, where the complexity of a model
is automatically taken into account. In this approach, the simpler theory will be
seleted even if it fits the data somewhat worse. Only if the more complex model
fits the data significantly better, will it be prefered [5].

It is in no way self-evident that physical theories should be formulable using
mathematics. However, this seems to be an empirical fact. This made Eugene
Wigner make his famous comment on “the unreasonable effectiveness of mathe-
matics in the natural sciences”[6]:

“The miracle of the appropriateness of the language of mathematics
for the formulation of the laws of physics is a wonderful gift which we
neither understand nor deserve. We should be grateful for it and hope
that it will remain valid in future research and that it will extend, for
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better or for worse, to our pleasure, even though perhaps also to our
bafflement, to wide branches of learning.”

Today, the established theory of the Universe on its most fundamental level is
the standard model (SM) of particle physics. It describes all known fundamental
particles and how they interact with each other, except for the gravitational inter-
action. It has been tested to great precision in a very large amount of experiments
and has been found to be a good description of fundamental particles and their
interactions at energies probed so far [7]. Since its formulation in the 1970’s, it
has (almost) remained unmodified. During its life, it has made a vast number of
predictions which have later been confirmed by experiments. This includes the ex-
istence of new particles such as the Z- and W -bosons, the top quark, and the tau
neutrino. The only part of the standard model yet to be confirmed is the existence
of the Higgs boson, which is related to the mechanism of generating the masses of
the particles in the SM.

Gravity is not included in the SM, but is instead treated separately, usually using
the general theory of relativity. Note the standard model is a quantum theory,
while general relativity is inherently classical. Although it would be pleasant to
have the SM and gravity unified in a full quantum theory, most such attempt
lack testability, which is due to the fact that they only make unique predictions
for processes at energies much higher than will ever be possible to study. Also,
cosmological obervations indicate that there exist large amounts of massive partices
in the Universe that have not been detected. Since none of the particles in the SM
can consitute this dark matter, one expects that there are new particles waiting to
be discovered in the future.
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Chapter 2

The standard model of

particle physics and slightly

beyond

The standard model (SM) of particle physics is the currently accepted theoretical
framework for the description of the elementary particles and their interactions. It
has been tested to great precision in a very large amount of experiments and has
been found to be a good description of fundamental particles and their interactions
at energies probed so far [7].

In this chapter an introduction to the SM is given. Emphasis is put on those
aspects of the SM which are most relevant for the topics dealt with later in the
thesis, i.e., the lepton sector in general and neutrino masses and lepton mixing in
particular. First, the concept of a quantum field theory is introduced, followed
by a review of the construction of the SM. Then, general fermion mass terms
and the principles of effective quantum field theories are reviewed. Quark and
lepton masses and mixing are treated, followed by the experimental consequences
of massive neutrinos and, finally, the discussion also goes slightly beyond the SM
by including right-handed neutrinos. For reviews and deeper treatments of the SM,
see, e.g., Refs. [8–12].

2.1 Quantum field theory

A classical field is a function associating some quantity to each point of space-
time, and is an object with an infinite number of dynamical degrees of freedom.
The SM is a quantum field theory (QFT), and as such it deals with the quantum
mechanics of fields. Basically, this means that the classical fields are quantized, i.e.,
are promoted to operators. A classical field theory can be specified by a Lagrangian

7



8 Chapter 2. The standard model of particle physics and slightly beyond

density L (usually just called the Lagrangian), which is a function of the collection
of fields Φ = Φ(x), i.e., L = L (Φ(x)). The action functional is given by

S [Φ] =

∫

L dDx (2.1)

and gives the dynamics of the fields through the Euler–Lagrange equations of mo-
tion.

The QFTs we will study will basically also be defined by a Lagrangian. However,
in QFT, one is not interested in the values of the fields themselves, which are not
well-defined, but instead other quantities such as correlation functions and S-matrix
elements. From these one can then calculate observable quantities such as cross-
sections and decay rates of particles associated with the fields.

Symmetries and symmetry arguments have played and still play an important
role in physics in general, and in QFT in particular. One important class of sym-
metries are space-time symmetries, which are symmetries involving the space-time
coordinates. The QFTs we will consider will all be relativistic QFTs, meaning that
the Lorentz group is a symmetry group of the theory. This implies that the fields
we consider have to transform under some representation of the Lorentz group. The
lowest dimensional representations correspond to the most commonly used types of
fields,

• A scalar field has spin 0,

• A spinor field has spin 1/2,

• A vector field has spin 1.

Another kind of symmetries are internal symmetries, which are symmetries only
involving the dynamical degrees of freedom (here the fields), and not the space-
time coordinates. A very important and useful class of such symmetries are the
gauge symmetries, which will be the main principle behind the construction of the
SM. Finally, the theories we consider will be local, which basically means that the
Lagrangian is a local expression is the fields, i.e., that it only depends on the fields
at a single space-time point.

The terms in the Lagrangian are usually classified as either

• A kinetic term, which is quadratic in a single field and involves derivatives,

• A mass term, which is quadratic in a single field and does not involve deriva-
tives, or

• An interaction term, which involves more than two fields.

A constant term in the Lagrangian would essentially correspond to an energy den-
sity of the vacuum or a cosmological constant. Since this term is usually irrelevant
for particle physics, it will not be discussed any further. Finally, there could also
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be terms linear in a field (only for a scalar which is also a singlet under all other
symmetries), implying that the minimum of the classical Hamiltonian is not at zero
field value. Since these fields do not appear in the models we consider, neither this
will be further mentioned.

2.2 Basic structure of the standard model

The SM is a gauge theory, and as such its form is dictated by the principle of gauge
invariance. A gauge theory is defined by specifying the gauge group, the fermion
and scalar particle content, and their representations. The gauge group for the SM
is given by

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y, (2.2)

which is a twelve-dimensional Lie group. Here SU(3)C is the eight-dimensional
gauge group of Quantum Chromodynamics (QCD), where the subscript stands for
“color”, which the corresponding quantum number is called. The group SU(2)L ⊗
U(1)Y is the four-dimensional gauge group of the Glashow–Weinberg–Salam model
of weak interactions [13–15]. As will be described later, only the left-handed
fermions are charged under the SU(2)L subgroup, and hence the subscript “L”.
The symbol “Y” represents the weak hypercharge. We will now proceed to de-
scribe the particles of the SM and their interactions.

2.2.1 The gauge bosons

The part of the SM Lagrangian containing the kinetic terms as well as the self-
interactions of the gauge fields is determined by gauge invariance and is given by

Lgauge = −1

4
GaµνG

a,µν − 1

4
W i
µνW

i,µν − 1

4
BµνB

µν , (2.3)

where a ∈ {1, 2, . . . , 8}, i ∈ {1, 2, 3}, and the field strength tensors are given in
terms of the gauge fields as

Bµν = ∂µBν − ∂νBµ, (2.4)

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ε

ijkW j
µW

k
ν , (2.5)

Gaµν = ∂µG
a
ν − ∂νG

a
µ + g3f

abcAbµA
c
ν . (2.6)

Here, (g2, ε
ijk) and (g3, f

abc) are the coupling and structure constants of SU(2)L
and SU(3)C, respectively. Note that gauge invariance excludes the possibility of a
mass term for the gauge fields, and thus, the gauge bosons are massless. This is a
problem, since some gauge bosons, i.e., theW -bosons and the Z-boson, are observed
to be massive [7]. To incorporate massive gauge bosons, the gauge symmetry has
to be broken in some way. This can, for example, be done through spontaneous
symmetry breaking, in which case the fundamental Lagrangian, but not the vacuum,
respects the symmetry.
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2.2.2 The fermions

The next step in the construction of the SM is the introduction of the fermions
and the specification of their charges. The fermions of the SM come in two groups,
called quarks and leptons, which in turn come in three generations each. First, for
any Lorentz vector Qµ, define

/Q ≡ γµQµ. (2.7)

Then, given the representations of the fermion ψ, the kinetic term and the interac-
tions with the gauge bosons are determined by the requirement of gauge invariance
and are given by

Lψ = iψ /Dψ. (2.8)

Here ψ = ψ†γ0,
Dµ = ∂µ − ig1BµY − ig2W

i
µτ

i − ig3G
a
µt
a (2.9)

is the covariant derivative, g1 is the coupling constant of U(1)Y, Y the hypercharge
of ψ, the τ i’s the representation matrices of SU(2)L, and the ta’s the representa-
tion matrices of SU(3)C. Note that the hypercharge and representation matrices
depend on which fermion is being considered, and that, if ψ is a singlet under some
subgroup, then the generator of that group is zero when acting on ψ.

The fermion fields in the SM all have definite chirality, meaning that they trans-
form under two different representations of the Lorentz group. The two different
kinds of chirality are left-handed or right-handed, as denoted by the subscripts “L”
and “R”. The quark fields are organized as

qLi =

(

uLi

dLi

)

, uRi, dRi,

where i ∈ {1, 2, 3} is the generation index. They are all in the fundamental repre-
sentation of SU(3)C, while the left-handed qLi’s are doublets and the right-handed
uRi’s and dRi’s are singlets of SU(2)L. The lepton fields are all singlets of SU(3)C
and organized as

ℓLi =

(

νLi
eLi

)

, eRi,

where the ℓLi’s are doublets and the eRi’s are singlets of SU(2)L. For both quarks
and leptons, the names assigned to the components of the doublets correspond
to the names of the fields which appear in the Lagrangian after the electroweak
symmetry has been broken.

In order to restore the symmetry between the quark and lepton fields, one can
also introduce the right-handed neutrinos νRi in the list. However, they would be
total singlets of the SM gauge group and are not needed to describe existing exper-
imental data, and should thus be excluded in a minimal model.1 The hypercharges

1The other right-handed fermions are seen directly in the interactions with the gauge bosons,
since they are not gauge singlets. Also, they are required for describing the masses of these
fermions.
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of all the fermions are given in such a way that the correct electric charges are
assigned after the spontaneous breaking of the gauge symmetry.

The rest of this thesis will mostly be concerned with the electroweak sector of
the SM, while QCD will not be discussed in detail. The electroweak interactions
can largely be studied separately from QCD, since SU(3)C remains unbroken and
there is no mixing between the gauge fields of SU(3)C and SU(2)L ⊗ U(1)Y.

This concludes the introduction of the basic structure of the SM. However, in
order to give a good description of experimental data, the gauge symmetry of the
SM needs to be broken. Before the description of this breaking, a short summary
of the different kinds of possible mass terms for fermions will be given.

2.3 Fermion mass terms

There are in general two types of mass terms for a fermion ψ that can be con-
structed, both giving the same kinematical masses. The first one is called a Dirac
mass term, and has the form

−LDirac = mψψ. (2.10)

However, the chiral fields included in the SM satisfy

ψL/R ψL/R = 0 (2.11)

due to the definition of chirality and ψ, and thus terms on the form of Eq. (2.10)
vanish for all the fields of the SM. One could try to remedy this by defining a new
field

χ ≡ ψ
(1)
L + ψ

(2)
R , (2.12)

but in the SM, the left-handed and right-handed fields transform under different
representations of SU(2)L, and thus the resulting mass term,

mχχ = m
(

ψ
(1)
L ψ

(2)
R + ψ

(2)
R ψ

(1)
L

)

, (2.13)

will not be gauge invariant.
To construct the second type of fermion mass term, called a Majorana mass

term, one first would need to introduce the charge conjugation operator as

Ĉ : ψ → ψc = Cψ
T
, (2.14)

where the matrix C satisfies

C† = CT = C−1 = −C. (2.15)

The Majorana mass term is then given by

−LMajorana =
1

2
mψcψ + H.c., (2.16)

where “H.c.” denotes the Hermitian conjugate, and m can always be made real
and positive by redefining the phase of ψ. However, this kind of mass term is also
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not gauge invariant, unless ψ is a gauge singlet. Any Abelian charges of ψ will be
broken by two units. If the fermions ψ is chiral, as in the SM, the mass term can
be rewritten as

−LMajorana =
1

2
mξξ, (2.17)

where ξ ≡ ψ + ψc is called a Majorana field, since it obeys ξc = ξ, called the
Majorana condition. After field quantization, the Majorana condition on the field
ξ will imply the equality of the particle and antiparticle states. Since a Majorana
field has only half the independent components of the Dirac field, a theory with the
former is simpler and more economical than one with the latter.

In conclusion, none of the fermion fields in the unbroken SM can have a mass
term, and thus, all SM fermions are massless. The only possible exception is the
right-handed neutrino, which is a gauge singlet and can hence have a Majorana
mass term. This is a problem, since the fermions existing in Nature are observed
to be massive.2

2.4 The scalar sector and the Higgs mechanism

In order to make the model described above consistent with experiments, one needs
to introduce some mechanism to break the SM gauge symmetry in such a way
to give the fermions and three of the gauge bosons masses. In the SM, this is
achieved through the Higgs mechanism [16–21]. It is implemented by introducing
one complex scalar SU(2)L doublet φ, called the Higgs field, which is described by
the Lagrangian

Lscalar = |Dµφ|2 − V (φ), (2.18)

where the scalar potential is given by

V (φ) = −µ2|φ|2 +
λ

4
|φ|4. (2.19)

If µ2 > 0, the minimum of the potential will not be at φ = 0, but instead where

v ≡ |φ| =

√

2µ2

λ
, (2.20)

which is called the vacuum expectation value (VEV) and experimentally determined
to have a value of approximately 174 GeV. Under standard conventions, the vacuum
is such that

〈φ〉 =

(

0
v

)

, (2.21)

2The exceptions are the neutrinos, the masses of which have not been measured directly.
However, the evidence for neutrino oscillations, to be discussed later, requires that they have
small, but non-zero masses.
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breaking electroweak gauge invariance. As it turns out, this generates mass terms
for the electroweak gauge bosons such that there are three massive gauge fields:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), with masses mW = g2

v√
2
, (2.22)

Zµ =
1

√

g2
2 + g2

1

(g2W
3
µ − g1Bµ), with mass mZ =

√

g2
2 + g2

1

v√
2
, (2.23)

and

Aµ =
1

√

g2
2 + g2

1

(g1W
3
µ + g2Bµ), with mass mA = 0. (2.24)

The fieldsW±
µ , Zµ, and Aµ are identified as the fields associated with the W -bosons,

the Z-boson, and the photon, respectively.
The Higgs mechanism accomplishes the breaking

SU(2)L ⊗ U(1)Y → U(1)QED, (2.25)

where U(1)QED is the gauge group of Quantum Electrodynamics (QED). The quan-
tity Q is the fermion electric charge quantum number, i.e., the electric charge of a
given fermion in units of the proton charge e, given as

Q = T 3 + Y, e =
g1g2

√

g2
2 + g2

1

, (2.26)

where T 3 is the third component of the SU(2)L weak isospin. These assignment give
the usual QED couplings of the fermions to the photon field, while the interactions
with the W -bosons, i.e., the charged-current interactions, are given by3

Lcc =
g2√
2
W+
µ uLγ

µdL +
g2√
2
W+
µ νLγ

µeL + H.c. (2.27)

The introduction of a scalar field also opens up the possibility of further inter-
actions with fermions through Yukawa interactions, having the form

−LYuk = ℓLφYeeR + qLφYddR + qLφ̃YddR + H.c. (2.28)

Here φ̃ = iτ2φ
∗, where τ2 is the second Pauli matrix, each fermion field is a vector

consisting of the corresponding field from each generation, and Yf for f = e, u, d
are Yukawa coupling matrices. When the Higgs field acquires its VEV, Dirac mass
terms

−Lmass = eLMeeR + uLMuuR + dLMddR + H.c., (2.29)

are generated. Here the mass matrices

Mf = Yfv (2.30)

for f = e, u, d are arbitrary complex 3 × 3 matrices, and as such are in general
not diagonal. In this case, the flavor eigenstates, which are the states participating

3There will also be interactions with the Z-boson, the neutral current interactions, which will,
however, not be discussed any further.
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in the weak interactions, are not the same as the mass eigenstates, which are the
states which propagate with definite masses. For n fermion generations, one would
expect that each of the matrices Yf contains n2 complex , or 2n2 real, parameters.
However, not all these parameters are physical, a point which will be discussed
later.

Finally, it should be noted that one real degree of freedom of the Higgs fields is
left as a physical field after the breaking of electroweak symmetry. The quantum
of this field is called the Higgs boson and is the only particle in the SM yet to
be experimentally confirmed. One of the main goals of the Large Hadron Collider
is to study the mechanism of electroweak symmetry breaking, and, if the Higgs
mechanism is an accurate description, find the Higgs boson.

2.5 Effective field theory

So far, only terms in the Lagrangian with a small number of fields have been
considered. From the kinetic term of a field, one can calculate the mass dimension
of the field. This is because, in natural units, the action in Eq. (2.1) is dimensionless.
Denote the mass dimension of X as [X ]. Then, if space-time is D-dimensional, the
Lagrangian has to have the mass dimension D, since [ dDx] = −D. Since [∂µ] = 1,
one obtains for the case D = 4

[φ] = [Aµ] = 1, (2.31)

[ψ] =
3

2
. (2.32)

From this, the mass dimensions of the constants multiplying all other terms in the
Lagrangian can then be determined by the fact that the total mass dimension is 4.

It is now possible to further classify the interaction terms according to the mass
dimension of the corresponding coupling constant. Field theory textbooks usually
argue that a QFT should be “renormalizable”, meaning that all divergences appear-
ing should be possible to cancel with a finite number of counter terms. One can
show that this is equivalent to having coupling constants with only non-negative
mass dimensions, or equivalently, that the combinations of the fields in all terms in
the Lagrangian have total mass dimension not greater than the space-time dimen-
sionality. Otherwise, one needs an infinite number of counter terms, and hence, an
infinite number of unknown parameters, resulting in loss of predictive power of the
theory.

An effective field theory Lagrangian, on the other hand, contains an infinite
number of terms

LEFT = LD + LD+D1
+ LD+D2

+ · · · , (2.33)

where LD is the renormalizable Lagrangian, LD+Di
contains terms of dimension

D +Di, and 0 < D1 < D2 < · · · . Although there is an infinite number of terms in
LEFT, one still has approximate predictive power. The coupling constants in LD+D′
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have the form gΛ−D′

, where g is dimensionless and Λ is some energy scale. The
amplitude resulting from this interaction will then be proportional to g(E/Λ)D

′

,
and potentially suppressed additionally by loop factors. Thus, one can perform
computations for processes at some scale E < Λ with an error of order g(E/Λ)D

′

if one keeps terms up to LD+D′ in LEFT. Thus, an effective field theory is just
as useful as a renormalizable one, as long as one is satisfied with a certain finite
accuracy of the predictions.4 This also means that the leading contributions for a
given process at low energies are induced by the operators of lowest dimensionality.

Given a renormalizable field theory involving a heavy field of mass M , one
can integrate out the heavy field from the generating functional to produce an
effective theory with an effective Lagrangian below M , consisting of a tower of
effective operators. For example, in QED, one can integrate out the electron field
to produce an effective Lagrangian, the Euler–Heisenberg Lagrangian

LEH = −1

4
FµνFµν +

a

m4
e

(FµνFµν)
2
+

b

m4
e

FµνFνσF
σρFρµ + O

(

F 6

m8
e

)

, (2.34)

where the dimensionless constants a and b can be found explicitly in terms of
the electromagnetic coupling constant. However, even if one has no idea of what
the high-energy theory is, one can still write down this unique Lagrangian (with
unknown a and b, treated as free parameters) by simply imposing Lorentz, gauge,
charge conjugation, and parity invariance. In other words, the only effect of the
high-energy theory is to give explicit (and possibly correlated, as functions of the
high-energy parameters) values of the coupling constants in the low-energy theory.

Also, note that perturbative renormalization of effective operators can be per-
formed in the same way as for those usually called “renormalizable”, as long as one
chooses the renormalization scheme wisely and works to a given order in E/Λ. In
other words, to a given order in E/Λ, the effective theory contains only a finite
number of operators, and working to a given accuracy, the effective theory behaves
for all practical purposes like a renormalizable quantum field theory: only a finite
number of counter terms are needed to reabsorb the divergences [22]. For deeper
treatments of effective field theory, see Refs. [22–25].

In conclusion, the Lagrangian of the SM can actually be considered to contain
terms of arbitrary dimensionality, of which the usual renormalizable SM Lagrangian
is the lowest order low-energy approximation. The allowed terms are given by the
requirements of gauge and Lorentz invariance and any other assumed symmetries.
A dimension-five operator, which gives the lowest-order contribution to neutrino
masses, will be discussed in Section 2.7.1.

4The accuracy is in practise almost always finite anyway if one is using perturbation theory.
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2.6 Quark masses and mixing

The mass terms for quarks in Eq. (2.29), i.e.,

−Lq-mass = uLMuuR + dLMddR + H.c., (2.35)

couple different quark flavors to each other, i.e., they mix the quark flavors. To find
the mass eigenstate fields, i.e., the fields of which the excitations are propagating
states, define a new basis of the quark fields by

uL = ULu
′
L, uR = URu

′
R, dL = VLd

′
L, dR = VRd

′
R, (2.36)

where UL, UR, VL,, and VR are some unitary 3×3 matrices. The kinetic terms of the
quark fields are still diagonal in this new basis. Then, choose the unitary matrices
such that

U †
LMuUR = Du, V †

LMdVR = Dd, (2.37)

where Du and Dd are real, positive, and diagonal. This choice of unitary matrices
is possible for any complex matrices Mu and Md. Thus, the fields

u′i = u′Li + u′Ri, d′i = d′Li + d′Ri (2.38)

are Dirac mass eigenstate fields with masses mu,i = (Du)ii and md,i = (Dd)ii,
respectively.

However, the interactions of the quarks with the gauge bosons originating from
Eq. (2.27) will not be diagonal anymore, but instead be given by

LWud =
g2√
2
W+
µ uLγ

µdL + H.c.

=
g2√
2
W+
µ u

′
LU

†
LVLγ

µd′L + H.c.

=
g2√
2
W+
µ u

′
LUCKMγ

µd′L + H.c.,

(2.39)

where the unitary matrix UCKM = U †
LVL is the Cabibbo-Kobayashi-Maskawa (CKM)

or quark mixing matrix [26, 27].
A general unitary n× n matrix has n2 real parameters of which n(n− 1)/2 are

mixing angles and n(n + 1)/2 are phases. However, by rephasing the left-handed
quark fields, one can remove (2n − 1) phases of the CKM matrix. If one then
rephases the right-handed quark fields in the same way, the Lagrangian will be left
invariant. This means that these phases of the quark fields are not observable,
and that neither are the removed phases from the CKM matrix. To conclude, the
number of physical parameters for n quark generations are 2n masses, n(n− 1)/2
angles and (n − 1)(n − 2)/2 phases. The total number of physical parameters of
the quark sector is thus (n2 + 1), which is to be compared to the naive expectation
of 2n2 for each Yukawa matrix, i.e., 4n2 in total.
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The CKM matrix can be parametrized in many ways, but the standard para-
metrization is, for three generations, given by

UCKM =





1 0 0
0 C23 S23

0 −S23 C23









C13 0 S13e
−i∆

0 1 0
−S13e

i∆ 0 C13









C12 S12 0
−S12 C12 0

0 0 1





=





C12C13 S12C13 S13e
−i∆

−S12C23 − C12S23S13e
i∆ C12C23 − S12S23S13e

i∆ S23C13

S12S23 − C12C23S13e
i∆ −C12S23 − S12C23S13e

i∆ C23C13



 ,

(2.40)

where Cij = cosΘij and Sij = sinΘij , Θ12, Θ23, and Θ13 are the quark mixing
angles, and ∆ is the CP-violating phase. The values of the quark mixing parameters
have been inferred from experiments and the mixing angles have been found to be
relatively small [7].

2.7 Lepton masses and mixing

The mass term for the charged leptons in Eq. (2.29), i.e.,

−Le-mass = eLMeeR + H.c., (2.41)

can be diagonalized in the same way as the down quark mass term by defining

eL = VLe
′
L, eR = VRe

′
R, (2.42)

where VL and VR are unitary matrices such that

V †
LMeVR = De, (2.43)

where De is real, positive, and diagonal. Then,

e′i = e′Li + e′Ri (2.44)

are Dirac fields with masses me,i = (De)ii. Also note that VL diagonalizes MeM
†
e

and VR diagonalizes M †
eMe, i.e.,

V †
L

(

MeM
†
e

)

VL = V †
R

(

M †
eMe

)

VR = D2
e , (2.45)

and that similar relations hold for the quark mass matricesMu andMd. If neutrinos
would be massless, i.e., have no mass terms, one could define the rotated neutrino
fields by

νL = VLν
′
L, (2.46)

in which case the charged current interaction in Eq. (2.27) would still be diagonal.
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2.7.1 Neutrino masses without right-handed neutrinos

In the SM, the left-handed neutrinos do not obtain their masses through Yukawa
interactions as the other fermions do. This is because there is no need for the
introduction of right-handed neutrinos to describe experimental data, and hence,
in the spirit of simplicity, there are no such fields in the SM to which the neutrinos
could couple.

The minimal, most simple, and most economical way to describe neutrino masses
in the SM is based on an effective operator of dimension five (cf. Section 2.5),
sometimes called the Weinberg operator [28]. It is given by

−Ld=5
ν =

1

2

(

ℓLφ
)

κ
(

φT ℓcL
)

+ H.c., (2.47)

and is the only dimension-five operator allowed by the SM symmetries. Here, κ is a
complex 3× 3 matrix having the dimension of an inverse mass. However, using the
anticommutativity of the fermion fields, one can show that only the symmetric part
of κ is physically relevant, i.e., κ can always be chosen to be symmetric. However,
since the Higgs field acquires a VEV as in Eq. (2.21), the term in Eq. (2.47) will
lead to a Majorana mass term for the light neutrinos,

−LMaj,L =
1

2
νLMLν

c
L + H.c., (2.48)

with ML = v2κ. Just as the mass matrices considered previously, ML is in general
not diagonal. One can redefine the neutrino fields as

νL = ULν
′
L, (2.49)

where UL is chosen such that

U †
LMLU

∗
L = DL, (2.50)

with DL real, positive, and diagonal. This is always possible for symmetric ML, a
well-known theorem in linear algebra. Equations (2.42) and (2.49) imply that the
interaction in Eq. (2.27) takes the form

LWνe =
g2√
2
W+
µ νLγ

µeL + H.c.

=
g2√
2
W+
µ ν

′
LU

†
LVLγ

µe′L + H.c.

=
g2√
2
W+
µ ν

′
LU

†γµe′L + H.c.,

(2.51)

where U = V †
LUL is the lepton mixing matrix, also referred to as the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix [29–31]. The difference to the quark sector
is that the Majorana mass term is not invariant under rephasings of the mass
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eigenstate fields. Thus, the phases of the Majorana neutrino fields are physical and
cannot be removed from the lepton mixing matrix. It follows that there are (n− 1)
additional physical phases for n generations. The lepton mixing matrix is usually
parametrized as

U =

(

1 0 0
0 c23 s23

0 −s23 c23

)(

c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

)(

c12 s12 0
−s12 c12 0

0 0 1

)

diag
(

eiρ, eiσ, 1
)

=





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13









eiρ

eiσ

1





=





c12c13e
iρ s12c13e

iσ s13e
−iδ

−s12c23eiρ − c12s23s13e
i(δ+ρ) c12c23e

iσ − s12s23s13e
i(δ+σ) s23c13

s12s23e
iρ − c12c23s13e

i(δ+ρ) −c12s23eiσ − s12c23s13e
i(δ+ρ) c23c13



 ,

(2.52)

where cij = cos θij and sij = sin θij , θ12, θ23, and θ13 are the lepton mixing angles, δ
the CP-violating Dirac phase, and σ and ρ CP-violating Majorana phases. However,
note that there exists different parametrizations, differing in the convention for the
CP-violating phases. Hence, excluding the well-measured charged lepton masses,
there is a maximum of 9 parameters in the lepton sector of the SM, separated as 3
neutrino masses, 3 mixing angles, and 3 CP-violating phases.

In conclusion, the SM can incorporate massive neutrinos, while also indicating
that they should be light, a reflection of the fact that the first tree-level mass term
has a dimension equal to five and not less. Whatever high-energy theory one can
come up with, it always reduces to the SM with the Weinberg operator at low
energies (unless it is forbidden by some exact symmetry of the high-energy theory,
or if the neutrinos have a Dirac mass term, cf. Sec. 2.7.2). If it does not (to a good
approximation), it has been ruled out by experiments. However, writing κ as

κ =
κ̃

Λν
, (2.53)

with κ̃ dimensionless and Λν some energy scale, we have that, since v ≃ 174 GeV,5

Λν ≃ v2

mν
κ̃ ≃ 3 · 1013 GeV

[

eV

mν

]

κ̃. (2.54)

Since experiments indicate that the neutrino mass scale mν is of the order of 1 eV
or smaller, this will imply that the scale Λν will be very high (unless κ̃ is very
small), out of reach of any foreseeable experiments. The scale Λν could be within
the reach of future experiments, if either κ̃ is very small, which can be natural,

5Since we are dealing with matrices, the eigenvalues of which are the physical masses, the
individual components of ML could be much larger than the eigenvalues if there are large cancel-
lations.
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or if for some reason the Weinberg operator is forbidden and neutrino masses are
instead the result of even higher-dimensional operators [32].

Finally, we note that this operator necessarily introduces one more mass scale
into the theory, above which the effective description ceases to be valid. Hence,
one can actually say with great certainty that at some high-energy scale, some
kind of new degrees of freedom should start to make themselves apparent. This is
the reason that the evidence of neutrino masses is usually referred to as evidence
for “physics beyond the SM”. Of course, one expects the SM to not be a good
description at arbitrarily large energy scales, and the evidence of new physics to
first appear as the effect of effective operators. Not only is the Weinberg operator
the only dimension-five operator allowed by the SM symmetries, it is also the only
higher-dimensional operator which is required to have a non-zero coefficient, i.e.,
the only one for which a positive value has been inferred.

2.7.2 Neutrino masses with right-handed neutrinos

In order to restore the symmetry in the particle content of the SM, one can choose
to extend it by adding 3 right-handed neutrinos νRi

6, often also denoted by NRi or
just Ni. Then, a new set of Yukawa couplings are allowed,

−LYuk,ν = ℓLφ̃YννR + H.c., (2.55)

which after electroweak symmetry breaking yields a Dirac-type mass terms as

−LDirac,ν = νLMDνR + H.c., (2.56)

with MD = Yνv. However, since the right-handed neutrinos are total singlets under
the SM gauge group, they can have Majorana masses on the form

−LMaj,R =
1

2
νcRMRνR + H.c., (2.57)

with MR symmetric. Without loss of generality, one can always perform a basis
transformation on the right-handed neutrino fields and work in the basis in which
MR is real, positive, and diagonal, i.e., MR = diag(M1,M2,M3). Thus, the full
Lagrangian describing the masses in the neutrino sector is given by

−Lν-mass =
1

2
νLMLν

c
L + νLMDνR +

1

2
νcRMRνR + H.c. =

1

2
ΨMνΨ

c + H.c., (2.58)

where

Ψ =

(

νL
νcR

)

, Mν =

(

ML MD

MT
D MR

)

. (2.59)

Thus, it now has the form of a Majorana mass term for the field Ψ, with a symmetric
6 × 6 Majorana mass matrix Mν . Diagonalization of this matrix leads in general

6Although there are models with different numbers of νRi’s, we stick to 3 in this section for
simplicity and symmetry reasons.
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to 6 Majorana mass eigenstates, each of which is a linear superposition of the left-
and right-handed neutrinos, and vice versa.

An often considered special case is the case ML = MR = 0, in which case the
resulting 6 Majorana fields can be combined into 3 Dirac fields. In this case, one
again has the freedom to rephase the neutrino fields, just as in the quark sector.
Thus, the form of the lepton mixing matrix is given by Eq. (2.52), but without the
last matrix containing the Majorana phases, in analogy with the CKM matrix in
Eq. (2.40). However, for this to be the case, the MR term has to be forbidden by
some additional exact symmetry. A new gauge symmetry will not work, since after
this symmetry is broken, the Majorana mass term for the right-handed neutrino
will in general be generated. In this respect, the neutrino sector of the SM is fun-
damentally different from the charged lepton and quark sectors. Also, the neutrino
Yukawa couplings have to be very small, of the order of 10−11. Although this is
technically natural, unless the right-handed neutrinos have some additional kind of
interaction, the right-handed neutrinos will in practise be undetectable.

Another special case, which as been studied intensively in the literature, is the
caseMR ≫MD, which will be further discussed in Ch. 3. This is possible, since MR

is not related to the electroweak symmetry breaking, while MD is determined by
the Higgs VEV. On the other hand, a commonly used naturalness criterion states
that a number can be naturally small if setting it to zero increases the symmetry
of the Lagrangian. Since without a Majorana mass for the right-handed neutrino,
the U(1) of total lepton number is a symmetry of the Lagrangian, a small MR is
also natural.

2.7.3 Experimental consequences of massive neutrinos

In a charged-current interaction, the left-handed component of the mass eigenstates
e′i will be produced. Defining this as a charged lepton, and the neutrino produced
in association with it as a flavor eigenstate, U relates the neutrino flavor eigenstates
|να〉, and the mass eigenstates |νi〉 as

|να〉 = U∗
αi|νi〉. (2.60)

This will lead to neutrino oscillations, in which a neutrino of flavor α, produced in a
charged-current interaction, can, after propagating a certain distance, be detected
as a neutrino of a generally different flavor β [33–35]. Since the time evolutions of the
mass eigenstates are simply given by multiplication of the exponential exp(−iEit),
the amplitude for this transition is

A (να → νβ) = 〈νβ |U∗
αie

−iEit|νi〉 = 〈νj |UβjU∗
αie

−iEit|νi〉 = Uβi
(

U †
)

iα
e−iEit,

(2.61)

giving the transition probability as P (να → νβ) = |A (να → νβ) |2. As it turns out,
neutrino oscillations are not sensitive to all the parameters in the neutrino sector,
which are 7 for Dirac neutrinos and 9 for Majorana neutrinos. The sensitivity is
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Parameter Best-fit value & 1σ ranges

s212 0.312+0.017
−0.015

s223 0.51 ± 0.06

s213 0.010+0.009
−0.006

∆m2
21 [10−5 eV2] 7.59+0.20

−0.18

∆m2
31 [10−3 eV2] 2.45 ± 0.09

Table 2.1. The current best-fit values and 1σ ranges for the neutrino oscillation
parameters, where the mass ordering is assumed to be normal [49].

restricted to 2 independent mass-squared differences ∆m2
31 ≡ m2

3 − m2
1, ∆m2

21 ≡
m2

2 − m2
1, the 3 mixing angles, and the CP-violating Dirac phase δ. Neutrino

oscillations have been verified by experiments on solar [36–39], atmospheric [40], and
artificially produced neutrinos [41–45], and ranges for all parameters but the phase δ
have been inferred, all these results being consistent with the three-neutrino mixing
scheme. However, there are some experimental results which are not compatible
with the other experiments and a three-neutrino mixing scheme, the most important
ones being the old results of the LSND experiment [46, 47], which recently gained
more support from the the MiniBooNE experiment [48]. The implications of these
results are currently unclear.

Since the sign of ∆m2
31 is not known, neither is the ordering of the masses.

The neutrino masses are said to have either normal or inverted ordering, depend-
ing on whether m1 < m2 < m3 or m3 < m1 < m2. The masses can also be
quasi-degenerate, in which case m1 ≃ m2 ≃ m3. Although neutrino oscillations
are sensitive to the mass ordering, there is as of today no firm evidence for one
or the other. The current best-fit values and 1σ ranges for the neutrino oscillation
parameters from a global fit of neutrino oscillation data are given in Tab. 2.1, where
the mass ordering is assumed to be normal [49]. For assumed inverted ordering, the
values will change slightly, the main difference being in the best-fit value of ∆m2

31,
changing to −2.34 ·10−3 eV2. Also, there is a slight preference for nonzero θ13, with
θ13 = 0 excluded at around 1.8σ, depending, however, on the data used and other
assumptions. The determination of θ13 is expected to be improved significantly in
the near future by the Double Chooz experiment [50–52]. To summarize, although
neutrino oscillation experiments give a large amount of information about the neu-
trinos and the relevant parameters, they are insensitive to the absolute neutrino
mass scale, cannot distinguish between Dirac and Majorana neutrinos, and give no
information on the values of any possible Majorana phases.

However, the absolute neutrino mass scale can be determined by experiments of
a different nature. For example, by studying the energy spectra of electrons emit-
ted in beta decays of certain isotopes, one can constrain the effective kinematical
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electron-neutrino mass mβ , given by

m2
β =

3
∑

i=1

|Uei|2m2
i = m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13. (2.62)

The best current upper limits on mβ are approximately 2.5 eV [53,54]. Near-future
experiments such as MARE [55] and KATRIN [56, 57] are aiming to improve on
this bound. The latter, in the case of vanishing mβ , is expected to put a 90 %
confidence upper bound of approximately 0.2 eV [58]. For mβ = 0.2 eV, a zero
value can be excluded at slightly over 2σ, while for mβ = 0.35, the exclusion would
be around 5σ.

The absolute neutrino mass scale can also be probed by cosmological observa-
tions. The effective sum Σ = m1 +m2 +m3 of neutrino masses can be inferred from
measurements of the cosmic microwave background radiation when combined with
results from other observations, such as of high-redshift galaxies, baryon acous-
tic oscillations, and type Ia supernovae [59, 60]. This has been performed by the
WMAP experiment [61] and will be improved on by Planck [62].

Finally, the mass scale can, in the case of Majorana neutrinos, be measured
in neutrinoless double beta (0νββ) decay experiments, which is sensitive to the
effective mass |mee|, which is a function of all the parameters in the neutrino sector,
except θ23 and the Dirac CP-violating phase. Thus, in principle, the values of all
the remaining 3 parameters which oscillations experiments are insensitive to can be
probed. Neutrinoless double beta decay will be discussed in more detail in Ch. 5.
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Chapter 3

The seesaw models

The seesaw models are a group of models involving new, heavy degrees of freedom
such that, in the low-energy theory where the heavy fields are integrated out, the
effective operator in Eq. (2.47) is generated, resulting in a Majorana mass matrix
for the light neutrinos. In other words, they are simple extensions of the SM
such that, at low energy, the SM with the Weinberg operator is recovered and
the matrix κ can be given in terms of the parameters of the high-energy theory.
The Weinberg operator is usually generated at tree-level, but can also appear due
to radiative corrections [63]. For the tree-level case, there are three main type of
models, depending on which type of fields generate the Weinberg operator:

• The Type I seesaw models [64–67], where a number of fermionic SM singlets,
basically right-handed neutrinos, are introduced,

• The Type II seesaw models [68–73], where scalar SU(2)L triplets are intro-
duced,

• The Type III seesaw models [74], where fermionic SU(2)L triplets are intro-
duced.

In general, there is nothing that prevents more than one of these sets of fields to
be present simultaneously, giving combinations of seesaw models.

Usually, the new fields introduced have masses far above the electroweak scale,
outside the reach of any foreseeable experiments, making these versions of seesaw
models essentially untestable.1 However, there are also seesaw models where the
new particles have masses above the electroweak scale, but within the reach of future
experiments such as the LHC, so-called low-scale seesaw models. For potential
collider signatures of such models, see Refs. [82, 83] and references therein.

1They could affect processes at very high energies. For example, they could generate the baryon
asymmetry of the Universe through leptogenesis [75–81].
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In this chapter, the type I seesaw model as well as its variation the inverse seesaw
model will be discussed in more detail. Both of these models can be constructed
such that the new particles have masses at low energy scales, e.g., at the TeV scale,
making them, in principle, testable in future experiments. The reader is referred
to the references for more details on the other types of seesaw models. The type I
seesaw model was studied in paper I of this thesis [1] and the inverse seesaw model
in paper II [2].

3.1 The type I seesaw model

The type I seesaw model is the most studied of the seesaw models, and is basically
a special case of the model introduced in Sec. 2.7.2, i.e., the particle content of the
SM is extended with three right-handed neutrino fields νRi with a Majorana mass
matrix MR, which has eigenvalues above the electroweak scale. Also, it is usually
assumed that there are no other contributions to the masses of the light neutrinos.
In this case, at energies below MR, the Weinberg operator with

κ = YνM
−1
R Y Tν (3.1)

is generated at tree-level (after phase redefinitions of the neutrino fields).2 This can
be represented diagrammatically as in Fig. 3.1. Thus, after electroweak symmetry
breaking, there is a Majorana mass term with mass matrix

ML = v2κ = v2 · YνM−1
R Y Tν = FMRF

T , (3.2)

with F = vYνM
−1
R . It is thus suppressed by a factor of YνvM

−1
R with respect to

the electroweak scale.

The next operator generated in the tower of effective interactions, relevant for
neutrinos, is the dimension-six operator [84–87]

Ld=6
ν =

(

ℓLφ̃
)

Ci/∂
(

φ̃†ℓL

)

, (3.3)

where the coefficient matrix is given, at leading order, by

C =
(

YνM
−1
R

) (

YνM
−1
R

)†
. (3.4)

After electroweak symmetry breaking, this dimension-six operator leads to correc-
tions to the kinetic terms for the light neutrinos. In order to keep the neutrino

2This is accurate for energies E below all the eigenvalues of MR. For energies between two
eigenvalues of MR, only the right-handed neutrinos with masses above E should be integrated
out. This will be discussed in more detail in Sec. 4.3.
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Figure 3.1. The generation of the Weinberg operator in the type I seesaw model.

kinetic energy canonically normalized, one has to rescale the neutrino fields, result-
ing in a non-unitary matrix relating the flavor and mass eigenstates, given by

N =

(

1 − v2

2
C

)

U =

(

1 − FF †

2

)

U, (3.5)

where U diagonalizes the light neutrino mass matrix. For |F | & O (0.1), non-
negligible non-unitarity effects could be visible in the near detector of a future
neutrino factory [88–92], and there are further constraints coming from the univer-
sality tests of weak interactions, rare leptonic decays, the invisible Z width, and
neutrino oscillation data [93]. However, note that such a large value of F is incom-
patible with Eq. (3.2) unless severe fine tuning is involved so that large cancellations
occur.

The model can also be analyzed by keeping the right-handed fields in the the-
ory, breaking electroweak symmetry spontaneously, and then approximately block
diagonalizing the resulting full mass matrix, given in Eq. (2.59) with ML = 0. This
can be done using

U ≃
(

11 ρ
−ρ† 11

)

, (3.6)

with ρ = MDM
−1
R , giving

UTMνU ≃
(

−MDM
−1
R MT

D 0
0 MR

)

= Dν (3.7)

to lowest order in MDM
−1
R . The upper left 3 × 3 block is then a Majorana mass

matrix for the fields R = νL+ρνcR, containing a small part of the gauge singlet right-
handed neutrinos, proportional to ρ≪ 1. Also, the heavy neutrino mass eigenstate
fields, which are mainly composed of the gauge singlet right-handed fields, also
contain a small component of left-handed neutrino fields. Note that the matrix
which enters into the lepton mixing matrix is the matrix which diagonalizes the
upper left 3 × 3 block of the full mass matrix Mν . However, this matrix will not
necessarily be unitary, as it is only a part of the full unitary 6 × 6 matrix which
diagonalizes the full mass matrix. This is how the non-unitarity enters in this way of
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looking at the model, which is to be compared with the effects of the dimension-six
operator in Eq. (3.3).

In paper II of this thesis [2], some properties of the low-scale type I seesaw
model were considered, in which the right-handed neutrinos have masses close to
the electroweak scale. In the ordinary seesaw models with right-handed neutrino
masses far above the electroweak scale, Yν can be sizable, e.g., at order unity. In
the low-scale seesaw model, Yν should be relatively small in order to maintain the
stability of the masses of the light neutrinos. However, there exist mechanisms that
could stabilize neutrino masses without the requirement of a tiny Yν . For example,
additional suppression could enter through a small lepton number violating con-
tribution (as in the inverse seesaw model, cf. Sec. 3.2). Also, the neutrino masses
could be generated radiatively, in which case the additional suppression is guaran-
teed by loop integrals [63]. Finally, neutrino masses could be forbidden at d = 5,
but appear from effective operators of higher dimension [32]. In these cases, there
will still be restrictions on Yν from the unitarity of the leptonic mixing matrix.

To fully specify the type-I seesaw model one needs to specify 18 parameters,
in addition to the ones in the SM [94]. This can be done in different ways.3 For
example, in the top-down parametrization, the model is considered at high-energy
scales, where the right-handed neutrinos are propagating degrees of freedom. As
mentioned before, one can always choose a νR basis where the mass matrix MR

is diagonal, with positive and real eigenvalues, i.e., MR = DR. The remaining
neutrino Yukawa matrix Yν is an arbitrary complex matrix, from which 3 phases
can be removed by phase redefinitions of the ℓLi’s, giving 15 additional parameters.
Another useful and popular parametrization, more natural and relevant for low-
energy physics, is the Casas–Ibarra parametrization [95]. First, it uses the real and
diagonal matrices DR, Dκ = DL/v

2, and the leptonic mixing matrix U , containing
a total of 12 parameters. The remaining 6 parameters are encoded in the matrix

O ≡ D−1/2
κ U †YνM

−1/2
R . (3.8)

If the relation in Eq. (3.1) is to hold, O has to be a complex orthogonal matrix,
which means that it can be written in the form O = R23(ϑ1)R13(ϑ2)R12(ϑ3) with
Rij(ϑk) being the elementary rotations in the 23, 13, and 12 planes, respectively.
Different from the quark or lepton mixing angles, ϑi are in general complex.

3.2 The inverse seesaw model

The inverse seesaw model [96] is an extension of the type I seesaw model, in which
the smallness of the neutrino masses is protected by a small amount of lepton
number breaking instead of suppression by a very large mass scale. It contains three
extra fermionic SM gauge singlets Si, coupled to the right-handed neutrinos in a
lepton-number conserving way, while the ordinary right-handed neutrino Majorana

3One can always choose the ℓL basis such that Y †
e Ye = De, containing three parameters.



3.2. The inverse seesaw model 29

mass term is forbidden by some additional symmetry. It is only through symmetric
mass matrix MS in the Majorana mass term ScMSS that the lepton number is
broken, and MS can thus be naturally small. The relevant part of the Lagrangian
is then, in the flavor basis,

−LIS = ℓLφ̃YννR + ScMRνR +
1

2
ScMSS + H.c. (3.9)

Here, the fields νRi and Si are not mass eigenstates, but instead the Majorana mass
matrix in the basis {νR, S} is

MIS =

(

0 MR

MT
R MS

)

. (3.10)

For MS ≪ MR, the right-handed neutrinos and the extra singlets Si are, to low-
est order, maximally admixed into three pairs of heavy Majorana neutrinos with
opposite CP parities and essentially identical masses, with a splitting of the order
of MS, and can as such be regarded as components of three heavy pseudo-Dirac
neutrinos.

Integrating out these heavy fields yields the Weinberg operator with

κ =
(

YνM
−1
R

)

MS

(

YνM
−1
R

)T
(3.11)

at tree-level, which, after electroweak symmetry breaking as usual, yields a Majo-
rana mass matrix for the light neutrinos as

ML = FMSF
T , (3.12)

where F = vYνM
−1
R . This is to be compared with Eq. (3.2) for the type I seesaw

model. The diagrammatical representation is still given by the diagrams in Fig. 3.1,
but with all the 6 heavy mass eigenstate fields appearing as intermediate states.

In spite of the underlying physics responsible, the particle content of the inverse
seesaw model is essentially the same as that of the type-I seesaw model, but with
six right-handed neutrinos. Thus, one can in principle treat the heavy singlets Si
as three additional right-handed neutrinos, possessing vanishing Yukawa couplings
with the lepton doublets. It is also worth comparing the type I and inverse seesaw
models with the discussion of the Weinberg operator in Sec. 2.7.1. In the seesaw
models, the cutoff scale Λν in Eq. (2.53) can essentially be identified with MR,
which is generally above the electroweak scale. However, the dimensionless κ̃ in
Eqs. (2.53) and (2.54) then have the order of magnitudes

κ̃ =

{

O(Y 2
ν ) type I seesaw,

O(Y 2
νMSM

−1
R ) inverse seesaw.

(3.13)

Thus, κ̃ can be strongly suppressed by the potentially very small ratio MSM
−1
R in

the inverse seesaw model.
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Finally, note that, in the inverse seesaw model, the correct light neutrino masses
can be obtained even for F = O(1), i.e., for the new heavy fields around the
electroweak scale and with large Yukawa couplings Yν , and that the non-unitarity
effects are, as in the type I seesaw model, given by Eq. (3.5). Thus, as opposed
to the ordinary type I seesaw model, large non-unitarity effects are possible in the
inverse seesaw model.



Chapter 4

Renormalization group

running

This chapter is a description of the concept of renormalization group (RG) running.
First, the need for regularization and renormalization is described using a simple
example. Then, the motivations for studying the RG running in the SM and seesaw
models as well as the methods for solving the resulting RG equations are reviewed.
The decoupling of the right-handed neutrinos and the use of effective theory is
explained. Finally, the proper description of the running between the masses of the
heavy particles is described and how this can lead to the so-called threshold effects
in the running of the neutrino parameters.

4.1 The main idea

Calculations of quantum corrections, represented by loops in Feynman diagrams,
to physical quantities (such as cross sections, decay rates, and particle masses),
as well as unphysical ones (such as correlation functions), often yield divergent
results. This implies that the calculated corrections are not uniquely defined, and
as a result, neither are the predictions of the theory.

The standard way to deal with this issue is to implement a two-step procedure.
First, one has to regularize the divergence by modifying the theory in some way.
This is performed by introducing some parameter ǫ, such that the modified predic-
tion is a well-defined function of ǫ and the original, divergent result is reobtained in
the limit ǫ → 0. Then, one has to renormalize the theory by redefining its param-
eters, such that the prediction becomes finite in the ǫ→ 0 limit. For this to be the
case, the original parameters and fields appearing in the Lagrangian, the so-called
bare parameters and fields, must formally diverge as ǫ→ 0. In order to make these
concepts more easy to grasp, a simple example will be used as an illustration.
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φ φ

φ

k

Figure 4.1. Self-energy diagram of a scalar field φ. Here, k is the loop momentum.

Consider the QFT with only a single real scalar field φ with mass m and quartic
self-coupling λ. The one-loop self-energy diagram is given in Fig. 4.1, the value of
which is

iΣφ =
λ

2

∫

d4k

(2π)4
1

k2 −m2 + iǫ
, (4.1)

where k is the loop momentum. One way to evaluate these kinds of integrals is to
perform a Wick rotation by changing variables to

k0 ≡ ik4
E, k ≡ kE, (4.2)

which implies that the Lorentz inner product is given by

k2 = (k0)2 − k
2 = −(k4

E)2 − k
2
E = −k2

E, (4.3)

where k2
E = (k4

E)2 + k
2
E is just the ordinary inner product in four-dimensional

Euclidean space. Rerouting the integral in the complex plane and then going to
spherical coordinates, iΣφ can be calculated as

iΣφ = −i
λ

2(2π)4

∫

dΩ

∞
∫

0

dkE
k3
E

k2
E +m2

, (4.4)

which is divergent in the region of large kE.
It is now time to regularize this integral, which in general can be done in a

number of different ways. The simplest way, and arguably the physically most
intuitive, is to use an ultraviolet cutoff. Simply cut off the integral at some large
energy scale kE = Λ , i.e., only integrate up to Λ instead of ∞, giving

Σφ = − λ

32π2

[

Λ2 −m2 log

(

1 +
Λ2

m2

)]

. (4.5)

The parameter ǫ can then, for example, be chosen as ǫ = Λ−1. Note that Λ
is not the (fixed) energy scale up to which your theory is valid, but an arbitrary



4.1. The main idea 33

regularization scale. This regularization method has the disadvantage that is breaks
gauge invariance, and is thus not suitable for gauge theories.

Another regularization method is the Pauli-Villars regularization, in which a
smooth cutoff is introduced in the propagator by making the replacement

i

k2 −m2
→ i

k2 −m2
− i

k2 −M2
=

i(m2 −M2)

(k2 −m2)(k2 −M2)
, (4.6)

which can also be viewed as the introduction of a new fictitious particle with a
large mass M and wrong overall sign of the propagator. The parameter ǫ can be
taken to be M−1. However, this method becomes too complicated for less simple
theories, such as the SM.

Lattice regularization implies replacing the space-time continuum by a lattice
with finite spacing ǫ = l, removing modes of the field with momenta larger than
l−1. This regularization is automatically present in numerical non-perturbative
calculations, but less suitable for analytical calculations using perturbation theory,
since this regulator breaks Lorentz invariance.

Finally, the most widely used regularization method, which preserves Lorentz
and gauge invariance, but perhaps the most non-intuitive one, is dimensional reg-
ularization. Here, the number of space-time dimensions is altered to d = 4 − ǫ.
Of course, one has to make sure that the mathematical framework one is using is
properly generalized to arbitrary d. For example, the mass dimensions of the fields
have now changed, so that Eqs. (2.31) and (2.32) are generalized to

[φ] = [Aµ] =
d− 2

2
, (4.7)

[ψ] =
d− 1

2
. (4.8)

In general, all the mass parameters still have the dimension of a mass, but all the
other coupling constants need to be redefined in order to keep their mass dimensions
(they are typically dimensionless). For example, in the SM and related theories,
one has to make the replacements

λ→ λ0 = µǫλ, (4.9)

gi → gi0 = µ
ǫ

2 gi for i ∈ {1, 2, 3} , (4.10)

Yf → Yf0 = µ
ǫ

2Yf for f ∈ {u, d, ν, e} . (4.11)

Here, µ is an arbitrary energy scale, called the renormalization scale, and the sub-
script “0” denotes the bare quantities which have mass dimensions, while the cou-
plings without this subscript denote the renormalized couplings. These relations
between the bare and renormalized couplings are only the lowest order results, while
loop corrections will modify the relations to include the renormalization constants.
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Continuing the example, by Wick rotating and using standard formulae [8], the
scalar self-energy can then be calculated as

iΣφ = µǫ
λ

2

∫

ddk

(2π)4
1

k2 −m2 + iǫ

= −i
λ

32π2
(4π)

ǫ

2 Γ
(

−1 +
ǫ

2

)

m2

(

µ2

m2

)
ǫ

2

= i
λ

32π2
m2

[

2

ǫ
+ log

µ2

m2
+ log 4π + 1 − γE + O(ǫ)

]

,

(4.12)

where the expression in middle line has been expanded in ǫ to yield the last line,
and γE ≃ −0.5572 is Euler’s constant. It is now clear in which way the integral
diverges in the limit ǫ → 0, and how the introduction of the scale µ ensures that
the argument of the logarithm is dimensionless.

After having regularized a loop diagram, it is time for the step of renormaliza-
tion. In general, loop corrections to two-point functions, as the one in the example,
yield corrections to the corresponding field’s mass and wave function normaliza-
tion. If the corresponding correction is divergent in the limit ǫ → 0, the mass
and wave function renormalizations also have to be divergent in this limit, leaving
the renormalized masses and fields finite. Loop corrections to higher-order corre-
lation functions require renormalization of the corresponding coupling constants.
For example, a loop diagram with four external scalars requires renormalization of
the coupling constant λ0, yielding the renormalized coupling. There are in general
a number of ways of renormalizing a QFT, the main groups of renormalization
schemes being the mass-dependent and mass-independent schemes, meaning that
the counterterms introduced to cancel the divergences are dependent and indepen-
dent of the mass parameters of the theory, respectively.

The renormalized parameters are the ones one should relate to experiments,
although they are not observables in the strict sense. For example, in perturbation
theory, predictions for observables are expansions in the renormalized couplings,
which are functions of the renormalization scale. Fixing a renormalization scale
(usually of the order of the relevant energy in the process), the values of the cou-
pling constants at that renormalization scale can be inferred from the experimental
data. Note that the exact result for a physical observable should be independent of
the renormalization scale (and more generally, the renormalization scheme), while
individual terms in the perturbation expansion are not necessarily so. Thus, by
choosing the renormalization scheme and scale wisely, i.e., in a way that the effec-
tive expansion parameter becomes small, one can optimize the expansion.

Writing m0 for the bare mass of our example scalar field, the corrected mass
squared will be m2

0 − Σφ.
1 Defining the counterterm δm2 by m2

0 ≡ m2 + δm2, the
corrected propagator and the renormalized mass m will be finite if δm2 is made

1In general, there will be a wave function renormalization as well, but in this example there is
no need for this.
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to diverge in such a way so that it cancels the divergence of Σφ exactly. There
are different ways of accomplishing this, corresponding to different renormalization
schemes, but the most widely used is the Minimal Subtraction (MS) scheme, or its
modified version MS. In MS, only the poles in ǫ are subtracted.2 In our example,
one takes

δm2 =
λ

16π2
m2 1

ǫ
. (4.13)

Now, by noting that all the bare parameters are independent of the renormalization
scale µ, one can from Eq. (4.9) calculate that

µ
dλ

dµ
= −ǫλ, (4.14)

and hence

µ
dm2

dµ
=

λ

16π2
m2, (4.15)

and so the renormalized mass depends on the renormalization scale. Note that m2

is renormalized multiplicatively, implying that if m = 0 at tree level, it will remain
so after quantum effects are considered.

The above statement is generally true for fermion fields, but not for scalar fields.
This is because the fermion mass terms generally break chiral symmetry, implying
that it is natural to have them small, since the symmetry of the theory is then
increased by setting the masses to zero. This is usually not the case for scalar
masses, and so, using dimensional regularization, the quantum corrections are in
general proportional to the mass of any particle running in the loop (but not to a
high-energy cutoff scale). For example, in the type I seesaw model, there are correc-
tions to the Higgs mass proportional to the Majorana masses of the right-handed
neutrinos, which are generally much larger than the electroweak scale. Thus, it is
not natural to have the SM Higgs mass at the electroweak scale, where it, however,
has to be for phenomenological reasons. This often called the hierarchy problem.
However, in the SM, where there are no right-handed neutrinos, all fermions are
massless, and thus all quantum corrections to the Higgs mass are proportional to
the mass itself, and thus smaller than the tree-level mass.3 Thus, the question
“What are the sizes of the quantum corrections to the Higgs mass?” will get differ-
ent answers depending on in which theory the quantum corrections are calculated.
Although this might seem bizarre, it is in fact quite natural, since in the SM, as an
effective theory, all parameters, as determined by low-energy experiments, do not
depend on any high-energy theory. However, if one has a high-energy theory, the
Higgs mass will in general depend on any specific parameter of the high-energy the-
ory, if all the other high-energy parameters are kept fixed. The hierarchy problem is

2In MS, also the constant term ln 4π−γE is subtracted, generally leading to a better convergence
of the perturbation series.

3This is true even if one considers the broken SM with massive fermions, since all fermions
have masses at the electroweak scale or below.
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thus not really a problem in the SM, but rather a potential problem of high-energy
extensions of the SM, in which particles with masses far above the electroweak
scale appear. In these theories, obtaining a Higgs mass at the electroweak scale can
involve fine-tuning between different parameters. This fine-tuning problem can be
avoided if, for example, there are additional symmetries in the high-energy theory
protecting the Higgs mass, or if the Higgs is composite.

4.2 Renormalization group running of lepton

parameters in seesaw models

The example in the previous chapter can be generalized to more complicated the-
ories, such as the SM and the seesaw models. The resulting renormalization group
equations (RGEs) describe the dependence of the renormalized parameters on the
renormalization scale µ, and constitute a system of coupled ordinary differential
equations, one for each parameter. In mass-independent renormalization schemes,
the RGEs have the general form

µ
dPi
dµ

≡ βi (P1, . . . , Pn) , (4.16)

where Pi (i = 1, . . . , n) are the n parameters of the theory and the beta functions
βi do not depend explicitly on µ. The RGEs for the type I, type II, and type III
seesaw models with both the SM and the minimal supersymmetric standard model
(MSSM)4 as underlying theories have been derived in the literature [100–106]. In
this chapter, mainly the RGEs of the type I seesaw model will be discussed. They
can be found in Appendix A, both for the extended SM and MSSM. The RGEs of
both the SM and the inverse seesaw model can be obtained as special cases of the
ones for the type I seesaw model.

Although it can be interesting to study the running of the gauge couplings and
quark masses (or, rather, the quark Yukawa couplings), the main topic of this thesis
is the RG evolution of the parameters in the lepton sector of the SM, and more
specifically, the light neutrino masses and the lepton mixing parameters. In the case
of the parameters outside the lepton sector of the SM, the RG running is usually
studied because of the need to reconcile experimental measurements at different
energies, which, without considering running, would not be compatible. For ex-
ample, this is the case for the electromagnetic coupling constant. However, this is
not the case in the lepton sector, since the current experimental uncertainties are
generally much larger than the running effects, and because the lepton parameters
have only been measured at relatively low energies so far. Instead, the reason to
study them is that theoretical predictions of models beyond the SM, such as grand
unified theories (GUTs), are valid at some high-energy scale, while experimental

4The MSSM is a extensively studied extension of the SM, where every SM particle has an
additional partner having spin differing by one half. See, for example, Refs. [97–99] for reviews.
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data are taken at low energies. Therefore, one has to take into account the running
of the parameters between the high-energy (GUT) and low-energy (experimental)
scales in order to compare the experimental results with the theoretical predictions.
Extensions of the SM sometimes predict specific mixing patterns in the lepton sec-
tor, i.e., specific values for the lepton mixing matrix. Two such common symmetric
mixing patters are the bimaximal mixing pattern [107–110] with s12 = s23 = 1/

√
2

and s13 = 0 [cf. Eq. (2.52)] and the tri-bimaximal mixing pattern [111–113] with
s12 = 1/

√
3, s23 = 1/

√
2, and s13 = 0.

The RGE evolution of the neutrino masses and lepton mixing parameters can be
determined through the evolution of the effective light neutrino mass matrix (in the
effective or full theories) and the charged lepton Yukawa matrix, cf. Section 2.7.1.
Often, the RG running of the effective light neutrino mass matrix and charged
lepton Yukawa matrix are calculated numerically, after which the neutrino masses
and lepton mixing parameters are determined by diagonalizing the mass matrix.
However, one can also translate the full RGEs for the neutrino mass matrix into
a system of differential equations for mixing angles, CP-violating phases, and light
neutrino masses directly. The corresponding formulas have been discussed below
the seesaw scale [114–116], as well as above the seesaw thresholds in the type
I [117, 118], type II [104, 105], and type III [106] seesaw frameworks. Note that
the usual diagonality assumption made on Ye is not in general invariant under the
RG running, and neither is the parametrization of the lepton mixing matrix in
Eq. (2.52), which in general includes three additional unphysical phases which have
to be rotated away in order to determine the physical mixing parameters.

In general, there are two different strategies for solving the RGEs. In the top-
down approach, the initial conditions on the parameters are specified at a certain
high-energy scale, often motivated by the flavor structure of a specific high-energy
model. Once this is done, the running down to low energies and crossing the seesaw
thresholds is relatively straightforward. In this approach, the main issue is the fact
that only small regions of the parameter space of the full theory will lead to values
of the low-energy parameters that are consistent with experiments, and this makes
this approach difficult to implement in practice. In the bottom-up approach, on
the other hand, the initial conditions on the parameters are specified at a low-
energy scale, usually the electroweak scale. Hence, all the available experimental
information is taken into account from the start. However, after running to higher
energy scales, one reaches the seesaw threshold, where one has to match the effective
and full theories. Then, since the number of parameters in the full theory is larger
than in the effective one, one has to make additional assumptions on the parameters
and flavor structure of the full theory.

The general features of the running of the lepton parameters have been stud-
ied in the literature, and it has been shown that there could be large radiative
corrections to the lepton mixing parameters at super high-energy scales (see, e.g.,
Ref. [119] and references therein). In particular, certain flavor symmetric mixing
patterns can be achieved at the GUT scale indicating that there might exist some
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flavor symmetries similar to the gauge symmetry (see, e.g., Ref. [120] and references
therein).

4.3 Decoupling of right-handed neutrinos and

threshold effects

The description using effective field theory plays an essential role in the study of the
RG running of QFT parameters. The Appelquist–Carazzone theorem [121] states
that the effect of heavy particles decouples at energies much smaller than their
masses, and that they do not contribute to the beta functions at low energies.
This can be seen explicitly if one uses a mass-dependent renormalization scheme,
such as momentum space subtraction. However, this does not happen if one uses
a mass-independent renormalization scheme, such as MS, since the beta functions
are independent of masses. Generally, in perturbative calculations, one will obtain
finite contributions to observables on the form

log
E2

µ2
,

which is the reason why one generally should take µ ≃ E to minimize the effects of
higher-order terms. However, one can also have potentially large logarithms,

log
M2

µ2
,

where M is the mass of the heavy particle [24]. If M ≫ E, these terms might
destroy the perturbation expansion. In order to implement the decoupling in mass-
independent schemes, one decouples the heavy particles “by hand” by integrating
them out at the matching scale µ ≃M , and describing the RG running for µ < M
using the effective theory.

This holds in general for all particles, and in particular for the ones in the
SM, but here we will concentrate on the heavy neutrinos, which are assumed to
have masses above the electroweak scale. In the previous discussion of the seesaw
models, only the different regions of energy E < MR and E > MR were considered.
However, the three right-handed neutrinos do in general not have the same masses,
i.e., the masses can be non-degenerate. In that case, the heavy neutrinos have to
be sequentially decoupled from the theory [122], leading to a series of effective field
theories. Once again, it is worth to point out that perturbative renormalization of
effective operators can be performed in the usual way, as long as one is satisfied
with a finite accuracy and works to a given order in E/Λ.

When crossing the seesaw thresholds, one should make sure that the full and
effective theories give identical predictions for physical quantities at low-energy
scales, and therefore, the physical parameters of both theories have to be related to
each other. In the case of the neutrino mass matrix, this means relations between
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the effective coupling matrix κ and the parameters Yν and MR of the full theory.
This is called matching the full and effective theories. For the simplest case, when
the mass spectrum of the heavy singlets is degenerate, namely M1 = M2 = M3 =
M0, one can simply make use of the tree-level matching condition at the scale
µ = M0,

κ
∣

∣

M0

= YνM
−1
R Y Tν

∣

∣

M0

. (4.17)

In the most general case with non-degenerate heavy singlets, i.e., M1 < M2 <
M3, the situation becomes more complicated. For µ between Mn and Mn−1, the
heavy mass eigenstates

{

νnR . . . ν
3
R

}

are integrated out. In this effective theory, only

a 3×(n−1) sub-matrix of Yν remains, denoted by Y
(n)
ν , as well as an (n−1)×(n−1)

submatrix of MR, denoted by M
(n)
R . The decoupling of the n-th heavy singlet leads

to the appearance of an effective dimension-five operator through the tree-level
matching condition at µ = Mn,

κ(n)
∣

∣

Mn

= κ(n+1)
∣

∣

Mn

+
Y(n)
ν Y(n)T

ν

Mn

∣

∣

Mn

, for n = 1, 2, 3, (4.18)

where Y(n)
ν is the n-th column of Yν (i.e., the part which has been removed from

Yν), and it is understood that κ(4) = 0 is the effective operator in the full theory and
κ(1) = κ is the effective operator with all the heavy fields decoupled. In between
these scales, all the parameters are to be run using their respective RGEs. Note
that the matching has to be done in a basis where the right-handed mass matrix is
diagonal, since it is the eigenstate with a specific mass which is to be decoupled.

The renormalized effective neutrino Majorana mass matrix for µ below Mn is
described by two parts as

m(n)
ν = v2

[

κ(n) + Y (n)
ν

(

M
(n)
R

)−1

Y (n)T
ν

]

, (4.19)

where (n) labels the quantities relevant for the effective theory between the n-th
and (n−1)-th thresholds. Both of these contributions run with the renormalization
scale µ, and the running can be determined from Eqs. (A.1g), (A.1h), and (A.1j).
As it turns out, the flavor non-diagonal parts of the running are the same in both
the SM and the MSSM. However, the RGEs for the two terms have different flavor
diagonal contributions, but only in the SM and not in the MSSM. In particular,
the coefficients for the gauge coupling and Higgs self-coupling contributions are
different. The flavor diagonal parts are ακ and 2αν , respectively, and they differ as

ακ − 2αν = λ+
9

10
g2
1 +

3

2
g2
2 in the SM, (4.20)

ακ − 2αµ = 0 in the MSSM. (4.21)

Thus, the running of the two different parts contributing to the effective neutrino
mass matrix in Eq. (4.19) has different gauge and Higgs self-coupling contribu-
tions. Since these couplings are in general rather large, there can be potentially
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Figure 4.2. Feynman diagrams of the one-loop corrections to the neutrino mass
matrix due to the Higgs self coupling in the effective theory (left) and in the full
theory (right). Here, p and q are the external momenta and k is the loop momentum.

large running of the lepton mixing angles due to this “mismatch” between the two
contributions. These effects are usually referred to as threshold effects.

As an example to visualize where this difference comes from, consider the cor-
rections to the four-point functions relevant to the neutrino mass matrix from the
Higgs self-coupling in Fig. 4.2. In the effective theory (left diagram), there is a
contribution involving the loop integral

∫

d4k

(2π)4
1

k2 −m2

1

(k − p− q)2 −m2
,

which is divergent, while the loop integral appearing in the full theory (right dia-
gram) is given by

∫

d4k

(2π)4
/k +Mn

k2 −M2
n

1

(k + p)2 −m2

1

(q − k)2 −m2

and is not divergent. Therefore, there are no corrections proportional to λ to the
neutrino mass matrix in the full theory, while λ does enter the beta function of κ
in the effective theory. See also Ref. [117] for a detailed discussion. If the relevant
seesaw threshold is above the SUSY-breaking scale, such a mismatch is absent in
the MSSM due to the supersymmetric structure of the MSSM Higgs and gauge
sectors. Therefore, this may result in significant RG running effects only in the
SM, but not in the MSSM.

In paper II of this thesis [2], the threshold effects on the RG running of the
neutrino parameters in the type I seesaw model have been studied, while in paper I
[1], the general RG running of the neutrino parameters in the inverse seesaw model
has been investigated, including threshold effects.



Chapter 5

Neutrinoless double beta

decay

In this chapter, the process of neutrinoless double beta decay will be described, and
how it is related to neutrino masses. First, the process as mediated by light neutrino
exchange will be discussed as well as the current experimental situation and the
dependence on the nuclear physics. Second, the possibility of other contributions,
parametrized by effective operators, will be described.

Beta decay is the decay of a nucleus accompanied by the emission of an electron
or a positron. In beta-minus decay, an electron is emitted together with an electron
antineutrino when a nucleus with mass number A (the number of nucleons) and
atomic number Z (the number of protons) decays according to

(A,Z) → (A,Z + 1) + e− + νe, (5.1)

which on the level of the nucleons is essentially

n→ p+ e− + νe. (5.2)

In beta-plus decay, a positron is emitted together with an electron neutrino in the
process

p→ n+ e+ + νe, (5.3)

which, because of energy conservation, can only occur inside a nucleus. The fi-
nal state positron can also be exchanged to an initial state electron, in which case
the process is called electron capture. All these processes can be accurately de-
scribed through the exchange of SM W -bosons, or, since the relevant energies are
much lower than the W -boson mass, by using the standard four-fermion interac-
tion between the proton, neutron, electron, and neutrino fields. (Or between the
quark, electron, and neutrino fields in the quark-level description.) Historically,
the properties of beta decay, specifically the apparent non-conservation of energy
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and angular momenta, was what led Wolfgang Pauli to suggest that there was an
undetected neutral particle being emitted together with the electron.

In nuclei, where ordinary single beta decay is forbidden for kinematical reasons,
double beta decay (2νββ) can be the dominant process. In this process, a nucleus
with mass number A and atomic number Z decays through the emission of two
electrons and two antineutrinos according to

(A,Z) → (A,Z + 2) + 2e− + 2νe. (5.4)

Double beta decay has been observed in around 10 nuclei [123], and the correspond-
ing half-lives are very long, typically of the order of 1019 years or longer. This decay
is essentially described as two “simultaneous” single beta decay processes, which is
also the reason why the decay rates are so small.

5.1 Neutrinoless double beta decay through light

neutrino exchange

If neutrinos are Majorana particles, it can be possible for some nuclei to undergo
double beta decay without emission of neutrinos. Replacing the two external neutri-
nos with an internal line and working on the level of the quarks inside the nucleons,
one obtains the diagram in Fig. 5.1, giving the process

(A,Z) → (A,Z + 2) + 2e−. (5.5)

In this decay process, lepton number is violated by two units. This will be referred
to as the “standard” mechanism responsible for 0νββ [124,125]. Just as in the case
of single beta decay, the internal momentum in the diagram is of the order of the
typical energy transfer in the nucleus, and hence much smaller than the mass of
the W -bosons. Thus, the quark-lepton interaction becomes point-like and can be
described using the standard four-fermion interaction. However, due to the small
neutrino masses, the light neutrino propagator will depend strongly on the energy
transfer and can thus not be treated as point-like. In fact, due to the lightness of
the neutrinos and the chirality structure of the charged current interaction vertices,
the propagator of a Majorana mass eigenstate neutrino field with mass mi will be
[126]

PL
/q +mi

q2 −m2
i

PL =
mi

q2 −m2
i

≃ mi

q2
, (5.6)

where q is the transfered momentum.
In the calculation of the resulting decay rate Γ of a specific nucleus,1 one can

separate the dependence on the underlying particle physics and the nuclear physics
by writing it as [124,125]

Γ = G|M0ν |2|mee|2. (5.7)

Here, G is a known phase space factor, M0ν is the nuclear matrix element (NME),

1The decay rate is in general equal to the inverse half-life divided by ln 2.
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Figure 5.1. The leading order Feynman diagram for 0νββ through Majorana neu-
trino exchange.

containing all the dependence on the nuclear physics, and |mee| is the effective
neutrino mass given by

|mee| =

∣

∣

∣

∣

∣

3
∑

i=1

U2
eimi

∣

∣

∣

∣

∣

=
∣

∣m1c
2
12c

2
13 +m2s

2
12c

2
13e

2iα +m3s
2
13e

2iβ
∣

∣ , (5.8)

which is the magnitude of the ee-element of the neutrino mass matrix in the flavor
basis. Here, α and β are the Majorana phases. This expression is given using a
slightly different, but physically equivalent, parametrization of the lepton mixing
matrix than what was used in Eq. (2.52). First, the neutrino fields have been given
a common phase redefinition in order to make Ue1 real. Then, the third neutrino
mass eigenstate ν3 has been given an additional phase redefinition so that the Ue3
becomes independent of δ. The NME is given as the sum of two more basic matrix
elements, the Gamow–Teller and Fermi type matrix elements as

M0ν = MGT − g2
V

g2
A

MF, (5.9)

where g2
V and g2

A are two constants of order one. The matrix elements MGT and
MF can be written as expectation values of certain operators between the initial
and final nuclear states [124,125]. However, since they are rather complicated and
not needed for the discussion of the particle physics, they will not be discussed in
detail.

In order to extract the values of the underlying particle physics parameters, one
needs the values of the NMEs. The calculation of the matrix elements MGT and
MF requires the knowledge of the wave functions of complicated nuclei and need to
be calculated numerically using some nuclear physics model. This is a notoriously
difficult task [127–129], and the corresponding uncertainties make the inference of
the underlying parameters from experimental results uncertain.

In addition, a firm observation of 0νββ will actually always imply that neutrinos
are Majorana particles. This is because any diagram leading to 0νββ, regardless of
its origin or form, can be extended by connecting the external electron lines with
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the quark lines by two W−’s [130]. The resulting diagram will then be a four-loop
diagram for a Majorana neutrino mass term. As of today, there is experimentally
no other realistic way to determine if neutrinos are Dirac or Majorana particles.
Also, as mentioned in Sec. 2.7.3, all the parameters which cannot be probed in os-
cillation experiments can, in principle, be so in 0νββ experiments. Hence, 0νββ ex-
periments can give information on the absolute neutrino neutrino mass scale, and
could in principle constrain the CP-violating Majorana phases. However, the large
uncertainties in the NMEs propagate to the inference of the underlying parameters.

In order to detect this extremely rare process against the much larger back-
ground of ordinary double beta decay, one can make use of the fact that the energy
spectra of the final state electron differ widely. In 2νββ, the final state contains
four particles in addition to the nucleus, out of which only two (the electrons) can
realistically be detected, while the neutrinos carry their energy out of the detector.
Thus, the energy of the electrons will be distributed in the region between 0 and
the total energy being released, i.e., the Q-value. In contrast, due to the nucleus
being very heavy compared to the electrons, most of the energy will be carried off
by the electrons in 0νββ, while being emitted almost back-to-back and monochro-
matically, and with the total energy equal to the Q-value. Using this, one can
discriminate the signal (0νββ) from the background (2νββ).

Current lower limits at 90 % confidence level for the half-lives of different nu-
clei include T1/2 > 1.9 · 1025 years for 76Ge [123], T1/2 > 5.8 · 1023 years for 100Mo,
T1/2 > 2.1 · 1023 years for 82Se [131], and T1/2 > 3.0 · 1024 years for 130Te [132]. Us-
ing calculated values of the corresponding NMEs, these limits can be translated into
upper limits on |mee|. For example, Ref. [123] finds the upper limit |mee| < 0.35 eV
at 90 % confidence level. There have also been claims of a measurement of neu-
trinoless double beta decay by a subgroup of the Heidelberg–Moscow collaboration
[133–136], which would indicate that neutrinos are Majorana particles. However,
the validity of these results is disputed, although the claimed decay rate cannot,
at the moment, be excluded by other experiments [127]. Hence, a new generation
of experiments are needed in order to either verify or rule out the above claim.
Examples of present and future experiments include GERDA [137], EXO [138],
Majorana [139], and MOON [140].

5.2 Other mechanisms of neutrinoless double

beta decay

Although the standard mechanism for 0νββ is the exchange of light Majorana
neutrinos, other mechanisms could very well appear in certain extensions of the
SM, such as supersymmetric models and models with heavy neutrinos [141–144],
as well as left-right symmetric models [145]. To discriminate between different
mechanisms of 0νββ, it will not be enough to detect 0νββ in a single isotope, but
instead measurements for several different isotopes will be necessary [143,146,147].
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Also, note that not only will the decay of different nuclei involve different NMEs,
but so will also different decay mechanisms in the same nucleus.

Instead of treating specific high-energy models, one can use effective field theory
and look at the most general operators responsible for 0νββ . First, one can alter
the Lorentz and/or chirality structure of the effective four-fermion interaction, while
keeping the neutrino propagator [126]. There is also the possibility that no neutrino
exchange is involved in the new decay mechanism. If the virtual particles responsible
for the decay are heavier than the typical nuclear energies, the whole process should
be describable by a single point-like interaction in effective field theory. Since in
this case there are four quark fields and two electron fields involved, the effective
operator has to have a mass dimension equal to nine. The most general such
Lagrangian is given by [148]

L0νββ =
G2

F

2
m−1

p (ǫ1JJj + ǫ2J
µνJµνj + ǫ3J

µJµj + ǫ4J
µJµνj

ν + ǫ5J
µJjµ) + H.c.,

(5.10)
where J and j denote hadron and electron currents, respectively. The proportion-
ality to the Fermi constant G2

F has been introduced, since this also appears in the
standard mechanism, while the factor m−1

p finally gives the coefficient the correct
mass dimension.2 The strengths of the different operators are parametrized by the
(generally complex) dimensionless coefficients ǫi. Actually, there are many more
operators in Eq. (5.10) then there seems to be at first sight. This is because differ-
ent chirality structures are permitted for all the currents. The hadron currents in
Eq. (5.10) are given by

JL,R = u (1 ∓ γ5) d, JµL,R = uγµ (1 ∓ γ5) d, JµνL,R = u
i

2
[γµ, γν ] (1 ∓ γ5) d,

(5.11)
and the electron ones by

jL,R = e (1 ∓ γ5) e
c = 2 eR,Le

c
R,L, jµL,R = eγµ (1 ∓ γ5) e

c = 2 eL,Rγ
µecR,L. (5.12)

Note that there are some more Lorentz invariant terms, which could have been
added to Eq. (5.10), namely

L′
0νββ =

G2
F

2
m−1

p (ǫ6J
µJνjµν + ǫ7JJ

µνjµν + ǫ8JµαJ
ναjµν ) , (5.13)

where the electron tensor currents are given by jµνL,R = e i2 [γµ, γν ] (1 ∓ γ5) e
c. How-

ever, one can show that all operators proportional to eγµec, e i2 [γµ, γν ] ec, and

eγ5
i
2 [γµ, γν ] ec vanish identically, since the electron fields anti-commute [149]. Thus,

the terms in Eq. (5.13) all vanish and do not need to be considered.
The resulting half-life, including interferences, can be calculated from the in-

teractions in the Lagrangian in Eq. (5.10) [148], and also interferences with the

2The choice of the proton mass is arbitrary, but in some sense natural since the proton appears
as a final state, and since the typical energy transfer inside the nucleus is substantially smaller.
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standard light neutrino exchange mechanism can be derived [3]. Note that, de-
pending on the chiralities of the final state electrons, several of the interference
terms will be suppressed, see Ref. [3] for a discussion.

Paper III of this thesis [3] deals with prospective constraints on the effective
operators in Eq. (5.10) from future data on 0νββ, in combination with data from
single beta decay experiments and cosmological observations.



Chapter 6

Summary and conclusions

In Part I of this thesis, the theoretical background relevant for the scientific papers
presented in Part II of the thesis has been dealt with. The standard model of par-
ticle physics has been briefly discussed, and emphasis has been put on the topics of
neutrino masses and leptonic mixing. The seesaw models, in particular the type I
and inverse seesaw models, have been reviewed, and so have the concepts of renor-
malization and renormalization group running. Finally, the process of neutrinoless
double beta decay and how it can be triggered by exchange of Majorana neutrinos
and by effective operators has been described. Throughout, the importance and
benefits of using effective (quantum field) theories has been emphasized.

In Part II of the thesis, three scientific papers will be presented, which investigate
the models and use the techniques introduced in Part I. In paper I [1], we have
studied the renormalization group running of the lepton parameters in the inverse
seesaw model. We have derived analytical formulas, describing the running of the
neutrino parameters above the seesaw threshold in the SM and the MSSM. Also, a
detailed numerical study of the RG running has been carried out. Because of the
potentially large Yukawa couplings, significant running of the lepton mixing angles
can be obtained. The running of the lepton mixing angles, in particular of θ12, can
be large if the mass spectrum of the light neutrinos is nearly degenerate. In addition,
the effects of the seesaw thresholds are discussed. Some phenomenologically and
theoretically interesting leptonic mixing patterns, the bimaximal and tri-bimaximal
patterns, can be achieved at a high-energy scale once the RG running is taken into
account. Finally, the RG evolution of the light neutrino masses and of the CP-
violating phases has been studied.

In paper II [2], the renormalization group running of the neutrino parameters
in a low-scale seesaw model with non-degenerate heavy neutrinos has been inves-
tigated. We have shown that significant radiative corrections can be obtained at
low energies, and for a short distance of renormalization group running, as a result
of threshold effects. Analytical formulas for the renormalization group corrections
to the neutrino parameters in crossing the seesaw thresholds have been presented,
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indicating that the mismatch between different contributions to the mass matrix
of the light neutrinos can lead to large corrections to the lepton mixing matrix. A
numerical example has also been given to show that, in the presence of low-scale
right-handed neutrinos, the bi-maximal mixing pattern at the TeV scale is fully
compatible with the current measurements lepton mixing angles.

In paper III [3], we have investigated the possible future bounds on the strength
of different short-range contributions to neutrinoless double beta decay. These
bounds depend on the outcome of ongoing and planned experiments related to neu-
trino masses. Three scenarios, A, B, and C, are studied, corresponding to different
combinations of experimental results. For two of the scenarios, we have determined
the bounds on the coefficients ǫi of each point-like operator that could contribute
to the decay, will for the remaining scenario, we obtain non-zero estimates. More
accurate calculations of the nuclear matrix elements will improve the robustness of
our results.

For more detailed conclusions, the reader is referred to corresponding papers.



Appendix A

Renormalization group

equations in the type I

seesaw model

In this appendix, the RGEs of the parameters of the type I seesaw model with
the SM and the MSSM as underlying theories are given. The RGEs for the inverse
seesaw model can be calculated as a special case of this model with six right-handed
neutrinos.

A.1 SM with right-handed neutrinos

The renormalization group evolution of the parameters of the SM and the coefficient
of the Weinberg operator are given by [100–103,119,120,150]

16π2µ
dg1
dµ

= b1g
3
1, (A.1a)

16π2µ
dg2
dµ

= b2g
3
2, (A.1b)

16π2µ
dg3
dµ

= b3g
3
3, (A.1c)

16π2µ
dYu
dµ

=
(

αu + CuuHu + CduHd

)

Yu, (A.1d)

16π2µ
dYd
dµ

=
(

αd + CudHu + CddHd

)

Yd, (A.1e)

16π2µ
dYe
dµ

=
(

αe + CeeHe + CνeH
(n)
ν

)

Ye, (A.1f)
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16π2µ
dY

(n)
ν

dµ
=
(

αν + CeνHe + CννH
(n)
ν

)

Y (n)
ν , (A.1g)

16π2µ
dM

(n)
R

dµ
= CRM

(n)
R

(

Y (n)†
ν Y (n)

ν

)

+ CR

(

Y (n)†
ν Y (n)

ν

)T

M
(n)
R , (A.1h)

16π2µ
dλ

dµ
= αλλ + αgλ + αYλ , (A.1i)

16π2µ
dκ(n)

dµ
= ακκ

(n) +
(

CeκHe + CνκH
(n)
ν

)

κ(n) + κ(n)
(

CeκHe + CνκH
(n)
ν

)T

,

(A.1j)

where Hf = YfY
†
f for f = e, ν, u, d, and (n) labels the quantities relevant for the

effective theory between the n-th and (n−1)-th thresholds. The matching between
the effective theories is described in the main text. GUT charge normalization for
g1 is used, which means that g1 is related to the conventional SM coupling g̃1 as
g2
1 = 5

3 g̃
2
1. The coefficients determining the evolution of the gauge couplings are

b1 =
41

10
, b2 = −19

16
, b3 = −7. (A.2)

The beta functions for the Yukawa couplings each consist of a flavor diagonal part
and a flavor non-diagonal part. The flavor diagonal parts are given by

αu = tr
(

3Hu + 3Hd +He +H(n)
ν

)

− 17

20
g2
1 − 9

4
g2
2 − 8g2

3, (A.3)

αd = tr
(

3Hu + 3Hd +He +H(n)
ν

)

− 1

4
g2
1 − 9

4
g2
2 − 8g2

3, (A.4)

αe = tr
(

3Hu + 3Hd +He +H(n)
ν

)

− 9

4
g2
1 − 9

4
g2
2 , (A.5)

αν = tr
(

3Hu + 3Hd +He +H(n)
ν

)

− 9

20
g2
1 − 9

4
g2
2 , (A.6)

ακ = 2tr
(

3Hu + 3Hd +He +H(n)
ν

)

+ λ− 3g2
2, (A.7)

while the coefficients determining the flavor non-diagonal parts are given by

Cuu = Cdd = Cee = Cνν =
3

2
, (A.8)

Cdu = Cud = Cνe = Ceν = −3

2
, (A.9)

CR = 1, (A.10)

Ceκ = −3

2
, Cνκ =

1

2
. (A.11)
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Finally, the RGE evolution of the Higgs self-coupling constant is determined by1

αλλ = 6λ2 − 3λ

(

3

5
g2
1 + 3g2

2

)

+ λtr
(

3Hu + 3Hd +He +H(n)
ν

)

, (A.12)

αgλ = 3g4
2 +

3

2

(

3

5
g2
1 + 3g2

2

)2

, (A.13)

αYλ = −8tr

(

3H2
u + 3H2

d +H2
e +

(

H(n)
ν

)2
)

. (A.14)

A.2 MSSM with right-handed neutrinos

If instead the MSSM is the underlying theory, the RGEs in Eqs. (A.1) (except
for Eq. (A.1i), since the parameter λ is absent in the MSSM) still hold above
the supersymmetry-breaking scale, but with different coefficients. Below the scale
of supersymmetry-breaking, one recovers the SM as an effective theory, and the
corresponding RGEs should be used. The coefficients determining the evolution of
the gauge couplings are

b1 =
33

5
, b2 = 1, b3 = −3. (A.15)

The flavor diagonal terms read

αu = tr
(

3Hu +H(n)
ν

)

− 13

15
g2
1 − 3g2

2 − 16

3
g2
3 , (A.16)

αd = tr (3Hd +He) −
7

15
g2
1 − 3g2

2 − 16

3
g2
3 , (A.17)

αe = tr (3Hd +He) −
9

5
g2
1 − 3g2

2 , (A.18)

αν = tr
(

3Hu +H(n)
ν

)

− 3

5
g2
1 − 3g2

2, (A.19)

ακ = 2αν , (A.20)

while the flavor non-diagonal are determined by

Cuu = Cdd = Cee = Cνν = 3, (A.21)

Cdu = Cud = Cνe = Ceν = 1, (A.22)

CR = 2, (A.23)

Ceκ = Cνκ = 1. (A.24)

The fact that ακ = 2αν leads to the absence of threshold effects in the MSSM, as
discussed in the main text.

1The interaction term is (λ/4) φ4.
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[49] T. Schwetz, M. Tórtola and J. W. F. Valle, Global neutrino data and re-
cent reactor fluxes: status of three-flavour oscillation parameters, (2011),
1103.0734.

[50] F. Ardellier et al., Letter of intent for Double Chooz: A Search for the mixing
angle θ13, (2004), hep-ex/0405032.

[51] Double Chooz collaboration, I. Gil-Botella, Search for the θ13 mixing angle
with the Double Chooz experiment, J. Phys. Conf. Ser. 259, 012041 (2010).

[52] Double Chooz collaboration, C. Palomares, Double Chooz neutrino experi-
ment, PoS EPS-HEP2009, 275 (2009), 0911.3227.

[53] Troitsk collaboration, V. Lobashev et al., Direct search for mass of neutrino
and anomaly in the tritium beta spectrum, Phys. Lett. B460, 227 (1999).

[54] Mainz collaboration, C. Kraus et al., Final results from phase II of the Mainz
neutrino mass search in tritium β decay, Eur. Phys. J. C40, 447 (2005),
hep-ex/0412056.

[55] MARE collaboration, A. Nucciotti et al., Neutrino mass calorimetric searches
in the MARE experiment, (2010), 1012.2290.

[56] KATRIN collaboration, A. Osipowicz et al., KATRIN: A next generation
tritium beta decay experiment with sub-eV sensitivity for the electron neutrino
mass, (2001), hep-ex/0109033.

[57] KATRIN Collaboration, J. Bonn, The status of KATRIN, Prog. Part. Nucl.
Phys. 64, 285 (2010).

[58] O. Host et al., Forecasting neutrino masses from combining KATRIN and the
CMB: Frequentist and Bayesian analyses, Phys. Rev. D76, 113005 (2007),
0709.1317.



Bibliography 57

[59] S. Hannestad, Primordial neutrinos, Ann. Rev. Nucl. Part. Sci. 56, 137
(2006), hep-ph/0602058.

[60] S. Hannestad and Y. Y. Y. Wong, Neutrino mass from future high redshift
galaxy surveys: Sensitivity and detection threshold, JCAP 0707, 004 (2007),
astro-ph/0703031.

[61] WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave
Anisotropy Probe (WMAP) observations: Cosmological interpretation, Astro-
phys. J. Suppl. 192, 18 (2011), 1001.4538.

[62] Planck collaboration, P. A. R. Ade et al., Planck early results: The Planck
mission, (2011), 1101.2022.

[63] E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81,
1171 (1998), hep-ph/9805219.

[64] P. Minkowski, µ→ eγ at a rate of one out of 109 muon decays?, Phys. Lett.
B67, 421 (1977).

[65] T. Yanagida, In proceedings of “Workshop on the Baryon Number of the
Universe and Unified Theories”, edited by O. Sawada and A. Sugamoto, p. 95,
1979.

[66] M. Gell-Mann, P. Ramond and R. Slansky, Supergravity, edited by P. van
Nieuwenhuizen and D. Freedman, p. 315, 1979.

[67] R. N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity
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