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Abstract 

 

With the development of powerful computational resources such as Digital Signal Processors 

and Field Programmable Gate Arrays, it has become possible to utilize many radio functions 

via software. This is the main concept of an up-and-coming technology of Software Defined 

Radio. 

In the Thesis, a number of platforms for implementation of Software Defined Radio have 

been evaluated. The platform that proved to be most suitable for the project was Ettus’ 

USRP N210. Using the platform, an implementation of IEEE 802.15.4 Zigbee’s physical layer 

was done. Experiments whose outputs can later be used to compare performance with 

respect to "hardware radios" were performed.  
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Sammanfattning 

 

Med utvecklingen av enheter med kraftfulla beräkningsegenskaper som “Digital Signal 

Processors” och “Field Programmable Gate Arrays” har det blivit möjligt att implementera 

flera radiofunktioner i mjukvara. Det är huvudkonceptet i den uppåtgående teknologin 

mjukvaru definierad radio. 

I det här examensarbetet har ett flertal plattformar för mjukvaru definierad radio 

utvärderats. Plattformen som visade sig vara mest lämplig för projektet var Ettus USRP 

N210. En implementation av IEEE 802.15.4 Zigbees fysiska lager har realiserats till 

plattformen. Experiment, vars utdata senare kan användas för att jämföra prestanda mellan 

mjukvaru definierad radio och hårdvaru baserad radio, har även utförts. 
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PER – Packet Error Rate 
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RSSI – Received Signal Strength Indicator 
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USRP – Universal Software Radio Peripheral  

WBFM – WideBand Frequency Modulation 

Wi-Fi – Wireless Fidelity 
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1 Introduction 

 

In an engineer’s world, no matter how good the certain product performs, it could always be 

improved to perform faster, cheaper and more efficiently. Being bounded by the 

omnipresent Shannon theorem, making these improvements is often not an easy task for 

radiocommunication engineers.  

One of the emerging technologies that is able to offer a lot of space for such improvements 

is Software Defined Radio. Slowly but steadily, this technology - whose purpose is bringing 

the software as close to antenna as possible, thus turning hardware problems into software 

ones - is becoming a dominant design approach in modern radiocommunication systems. 

Fairly reasonable prices of some of the SDR systems out there make it possible for academic 

environments to get into – not only examining the benefits this innovative technology has to 

offer at the moment, but also contributing to the project and helping speed up the progress 

pace of the technology itself.  

 

1.1  Motivation 

 

Motivation for this Thesis was primarily getting familiarized with the exciting technology of 

Software Defined Radio. In order to do that, besides theoretical analysis approach, 

implementation of some of the fairly wide-spread technology via one of the available SDR 

platforms was to be done. Considering the work that has been and is being done in MDH’s 

Tesla-Gauss project that deals with technologies operating in 2.4 GHz bandwidth, it was 

decided to try and implement one of those technologies as well. 

After closer examination of potentially available platforms, it was decided to purchase Ettus 

Research’s USRP SDR console, which uses GNU Radio open-source software development 

toolkit as a software architecture. The final goal of the project was implementing IEEE 

802.15.4 standard’s physical (PHY) layer and performing measurements that can later be 

compared to the ones done using conventional (“hardware”) radio systems. 
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1.2 Methodology 

 

Since working with SDRs requires different competences and combines knowledge from a 

range of disciplines, it was necessary to obtain these prior to start of the practical work. 

Therefore, literature study at first included revising the digital signal processing theory and 

reading about the SDR technology itself.  

Then, the time was spent reviewing potential SDR platforms; analyzing pros and cons of each 

and figuring out which one would prove to be the best for achieving the set goals.  

Once the platform (USRP N210 SDR) was chosen and ordered, more in-depth literature study 

about GNU Radio and Python programming was performed.  

Once the platform arrived, after successfully compiling GNU Radio and updating the 

platform’s firmware, initial testing has been done.  

After getting familiarized with modus operandi of the equipment and software, tests have 

been performed using GNU Radio Companion (GRC), trying out the different modules and 

functions that GRC offered. 

Finally, the work with implementing 802.15.4 PHY layer included modifying the UCLA Zigbee 

802.15.4 PHY’s code in order to work with the new, UHD drivers and adjusting the software 

for the measurements. 

Once done, results of measurements have been processed and analyzed and the Thesis 

report written. 

 

1.3  Delimitations 

 

The main delimitation of this project was time. With only a basic general pre-knowledge of 

SDR and digital signal processing, and no previous practical experience in this field 
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whatsoever, it wasn’t quite certain that the set goals would be achievable within the time-

scope (one semester). 

Again, because of time restrictions, it was known that it would not be possible to do the 

implementation of IEEE 802.15.4 “from scratch” – instead, UCLA’s Zigbee PHY project was to 

be used as a template. The UCLA Zigbee PHY project implements only the bottom (physical) 

layer of the 802.15.4 standard, whereas upper layers are not taken into account. 

 

1.4 Related work 

 

This Thesis was done within MDH’s projects TESLA and GAUSS in order to see if there is 

potential for Software Defined Radio technology to somehow be used either as an 

integrated part of those projects or used as an alternative approach to the measurements 

that are being done within TESLA and GAUSS. 

TESLA’s (Time-critical and Safe wireLess Automation communication) main goal is achieving 

predictability of time-critical and safe wireless communication, in spite of communication 

taking place in harsh environments. The main application areas are time-critical industrial 

processes. The overall purpose of project TESLA is enabling smarter system development for 

time-critical industrial processes by giving system developers tools for validation, calculation 

and prediction of reliability and safety of time-critical wireless communication. Project has 

three work tasks: standardized, safe wireless sensor networks (WSNs) in time-critical 

applications; safe and reliable time-critical communication in harsh environments, and 

models for quantification of safety and availability in wireless automation networks. 

Its sister project GAUSS’ (Guaranteed Automation communication Under Severe 

disturbanceS) baseline measurement results are to be produced and used as inputs to 

TESLA. GAUSS has two work tasks in common with TESLA: safe and reliable time-critical 

communication in harsh environments, and models for quantification of safety and 

availability in wireless automation networks. Solving real-world problems and creating proof-

of-concept demonstrators are important outcomes of project GAUSS. 
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More information about TESLA and GAUSS projects can be found at [3]. 

As for the UCLA Zigbee PHY project, the implementation of Text-Message Transceiver 

Service built upon a IEEE 802.15.4 physical layer was done in [9]. Building upon that, adding 

capabilities of automatic sensing and tuning (frequency hopping) was done in [11]. 

 

1.5 Thesis report outline 

 

The report is divided as follows: 

Chapter 1 – Introduction to the problematic, motivation, goals and obstacles of the project  

Chapter 2 – Theoretical background to the Software Defined Radio 

Chapter 3 – Process of choosing the platform for the project implementation. Theoretical 

background to hardware (USRP) and software (GNU Radio) used in the measurement 

process. 

Chapter 4 – Working with USRP and GNU Radio – using GNU Radio Companion; 

implementing 802.15.4 PHY layer. Processing, understanding and comparing the 

measurement results. 

Chapter 5 – Future work and possible improvements 

Chapter 6 – Conclusions  
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2 Software Defined Radio  

 

This chapter defines the term “SDR” and gives a short introduction to the history, 

background, and architecture of the Software Defined Radio technology, as well as evolution 

towards more advanced, self-aware radio systems. 

 

2.1 Definition of SDR. History and background. 

 

Software defined radio is a term originally coined by Joseph Mitola (often referred to as “a 

grandfather of SDR”) back in 1991., while describing the possibilities of reconfigurability and  

reprogrammability of radio systems. 

Today, there is no unanimous definition of SDR – however, one of the most recognizable, 

and in the same time very intuitive ones is SDR Forum’s (recently renamed to Wireless 

Innovation Forum)  one, which recognizes SDR as “a radio in which some or all of the physical 

layer functions are software defined” [1]. These functions usually include - but are not 

limited to - frequency; modulation technique; cryptography; used bandwidth, coding 

technique, etc. However, the level of reconfigurability/reprogrammabillity needed for the 

radio to be classified as a SDR isn’t strictly defined. The “ideal” SDR would, therefore, have 

all of the radio-frequency bands and modes defined in software. 

Still, many authors feel the need to differentiate terms such as “programmable digital radio” 

(PDR), “software defined radio” and “software radio” (SWR), the difference mainly being the 

number of functions defined software-wise. 

Thus, PDRs usually have the feature of only a few basic baseband operations and a part of 

the physical and data link layers being customized via software, however its hardware-

focused architecture conditions the need for changing the hardware assemblies in order to 

change RF band and/or air interface. 

In that sense, SDRs represent a step forward – the possibility of supporting different air 

interfaces using software arises, however not all functions are still defined in software.  
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SWRs (sometimes referred to as “ideal SWRs”) are, therefore, the next evolutionary stepping 

stone – they provide full reconfigurability of air interfaces in software, including channel 

access and waveform synthesis. 

However, since the distinction between these technologies is often not recognizable, for 

clarity purposes, the rest of the Thesis (apart from the chapter explaining the evolution 

towards cognitive radios, where these terms will be reused) will recognize these similar 

concepts as the same – referring to them as software-defined radios. 

The main motivation behind developing SDR was creating a technology that would be able to 

operate in the frequency band from 2 MHz to 2 GHz (so-called “Two-to-two band”),  and 

would be compatible with all the other military radios used by American military – there 

were more than ten of those at that time. Dating from 1992 - 1995, that project is today 

known as SPEAKeasy, and its architecture represents a paradigm for a basic structure of 

today’s SDRs (although Air Force Rome Labs’ ICNIA multiple-radio design, dating from 1987, 

could arguably be considered the predecessor of the technology). SPEAKeasy was a rather 

massive, hardly-portable equipment based on a programmable cryptography chip, allowing 

for communication over a range of different frequencies, cryptography techniques, 

modulation techniques, encoding methods and other parameters. 

The portability issue was overcome with SPEAKeasy II technology, whose dimensions were 

far more similar to today’s SDR systems, and which furthermore introduced the possibility of 

using programmable vocoder as well as a variety of ASP and DSP circuitry for handling 

different waveforms – the functions associated with modern SDR systems as well. [4] 

From there on, SDR represents a technology that is constantly being upgraded and updated 

with new ideas and solutions, and which is gradually evolving towards far more complex 

technological solution – Cognitive Radio – which will briefly be discussed in paragraph 2.3. 
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2.2 Basic SDR – hardware and software architecture 

 

As previously stated, “ideal” SDR would have all the radio-frequency bands and modes 

defined software-wise, meaning it would consist only of an antenna, DAC or ADC (depending 

on whether we are examining transmitter or receiver) and a programmable processor.  

However, in practical systems, the RF front-end has to be implemented as well in order to 

support the receive/transmit mode. 

Typically, RF front-end of a SDR will consist of antenna circuitry, amplifiers, filters, local 

oscillators and ADCs/DACs (both for transceiving systems). When the signal is received, it is 

amplified and its carrier frequency downconverted to a low-intermediate frequency in order 

for ADC to perform digitization. Analogously, at the transmit side, the produced signal that is 

to be transmitted goes through DAC, thus producing an IF representation. This signal 

representation is then going through process of shifting to a desired carrier frequency, 

amplification of signal and brought to an antenna, where it is ready for transmission. 

The processing is done by some of the computational resources at our disposition – mainly, 

General Purpose Processors (GPPs), Digital Signal Processors (DSPs) and Field Programmable 

Gate Arrays (FPGAs), whereas some of the future resources may include a combination of 

the aforementioned, thus extending the computational capacity. 

One of the most important aspects when deciding on a computational resource that is to be 

used in the system is its reprogrammability (important for implementation of new 

waveforms), therefore dedicated-purpose circuitry is generally avoided in SDRs. 
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Figure 1: Hardware architecture of an SDR 

 

As for the software architecture of SDR, there is no unique architectural approach for SDRs – 

different platforms may choose different approaches. Nevertheless, regardless what kind of 

software architecture is chosen, main goals should be common - standardized way of 

introducing new waveforms to the platform and compatibility with other platform 

implementations. 

One of the prevalent standardized software architectures of the SDR systems is Software 

Communication Architecture (SCA), defined by the  US government with the purpose of 

securing waveform portability and improving software reuse. Built originally for US military’s 

Joint Tactical Radio System (JTRS) program, it has been accepted as a communication 

standard in military services of many other countries, but also by commercial organizations 

such as Wireless Innovation Forum. It is an always-evolving standard - with first version 

dating from 2000 – that provides standardized set of methods for installing, managing and 

de-installing new waveforms, therefore maintaining interoperability of various SDR systems. 

Another widespread software architecture worth mentioning is GNU Radio, used as a 

software architecture for implementing SDR in this Thesis, which will be discussed in chapter 

3.4. 
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2.3  Current SDR technologies and evolution towards Cognitive Radio 

 

From the early 1990s and the aforementioned SPEAKeasy project, a lot has been done in 

terms of improving SDR technology. From PDRs and Software-Capable radios working with 

fixed modulation and a small number of frequencies and data rate capabilities, over 

Software-Programmable Radios able to implement new utilities via software, today we have 

a few real Software-Defined Radio systems able to achieve configurability of all radio-

operating settings via software. 

In terms of software programmability and reconfigurability, current state-of-the-art SDR 

technology is JTRS – a family of tactical software that uses the common SCA architecture 

that provides the interoperability of different radio types as well as software reusability 

amongst them. JTRS radios serve as a plug-and-play devices capable of working in 2 Mz – 2 

GHz band, and should in foreseeable future replace all the existing US military radio 

technologies operating in that band. [12] 

Digital Modular Radio (DMR) is a full SDR used by US Navy as a part of the Joint Maritime 

Communications System project. At the moment, it is interoperable with military systems 

such as SINCGARS and HaveQuick, however interoperability with JTRS is yet to be 

implemented (but should be possible in the future). [13] 

The next step in radio systems evolution will be be so-called Aware Radio Systems and, 

subsequently, Adaptive Radios. Bruce Fette defines Aware Radios as “radios who use their 

sensing capabilities (in audio and RF frequencies) to gather environmental information” and 

Adaptive radios as “Aware Radios able to autonomously modify their operating parameters 

such as frequency, instantaneous bandwidth, modulation scheme, error-correction coding, 

channel mitigation strategies, data rate, transmit power, etc.”. [4] 

 

Finally, Adaptive Radios with the capability of learning can be Considered Cognitive Radios 

(CRs). The ultimate CR will, thus, be aware of their present location, the availability of nearby 

services, be able to predict user’s needs based on the previous usage patterns, etc. Primary 

motivation for research of Cognitive Radios lies in improvement of RF spectrum utilization, 

however it should also bring the whole diapason of other innovations, such as user-identity 
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learning, geolocation based on GPS and/or triangulation with other devices, Model Based 

Reasoning, etc. 

Although that doesn’t necessarily have to be the case, Cognitive Radio is usually defined as 

an upgraded SDR and is the ultimate currently imaginable radio technology. It probably 

won’t come into full existence for at least next 15 - 20 years, but large steps forward in CR 

research are continuously being made. 
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3 Preparing for implementation 

 

This chapter will explain the thought process behind choosing a suitable platform and 

provide the basic information of USRPs - the hardware used in measurements, GNU Radio - 

open-source software which it uses, and Python - programming language which, in 

combination with C++ - is used to write and connect GNU Radio’s blocks. 

 

3.1 Choosing the suitable platform 

 

Following the initial literature studying, it was needed to choose and purchase the platform 

that would be suitable for our work. Main selection criterions were operability in 2.4 GHz 

band; suitability for implementing 802.15.4 and fairly powerful computing resource 

programmability. Couple of weeks of research narrowed the options down to the following 

platforms: 

1. Microsoft Research Software Radio Platform for Academic Use (SORA) 

- Microsoft offers this academic kit to academic environments for research purposes. 

The License agreement states that there is the possibility that part of the Kit (RCB 

board) might be leased from Microsoft, but the exact conditions weren’t stated. 

Otherwise, estimated price of the full necessary equipment (multi-core PC, RCB 

board, RF front-end and software) was around $4500 - $5500. Although Microsoft’s 

kit initially looked rather interesting, the need for extensive computing power, as 

well as the clause that forbids potential users to “reverse engineer, decompile, or 

disassemble the Kit” influenced the decision to look elsewhere. 

 

2. Datasoft’s Typhoon SDR Development Platform 

- Datasoft’s SDR full-duplex transceiver system operates in 400 Mhz – 4 GHz band 

with the ability to process signal bandwidths ranging from 50 kHz to 20 MHz and 

represents quite powerful SDR system. It supports GNU Radio and Click Modular 

Router as a software architecture. It is based on multiple Virtex-4 SX35 FPGAs, as well 

as an OMAP 3 processor, allowing for high reconfigurability and reprogrammability. 
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These characteristics, however, make the platform aimed more towards high-end 

users, which reflects in its price - $10000 per unit. 

 

3. Lyrtech’s SFF SDR Development Platform 

- Like Datasoft’s Platform, Lyrtech offers a highly powerful, highly modular and 

reprogrammable device, powered by Xilinx Virtex-4 SX35 FPGA and Texas 

Instruments’ DM6446 DM SoC DSP. With a price tag of $14000, this platform is also 

mostly aimed at professional developers. 

 

4. CRC’s Coral Cognitive Radio Platform 

- Coral offers an experimental Cognitive Radio platform operating in 2.4 GHz and 5.8 

GHz ISM bands, priced at $6000. It is a platform primarily intended for improved 

spectrum use research. It supports modulation techniques implemented in IEEE 

802.11g and 802.11.a, and with TDD and CSMA capabilities. As interesting as it 

seems, the CR research is not the focus of this project, but the Platform should be 

considered should it be decided to continue the research in the cognitivity direction. 

 

5. Ettus Research’s USRP N210 

-Probably group of the most widespread SDR’s in academic environments, Ettus’ 

products imposed themselves as the best-buy platforms for our research. Ettus 

Research offers several platforms – USRP, USRP2 and USRP N210 that differ in the 

level of instantaneous bandwidth they can process; reprogrammability of the FPGA; 

type of interface to the computer (USB or Ethernet) and, of course, price. For the 

research, one USRP N210 with the RFX2400 daughterboard – RF front end able to 

operate in the 2.3 – 2.9 GHz band was initially purchased, whereas one additional 

platform was purchased when it was established that for the measurement process, 

distancing of the transmit and the receive side for more than approx. 1m was 

needed. Cost per platform (USRP N210 + suitable daughterboard + antennas) was 

approximately $2000. 

 

Table 1 presents brief comparison of SDR platforms considered for the project: 
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SDR Platform 

Microsoft 

Research 

SORA 

Datasoft’s 

Typhoon SDR 

DP 

Lyrtech’s SFF 

SDR DP 

 

CRC’s Coral CR 

Platform 

Ettus’ USRP-1 

with RFX2400 

Ettus’ USRP-

N210 with 

RFX2400 

Frequency range 2.4 GHz; 5 GHz 
400 MHz – 4 

GHz 

200 MHz – 1 

GHz; 1.6 – 2.7 

GHz; 3.3 – 3.8 

GHz 

2.4 GHz; 5.8 

GHz 
2.3 – 2.9 GHz 2.3 – 2.9 GHz 

Computational 

resource 

GPP (all 

processing 

done by multi-

core PC) 

Xilinx Spartan-

6 FPGAs; dual-

core OMAP 

Virtex-4 SX35 

FPGA; 

DM6446 DSP 

FPGA 
Altera Cyclone 

FPGA 

Xilinx Spartan 

3A-DSP3400 

FPGA 

Maximum signal 

bandwidth 
20 MHz 20 MHz 22 MHz 20 MHz 8 MHz 

50 MHz (8-bit 

mode) 

Supported OS Windows XP 

Linux; 

VxWorks; 

Android 

Linux 

Linux Fedora 

Core or 

equivalent 

Linux; 

Windows; 

MAC OS X 

Linux; 

Windows; 

MAC OS X 

Supported 

software 
SORA SDK GNU Radio 

MATLAB; 

Simulink; 

Real-Time 

Workshop 

Linux-

OpenWRT 

with 

customized 

MadWIFI 

driver 

GNU Radio; 

Simulink; 

LabView (test 

drivers) 

GNU Radio; 

LabView (test 

drivers) 

Price $5000 $10000 $14000 $6000 $1000 $2000 

Table 1: Comparison of considered platforms 

 

3.2 USRP 

 

The Universal Software Radio Peripheral (USRP) is a fairly low-cost SDR system developed by 

Ettus Research, US – based company lead by Matt Ettus. The system consists of a 

motherboard with FPGA, 2 pairs of DACs and ADCs, digital downconverters and upconverters 

with programmable interpolation rates, and a daughterboard functioning as a RF front-end. 

The connection to the PC is done via Ethernet cable. Depending on the type of the 

daughterboard, transceiving capabilities can be achieved anywhere from 1 MHz to 5.9 GHz. 

Components will be discussed in greater detail as follows: 
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3.2.1 USRP N210 motherboard 

 

The “heart” of the USRP, the motherboard is where all the circuitry is integrated, and 

daughterboards installed. N210 motherboard has the MIMO (Multiple Input – Multiple 

Output) port, which can be used to connect multiple USRP systems. For applications where 

precise synchronization is of high importance, input to an external reference clocking option 

is supported.  

N210 communicates with a PC via a Gigabit Ethernet interface with connector set on the 

front side of the board. Ethernet interface can sustain simultaneously transmitting up to 50 

MHz of bandwidth in and out of the radio. 

Picture of the N210 motherboard is given in Figure 2: 

 

Figure 2: USRP N210 motherboard 
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3.2.2 FPGA 

 

FPGA is the key element of USRP, providing digital signal processing, as well as timing logic 

for clock, chip rate, baud rate and time slot synthetization. FPGA’s signal processing is done 

in VHDL – hardware description language used in electronic design automation - instead of 

common programming language like C. However, momentarily some work is being done on 

developing a tool that could generate VHDL code from C (which would make life much easier 

for programmers without VHDL background) [4]. 

USRP N210 is powered by Xilinx Spartan XC3SD3400A FPGA, which consists of five main 

programmable elements: 

� XtremeDSP 48 Slice - supports many programmable functions, such as multiplier (18 

bit x 18 bit), multiplier-accumulator (48 bit), pre-adder/subtractor, magnitude 

comparator, wide counter, etc. 

� Block RAM - data storage 

� Configurable Logic Blocks (CLBs) -  perform many logical functions and store data 

� Input/Output Blocks – control the data flow between input and output pins and the 

device’s internal logic 

� Digital Clock Manager (DCM) Blocks – provide self-calibrating, fully digital solutions 

for distributing, delaying, multiplying, dividing, and phase-shifting clock signals  

Providing configuration parameters to the FPGA firmware is done by loading configuration 

data into reprogrammable CMOS configuration latches (CCLs) that collectively control all 

functional elements and routing resources. The FPGA’s configuration data is stored 

externally in PROM or some other non-volatile medium, either on or off the board. After 

applying power, the configuration data is written to the FPGA. [2] 
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Figure 3: Xilinx Spartan XC3SD3400A FPGA architecture. Source: [2] 

 

3.2.3 DACs and ADCs 

 

On the receive side, in order for the PC to be able to do the processing of the signal, the 

signal has to be digitalized first. This is the function of Analog to Digital Converters – which 

perform sampling at a certain rate and quantization of the signal. Sampling rate refers to the 

frequency with which ADC measures the analog signal. Also, dynamic range is defined for an 

ADC – this is the number of signal levels that ADC can distinguish. Before ADC, 

programmable gain amplifier is deployed with the function of amplifying the input signal. 

USRP N210 ADC’s full range is 2V peak-to-peak with the input 50 ohms impedance. N210 

contains two 14-bit ADCs with the sampling rates of 100 MS/s. 

Transmit side, analogously, uses Digital to Analog Converters, followed by the programmable 

gain amplifier. USRP N210 DAC’s full range is 1V peak-to-peak with the input 50 ohms 

differential. There are two 16-bit DACs with sampling rates of 400 MS/s on the N210 board. 
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3.2.4 Digital upconverters and downconverters  

 

The platform contains two digital downconverters with programmable decimation rates, in 

charge of mixing, filtering and decimating arriving signals in the FPGA. Digital 

downconverters shift the frequency band of the incoming high sampling rate digitized signal 

to the baseband and lower the sampling rate without any information loss. First, the 

digitized stream is mixed with a digitized cosine (for I channel) and digitized sine (for Q 

channel), producing the sum and the difference components. These outputs are then put 

through the identical digital filters, filtering unwanted components. At this point, because 

the bandwidth of the signals we want to process has been reduced, sampling frequency can 

be losslessly decimated*1. 

Analogously, USRP’s two digital upconverters’ purpose is translating a signal from baseband 

to IF band. Digital upconverters first take the relatively low-sampled input baseband signal, 

filter it and convert it to a higher sampling rate. Multiple FIR filters are used to interpolate 

the signal up to 100 MS/s. Then, the signal is modulated onto the carrier frequency via 

carrier synthesizer and sent to the transmitter. 

 

3.2.5 Daughterboards 

 

USRP’s daughterboards serve as RF front-ends, covering different frequency bands and differ 

as transmitters, receivers, or transceivers. Each USRP N210 motherboard has two 

daughterboard slots – transmit-only and receive- only daughterboards take up one slot, 

whereas transceivers take up two slots, meaning that both transmit and receive side can be 

implemented with one USRP. 

Available daughterboards are as follow: 

                                                      
1
 Decimation refers to eliminating certain samples, thus directly decreasing the sample rate. The inverse 

process is called Interpolation, where the sampling rate is increased by adding samples and then performing 

the filtering back to the original bandwidth. Sometimes, when we want to perform a decimation by non-integer 

ratios, i.e. we want to decimate by x/y, we will first perform interpolation by y, and the decimate by x. This 

process is called Rational Resampling. 
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BasicTX / Basic RX: BasicTX works as a transmitter, and BasicRX as a receiver in the 1 

MHz - 250 MHz frequency band. They don’t include RF front-end, therefore they 

must be connected to an external RF front-end, and are serving as an IF interface. 

Since boards don’t contain mixers, filters or amplifiers, DACs and ADCs are directly 

connected to SMA connectors. 

 LFTX / LFRX: transmit-only and receive-only boards very similar to BasicTX / Basic RC, 

except their frequency response ranges from DC to 30 MHz, which is achieved 

through implementing of differential amplifiers instead of transformers. 30 MHz LP 

anti-aliasing filters are integrated into boards as well. 

TVRX2: MIMO-capable dual receiver board operating in 50 MHz – 860 MHz (VHF and 

UHF) band. TVRX2 consists of two completely separate low-IF receivers each with a 

10 MHz bandwidth which can be used at the same time on different (or same) 

frequencies. It fully supports UHD, but not the old USRP drivers. 

DBSRX2 – full RF front end operating in 800 MHz – 2.4 GHz (excluding the 2.4 GHz – 

2.48 GHz ISM band). It is a MIMO-capable board with a 1 MHz – 60 MHz software-

controllable channel filter. 

WBX / SBX – WBX is a transceiving daughterboard with frequency range from 50 MHz 

to 2.2 GHz and SBX operates in 400 MHz – 4.4 GHz band. The boards have a common 

design, with dual synthesizers supporting independent TX and RX frequencies, and a 

maximum transmit power of 100 mW (20 dBm). 

XCVR2450 – transceiver for 2.4 GHz – 2.5 GHz and 4.9 GHz – 5.9 GHz, XCVR2450 only 

has a single synthesizer that is shared by TX and RX side, meaning that the full duplex 

mode cannot be achieved. Maximum transmit power is 100 mW (20 dBm). 

RFX boards – four transceiver boards with the common architecture, aimed for use in 

different frequency bands. Dual synthesizers allow for a full duplex mode. RFX900 

works in the 750 MHz – 1.05 GHz band with a typical transmit power of 200 mW; 

RFX1200 in the 1.15 GHz – 1.45 GHz with a 200 mW transmit power; RFX1800 in 1.5 

GHz – 2.1 GHz band with 100 mW transmit power, and RFX2400 operates in 2.3 GHz 

– 2.9 GHz, allowing for transmit power of up to 50 mW (17 dBm). 



29 

 

Other daughterboards – It is worth noting that except Ettus Research, there are also 

few other manufacturers offering USRP-compatible daughterboards, such as Epiq 

Solutions with their Bitshark USRP RX (BURX) receive-only daughterboard covering 

300 MHz – 4 GHz band. 

For the project, transceiver boards operating in 2.4 GHz ISM frequency band able to operate 

in full-duplex mode were needed, therefore two RFX2400 daughterboards were chosen (one 

for each USRP). 

 

3.2.6 Antennas 

 

HyperLink Wireless HG2458RD-SM 2.4 GHz to 5.8 GHz tri-band rubber duck antennas were 

used for the setup. These omni-directional antennas provide broad coverage with 3 dBi gain, 

have 50 W specified power and specified operating temperature between -40 and 100 F (-40 

°C and 60 °C). The antennas are able to operate in the 2.4 GHz – 2.5 GHz; 4.9 GHz – 5.3 GHz 

and 5.7 GHz – 5.8 GHz frequency bands.  They use vertical polarization and are connected to 

USRP via SMA connectors. Because of the tilt-and-swivel nature of connectors, antennas can 

be deployed vertically, horizontally or at an inbetween angle. They are 198 mm long and 

13.1 mm wide. Antenna’s radiation patterns are shown in Figure 4. 

 

Figure 4: Radiation patterns of HG2458RD-SM antenna in vertical and horizontal plane. Source: [5] 



30 

 

 

3.2.7 UHD Drivers 

 

USRP N210 runs on Universal Hardware Driver set of drivers, as opposed to older USRPS  

(USRP 2 using “raw” Ethernet Interface, and USRP 1 USB 2.0 interface). “Universal” implies 

platform-neutrality of UHD-based USRPs, bringing a more consistent abstraction layer for 

SDR-based systems and in the end allowing for USRP devices to be “more recognized” in the 

world of SDR technology. 

However, at this time UHD is still a fairly new design, and a lot of GNU Radio’s functions and 

projects made for “old” drivers were still not translated to be compatible with UHD drivers. 

This was an aggravating factor while doing the Thesis, which made USRP’s and GNU Radio’s 

naturally steep learning curve even steeper. 

At the moment of writing this Thesis, UHD drivers didn’t support Matlab and Simulink 

although the support was announced to be coming soon, and drivers that would enable for 

Labview support were still in the experimental  version and were not tested. 

 

3.3 Python 

 

Python is an interpreted, interactive, object-oriented (OOP) scripting language known for its 

simple, easy-to-use syntax. It is a freeware language written in portable ANSI C that runs on 

Windows, Unix/Linux, MAC OS X, Java, etc. 

Because of its object-oriented nature, Python programs can specialize classes written in 

other OOP programming languages, such as C++. This feature is often used in GNU Radio, 

where the signal processing blocks are written in C++, and Python is used to “glue” them 

together and control the digital data flow. This is done using Simplified Wrapper and 

Interface Generator – SWIG by creating shared libraries common for both Python and C++. 
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3.4 GNU Radio 

 

GNU Radio is an open-source software toolkit founded by Eric Blossom in 1998. that, 

coupled with hardware equipment such as USRP, allows for a complete platform for building 

Software Defined Radios (although GNU Radio can also be used as a stand-alone software 

package). Recommended operating system for building GNU Radio is Linux, but it can also be 

built on MS Windows using one of Linux-like environments such as Cygwin or MinGW/MSYS, 

as well as on MAC OS and NetBSD. 

Most of GNU Radio’s applications are written in Python, whereas C++ is used for 

implementing signal processing blocks. Python commands are used to control all of the 

USRP’s software-defined parameters, such as transmit power, gain, frequency, antenna 

selection, etc., some of which can be modified while the application is being executed. 

GNU Radio is built on two main structural entities – signal processing blocks and flow graphs. 

Blocks are structured to have a certain number of input and output ports, consisting of small 

signal-processing components. When the blocks are appropriately connected, a flow graph is 

made. GNU Radio blocks can be categorized as sinks, sources and filters. Sources are blocks 

consisting only of outputs and have no inputs and are used as the first element in building 

the flow graph. Sinks consist of inputs and have no outputs and are typically the last element 

in building the flow graph. Filters are all the inbetween blocks and consist of both inputs and 

outputs. 

A number of blocks, such as different modulation/demodulation techniques, various filters, 

signal indicators and widgets, etc. are integrated within GNU Radio, while it is also possible 

to write and add new blocks. Graphical interfaces, such as FFT sink and oscilloscope, are also 

supported in GNU Radio. 

Flow graphs are created either as hierarchical blocks or as top blocks. Top blocks are top-

level flow graphs that contain all other flow graphs and have no input/output (IO) ports. 

Hierarchical blocks, on the other hand, contain a certain number of IO ports (used to connect 

to other blocks) that is forwarded to the parent class via the init
2 function. All of the basic 

                                                      
2
 GNU Radio’s commands, functions and block names will from this point on written in italic  
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signal-processing blocks are, thus, connected within hierarchical blocks and can that way be 

used as one block. 

Communication between blocks is achieved using data streams, where all stream elements 

are using certain data type. In order for data stream to be successfully initialized, data types 

between output of one block and input of the next have to be adequately set. Supported 

data types in GNU Radio are: 

• Byte – 1 byte of data 

• Short – 2 byte integer 

• Int – 4 byte integer 

• Float – 4 byte floating point 

• Complex – a pair of floats, equaling to 8 bytes 

Data type used is defined in the end of the signal-processing block, i.e. gr_multiply_ii will 

take two integers as an input and produce integer as an output, whereas gr_multiply_ff will 

do the same thing with floats, producing float as an output . Blocks for converting data types 

from one type to another, such as gr_complex_to_float block, also exist within GNU Radio. 

The dial_tone example, often referred to as “Hello world of GNU Radio”, is given and 

explained below. Dial_tone generates two sine waves of the same amplitude at frequencies 

350 Hz and 440 Hz, which corresponds to the sound of US dial tone, and outputs them to the 

sound card. 
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The first line, #!/usr/bin/env python, points python to the location of python executable, and 

is a line that has to be added to every program that we want to run directly from terminal 

(as an executable). 

Then, we define which modules to import – in this case, gr, which is always imported, and 

audio, which allows us to use audio sink. 

After that, sampling frequency is set according to sound card’s specifications (48 kHz is the 

sampling frequency of majority of modern sound-cards), and the amplitude to 0.1. 

gr.sig_source_f is used to create sine waves at the frequencies of 350 Hz and 440 Hz, where 

_f extension, as previously explained, indicates that the produced data is of type float. 

Then, the audio sink that writes received data to the sound card is created. It is worth 

mentioning that audio sink only accepts float data as an input.  

fg.connect connects the flow graph’s blocks – the first sine wave is connected to the port 0 

of the audio sink, while the second sine wave is connected to port 1. 

#!/usr/bin/env python 

 

from gnuradio import gr 

from gnuradio import audio 

 

def build_graph (): 

    sampling_freq = 48000 

    ampl = 0.1 

 

    fg = gr.flow_graph () 

    src0 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 350, ampl) 

    src1 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 440, ampl) 

    dst = audio.sink (sampling_freq) 

    fg.connect ((src0, 0), (dst, 0)) 

    fg.connect ((src1, 0), (dst, 1)) 

 

    return fg 

 

if __name__ == '__main__': 

    fg = build_graph () 

    fg.start () 

    raw_input ('Press Enter to quit: ') 

    fg.stop () 

 

Code listing 1: dial_tone.py example 



34 

 

This completes building the graph, which can be started using the command start and 

stopped using the command stop. 
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4 Working with GNU Radio: implementation and measurement 

process 

 

This chapter describes the work that has been done with USRPs and GNU Radio, starting 

with GNU Radio’s GUI interface – Gnu Radio Companion. After that, modifications to UCLA 

Zigbee PHY’s code were done and used to perform measurements which were to be 

compared with measurements done with the “conventional” equipment. 

 

4.1 Setting up the equipment and initial testing 

 

For the measurements, GNU Radio 3.3.0 (later replaced with 3.4.0 version) with Gnu Radio 

Companion was used on computers running Linux Ubuntu 10.10. Prior to installing GNU 

Radio, the following prerequisites were installed: 

- Development Tools (needed for compilation): 

•         g++ 

•         git 

•         make 

•         autoconf, automake, libtool 

•         sdcc 

•         guile 

•         ccache (recommended for frequent compiling) 

- Libraries (needed for runtime and for compilation) 

•         python-dev 

•         FFTW 3.X (fftw3, fftw3-dev) 

•         cppunit (libcppunit and libcppunit-dev) 

•         Boost 1.35 

•         wxWidgets (wx-common) and wxPython (python-wxgtk2.8) 

•         python-numpy  

•         python-scipy 
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•         python-matplotlib 

•         Numeric 

•         ALSA (alsa-base, libasound2 and libasound2-dev) 

•         Qt 

•         SDL (libsdl-dev) 

•         GSL GNU Scientific Library 

- SWIG 1.3.31    

- QWT and QWT PLot3d libraries (optional for Qt Gui) 

 

Specifications of PCs used are as follows: 

PC 

no. 

Processor memory OS Kernel 

PC1 Intel CPU U1300 @1.06GHz 2 GB Ubuntu 10.10 

(Maverick) 

Linux 2.6.35-28-

generic 

PC2 Intel Core i3 M350 @2.27GHz 4 GB (3 GB 

used) 

Ubuntu 10.10 

(Maverick) 

Linux 2.6.35-28-

generic 

PC3 Intel Core 2 Duo T9900 @3.06 

GHz 

4 GB Ubuntu 10.10 

(Maverick) 

Linux 2.6.35-28-

generic 

Table 2: Specifications of PCs used in the measurements 

 

During the measurements, it turned out that PC1 had inadequate processing power to 

handle high sampling rates USRPs streamed, and was replaced with PC3. 

Both USRPs were loaded with the latest firmware, using usrp_n2xx_net_burner_gui.py. 

Default Ethernet address of USRPs, set up on the Ethernet interface eth1, was 192.168.10.2. 

In order for USRPs to be found, it was necessary to set up the Ethernet address of the host 

every time USRP was reset, to 192.168.10.1. This is done using the command  

sudo ifconfig eth0 192.168.10.1 . 
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Initial testing using USRP3 included pinging to USRP and, once successful, running examples 

installed with GNU Radio under uhd/host/build/examples. Examples included 

benchmark_rx_rate; tx_samples_from_file / rx_samples_to_file, and tx_timed_samples / 

rx_timed_samples. 

Once all of the initial tests were successfully performed and it was concluded that the USRPs 

are set up appropriately, working with GRC could be started. 

Some of the measurements in this Thesis were done using only one USRP, with 

daughterboard’s TX/RX port used as the transmitting side and RX2 port as the receiver, while 

some measurements (later ones) were performed using two USRPs. 

 

4.2 Working with GNU Radio Companion 

 

GNU Radio Companion is a graphical user interface for GNU Radio that allows building flow 

graphs by simply connecting visually-presented blocks. GRC is highly intuitive interface 

suitable for GNU Radio beginners that resembles Matlab Simulink's one, so anyone with 

some background in working with Simulink shouldn't have problems learning GRC as well. 

From the Ubuntu terminal, GRC is started with command: 

gnuradio-companion . 

 

4.2.1 Dial_tone example 

 

The dial_tone example, compiling which using “pure” Python code was previously explained, 

can also be done using GRC as is shown in Figure 5: 

                                                      
3
 It should once again be noted that most of GNU Radio's pre-made examples couldn't be run since they weren't 

compatible with UHD drivers, and it took some time before sufficient competences were acquired to modify 

those examples 
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Figure 5: Implementation of dial_tone example within Gnu Radio Companion 

 

Creating this flow graph is as simple as dragging two signal sources from the right menu, 

setting their sample rate (which can be done using the samp_rate variable), connecting them 

to an add block and connecting the output of that block to Audio sink (whose sample rate 

can be chosen from the block's properties, which is accessed by double-clicking on the 

block). Once the graph is set, the program can be executed using Execute the flow graph 

button. 

This simple example shows how using GRC simplifies the process of making flow graphs. 

Unfortunately, at the moment, the subset of blocks incorporated into GRC is still quite 

limited compared to the amount of blocks which are at one's disposition while creating flow 

graphs using Python. Although there is a possibility of manually importing made blocks, this 

process is not trivial.  

 

4.2.2 Using USRPs with GRC – NBFM and WBFM 

 

Renowned for its high quality performance, frequency modulation (FM) is the most 

commonly used analog modulation technique, with particular exertion in the VHF band for 

FM radio systems. 
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FM changes the current frequency of the modulated (transmitting) signal depending on the 

amplitude of the modulating signal, as is shown in Figure 6: 

 

Figure 6: Frequency modulation of the transmitting signal 

 

As it can be seen, the signal varies as a function of voltage of modulating signal. The amount 

by which this frequency variation occurs is important, and is known as the frequency 

deviation and is typically measured in kHz.  

From frequency deviation, modulation index (mf) can be defined as: 

�� 	�
∆���

��
	, 

where ∆���  and ��  are the frequency deviation of modulated signal and the highest 

frequency component of the modulating signal, respectively. 

When mf is small (approximately <=0.4), frequency deviations are small as well, and 

modulated signal consists only of the transmitted-signal component and two side-

components. This is called NarrowBand Frequency Modulation (NBFM). 

When mf is larger, frequency deviations are also larger, and modulated signal, besides 

transmitted-signal component, also contains multiple side-components. This is known as 
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WideBand Frequency Modulation (WBFM). 

Although higher quality of transmission can be achieved using WBFM, NBFM uses narrower 

bandwidth for modulation, accomplishing better spectral efficiency. 

WBFM and NBFM transmit and receive blocks are implemented within GRC. The following 

flow graphs serve as TX and RX of an NBFM-based channel: 

 

Figure 7: GRC flow graph of NBFM transmitter 

 

Figure 8: GRC flow graph of NBFM receiver 

 

As a source, duck.wav – free, 803 kB large .wav file – is used. After setting the amplitude by 
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passing the signal through the Multiply Constant block, it is filtered with the Low Pass Filter, 

with the cutoff frequency set to 4.5 kHz. Filtered signal is then modulated in the NBFM 

Transmit block. The Max Deviation parameter, defined within the NBFM Transmit block, 

decides on the number of side-components we are transmitting – setting the parameter to a 

higher value should increase the modulation index and use wider bandwidth for 

transmitting, thus improving the quality. 

The output of the NBFM Transmit  is connected to the UHD USRP sink, where transmit 

frequency, gain, bandwidth and USRP's sampling rate can be modified. 

Also, the sampling rates need to be consistent in all blocks, and filter’s sampling rate and 

WBFM's Quadrature Rate should always be at least two times bigger than the source signal's 

maximum frequency (which for NBFM shouldn't exceed 4.5 kHz), in order for the Nyquist 

theorem4 to be satisfied.  

On the receive side, UHD USRP source - whose Center frequency and Sampling rate need to 

be set to coincide with UHD USRP sink – forwards the received data to the NBFM Receive 

block, which demodulates the signal. NBFM Receive’s parameters have to be set the same as 

NBFM Transmit’s ones (otherwise, in case that Audio/Quadrature rate are not set 

appropriately, interpolation or decimation via one of GRC’s blocks such as Keep 1 in N or 

Rational Resampler has to be done). Demodulated signal is output to Wav File Sink, which 

stores demodulated data as a .wav file, as well as to Audio Sink, allowing us to listen to the 

received signal in the real time. 

Also, UHD USRP Sink and UHD USRP Source were connected to WX GUI FFT Sink, showing the 

FFT spectrum of the transmitted/received signal. Between them, a Throttle block had to be 

placed in order to prevent the PC from freezing. This block throttles the flow of samples so 

that the average rate of the data stream doesn’t exceed certain Sample Rate (defined within 

the block). This has to be done because of PC’s insufficient resources to keep up with USRP’s 

high Sample Rates in respect to presenting FFT spectrum. 

Central frequency of USRP’s as well as the amplitude of the transmit signal is set to be 

controlled via WX GUI Slider. This is done by setting Default, Minimum and Maximum value 

                                                      
4
 Nyquist theorem states that, in order to prevent aliasing in DSP, sampling frequency has to be at least two 

times bigger than the maximum frequency of the signal that is being sampled 
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for each of the sliders, and then entering Slider’s ID (which can be arbitrary – in this case 

tun_freq and ampl) under Center Freq of UHD USRP Source and UHD USRP Sink. That way, 

these parameters can be changed during the transceiving period. 

The tests were done using different combinations of NBFM’s Max Deviation and different 

distances between transmitter and receiver, one of them set as the Line Of Sight (LOS), and 

the other one as Non Line Of Sight (NLOS) environment, as well as different TX amplitudes,.  

Then, similar graphs implementing WBFM were built with appropriate adjustments – LPF’s 

Cutoff Frequency was set to 16 kHz, and Audio/Quadrature Rates as well as Max Deviation in 

WBFM blocks were set to higher values. 

The measurements were repeated for WBFM. 

All the measurements were done using two USRPS, with one USRP connected to PC2 as a 

transmit side, and the other connected to PC1 served as a receive side. 

Quality of the received sound5 was measured and graded, with grades ranging from 0 to 10 

(where grade 0 equals the pure noise, and grade 10 the perfect sound). The grades shouldn’t 

be perceived as absolute – rather, they serve as an orientation as to how changing particular 

parameter affects perceived quality of received sound compared to other cases. Also, 

received signal was measured with FFT sink as well. 

The measurement results are as follow: 

NBFM: 

No. Antenna 

distance 

Max 

Deviation 

RX sound 

quality 

RX peak signal strength (TX PW: 1x 

/ 10x) 

1 1.5m LOS 1k 6 -40 dBm / -40.5 dBm 

2 1.5m LOS 2.5k 6.5 -40 dBm / -40.5 dBm 

3 1.5m LOS 5k 7 -39.5 dBm / -44 dBm 

4 5.5m NLOS 1k 3 -52.5 dBm / -52.5 dBm 

5 5.5m NLOS 2.5k 4 -52.5 dBm / -52.5 dBm 

                                                      
5
 Grading the receive quality was in this case based on subjective experience, since none of the objective 

methods were at disposition 
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6 5.5m NLOS 5k 4.5 -48 dBm / -55 dBm 

Table 3: Measurement results for NBFM 

WBFM: 

No. Antenna 

distance 

Max 

Deviation 

RX sound 

quality 

RX peak signal strength (TX PW: 1x 

/ 10x) 

1 1.5m LOS 75k 8 -45 dBm / -53 dBm 

2 1.5m LOS 150k 7.5 -47.5 dBm / -55.5 dBm 

3 1.5m LOS 500k 7 -46 dBm / -58 dBm 

4 5.5m NLOS 75k 5 -60 dBm / -68.5 dBm 

5 5.5m NLOS 150k 4 -62 dBm / -73 dBm 

6 5.5m NLOS 500k 2.5 -64 dBm / -75 dBm 

Table 4: Measurement results for WBFM 

 

The first look at the results might give the wrong impression that NBFM achieves better 

signal reception than WBFM (based on the peak signal strength). However, comparing the 

FFT spectrums should suggest otherwise: 

 

Figure 9: Comparison of RX peak signal strength - NBFM vs. WBFM 

 

As the FFT plots show, NBFM has most of the energy concentrated in a small bandwidth, 

resulting in a sharp peak around the center frequency. WBFM, on the other hand, has 

energy spread over wider spectrum, resulting in a smaller peak at 2.43 GHz. Considerably 
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stronger signal is, therefore, received using WBFM, although the added noise of the audio 

signal is also much higher. 

In order to try and improve reception, measurements were done to see how NBFM and 

WBFM behave when faced with the amplified signal before transmitting. Signal amplification 

was done via the Multiply Const block deployed within the transmitter graph. Examples of 

outputs are given in Figure 10: 

 

Figure 10: Comparison of NBFM’s and WBFM’s FFT plots depending on the TX amplification 

 

Results are quite interesting – while WBFM generally produces better outputs without 

amplification, once the initial signal gets amplified before modulating it, the quality of 

demodulated signal on the receive side significantly decreases for WBFM. On the other side, 

NBFM’s received signal is, although clearer (in terms of not being able to hear background 

noise) than WBFM’s, quite weak. But, contrary to WBFM, when multiplied by constant 

before modulation, it becomes stronger, yet doesn’t lose much of its quality regarding its 

spectrum widening. 
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This is also directly related to the maximum deviation defined within 

modulation/demodulation blocks – the larger the deviation, the higher the distortion of the 

amplified signal, as can be seen from Figure 11: 

 

Figure 11: Comparison of received signal’s FFT regarding different maximum deviation factors 

 

The signal on the left of the figure, although distorted, can still be recognized despite the 

strong background noise, but the signal on the right (the one with the higher maximum 

deviation parameter set) became so contorted that it was very hard to recognize the 

patterns of the source file in it. 

The measurements have shown that it was possible to receive signal in both LOS and non-

LOS circumstances with NBFM and WBFM techniques – on further distance in NLOS 

conditions, NBFM signal had to be amplified in order to get a decent reception, whereas 

WBFM signal was good enough without amplification (which, when performed, substantially 

decreased its Signal-to-Noise Ratio). 

One interesting thing worth mentioning was that, during the testing, the operating 

frequency used for FM modulation interfered with frequencies on which WiFi technology 

uses its channels, resulting in WiFi’s periodical low link quality and package losses. The 

interference influence on FM wasn’t taken into account, although it would undoubtedly be 

interesting to perform these measurements as well. 

 

4.3 Modifying the UCLA Zigbee PHY code 
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UCLA Zigbee PHY is a GNU Radio project that features implementation of 802.15.4 Zigbee’s 

PHY layer. Upgrading the code - originally developed by Thomas Schmid - in order to 

perform measurements that would be beneficial in channel characterization was one of the 

main focuses of this Thesis. The measurements of interest were primarily Packet Error Rate 

(PER) and Received Signal Strength Indicator (RSSI). 

It was decided that, out of the examples provided within the UCLA ZigBee PHY package, 

cc2420_txtest.py and cc2420_rxtest.py (attached in Appendix A) were examples suitable for 

implementation, and refer to transmit and receive side respectively. These examples provide 

the implementation of the physical layer characteristics of 802.15.4, which include: 

• Operability in 2.4 GHz ISM band 

• Offset-QPSK (OQPSK) modulation technique 

• Structuring packets as follows: 

o 2 bytes that define the type of the frame 

o 1 byte sequence number 

o 0 to 20 bytes of address information 

o payload (total size of the message mustn’t exceed 128 bytes) 

o Pad for the USRP – boolean that enables or disables USRP padding 

o length of preamble (by default set to “4”) 

o Start of Frame Descriptor (SFD), by default set to “0xA7” by 802.15.4 standard 

 

One of the first tasks was rewriting the code so it could be used with USRP’s UHD drivers. 

Modifying the code included replacing the usrp.sink and usrp.source blocks with 

uhd.usrp_sink and uhd.usrp_source, as well as setting parameters to correspond with the 

new blocks – namely this refers to: 

• setting UHD USRP’s clock configuration to internal, which was done using 

self.u.set_clock_config(uhd.clock_config.internal(), uhd.ALL_MBOARDS) command 

• replacing interpolation/decimation factors with UHD USRP’s sample rates – via 

command self.u.set_samp_rate(options.sample_rate) we are feeding the USRP with 
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the sample rate that can be chosen while executing the program. USRP N210s allow 

for sample rates between 0.1 and 100 MSps. 

• controlling the receiver gain with self.u.set_gain(options.gain), also allowing to 

choose the gain before executing the RX program. The RX gain can be a value 

between 0 and 90 dB, where up to 20 dB of gain can be achieved via PGA, and up to 

70 dB on AD8052 chip. Adjustable TX gain is not supported by RFX2400 

daughterboard. 

• setting center frequency used for transceiving, with 

self.u.set_center_freq(options.cordic_freq). The frequency is defined while calling the 

program. 

• removing lines that deal with picking USRP subdevice; automatic switching between 

Transmit and Receive mode (since USRP N210s allow for working in full duplex 

mode); and setting PGA values (RX gain is set as described above). 

Carrying out these changes (and connecting the new UHD USRP blocks within the flow graph 

appropriately) was presumably enough to allow for a transmission and reception of the pre-

constructed 802.15.4 packages, however the reception couldn’t be realized due to the 

Power squelch block connected to the UHD USRP sink. Power squelch, called with 

gr.pwr_squelch_cc eliminates signals whose power is lesser than a certain threshold in dB 

(defined as filter’s argument). The purpose of the filter is delimiting the number of values 

that are being fed to the demodulator, therefore easing up on the need for the processing 

resources. However, since default threshold value of the squelch filter was set to 50 dB, 

which was some way above received signals’ strengths (even with high RX gain ranges), none 

of the received signals were passed through to the demodulator, and were therefore not 

decoded. This can be overcome either by removing squelch filter and connecting the UHD 

USRP sink directly to the packet receiver, or setting the threshold to a lower value. 

Once it was confirmed that sent packets can successfully be received and decoded, it was 

time to develop the code in order to be able to do the set measurements. 

The original code on the TX side includes algorithm for sending 10 identical packages each 

with 9-byte payloads. On the RX side, the decoding algorithm would count the number of 

packets that were received and decoded successfully, as well as number of packets that 
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were received, but for some reason couldn’t be decoded. However, the algorithm was 

unable to distinguish the sequence number of non-decodable packets. It was also unable to 

take into account packages that were sent, but for some reason weren’t received at all 

(either because the RX signal was too weak, the power squelch threshold set too high or 

sample rates of UHD USRP sink and UHD USRP source set inadequately, causing lost 

packages). 

This had to be improved, therefore algorithm was implemented that, on the TX side, would 

generate the payloads of the transmitted packages as their sequence numbers (so that for 

example the first transmitted package has payload “0” and the n-th package payload “n-1”). 

Since payloads consisted of a certain number of bytes, and each byte only has 8 bits, 

allowing for 28=256 different sequence variations, it was needed to send more than 1 byte in 

each payload (sending, for example, 2 bytes allows for generating up to 2562=65536 

different payload combinations, which proved to be sufficient for the measurements). After 

that, a set of packets with longer payloads (from now on referred to as “EOT packets”) were 

sent, that served as a signal for end of transmission of “transmission” packets.  

On the RX side, the loop was created that would first check whether the received packet that 

can be decoded is EOT packet by comparing its length to the pre-known length of EOT packet 

(which, if proven to be true, would stop program’s execution, deducing that all of the 

“transmission” packets indeed were transmitted). Otherwise, if the received packet can be 

decoded, but isn’t an EOT packet, it would be unpacked, and its payload would be written 

into a string array that contains all the successfully unpacked packets (counter for 

successfully decoded packets is, naturally, also increased). If, however, received packet 

cannot be decoded, its sequence number would be written into a string array that contains 

all the packets that were received, but couldn’t be decoded because of the bit errors and the 

counter for bad packets increased. 

After all the packets were sent (EOT received and rx_callback function terminated), loop 

checks whether payloads of all of the transmitted packages are stored in the received 

packets string array and, If not, stores their payload into a new string array, nonreceived 

packets. This way, it is possible to distinguish exactly which packages were: 

• successfully received and decoded 
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• received, but couldn’t be decoded 

• not received at all. 

From there, packet error rate could easily be deduced. 

 

The other measurement that was of interest to this research was RSSI, therefore a way of 

calculating RSSI values needed to be found. RFX2400 daughterboard has integrated on-

board RSSI sensor that operates at the pre-ADC bandwidth, however is known to produce 

results that can be highly inaccurate, hence it wasn’t used for the measurements. 

Instead, RSSI was calculated directly from the incoming data stream. Stream, which was of 

type complex_float_32 was first filtered with a band-pass filter, and then put through power 

squelch block (independent from the first one) and converted to magnitude squared. Then, 

it was filtered with a single pole IIR filter which “smoothens” the outputs of the complex-to-

magnitude-squared converter. Because of high sample rates of USRP’s, the stream needs to 

be decimated, otherwise number of samples becomes too large to export to standard 

spreadsheet processors. In order to get the value in dBm, the decimated stream was 

logarithmed, and finally saved to a filesink. 

It should be noted that files saved this way are saved as a binary data, and in order for them 

to be able to be opened with text/spreadsheet processors, they need to be converted to 

format that can be used with these processors. This can be done from the terminal with the 

command: 

python -c "import numpy, sys; print '\n'.join(map(str, 

numpy.fromfile(sys.argv[1], numpy.<data_type>)))" input_file_name > 

output_file_name 

 

The block diagram of the transmitter is shown in Figure 12: 
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Figure 12: Block diagram of the 802.15.4 transmitter 

 

Figure 13 presents the block diagram of the receiver: 

 

Figure 13: Block diagram of the 802.15.4 receiver 

 

The full code of original cc2420_txtest.py, cc240_rxtest.py, ieee802_15_4.py and 

ieee802_15_4_pkt.py is provided in Appendix A. 

Codes of modified programs - uhd_cc2420_tx.py and uhd_cc2420_rx.py are provided in 

Appendix B. 
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4.4 Measurement process and results 

 

The modified programs, uhd_cc2420_tx.py and uhd_cc2420_rx.py were used for performing 

measurements. All measurements were done in the premises of the department of 

Innovation, Design and Technology, IDT, at Mälardalen University. Test setup is shown in the 

figure below, where PC2 was used as the transmit side and had fixed position, and PC3 as the 

receive side and its position was changed along IDT's premises. 

 

Figure 14: Picture of the measurements setup 

 

Following parameters had fixed values during the measurements: 

• Transmit power, with TX amplitude in uhd_cc2420_tx.py set to 8000. Exact output 

power that correlates to this amplitude is unknown, and should be measured using 

additional hardware equipment – namely, oscilloscope connected directly (actually, 

with sufficient attenuator, capable of attenuating at least 30 to 40 dB, between 

them) to the USRP in charge of transmitting 

• Carrier frequency within the system, set to 2.4 GHz. 

• Antenna ports on the daughterboards, with TX/RX used on the transmit side and RX2 

antenna on the receive side 
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• Number of packets transmitted – 2550 “transmission” packets and a sequence of EOT 

packets transmitted after that 

• Length of packets’ payloads, set to 2 bytes. Payloads, as was previously explained, 

consisted of their sequence number, with second byte (least significant byte) 

consisting of values between [0,255] and first byte (most significant byte) consisting 

of values between [0,9] 

• Sleep time between transmitting packets – 50 ms for measuring PER and none for 

measuring RSSI values 

 

The following parameters were, on the other hand, altered before executing TX and RX 

programs: 

• Distance between TX and RX sides, as well as number and type of objects between 

them. Measurements were done for distances ranging from 1 m LOS to 45 m NLOS. 

• Receiver gain, ranging from 20 to 70 dB 

• Sampling rates of the USRPs, since smaller sampling rates coincided with higher 

number of packet losses, it was tried to find an optimal sampling rate. 

• Threshold value of the power squelch filters, set to smaller values for shorter 

distances and higher values for longer distances and NLOS conditions. 

 

The goal of the measurements was getting continuous RSSI of the received packages, finding 

average RSSI value, number of received & decoded, received & non-decoded and non-

received packages. The results were to show the correlation between these outputs 

regarding to different path lengths and types (LOS vs. NLOS), RX gains and sampling rates. 

The measurements for longer TX-RX distances (18 m and more) were made with a fixed 

sampling rate (5 MSps), and with higher RX gains (50 dB and higher), since lower RX gains 

(less than 40 dB) in these conditions led to little to none packets being successfully decoded. 
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Results of the measurements are as follows: 

No. TX-RX 

distance [m] 

Sampling 

rate [MSps] 

RX Gain [dB] Good packets Bad packets Non-received 

packets 

1 1 m LOS 2 20 1634 0 917 

2 1 m LOS 2 30 2422 0 129 

3 1 m LOS 2 40 2541 0 10 

4 1 m LOS 4 20 2092 3 549 

5 1 m LOS 4 30 2551 0 0 

6 1 m LOS 4 40 2551 0 0 

7 1 m LOS 5 20 586 0 1965 

8 1 m LOS 5 30 1803 0 748 

9 1 m LOS 5 40 2486 0 65 

       

10 7.5 m LOS 2 20 2348 1 202 

11 7.5 m LOS 2 30 2538 0 13 

12 7.5 m LOS 2 40 2537 0 14 

13 7.5 m LOS 4 20 534 243 1774 

14 7.5 m LOS 4 30 2551 0 0 

15 7.5 m LOS 4 40 2551 0 0 

16 7.5 m LOS 5 20 2551 56 1380 

17 7.5 m LOS 5 30 2546 0 25 

18 7.5 m LOS 5 40 2548 0 3 

       

19 11 m NLOS 2 30 1146 164 1241 

20 11 m NLOS 2 35 2522 2 27 

21 11 m NLOS 2 40 2548 0 3 

22 11 m NLOS 4 30 1666 63 822 

23 11 m NLOS 4 35 2551 0 0 

24 11 m NLOS 4 40 2551 0 0 

25 11 m NLOS 5 30 2450 1 100 

26 11 m NLOS 5 35 2154 8 389 

27 11 m NLOS 5 40 2467 4 80 

       

28 18 m NLOS 5 50 2445 0 6 

29 18 m NLOS 5 70 2550 1 0 
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30 30 m NLOS 5 50 2407 14 130 

31 30 m NLOS 5 70 2422 16 113 

       

32 45 m NLOS 5 50 10 5 2536 

33 45 m NLOS 5 70 1662 31 858 

Table 5: Inputs and outputs of 802.15.4 measurements 

  

4.5 Results processing and analysis 

 

Besides the number of successfully received and decoded; received but non-decodable, and 

non-received packets, the RX program also outputs their sequence numbers (based on their 

payload). This asset might be particularly useful if the ability to precisely allocate each 

packet’s RSSI value was incorporated into the RX side, giving the exact correlation between 

RSSI and non-decoded / decoded packets. However, since this allocation wasn’t realized 

within uhd_cc2420_rx.py, there isn’t much point in presenting those sequence numbers here 

– it can be mentioned, though, that the distribution of sequence numbers of non-received 

and non-decoded packets doesn’t follow obvious pattern and can be considered fairly 

random. 

The continuous RSSI values for each of the measurements, however, have been collected and 

saved to a file. Their plots, as well as their average values have been given in this subchapter. 

Packet error rates have been calculated as: 
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The calculations are presented in Table 6: 

No. TX-RX 

distance [m] 

Sampling 

rate [MSps] 

RX Gain [dB] PER [%] Average RSSI 

[dBm] 

1 1 m LOS 2 20 35.94 -15.54 

2 1 m LOS 2 30 5.05 -4.49 

3 1 m LOS 2 40 0.39 0.31 
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4 1 m LOS 4 20 21.63 -16.64 

5 1 m LOS 4 30 0 -5.22 

6 1 m LOS 4 40 0 0.29 

7 1 m LOS 5 20 77.02 -26.62 

8 1 m LOS 5 30 29.32 -25.69 

9 1 m LOS 5 40 2.54 ?? 

      

10 7.5 m LOS 2 20 7.96 -26.63 

11 7.5 m LOS 2 30 0.51 -17.91 

12 7.5 m LOS 2 40 0.55 -2 

13 7.5 m LOS 4 20 79.07 -29.03 

14 7.5 m LOS 4 30 0 -14.36 

15 7.5 m LOS 4 40 0 -4.56 

16 7.5 m LOS 5 20 56.29 -36.78 

17 7.5 m LOS 5 30 0.98 -26.03 

18 7.5 m LOS 5 40 0.12 -18.14 

      

19 11 m NLOS 2 30 55.08 -29.15 

20 11 m NLOS 2 35 1.14 -18.59 

21 11 m NLOS 2 40 0.12 -6.31 

22 11 m NLOS 4 30 34.69 -30.38 

23 11 m NLOS 4 35 0 -19.44 

24 11 m NLOS 4 40 0 -9.78 

25 11 m NLOS 5 30 3.96 -37.09 

26 11 m NLOS 5 35 15.56 -26.68 

27 11 m NLOS 5 40 3.29 -13.74 

      

28 18 m NLOS 5 50 0.24 -20.15 

29 18 m NLOS 5 70 0.04 -7.68 

      

30 30 m NLOS 5 50 5.64 -34.93 

31 30 m NLOS 5 70 7.02 -22.48 

      

32 45 m NLOS 5 50 99.61 -40.32 

33 45 m NLOS 5 70 34.85 -31.25 

Table 6: Calculated PER and average RSSI derived from 802.15.4 measurements 
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For saving values of RSSI of continuous stream, measurements were done separately, 

without sleep time between sending packets on the TX side. This was done so that signal 

strength of “pure” stream could be estimated, without taking into account time when 

transmit isn’t occurring. It should, therefore, be clear that the RSSI values do not coincide 

with PER of given measurement – instead, they serve as to give an approximation of the 

signal strength that is to be expected at the receiver. 

Figure 15 shows the continuous RSSI outputs for 1 m LOS, sampled at 2 MSps and RX gains 

set to 20 dB and 40 dB (measurements 1 and 3): 

 

Figure 15: RSSI values of measurements no. 1 and 3 

It can be seen that the fluctuations in the received signal strength are much lesser for higher 

RX gain (resulting in a “flatter” curve). The sudden drops in the RSSI values (for 

measurement no. 1 from samples around 25400 to 26520, and for no. 2 from samples 1080 

to 2190 and from 21960 to 22680) occur not because of the sudden degradations or 

interference in the channel, but because computer connected to a USRP cannot generate 

packets fast enough, therefore small occasional pauses where no transmitting is done occur.  

These pauses are more emphasized for higher sampling rates. If we are transmitting with 

sleep time between packages, we will generally achieve better transmission with higher 

sampling rates, however sampling at the rate of e.g. 5 MSps , proves to be quite a 

demanding task even for the powerful PCs such as those used in the measurements. Figure 

16 comparing measurements no. 19 and 25 illustrates this issue: 
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Figure 16: RSSI values of measurements no. 19 and 25 

 

Because of the stated drops in RSSI values, the calculations of average RSSI values are fallible 

(except for the few cases where no drops have occurred during transmitting period). In 

order to compare how RSSI values correspond to TX-RX distance, comparing maximum RSSI 

values is more precise. Figure 17 shows this correlation – all values are derived from 

measurements done for 5 MSps USRP sampling rate and 40 dB RX Gain. 

 

Figure 17: RSSI depending on the TX-RX distance 
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Distribution of PER depending on the distance  for the best case scenario (sampling rate 5 

MSps, RX gain 40 dB for LOS and 70 dB for NLOS) is shown in Figure 18: 

 

Figure 18: PER distribution depending on the TX-RX distance, best case scenario 

 

Good PER values have been achieved for distances up to approximately 30 m; after that, the 

received signal strength becomes too small for packages to be received or successfully 

decoded – the distance where ultimately no packet could be successfully received was 

around 55 m. One of the simplest solutions for increasing this distance would be amplifying 

the signal at the transmit side. 
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5 Possible improvements.  Future work. 

 

As was already stated, it would be useful to get precise RSSI values per package, in order to 

see a correlation with non-received and non-decodable packages. With the implementation 

presented in this Thesis, this is possible only for cases where received useful signal is 

significantly stronger than background noise, i.e. for short RX-TX distance and significant RX 

gain, and even those cases would require considerable amount of data post-processing. 

Several problems have arised while trying to extract RSSI per package values: without 

decimation, the stored data is too big for post-processing due to the high sampling rates of 

USRPs, whereas using decimation results in unequal number of samples per package, making 

it difficult to recognize which RSSI value belongs to which package. 

The idea to overcome this, therefore, is modifying the code in a way that only samples that 

represent the sent packages are being processed for RSSI measurement. For streams with 

significantly higher signal strength than noise strength, power squelch filter deployed prior 

to performing calculations successfully separates the “useful” data from the noise, however 

as these values become similar, filtering is impossible. 

Furthermore, for expanding the possibilities of channel estimation, implementing Bit Error 

Rate (BER) might also prove to be useful. This implementation should be reasonably 

reachable, since examples implementing BER exist within GNU Radio, however due to time 

limitations this functionality couldn't be incorporated into this Thesis. 

As for the UCLA Zigbee project itself, one of the upgrades might be developing upper layers 

(primarily MAC) as an addendum to the physical layer's functions. Improvements in this 

direction could possibly result in the full compatibility with ZigBee devices. 
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6 Conclusions 

 

After giving an introduction to the world of Software Defined Radios, the Thesis focused on 

using one particular platform – Ettus' USRP N210 SDR. Various USRP and GNU Radio 

capabilities and functions have been tested using GNU Radio Companion, out of which 

implementation of NBFM and WBFM was explained in the Thesis. Main focus of the Thesis 

was adapting the UCLA Zigbee PHY project to work with the SDR platforms. This was 

successfully done, however due to the time limitations combined with fairly steep learning 

curve of using UHD USRPs with GNU Radio, a couple of measurement metrics – calculating 

or extracting the RSSI-per-package values and BERs - weren’t incorporated in the Thesis. 

Also, performing larger number of test, as well as testing in different locations and under 

different conditions would have produced more relevant results. 

However, main Thesis goals were achieved, and solid grounds for the future research using 

USRPs and GNU Radio were established. 
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8 Appendix A - Code: original UCLA Zigbee PHY files 

 

Code listing A1: cc2420_txtest.py 

 

Code listing A1: cc2420_txtest.py contd. 

 

#!/usr/bin/env python 

 

# 

# Transmitter of IEEE 802.15.4 RADIO Packets.  

# 

# Modified by: Thomas Schmid, Sanna Leidelof 

# 

   

from gnuradio import gr, eng_notation 

from gnuradio import usrp 

from gnuradio import ucla 

from gnuradio.ucla_blks import ieee802_15_4_pkt 

from gnuradio.eng_option import eng_option 

from optparse import OptionParser 

import math, struct, time 

 

def pick_subdevice(u): 

    """ 

    The user didn't specify a subdevice on the command line. 

    If there's a daughterboard on A, select A. 

    If there's a daughterboard on B, select B. 

    Otherwise, select A. 

    """ 

    if u.db[0][0].dbid() >= 0:       # dbid is < 0 if there's no d'board 

or a problem 

        return (0, 0) 

    if u.db[1][0].dbid() >= 0: 

        return (1, 0) 

    return (0, 0) 

 

class transmit_path(gr.top_block):  

    def __init__(self, options):  

        gr.top_block.__init__(self)  

        self.normal_gain = 8000 

 

        self.u = usrp.sink_c() 

        dac_rate = self.u.dac_rate(); 

        self._data_rate = 2000000 

        self._spb = 2 

        self._interp = int(128e6 / self._spb / self._data_rate) 

        self.fs = 128e6 / self._interp 

 

        self.u.set_interp_rate(self._interp) 

 

        # determine the daughterboard subdevice we're using 
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        self.u.set_interp_rate(self._interp) 

 

        # determine the daughterboard subdevice we're using 

        if options.tx_subdev_spec is None: 

            options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u) 

        self.u.set_mux(usrp.determine_tx_mux_value(self.u, 

options.tx_subdev_spec)) 

        self.subdev = usrp.selected_subdev(self.u, 

options.tx_subdev_spec) 

        print "Using TX d'board %s" % (self.subdev.side_and_name(),) 

 

        self.u.tune(0, self.subdev, options.cordic_freq) 

        self.u.set_pga(0, options.gain) 

        self.u.set_pga(1, options.gain) 

 

        # transmitter 

        self.packet_transmitter = 

ieee802_15_4_pkt.ieee802_15_4_mod_pkts(self, spb=self._spb, 

msgq_limit=2)  

        self.gain = gr.multiply_const_cc (self.normal_gain) 

         

        self.connect(self.packet_transmitter, self.gain, self.u) 

 

        #self.filesink = gr.file_sink(gr.sizeof_gr_complex, 

'rx_test.dat') 

        #self.connect(self.gain, self.filesink) 

 

        self.set_gain(self.subdev.gain_range()[1])  # set max Tx gain 

        self.set_auto_tr(True)                      # enable Auto 

Transmit/Receive switching 

 

    def set_gain(self, gain): 

        self.gain = gain 

        self.subdev.set_gain(gain) 

 

    def set_auto_tr(self, enable): 

        return self.subdev.set_auto_tr(enable) 

         

    def send_pkt(self, payload='', eof=False): 

        return self.packet_transmitter.send_pkt(0xe5, 

struct.pack("HHHH", 0xFFFF, 0xFFFF, 0x10, 0x10), payload, eof) 

         

def main (): 

 

         

    parser = OptionParser (option_class=eng_option) 

    parser.add_option("-R", "--rx-subdev-spec", type="subdev", 

default=None, 

                      help="select USRP Rx side A or B (default=first 

one with a daughterboard)") 

    parser.add_option("-T", "--tx-subdev-spec", type="subdev", 

default=None, 

                      help="select USRP Tx side A or B (default=first 

one with a daughterboard)") 

    parser.add_option ("-c", "--cordic-freq", type="eng_float", 

default=2415000000, 
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Code listing A1: cc2420_txtest.py contd. 

 

 

Code listing A2: cc2420_rxtest.py 

 

                       help="set Tx cordic frequency to FREQ",              

             metavar="FREQ") 

 

    parser.add_option ("-r", "--data-rate", type="eng_float",   

       default=2000000)  

 

    parser.add_option ("-f", "--filename", type="string", 

                       default="rx.dat", help="write data to FILENAME") 

    parser.add_option ("-g", "--gain", type="eng_float", default=0, 

                       help="set Rx PGA gain in dB [0,20]") 

    parser.add_option ("-N", "--no-gui", action="store_true", 

default=False) 

     

    (options, args) = parser.parse_args () 

 

    tb = transmit_path(options)  

    tb.start()  

     

    for i in range(10): 

        print "send message %d:"%(i+1,) 

        tb.send_pkt(struct.pack('9B', 0x1, 0x80, 0x80, 0xff, 0xff, 0x10, 

0x0, 0x20, 0x0))  

        #this is an other example packet we could send. 

        #tb.send_pkt(struct.pack('BBBBBBBBBBBBBBBBBBBBBBBBBBB', 0x1, 

0x8d, 0x8d, 0xff, 0xff, 0xbd, 0x0, 0x22, 0x12, 0xbd, 0x0, 0x1, 0x0, 

0xff, 0xff, 0x8e, 0xff, 0xff, 0x0, 0x3, 0x3, 0xbd, 0x0, 0x1, 0x0, 0x0, 

0x0))  

        time.sleep(1) 

                     

    tb.wait() 

 

if __name__ == '__main__': 

    # insert this in your test code... 

    #import os 

    #print 'Blocked waiting for GDB attach (pid = %d)' % (os.getpid(),) 

    #raw_input ('Press Enter to continue: ') 

     

    main () 

 

#!/usr/bin/env python 

 

# 

# Decoder of IEEE 802.15.4 RADIO Packets. 

# 

# Modified by: Thomas Schmid, Leslie Choong, Mikhail Tadjikov 

# 

   

from gnuradio import gr, eng_notation 

from gnuradio import usrp 

from gnuradio.ucla_blks import ieee802_15_4_pkt 
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Code listing A2: cc2420_rxtest.py contd. 

 

from gnuradio.eng_option import eng_option 

from optparse import OptionParser 

import struct, sys 

 

def pick_subdevice(u): 

    """ 

    The user didn't specify a subdevice on the command line. 

    If there's a daughterboard on A, select A. 

    If there's a daughterboard on B, select B. 

    Otherwise, select A. 

    """ 

    if u.db(0, 0).dbid() >= 0:       # dbid is < 0 if there's no d'board 

or a problem 

        return (0, 0) 

    if u.db(1, 0).dbid() >= 0: 

        return (1, 0) 

    return (0, 0) 

 

class stats(object): 

    def __init__(self): 

        self.npkts = 0 

        self.nright = 0 

         

     

class oqpsk_rx_graph (gr.top_block): 

    def __init__(self, options, rx_callback): 

        gr.top_block.__init__(self) 

        print "cordic_freq = %s" % (eng_notation.num_to_str 

(options.cordic_freq)) 

 

 

        # --------------------------------------------------------------

-- 

 

        self.data_rate = options.data_rate 

        self.samples_per_symbol = 2 

        self.usrp_decim = int (64e6 / self.samples_per_symbol / 

self.data_rate) 

        self.fs = self.data_rate * self.samples_per_symbol 

        payload_size = 128             # bytes 

 

        print "data_rate = ", eng_notation.num_to_str(self.data_rate) 

        print "samples_per_symbol = ", self.samples_per_symbol 

        print "usrp_decim = ", self.usrp_decim 

        print "fs = ", eng_notation.num_to_str(self.fs) 

 

        u = usrp.source_c (0, self.usrp_decim) 

        if options.rx_subdev_spec is None: 

            options.rx_subdev_spec = pick_subdevice(u)  

        u.set_mux(usrp.determine_rx_mux_value(u, 

options.rx_subdev_spec)) 

 

        subdev = usrp.selected_subdev(u, options.rx_subdev_spec) 

        print "Using RX d'board %s" % (subdev.side_and_name(),) 

 

        u.tune(0, subdev, options.cordic_freq) 
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Code listing A2: cc2420_rxtest.py contd. 

 

        u.set_pga(0, options.gain) 

        u.set_pga(1, options.gain) 

 

        self.u = u 

 

        self.packet_receiver = 

ieee802_15_4_pkt.ieee802_15_4_demod_pkts(self, 

                                                                

callback=rx_callback, 

                                                                

sps=self.samples_per_symbol, 

                                                                

symbol_rate=self.data_rate, 

                                                                

threshold=-1) 

 

        self.squelch = gr.pwr_squelch_cc(50, 1, 0, True) 

        self.connect(self.u, self.squelch, self.packet_receiver) 

 

def main (): 

 

    def rx_callback(ok, payload): 

        st.npkts += 1 

        if ok: 

            st.nright += 1 

 

        (pktno,) = struct.unpack('!H', payload[0:2]) 

        print "ok = %5r  pktno = %4d  len(payload) = %4d  %d/%d" % (ok, 

pktno, len(payload), 

                                                                    

st.nright, st.npkts) 

        print "  payload: " + str(map(hex, map(ord, payload))) 

        print " ------------------------" 

        sys.stdout.flush() 

 

         

    parser = OptionParser (option_class=eng_option) 

    parser.add_option("-R", "--rx-subdev-spec", type="subdev", 

default=None, 

                      help="select USRP Rx side A or B (default=first 

one with a daughterboard)") 

    parser.add_option ("-c", "--cordic-freq", type="eng_float", 

default=2475000000, 

                       help="set rx cordic frequency to FREQ", 

metavar="FREQ") 

    parser.add_option ("-r", "--data-rate", type="eng_float", 

default=2000000) 

    parser.add_option ("-f", "--filename", type="string", 

                       default="rx.dat", help="write data to FILENAME") 

    parser.add_option ("-g", "--gain", type="eng_float", default=0, 

                       help="set Rx PGA gain in dB [0,20]") 

     

    (options, args) = parser.parse_args () 

 

    st = stats() 

 

 



68 

 

Code listing A2: cc2420_rxtest.py contd. 

 

 

Code listing A3: ieee802_15_4.py 

 

    tb = oqpsk_rx_graph(options, rx_callback) 

    tb.start() 

 

    tb.wait() 

 

if __name__ == '__main__': 

    # insert this in your test code... 

    #import os 

    #print 'Blocked waiting for GDB attach (pid = %d)' % (os.getpid(),) 

    #raw_input ('Press Enter to continue: ') 

     

    main () 
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Code listing A3: ieee802_15_4.py contd. 

#!/usr/bin/env python 

 

# O-QPSK modulation and demodulation.   

 

# Derived from gmsk.py 

# 

# Modified by: Thomas Schmid, Leslie Choong, Sanna Leidelof 

# 

 

from gnuradio import gr, ucla 

from math import pi 

 

class ieee802_15_4_mod(gr.hier_block2): 

 

    def __init__(self, *args, **kwargs):  

        """ 

 Hierarchical block for cc1k FSK modulation. 

 

 The input is a byte stream (unsigned char) and the 

 output is the complex modulated signal at baseband. 

 

 @param spb: samples per baud >= 2 

 @type spb: integer 

 """ 

 try: 

  self.spb = kwargs.pop('spb')  

 except KeyError: 

  pass 

 

 gr.hier_block2.__init__(self, "ieee802_15_4_mod", 

    gr.io_signature(1, 1, 1),  # Input  

    gr.io_signature(1, 1, gr.sizeof_gr_complex))  

# Output  

 

        if not isinstance(self.spb, int) or self.spb < 2:  

            raise TypeError, "spb must be an integer >= 2" 
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Code listing A3: ieee802_15_4.py contd 

        self.symbolsToChips = ucla.symbols_to_chips_bi() 

        self.chipsToSymbols = gr.packed_to_unpacked_ii(2, 

gr.GR_MSB_FIRST) 

        self.symbolsToConstellation = gr.chunks_to_symbols_ic((-1-1j, -

1+1j, 1-1j, 1+1j)) 

 

        self.pskmod = ucla.qpsk_modulator_cc() 

        self.delay = ucla.delay_cc(self.spb) 

 

 

 # Connect 

 self.connect(self, self.symbolsToChips, self.chipsToSymbols, 

                   self.symbolsToConstellation, self.pskmod, self.delay, 

self) 

 

class ieee802_15_4_demod(gr.hier_block2): 

    def __init__(self, *args, **kwargs): 

        """ 

        Hierarchical block for O-QPSK demodulation. 

         

        The input is the complex modulated signal at baseband 

        and the output is a stream of bytes. 

         

        @param sps: samples per symbol 

        @type sps: integer 

        """ 

 try: 

  self.sps = kwargs.pop('sps') 

 except KeyError: 

  pass 

 

 gr.hier_block2.__init__(self, "ieee802_15_4_demod", 

    gr.io_signature(1, 1, gr.sizeof_gr_complex),  

# Input 

    gr.io_signature(1, 1, gr.sizeof_float))  # 

Output 

         

        # Demodulate FM 

        sensitivity = (pi / 2) / self.sps 

        #self.fmdemod = gr.quadrature_demod_cf(1.0 / sensitivity) 

        self.fmdemod = gr.quadrature_demod_cf(1) 

         

        # Low pass the output of fmdemod to allow us to remove 

        # the DC offset resulting from frequency offset 

         

        alpha = 0.0008/self.sps 

        self.freq_offset = gr.single_pole_iir_filter_ff(alpha) 

        self.sub = gr.sub_ff() 

        self.connect(self, self.fmdemod) 

        self.connect(self.fmdemod, (self.sub, 0)) 

        self.connect(self.fmdemod, self.freq_offset, (self.sub, 1)) 

         

         

        # recover the clock 

        omega = self.sps 
        gain_mu=0.03 
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Code listing A4: ieee802_15_4_pkt.py 

 

Code listing A4: ieee802_15_4_pkt.py contd. 

        mu=0.5 

        omega_relative_limit=0.0002 

        freq_error=0.0 

         

        gain_omega = .25*gain_mu*gain_mu        # critically damped 

        self.clock_recovery = gr.clock_recovery_mm_ff(omega, gain_omega, 

mu, gain_mu, 

                                                      

omega_relative_limit) 

         

        # Connect 

        self.connect(self.sub, self.clock_recovery, self) 

 

 

# This is derived from gmsk2_pkt.py. 

# 

# Modified by: Thomas Schmid, Leslie Choong, Sanna Leidelof 

# 

 

import Numeric 

 

from gnuradio import gr, packet_utils, gru 

from gnuradio import ucla 

import crc16 

import gnuradio.gr.gr_threading as _threading 

import ieee802_15_4 

import struct 

 

MAX_PKT_SIZE = 128 

 

def make_ieee802_15_4_packet(FCF, seqNr, addressInfo, payload, 

pad_for_usrp=True, preambleLength=4, SFD=0xA7): 

    """ 

    Build a 802_15_4 packet 

 

    @param FCF: 2 bytes defining the type of frame. 

    @type FCF: string 

    @param seqNr: 1 byte sequence number. 

    @type seqNr: byte 

    @param addressInfo: 0 to 20 bytes of address information. 

    @type addressInfo: string 

    @param payload: The payload of the packet. The maximal size of the 

message 

    can not be larger than 128. 

    @type payload: string 

    @param pad_for_usrp: If we should add 0s at the end to pad for the 

USRP. 

    @type pad_for_usrp: boolean 

    @param preambleLength: Length of the preambble. Currently ignored. 

    @type preambleLength: int 
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Code listing A4: ieee802_15_4_pkt.py contd. 

    @param SFD: Start of frame describtor. This is by default set to the 

IEEE 802.15.4 standard, 

    but can be changed if required. 

    @type SFD: byte 

    """ 

 

    if len(FCF) != 2: 

        raise ValueError, "len(FCF) must be equal to 2" 

    if seqNr > 255: 

        raise ValueError, "seqNr must be smaller than 255" 

    if len(addressInfo) > 20: 

        raise ValueError, "len(addressInfo) must be in [0, 20]" 

 

    if len(payload) > MAX_PKT_SIZE - 5 - len(addressInfo): 

        raise ValueError, "len(payload) must be in [0, %d]" 

%(MAX_PKT_SIZE) 

 

    SHR = struct.pack("BBBBB", 0, 0, 0, 0, SFD) 

    PHR = struct.pack("B", 3 + len(addressInfo) + len(payload) + 2) 

    MPDU = FCF + struct.pack("B", seqNr) + addressInfo + payload 

    crc = crc16.CRC16() 

    crc.update(MPDU) 

 

    FCS = struct.pack("H", crc.intchecksum()) 

 

    pkt = ''.join((SHR, PHR, MPDU, FCS)) 

 

    if pad_for_usrp: 

        # note that we have 16 samples which go over the USB for each 

bit 

        pkt = pkt + (_npadding_bytes(len(pkt), 8) * '\x00')+0*'\x00' 

 

    return pkt 

 

def _npadding_bytes(pkt_byte_len, spb): 

    """ 

    Generate sufficient padding such that each packet ultimately ends 

    up being a multiple of 512 bytes when sent across the USB.  We 

    send 4-byte samples across the USB (16-bit I and 16-bit Q), thus 

    we want to pad so that after modulation the resulting packet 

    is a multiple of 128 samples. 

 

    @param ptk_byte_len: len in bytes of packet, not including padding. 

    @param spb: samples per baud == samples per bit (1 bit / baud with 

GMSK) 

    @type spb: int 

 

    @returns number of bytes of padding to append. 

    """ 

    modulus = 128 

    byte_modulus = gru.lcm(modulus/8, spb) / spb 

    r = pkt_byte_len % byte_modulus 

    if r == 0: 

        return 0 

    return byte_modulus - r 
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Code listing A4: ieee802_15_4_pkt.py contd. 

def make_FCF(frameType=1, securityEnabled=0, framePending=0, acknowledgeRequest=0, 

intraPAN=0, destinationAddressingMode=0, sourceAddressingMode=0): 

    """ 

    Build the FCF for the 802_15_4 packet 

 

    """ 

    if frameType >= 2**3: 

        raise ValueError, "frametype must be < 8" 

    if securityEnabled >= 2**1: 

        raise ValueError, " must be < " 

    if framePending >= 2**1: 

        raise ValueError, " must be < " 

    if acknowledgeRequest >= 2**1: 

        raise ValueError, " must be < " 

    if intraPAN >= 2**1: 

        raise ValueError, " must be < " 

    if destinationAddressingMode >= 2**2: 

        raise ValueError, " must be < " 

    if sourceAddressingMode >= 2**2: 

        raise ValueError, " must be < " 

 

     

     

    return struct.pack("H", frameType 

                       + (securityEnabled << 3) 

                       + (framePending << 4) 

                       + (acknowledgeRequest << 5) 

                       + (intraPAN << 6) 

                       + (destinationAddressingMode << 10) 

                       + (sourceAddressingMode << 14)) 

     

 

class ieee802_15_4_mod_pkts(gr.hier_block2): 

    """ 

    IEEE 802.15.4 modulator that is a GNU Radio source. 

 

    Send packets by calling send_pkt 

    """ 

    def __init__(self, pad_for_usrp=True, *args, **kwargs):  

        """ 

 Hierarchical block for the 802_15_4 O-QPSK  modulation. 

 

        Packets to be sent are enqueued by calling send_pkt. 

        The output is the complex modulated signal at baseband. 

 

        @param msgq_limit: maximum number of messages in message queue 

        @type msgq_limit: int 

        @param pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 

samples 

 

        See 802_15_4_mod for remaining parameters 

        """ 

 try: 

  self.msgq_limit = kwargs.pop('msgq_limit') 
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Code listing A4: ieee802_15_4_pkt.py contd. 

 except KeyError: 

  pass 

 

 gr.hier_block2.__init__(self, "ieee802_15_4_mod_pkts", 

    gr.io_signature(0, 0, 0),  # Input 

    gr.io_signature(1, 1, gr.sizeof_gr_complex))  

# Output 

        self.pad_for_usrp = pad_for_usrp 

 

        # accepts messages from the outside world 

        self.pkt_input = gr.message_source(gr.sizeof_char, 

self.msgq_limit) 

        self.ieee802_15_4_mod = ieee802_15_4.ieee802_15_4_mod(self, 

*args, **kwargs) 

        self.connect(self.pkt_input, self.ieee802_15_4_mod, self)  

 

    def send_pkt(self, seqNr, addressInfo, payload='', eof=False): 

        """ 

        Send the payload. 

 

        @param seqNr: sequence number of packet 

        @type seqNr: byte 

        @param addressInfo: address information for packet 

        @type addressInfo: string 

        @param payload: data to send 

        @type payload: string 

        """ 

         

        if eof: 

            msg = gr.message(1) # tell self.pkt_input we're not sending 

any more packets 

        else: 

            FCF = make_FCF() 

             

            pkt = make_ieee802_15_4_packet(FCF, 

                                           seqNr, 

                                           addressInfo, 

                                           payload, 

                                           self.pad_for_usrp) 

             #print "pkt =", packet_utils.string_to_hex_list(pkt), 

len(pkt) 

            msg = gr.message_from_string(pkt) 

        self.pkt_input.msgq().insert_tail(msg) 

 

 

class ieee802_15_4_demod_pkts(gr.hier_block2): 

    """ 

    802_15_4 demodulator that is a GNU Radio sink. 

 

    The input is complex baseband.  When packets are demodulated, they 

are passed to the 

    app via the callback. 

    """ 

 

    def __init__(self, *args, **kwargs): 
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Code listing A4: ieee802_15_4_pkt.py contd. 

        """ 

 Hierarchical block for O-QPSK demodulation. 

 

 The input is the complex modulated signal at baseband. 

        Demodulated packets are sent to the handler. 

 

        @param callback:  function of two args: ok, payload 

        @type callback: ok: bool; payload: string 

        @param threshold: detect access_code with up to threshold bits 

wrong (-1 -> use default) 

        @type threshold: int 

 

        See ieee802_15_4_demod for remaining parameters. 

 """ 

 try: 

  self.callback = kwargs.pop('callback') 

  self.threshold = kwargs.pop('threshold') 

 except KeyError: 

  pass 

 

 gr.hier_block2.__init__(self, "ieee802_15_4_demod_pkts", 

    gr.io_signature(1, 1, gr.sizeof_gr_complex),  

# Input 

    gr.io_signature(0, 0, 0))  # Output 

 

        self._rcvd_pktq = gr.msg_queue()          # holds packets from 

the PHY 

        self.ieee802_15_4_demod = ieee802_15_4.ieee802_15_4_demod(self, 

*args, **kwargs) 

        self._packet_sink = 

ucla.ieee802_15_4_packet_sink(self._rcvd_pktq, self.threshold) 

 

        self.connect(self,self.ieee802_15_4_demod, self._packet_sink) 

       

        self._watcher = _queue_watcher_thread(self._rcvd_pktq, 

self.callback) 

 

    def carrier_sensed(self): 

        """ 

        Return True if we detect carrier. 

        """ 

        return self._packet_sink.carrier_sensed() 

 

 

class _queue_watcher_thread(_threading.Thread): 

    def __init__(self, rcvd_pktq, callback): 

        _threading.Thread.__init__(self) 

        self.setDaemon(1) 

        self.rcvd_pktq = rcvd_pktq 

        self.callback = callback 

        self.keep_running = True 

        self.start() 

 

    def run(self): 

        while self.keep_running: 

            print "802_15_4_pkt: waiting for packet" 
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            msg = self.rcvd_pktq.delete_head() 

            ok = 0 

            payload = msg.to_string() 

             

            print "received packet " 

             

            if len(payload) > 2: 

                crc = crc16.CRC16() 

                crc.update(payload[:-2]) 

 

                crc_check = crc.intchecksum() 

                print "checksum: %s, received: %s"%(crc_check, 

str(ord(payload[-2]) + ord(payload[-1])*256)) 

 

                ok = (crc_check == ord(payload[-2]) + ord(payload[-

1])*256) 

                msg_payload = payload 

                 

                if self.callback: 

                    self.callback(ok, msg_payload) 
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9 Appendix B - Code: modified TX and RX UCLA files 

 

Code listing B1: uhd_cc2420_tx.py 

 

Code listing B1: uhd_cc2420_tx.py contd. 

#!/usr/bin/env python 

 

# 

# Transmitter of IEEE 802.15.4 RADIO Packets.  

# 

# Modified by: Thomas Schmid, Sanna Leidelof, Kresimir Dabcevic 

# 

   

from gnuradio import gr, eng_notation 

from gnuradio import uhd 

from gnuradio import ucla 

from gnuradio.ucla_blks import ieee802_15_4_pkt 

from gnuradio.eng_option import eng_option 

from optparse import OptionParser 

import math, struct, time 

 

 

class transmit_path(gr.top_block):  

    def __init__(self, options):  

        gr.top_block.__init__(self)  

        self.normal_gain = 8000 

 

        self.u = uhd.usrp_sink(device_addr=options.address,  

                               io_type=uhd.io_type.COMPLEX_FLOAT32,  

                               num_channels=1) 

        self.u.set_clock_config(uhd.clock_config.internal(), 

uhd.ALL_MBOARDS) 

        u = self.u 

 

        self._data_rate = options.data_rate 

        self._spb = 2 

 

        # Set and print sampling rate 

        self.u.set_samp_rate(options.sample_rate) 

        input_rate = self.u.get_samp_rate() 

        print "Sampling rate: %d" %(input_rate) 

 

        # Set and print center frequency 

        self.u.set_center_freq(options.cordic_freq) 

        frekva = self.u.get_center_freq() 

        self.u.set_center_freq(frekva) 

        print "Center frequency: %d" %(frekva) 

 

        # transmitter 

 

        self.packet_transmitter = 

ieee802_15_4_pkt.ieee802_15_4_mod_pkts(self, spb=self._spb, 

msgq_limit=2) 
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Code listing B1: uhd_cc2420_tx.py contd. 

 

        self.gain = gr.multiply_const_cc (self.normal_gain) 

         

        self.connect(self.packet_transmitter, self.gain, self.u) 

 

        self.filesink = gr.file_sink(gr.sizeof_gr_complex, 

'tx_test.txt') 

        self.connect(self.gain, self.filesink) 

 

 

    def set_gain(self, gain): 

        self.gain = gain 

        self.u.set_gain(gain, 0) 

     

    def send_pkt(self, payload='', eof=False): 

        return self.packet_transmitter.send_pkt(0xe5, 

struct.pack("HHHH", 0xFFFF, 0xFFFF, 0x10, 0x10), payload, eof) 

         

def main (): 

         

    parser = OptionParser (option_class=eng_option) 

 

    parser.add_option("-a", "--address", type="string", 

default="addr=192.168.10.2", 

                       help="Address of UHD device, [default=%default]")  

    parser.add_option ("-c", "--cordic_freq", type="eng_float", 

default=2475000000, 

                       help="set Tx cordic frequency to FREQ", 

metavar="FREQ") 

    parser.add_option ("-r", "--data_rate", type="eng_float", 

default=2000000) 

    parser.add_option ("-s", "--sample_rate", type="eng_float", 

default=1000000) 

    parser.add_option ("-f", "--filename", type="string", 

                       default="rx.dat", help="write data to FILENAME") 

 

    parser.add_option ("-N", "--no-gui", action="store_true", 

default=False) 

 

    (options, args) = parser.parse_args () 

    i = 0 

    j = 0 

    tb = transmit_path(options)  

    tb.start()  

     

    #generating and transmitting "important" packets 

    while j<=255: 

      while i<=255*(j+1): 

           print "send message %d:"%(i) 

 

           tb.send_pkt(payload=struct.pack('2B', j, i-j*255)) 

           i=i+1 

           time.sleep(0.01) 

      j = j+1 

 



79 

 

 

 

Code listing B2:  uhd_cc2420_rx.py 

 

Code listing B2:  uhd_cc2420_rx.py contd. 

    #generating and transmitting "EOT" packets 

    for z in range(100): 

        time.sleep(1) 

        tb.send_pkt(payload=struct.pack('5B', 0x9, 0x9, 0x9, 0x9, 0x9)) 

        time.sleep(1) 

    tb.stop() 

 

if __name__ == '__main__': 

    # insert this in your test code... 

    #import os 

    #print 'Blocked waiting for GDB attach (pid = %d)' % (os.getpid(),) 

    #raw_input ('Press Enter to continue: ') 

     

    main () 

 

 

#!/usr/bin/env python 

 

# 

# Decoder of IEEE 802.15.4 RADIO Packets. 

# 

# Modified by: Thomas Schmid, Leslie Choong, Mikhail Tadjikov, Kresimir 

Dabcevic 

# 

   

from gnuradio import gr, eng_notation 

from gnuradio import uhd 

from gnuradio.ucla_blks import ieee802_15_4_pkt 

from gnuradio.eng_option import eng_option 

from optparse import OptionParser 

import struct, sys, time, math 

 

n2s = eng_notation.num_to_str 

 

 

class stats(object): 

    def __init__(self): 

        self.npkts = 0 

        self.nright = 0 

         

     

class oqpsk_rx_graph (gr.top_block): 

    def __init__(self, options, rx_callback): 

        gr.top_block.__init__(self) 

        print "cordic_freq = %s" % (eng_notation.num_to_str 

(options.cordic_freq)) 

 

 

        # -------------------------------------------------- 

 

        self.data_rate = options.data_rate 

        self.samples_per_symbol = 2 
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Code listing B2:  uhd_cc2420_rx.py contd. 

        self.fs = self.data_rate * self.samples_per_symbol 

        payload_size = 128             # bytes 

 

 

        print "data_rate = ", eng_notation.num_to_str(self.data_rate) 

        print "samples_per_symbol = ", self.samples_per_symbol 

 

        self.u = uhd.usrp_source (device_addr=options.address, 

                             io_type=uhd.io_type.COMPLEX_FLOAT32, 

                             num_channels=1)      

      

        self.u.set_clock_config(uhd.clock_config.internal(), 

uhd.ALL_MBOARDS) 

 

        #Getting the RSSI value via the analog sensor would be 

implemented in a following way, but outputs highly unprecise results   

        #rssi = self.u.get_dboard_sensor("rssi") 

        #print " %s" %(rssi) 

 

 

        # Set the antenna 

        self.u.set_antenna(options.antenna, 0) 

        

        # Set sampling rate 

        self.u.set_samp_rate(options.sample_rate) 

        input_rate = self.u.get_samp_rate() 

        print "USRP sampling rate: %d" %(input_rate) 

 

        # Set and the read center frequency 

        self.u.set_center_freq(uhd.tune_request(options.cordic_freq,0)) 

        frekva = self.u.get_center_freq() 

        print "Center frequency: %d " %(frekva) 

 

        self.filesink = gr.file_sink(4, 'rx_test.dat') 

 

 

        self.u.set_gain(options.gain) 

 

        self.packet_receiver = 

ieee802_15_4_pkt.ieee802_15_4_demod_pkts(self, 

                                                                

callback=rx_callback, 

                                                                

sps=self.samples_per_symbol, 

                                                                

symbol_rate=self.data_rate, 

                                                                

threshold=-1) 

 

 

        self.squelch = gr.pwr_squelch_cc(-55, 1, 0, True) 

        self.connect(self.u, self.squelch, self.packet_receiver) 
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Code listing B2:  uhd_cc2420_rx.py contd. 

        self.squelch2 = gr.pwr_squelch_cc(-35, 1, 0, True) 

        self.complex_to_mag2 = gr.complex_to_mag_squared(1) 

        self.iir_filter = gr.single_pole_iir_filter_ff(0.5,1) 

        self.decimator = gr.keep_one_in_n(4,360) 

        self.logarithmer = gr.nlog10_ff(10,1,4) 

   #     time.sleep(3) 

        self.connect(self.u, self.squelch2, self.complex_to_mag2, 

self.iir_filter, self.decimator, self.logarithmer, self.filesink) 

 

 

def main (): 

 

    def rx_callback(ok, payload): 

 

        print "RSSI: %s" %(rssix) 

        st.npkts += 1 

        if ok: 

            st.nright += 1 

            (pktno,) = struct.unpack('!H', payload[0:2]) 

            print "ok = %5r  pktno = %4d  len(payload) = %4d  %d/%d" % 

(ok, pktno, len(payload), 

                                                                  

st.nright, st.npkts) 

 

            print "  payload: " + str(map(hex, map(ord, payload))) 

            print "Payload 11-12: %s, 12-13: %s" %(str(map(hex, map(ord, 

payload[11:12]))),str(map(hex, map(ord, payload[12:13])))) 

            received_packets.append(str(map(hex, map(ord, 

payload[11:13])))) 

 

 

            print " ------------------------" 

 

            if len(payload)==18: 

                print "All done" 

                print "Statistics: good %d received %d"%(st.nright, 

st.npkts) 

                print "Bad packets: %s" %(bad_packets) 

                print "Received packets: %s" %(received_packets) 

                m=0 

                n=0 

                while n<=9: 

                  while m<=255: 

                    print "Checking if packet %s %s was 

received"%(str(hex(n)),str(hex(m))) 

                    if (str(hex(n))+", "+str(hex(m))) in 

received_packets: 

                       print "Packet nr. %d has been received and 

decoded" %(n*10 + m) 

                    else: 

                       print "Packet nr. %d has not been received or 

decoded" %(n*10 + m) 

                       nonreceived_packets.append(str(n*10 + m)) 

                    m=m+1 

                  m=0 
                  n=n+1 



82 

 

 

Code listing B2:  uhd_cc2420_rx.py contd. 

                print "Nonreceived packets: %s" %(nonreceived_packets) 

                  

 

                tb.stop() 

 

            sys.stdout.flush() 

 else: 

     print "  Bad packet. %d/%d"%(st.nright, st.npkts) 

            bad_packets.append(st.npkts) 

     pass 

 

         

    parser = OptionParser (option_class=eng_option) 

 

    parser.add_option("-a", "--address", type="string", 

default="addr=192.168.10.2",  

                       help="Address of UHD device, [default=%default]")  

    parser.add_option("-A", "--antenna", type="string", default="RX2", 

                      help="select Rx Antenna where appropriate")  

    parser.add_option ("-c", "--cordic_freq", type="eng_float", 

default=2475000000, 

                       help="set rx cordic frequency to FREQ", 

metavar="FREQ") 

    parser.add_option ("-r", "--data_rate", type="eng_float", 

default=2000000) 

    parser.add_option ("-s", "--sample_rate", type="eng_float", 

default=1000000) 

    parser.add_option ("-f", "--filename", type="string", 

                       default="rx.dat", help="write data to FILENAME") 

    parser.add_option ("-g", "--gain", type="eng_float", default=0, 

                       help="set Rx PGA gain in dB [0,20]") 

 

     

    (options, args) = parser.parse_args () 

 

    st = stats() 

    global tb     

    tb = oqpsk_rx_graph(options, rx_callback) 

 

    global bad_packets 

    bad_packets = [] 

 

    global received_packets 

    received_packets = [] 

 

    global sent_packets 

    sent_packets = [] 

 

    global nonreceived_packets 

    nonreceived_packets = [] 

 

    n=0 

    while n<=255: 

       sent_packets.append("['"+str(hex(n))+"']") 

       n=n+1 

    print "Sent packets: %s" %(sent_packets) 
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    tb.start() 

    time.sleep(1) 

    tb.wait() 

 

if __name__ == '__main__': 

     #insert this in your test code... 

    #import os 

   # print 'Blocked waiting for GDB attach (pid = %d)' % (os.getpid(),) 

   # raw_input ('Press Enter to continue: ') 

     

    main () 

 

 

 


