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ABSTRACT

In recent years, many research works suchfa® and Tsay (1994), Stock and Watson
(1999), Chen et al. (2001flements and Jeremy (2001), Marcellino (2002), Laurini and
Vieira (2005) and othertiave described the dynamic features of many macroeconomic
variables as nonlineatUsing the approach of Keenan (1985) and Tsay (1989) this study
shown that Ghana inflation rates from January 1980 to December 2009 follow a tlireshol
nonlinear process. In order to take into account the nonlinearity in fleion rates we

then apply a two regime nonlinear SETAR model to the inflation rates andttitgnboth
in-sample and out-of-sample forecast performance of this model by companitly the
linear SARIMA model.

Based on the in-sample forecast assessment from the linear SARtM#eanonlinear
SETAR models, the forecast measure MAE and RMSE suggest that thean@H®HhAR
model outperform the linear SARIMA model. Also using multi-step-aheahs$omethod

we predicted and compared the out-of-sample forecast of the linear AR the
nonlinear SETAR models over the forecast horizon of 12 months during tbe péri
2010:1 to 2010:12. From the results as suggested by MAE and RMSE, the forecast
performance of the nonlinear SETAR models is superior to that of the B&RIMA
model in forecasting Ghana inflation rates.

Thought the nonlinear SETAR model is superior to the SARIMA model accarditigt

and RMSE measure but using Diebold-Mariano test, we found no significant diéf@nenc

their forecast accuracy for both in-sample and out-of-sample.

KEY WORDS: Ghana Inflation, SARIMA model, SETAR model, Forecast comparison,
CH test, ZA test, KPSS test, HEGY test, Tsay test, Keenan test
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1 INTRODUCTION

n recent years there has been an increase in both applied anddalemesearch in
I time series modelling and forecasting. The research irathes has contributed to the
success of several economies in the world. One of the economablearthat have
received much attention in time series modelling is inflations Thbecause inflation is
one of the macroeconomic variables that have great impact ig eeenomy and its
forecasting has great importance for policy makers, investonss,firaders as well as
consumers. For instance, forecasting future inflation will enadliey makers to foresee
ahead of time the requirement needed to design economic straegiesbat any
expected or unexpected change in inflation. It will also enabletiorse firms and others
governmental and nongovernmental organisation to develop and evaluate economi
policies and business strategies and also to take good decisionsirofindrecial
planning. Inflation is the major focus of economic policy worldwidedascribed by
David (2001).Inflation as defined byVebster (2000)s the persistent increase in the
level of consumer prices or a persistent decline in the purchaswgr of money.
Inflation causes global concern because it can distort econonterngatwhen not
anticipated. Inflation as described Aidoo (2010)can cause uncertainty about the future
price, interest rate, and exchange rate etc which as amaghltincrease the risk among
potential traders and partners of a country.

In inflation modelling and forecasting, ARIMA class of modelsvéhadbeen
extensively used due to its ability in forecasting as commaathter linear time series
models. The most commonly used model in the ARIMA class of modelsflation
rates is the Seasonal Autoregressive Integrated Moving AvégsffRIMA) model. For
example,Aidan et al (1998used SARIMA model to forecast Irish Inflatiodunttila
(2001)applied SARIMA model approach in other to forecast finish imitatandPufnik
and Kunovac (2006applied SARIMA model to forecast short term inflation in Craati
Aidoo (2010) applied SARIMA models to forecast Ghana inflation rates &toe
SARIMA model is an extension of the ordinary ARIMA model proposgdbx and
Jenkins (1976)This model is use to analyzes time series data which ns#asonal and

non-seasonal behaviors. The models are also known to be good in modeling and
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forecasting other macroeconomic time series such as unempibyate and GDP. Due
to the effect from business cycles, the dynamic featuresnfidtion and other
macroeconomic variables have been described as nonlinear by s@smchework such
asTiao and Tsay (1994), Stock and Watson (1999), Chen €2@01), Clements and
Jeremy (2001), Marcellino (20028xc. Laurini and Vieira (2005@argue that Brazilin
inflation rate follows a nonlinear process. This means that thatiorfl and other
macroeconomic variables display different features during econoxrpansion and
recession. Hence, these variables have asymmetric propeniies ean not be captured
by the simple linear models and also the forecast values bagbkis omodel may not be
reliable. The required model to capture this asymmetric flucmtor behaviour is the
nonlinear times series models. An example of the nonlinear typwdéls includes the
Self Excited Threshold Autoregressive (SETAR) model which special type of the
TAR proposed byfong (1978, 1983and further discussed @yng and Lim (198Q)the
Smooth Transitional Autoregressive (STAR) models proposebebgsvirta (1994)and
the Markov Switching Autoregressive (MS-AR) models introduced¢iamnilton (1989).
If the data generation follow a nonlinear process it is believedatnanlinear model is
suppose to perform better in terms of forecasting as compdérne tmear model since it
will be capable of handling the asymmetric features in the. dédwever as describe in
some research the nonlinear models sometimes perform poor in for@esscompare to
the linear counterpart. In this we consider the Self Exited shiotd Autoregressive
(SETAR) model.

In theoretical and applied research work of economic modelling EIRAB
model have extensively been studied Serg (1978, 1983)Tong and Lim (198Q)Tiao
and Tsay (1994), Potter (1995), Clements and Smith (18®Thman (1998), Clements
and Krolzig (1998)Clements et al (1999Feng and Liu (2002), Ismail and Isa (2006)
The SETAR model is a set of different linear AR models, changitcording to the
value of the threshold variable(s) which is the past values cdehes. The process is
linear in each regime, but the movement from one regime to the rotilees the entire
process nonlinear. For some number of research work the model hag fwrqerform
better as compare to other nonlinear models. For exarfgleg and Liu (2002)

compared the out-of-sample forecast performance between SETAR amad#ie linear
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ARIMA model in forecasting the nonlinear Canadian real GDP wsitey two evaluation
forecast techniques (multi-step and 1-step ahead forecast). dbeyg but that the
SETAR model performs better the ARIMA model in both in-sample artebf-sample
fit.

In this study, our main objective is to compare both in-sampleoatidf-sample
forecasting performance between linear SARIMA models and nonlBERAR model
applied to monthly Ghana inflation rate, and to answer the question; Gbasa
inflation rates exhibit nonlinear behaviour? If so, do nonlinear modets $wgeriority in
forecasting Ghana inflation rates?

Also since there is limited amount of research concerning ppécation of SETAR
model on inflation rate, we believed that this research willesasra literature for other
researchers who wish to embark on similar studies.

The study made use of monthly Ghana inflation rate from Janu@89 fo
December 2010 which was obtained from the Statistical ServiparDeent of Ghana.
The study applied the SARMA and SETAR model following their maaglprocedures
in other to model the dynamics of Ghana inflation rates from 19820@9. The
remaining observations were used to access the out-of sammlastoperformance from
both models. After obtaining the forecast from both models, root meamnedgeaor
(RMSE) and mean absolute error (MAE), was employed to medsei@cturacy of the
forecasting from both models. A model with a minimum of these stt#i was
considered to be the best in terms of forecasting. Also the Diebaiduhd test of
forecast accuracy was used to test the significant diiferdetween the forecast from
both models

The structure of the remaining part of the paper is as follows: Section 2 irgsoduc
the SARIMA and SETAR models and describes the modeling cycleadh model.
Section 3 also describes source and features of Ghana inflagsnarat also illustrates
how the theoretical methodology of both models were applied to modebeewhdt the
inflation rates and also how the forecast performance betweerwthenbdels were

measured. Section 4 presents the concluding remarks.
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2 MODELS AND METHODS

In this section we discuss the competing models used in this dleseark. The
discussion begins by introducing the linear SARIMA model and the mogledlycle
associated with the model. Then we consider the nonlinear SETAR amaedll. The
section also discussed how the two models will be compared too#eahusing forecast

accuracy measure.

2.1 SARIMA Model

Seasonal AutoRegressive Integrated Moving Average (SARIMA) maslelthe
generalization of the well known Box-Jenkins ARIMA model to accoiate a data
with both seasonal and non-seasonal feature. The ARIMA model vghictown to be a
combination of the AutoRegressive (AR) and Moving Average (MAjlebs utilize past
information of a given series in other to predict the future. ThepAR of the model
deals with the past observation of the series whiles the MAdpal$ with the past error
of the series (sedamilton, 1994; Pankratz, 1983The ARIMA model is applied in the
case where the series has no seasonal features and alemd#testationary. This means
that an initial differencing is required for the data to bemtaty. The ARIMA model
with its order is usually presented as ARIM#d,g) model whereg, d, andg are integers
greater than or equal to zero and refer to the order of theegtessive, integrated, and
moving average parts of the model respectively. The first peam refers to the
number of autoregressive lags, the second parametders to the order of integration
that makes the data stationary, and the third paramgegéres the number of moving
average lags (sd®ankratz, 1983; Hurvich and Tsai, 1989; Hamilton, 1994; Kirchgéssner
and Wolters, 2007; Kleiber and Zeileis, 2008; Pfaff, 3008

A process{y, Jis said to be ARIMA,d,g if Ay, is described by a stationary
ARMA(p,g model. A means differencing of, in d order to achieve stationarity. In

general, we will write the ARIMA model as
AL)A-L)"y, =6(L); {&} ~WN(Q, o%) 1)
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where g, follows a white noise (WN) process. The autoregressive opexatbmoving

average operator are defined as follows:
AL)=1-gL-gl* - -gL" (2)
O(L) =1+6L+G,L* +---+6,L° (3)

¢(L) 2 0 for | <1, the proces$y, }s stationary if and only ifi=0, in which case it

reduces to an ARMAY,q) process.

The generalization of ARIMA model to the SARIMA model occursewlhhe
series contains both seasonal and non-seasonal behavior. This behaviorsefighe
makes the ARIMA model inefficient to be applied to the seriéss & because it may
not be able to capture the behavior along the seasonal part ofritse &l therefore
mislead to a wrong order selection for non-seasonal componenSARBMA model is
sometimes called the multiplicative seasonal autoregressiegrated moving average
model and is denoted by ARIMpA(,9(P,D,Qs. This can be written in its lag form as
(Halim & Bisono, 2008

AL)P(L)L-L) @-L%)"y, =6(L)O(L%)¢, 4)
AL)=1-gL-@gl’ - -glL" (5)
PL%) =1-PD, L5 -, —...— DL (6)
o(L)=1-6L-6,L>-----6,L° (7)
O(L°) =1-0,L° -0,L** --..—9,L% (8)

where,
p, dandq are the order of non-seasonal AR, differencing and MA respectively.
P, DandQ is the order of seasonal AR, differencing and MA respectively.
W represent observable time series data at period t.

&, represent white noiserror (random shock) at period t.

L represent backward shift operatbf g, =y, )

Srepresent seasonal order (8.g9.4 for quarterly data and =12 for monthly data).

! The error term is said to be white noise if hasftilowing characteristics:
E(&)=0, E(g)=0" andE(£&,) =0 forallt #s
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For effective model selection, there is a need to follow the Mmbdiding stages
suggested by Box-Jenkins. These model building stages includes itealgication,
parameter estimation and evaluation and then forecasting stage.

2.1.1 Model Identification

In the identification stage of model building steps, we deternhiegbssible SARIMA
models that best fit the data under consideration. But before theh se#athe possible
model for the data, the data under consideration must satisfy théi@omdistationarity.
This is because the SARIMA model is appropriate for statiotiaey series data (i.e. the
mean, variance, and autocorrelation are constant through time).tinieaseries is
stationary then the mean of any major subset of the seriesndoelffer significantly
from the mean of any other major subset of the series. Alsdataseries is stationary
then the variance of any major subset of the series willrdiféen the variance of any
other major subset only by chance (de@nkratz, 1983 The stationarity condition
ensures that the properties of the estimated parametershieomotdel are standard. That
is the t statistic will asymptotically follow the usual t distribution.

If this condition is assured then, the estimated model can be usémtdoasting (see
Hamilton, 1994. To check for stationarity, we sometimes test for thetexce or
nonexistence of what we called unit root. Unit root test is perfdrinedetermine
whether a stochastic or a deterministic trend is present isethies. If the roots of the
characteristic equation (such as Equation 2) lie outside theitold, ¢then the series is

considered stationaty This is equivalent to say that the coefficients of the estihat

model are in absolute value is less than 1 (gg.<1 fori =1,..., p). In testing for unit

root in a given series the features of the series must be kighan the series contains
both seasonal and non-seasonal behaviour, the test of stationaritgaragsiducted on
both components (seasonal and non-seasonal frequencies). In testingidoargta
under non-seasonal frequencies the most used approach is thekaniatkbwski et. al.
(1992)and alsaZivot and Andrews (1992).

! If a series is non-stationary, it means that #relom shock in the series have permanent effect.
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Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test proposed byKwiatkowski et
al. (1992)is an LM type test used to test the null hypothesis that a given obsemabte s
is level stationary and/or stationdground a deterministic trend. As describePiaff
(2008) the test take the null hypothesis as a stationary processsaghe alternative
hypothesis of unit root process. The model considered in the gseis by (sed>faff,
2008:
Yy =&t +g 9)

wherer,is a random walk, i.er, =r_, +u,, and the error process is assumed to be

ii.d.(0,07); & is a deterministic trenck, is also a stationary error.df=0, then this

model is in terms of constant as deterministic regressor.€eBhestatistics is constructed

as either the serieg, is regress on only constant term (level) or constant term and

deterministic trend (level and trend) depending on whether one watdst level and/or
trend stationary. Let the partial sum series of the residfedsn the regression model be
t
S=>4§&, t=12..T. (10)
i=1
Then the KPSS test statistic for the null hypothesis of stationarityas giy:
i 2
S

LM = ;62 (11)

where g2 is an estimate of the error variance &ffrom the regression model. The

S

optimal weighting function which correspond to the Bartlett windes, ) :1—m is
used as suggested by the authors to estimate the long-run vaiiariat is
T | s T
Ol =s"(I)=T Y &2+2T 1) 1-—— > £&, (12)
t=1 s=1 t=s+1

wherel is the lag truncation parameter. In this exerd:isénteger[4(T/100)%].

The approximate upper tail critical values of the asymptositridution of the KPSS test
are taken fronkwiatkowski et al. (1992).

! For a given seriey/, the null hypothesis of the test is given by i, ~1(0) and H: Y, ~ (1)
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As described by some research that some of the conventional unitasoddw
power against the null hypothesis and it is always advisable tmoethat one test as
discuss inCheung and Chin (1997)addala and Kim (1998), Gabriel (2008)obtained
robust conclusion about the properties of the underling time seriesigtance Perron
(1989) shown that the power of the ADF test has low power of rejectiegnull
hypothesis of unit root when there is break in the underling sénegel (2000)warns
about the use of the KPSS because of its lack of poGaner and Kilian (2001),
indicated that the KPSS tests show size distortions when tHeastimcprocess is near to
non-stationarity.Chen (2002)also investigated the behaviour of the KPSS test in the
presence breaks and found that the test has power to reject thgpattiesis stationarity
of the series in the presence of bre&kgro and Smith (2003lso investigated the effect
of the KPSS test in the presence of outlier and in their réséay found that the power
of the KPSS test to reject the null hypothesis of stationfalty when the series has a
unit root with outliers.

To avoid false conclusions the ZA test which is capable of handéitegwith breaks and
also use different approach from the KPSS test can be employed.

Zivot and Andrews (ZA) test proposed byivot and Andrewq1992)is usually
applied to test for stationarity of an observable series wisidielieved to have been
affected by breaks. The test is sometime called a seguéntiak test. As discuss in
Perron (1989)if there is structural break in the observable series, theesotional unit
root test such as ADF, KPSS, and PP test may reflect mispigan of the
deterministic trend. So the ZA test which gives an alternativbe Perron (1989jest of
unit root that assumes a known break point which is based on an exogenous phenomenon.
With the ZA test the break points are endogenously determinechwit@imodel. The
ZA test considers three different models in testing the iyplbthesis of unit root against
the alternative hypothesis of stationary with a one time bigak.models considered in
the test are given by (s&mrayan, 2005; Harvie et. al, 2006; Waheed et. al 2006

Model A

k
Dy, =c+ay, ., + A +PU +> dAy, | +¢ (13)
j=1
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Model B

Ay, =c+ay,, + A+ DT, +]Z:4deyt‘i + &, (14)
Model C

Ay, =c+ay,, + A+ )DU, + DT, +JZ:diAyt‘i + &, (15)

wherey, represent the observable series with 12,...,T, Ais the first difference
operator,&, represent a white noise disturbance. AI¥d, represent an indicator dummy
variable for a mean shift occurring at the break date (TBJewldT is an indicator

dummy variable corresponding to the trend shift. The functiobtf, and DT is given

by:
t-TB if t>TB

DU. = 1 if t>TB
! 0 otherwise

_ and DT, =
0 otherwise

The Ay,_; term in the model allows for serial correlation and ensineslisturbance term

in the model is white noise. From above, Model A allows for a mne-thange in the
intercept, Model B allows for a one-time change in the trend,Model C allows for
one-time change in both the intercept and the trend.
According to Zivot and Andrew (1992)in the implementation of the ZA test the
inclusion of the end points of the sample causes the asymptotidwlisini of the
statistics diverges to infinity. In this case some regiontrthaschosen such that the end
points of the sample are not included. The authors suggest thatnangimegion be
specified as (0.15T, 0.85T). The test consider all points as a potaniidate of break
point but the final break point suggested by each model is selestedsively by
choosing the value of TB for which the absolute value of the one-sitatistic fora is
minimized. The critical values of the ZA test can be obtain fiiwot and Andrew
(1992)

The stationarity under the seasonal frequencies can alsa be desermine if the
seasonal behaviour in the data is deterministic or stochastiend$tecommon approach

is the one ofylleberg et al (1990kee als@Canova and Hansen (1995).
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Hylleberg-Engle-Granger-Yoo (HEGY) test proposed byHylleberg et al.
(1990)is used to test the presence of seasonal unit root in an ablseseries. The test
was first developed to apply to quarterly time series byatitbors. The approach was
extended byranses (199Qp be applied to monthly time series. As discussdeamses
(1991)the seasonal differencing operator, will have 12 roots on the unit circle which
can be decomposed as:

1- B2 =(1-B)(1+B)(1-iB)1+iB)

x1+(\/§+i)B/21 (V3-i)s/2)
i (V3 +1)B/2]f- (V3 -i)e/2 (16)
x1+(«/§+i)B/2 ~(J3- |)B/2
- (V3 +i)s/2fi+ (V3-i)s/2]

where all the terms other thél\— B) correspond to seasonal unit roots. Testing for uni

roots in monthly time series is equivalent to tegfior the significance of the parameters

in the auxiliary regression presented below:

¢* (B) Yor =0 Y13 Y7 Y 000 T Y50 Y71, Y555 ¥ 715Y 440
YT Y12 YL Y510 YT Ysi 0 YT Yei0 100 Y612 (17)

+ n-lly7,t—l +7T12y7,t—2 + /'It + &
wherey, represent the deterministic part in the regressiodel consisting of a constant,
11 seasonal dummy variables or a trept(B) is a polynomial function oB for which

the usual assumption applies and where

v, = (1+B){L+B2)1+B* +B%)y,,

Yo, == (1- B)(1+ BZ)(1+ B* + Bs)yt,

Yap == (1— B )(1+ B*+B )yt,

Voo = (1-B*\1-v3B+ B2 [L+ BZ + B*)y,,
Vs, == (1 B4)1+ 3B+B )(1+ B? +B4)y
Ve, =—(1-B*J1- B2 + B* J1- B+ B2)y,,
Yo == ( “)(1 B” + B4)(1+ B+ Bz)yt,
Ve = (1-B2)y,

10
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The estimates of thg can be obtained by applying the ordinary least sesuanethod.
Testing for the significance of the terms implies testing for both seasonal and non-
seasonal unit roots. The null hypothesis of urotsas tested birtest of the separates.

The test involves the use of one-sidddst in testing for the null hypothesisaf= 0
and the null hypothesis of, = .0T'he two-sided-test are used in testing for the null
hypothesis ofz =0,i =3... 12TheF-test is used in testing the null hypothesis tlsatsp

of n's are equal to zero simultaneously (exg.= 77, = ) a8 well as the joint test af's
(rm,=---=m,=0). There is no seasonal unit rootsf through 7z, are significantly
different from zero. If7; = Q then the presence of non-seasonal unit root Inoaie

rejected. According téranses (1991 )pairs of the complex unit roots are conjugates, s
roots are only present when pairs7o6 are equal to zero simultaneously and also in the
case of allrz,i =12... 1are equal to zero, it is appropriate to apply Mefilter. The
critical values foit-tests of the separatés, and forF-tests of pairs ofi's, as well as for

a jointF-test of 7z, =--- = 77, can be taking fronkrranses (1990)

The Canova-Hansen (CH) tesproposed byanova and Hansen (1995)one of
the well known tests which are used to test for tivileseasonality in observable time
series is stochastic or deterministic. The tesisisally considered as an extension of the
KPSS test proposed W§wiatkowski et al (1992}o test for null hypothesis of stationary
seasonal against the alternative of seasonal owit(non-stational due to seasonal unit
root). As discussed ianer (1998)the CH test statistics is a Lagrange Multipliests
which include serially correlated and heteroscedgsbcesses. The autocorrelation in
the process is handled by using a nonparametnsadgnt. Given a regression model as
in Banik and Silvapulle (1999)

y, =xf+da+e t=12...,n (18)
where y, is the dependent variable, is set of fixed regressors which includes and
intercept and/or linear trend, is a set of deterministic seasonal componente&rsia

white noise process. The CH test consider trigonooepresentation of (18) as

Y, =u+xB+fy+e (19)

11
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Fy Vi
where f, =|: |, y=|: |, q=s/2 (s=12 for monthly data),
Foe Yq
| jrrt ) [t . .
fy ={CO{JT ,sm(JTH for j <qg and f, =cos(rt).

In the test, in order to distinguish between natisharity at a seasonal frequency and at
the zero frequency, it is require thgtdoes not have a unit root at the zero frequency. If
y, has a unit root at zero frequency thé&p =y, —y,,is considered as dependent

variable (se®anik and Silvapulle, 1999
In testing for unit root at a specific frequencye wewrite (19) in such a way for

individual seasonal frequency as:
| d ]
Y SH+X[+D fiy+e (20)
j=1
where y, represent the seasonal cycle for the frequéney q). Hence test for a seasonal

unit root at frequencyjn/dq) reduces to testing for unit root j. Letting f)L denote

the jth block diagonal ofQ', the test statistic which is an LM test under thel

hypothesis of stationary at the seasonal frequefjey/ q) is given as:
1 & c  Aafyae
—— :F;Fﬁ (QL) 1th’ (21)

for j=12...,q whereF, => _f,& is the sub-vector of, partitioned conformably

i=1 fji
with y. When the null hypothesis is satisfied, the distitn of L ;. is non-standard

and the critical values are given@anova and Hansen (1995)

According toHylleberg (1995)the CH and the HEGY test complement each other.
When the stationarity condition of the data is Sed, the possible models

suitable for the data can now be determined. Tleroof the model which AR, MA,

SAR and SMA terms can be determine with the helthefACF and the PACF plot of

the stationary series. The ACF and PACF give mofermation about the behavior of

the time series. The ACF gives information abowt thternal correlation between

observations in a time series at different distaraggart, usually expressed as a function

12
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of the time lag between observations. These twts @oggest the model we should build.
Checking the ACF and PACF plots, we should bothklab the seasonal and non-
seasonal lags. Usually the ACF and the PACF h&espait lag k and cuts off after lag k
at the non-seasonal level. Also the ACF and the PA&s spikes at lag ks and cuts off
after lag ks at the seasonal level. The numbergoiifcant spikes suggests the order of
the model. Table 2.1 and 2.2 below describes tinaweur of the ACF and PACF for
both seasonal and the non-seasonal serieS{seaway and Stoffer, 2006

Table 2.1: Behavior of ACF and PACF for Non-seasonal ARMA4,Q)

AR(p) MA(Qq) ARMA(p,g)
ACF Tails off at lag k Cuts off after lagy  Tails off
k=1,2,3,.....
PACF Cuts off after lag  Tails off at lags k  Tails off
k=1,2,3,......

Table 2.2: Behavior of ACF and PACF for Pure Seasonal ARMA,Q)s

AR(P)s MA(Q)s ARMA(P,Q)s
ACF Tails off at lag ks Cuts off after lag)s  Tails off at lag ks
k=1,2,3,.....
PACF Cuts off after la@s  Tails off at lags ks Tails off at lag ks
k=1,2,3,......

The ACF and PACF plot suggest the possible modtealsdan be obtained for the data but
it does not give the final model for the data. Timeans that for a given series, several
possible models can be obtained. In other to séfecbest model among the possible
models, the penalty function statistics suchAdksike | nformation Criterion (AIC or
AICc) or Bayesian nformationCriterion (BIC) can be used (s&akamoto et. al., 1986
Akaike, 1974; and Schwarz 1978The AIC, AICc and BIC are a measure of the

goodness of fit of an estimated statistical mo@lien a data set, several competing

13
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models may be ranked according to their AIC, AICcBIC with the one having the
lowest information criterion value being the beBbese information criterion judges a
model by how close its fitted values tend to béht true values, in terms of a certain
expected value. The information criterion valudagresd to a model is only meantriank
competing modefsand tell you which one is the best among the galeernatives. The
criterion attempts to find the model that best ek the data with a minimum of free
parameters but also includes a penalty that isnareasing function of the number of
estimated parameters. This penalty discouragesfittreg. In the general case, the AIC,
AICc and BIC take the form as shown below:

AIC =2k -2log(L) or 2k+ nlog(% (22)

AlCc= AIC +M (23)
n-k-1

BIC = -2log(L) +klog(n) or log(c?) +%Iog(n) (24)

where
k =the number of parameters in the statistical mdgelg+P+Q+1)
L =the maximized value of the likelihood function tbe estimated model.
RSS = the residual sum of squares of the agtitnmodel.
n= the number of observation, or equivalently,shmple size
o’ = the error variance
The AICc is a modification of the AIC biyurvich and Tsai (198%nd it is AIC with a
second order correction for small sample siBasnham & Anderson (1998sist that

since AICc converges to AIC asgets large, AlICc should be employed regardlesheof

sample size.

LIf two or more different models have the same iatilar AIC or BIC values then the principles of
parsimony can also be applied in order to selgdaa model. This principle states that a model féther
parameters is usually better as compared to a exmpbdel. Also some forecast accuracy test between
competing models can also help in making a decisiowhich model is the best.

14
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2.1.2 Parameter Estimation and Evaluation

After identifying a possible model for the dateg thext step in the model building
procedure is to estimate the parameters of thectsdlemodel. The parameters are
estimated using method of maximum likelihood estiom(MLE). At this stage we get
precise estimates of the coefficients of the chasedel. That is we fit the chosen model
to our time series data to get estimates of thdficmats. This stage provides some
warning signals about the adequacy of our modelpamticular, if the estimated
coefficients do not satisfy certain mathematicaqumality condition$ that model is
rejected.

After estimating the parameters of the chosen maedeithen check the adequacy
of that model which is usually called model diagimssor model evaluation. Ideally, a
model should extract all systematic informationnfrdhe data. The part of the data
unexplained by the model (i.e., the residuals) khba small as possible. The diagnostic
check is used to determine the adequacy of theechw®del. These checks are usually
based on the residuals of the model. One assumptitre SARIMA model is that, the
residuals of the model should be white noise. éf &issumption of are not fulfilled then
different model for the series must be searchAostatistical tool such as Ljung-Box Q
statistic, ARCH-LM test antttest can be used to test the hypothesis of indkpree,
constant variance and zero mean of the residusgecévely.

Ljung-Box statistic proposed byLjung and Box (1978)s used to check if a
given observable series is linearly independeng felst is usually used to check if there
is higher-order serial correlation in the residu#la given model. The null hypothesis of
linearly independence of the series is examinethbyest. The Ljung-Box test statistic is
given by:

Q(h) = TT+2zhj (25)

where

! After the estimation of the parameters of the maaually the assumptions based on the residdatseo
fitted model are critically checked. The residuaie the difference between the observed value @r th
original observation and the estimate produced h®y model. For the case of SARIMA model the
assumption or the condition is that the residualstrfollow a white noise process. If this assumptgnot
met, then necessary action must be taking.
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P, = the sample autocorrelation at kag

T =the sample size

h = the number of time lags included in the test
When the null hypothesis is satisfi€(h) is asymptotically y* distributed with h

degrees of freedom. The null hypothesis of lineadtependence is rejected if the

p —value associated wittQ(h)is small (p —value<a) or when the value oQ(h) is

greater than the selected critical value of thescpiare distribution withh degrees of
freedom.
ARCH-LM test of Engle (1982) is used to check for conditional

heteroscedasticity of the squared residuglsof a given model. Suppose a linear
regression model given by;

a’=a,+aal, +...+aak, +e t=m+1..T, (26)
wheree, denotes the error terrmis a prespecified positive integer, ahdas the sample

size. According tdarsay (2005)the test for conditional heteroscedasticity whilalso
known as Arch effect is the Lagrange Multiplier tasid is equivalent to the usual

statistic for testingr;, = @i =1...,m) in the above Equation (26). The null hypothesis of

no Arch effect in the squared residugie. a, =...=a,, = isxamined by the test.

m

T T
Let SSR= > (a’-w)* where w:(%jZaf is the sample mean o&?, and

t=m+1 t=1

.
SSR= Zéf whereg is the least squares residual of the prior linegression. Thé&

t=m+l
statistic as iMsay (2005)s given by:

= _ (SSR-SSR)/m

: (27)
SSR/(T -2m-1)

When the null hypothesis is satisfiel, is asymptotically y*(m Yistributed withm
degrees of freedom. The null hypothesis of no Aetflect is rejected if theg —value
associated with- is small (p —value< a) or when the value oF is greater than the

selected critical value of the chi-square distitnutvith m degrees of freedom
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2.1.3 Forecasting From Seasonal ARIMA Models
The last step in Box-Jenkins model building apphogcForecasting. After a model has
passed the entire diagnostic test, it becomes atlefqu forecastingFor exampleGiven
Seasonal ARIMA (0,1,1)(1,0,;5)model we can forecast the next step which is glwen
(seeCryer & Chan, 2008

Ve = Vi = P(Vieio = Vieis) T & — 06, —O&,, + BOE, 4, (28)

Y, S Yy t Oy DY, s+ E — O, —OE,_, +OIE, 4, (29)
The one step ahead forecast from the origin tsrgby

Vo = Y, TPy, —PY, ., — O, —O&_, +BOE,, (30)
The next step is

Vier = Yies TPY, 0 —PY, Ly, — O, o + OE, 4y (31)
and so forth. The noise ternss,, &,,,&,,,&,---,& (@S residuals) will enter into the
forecasts for lead timds=12,... 13 but for | >13 the autoregressive part of the model
takes over and we have

Your = Yema t PYiggp ~ Py s for1>13 (32)

17
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2.2 SETAR Model

Self Excited Threshold Autoregressive (SETAR) motgela class of the Threshold
Autoregressive (TAR) model proposed bgng (1978)and further discussed irong and
Lim (1980), Tong (1983, 1990)The SETAR model is a set of different linear AR
models, changing according to the value of thestiokl variable(s) which is the lagged
values of the series. The process is linear in @agime, but the movement from one
regime to the other makes the entire process remlinThe two regime version of the
SETAR model of ordep is given by (se®oero and Marrocu, 2004

()
@&+ A0y e ity ST
y, = =1 (33)

(2)

p
2 2 2 H
@B+ Py +el iy >T

i=1

whereg® and ¢® are the coefficient in lower and higher regime estely which

needs to be estimated;is the threshold valuep® and p® are the order of the linear
AR model in low and high regime respectively. Irstivork the order of the AR model in

both regimes are equaly,_, is the threshold variable that governs the tramsibetween
the two regimes withd being the delay parameter which is a positive ietétj< p) ;
{e®} and {¢®} are sequence of independently and identicallyridisied random

variables with zero mean and constant variance i(i.6.(0, o) ). The two regime

SETAR model in its simplest form can be writtenSISTAR (2 p, d. As discussed in
Tsay (2005) the properties of the general SETAR model are @robtain. Also from
the discussion ofranses and van Dijk (20Qdittle is known about the condition under
which the SETAR models generate time series thatstationary. Such condition has
only been established for firs-order SETAR modelr Effective model selection, we
follow the procedure discussedhfmnanses and van Dijk (20000he approach of SETAR
modelling start with ARY) model specification and linearity against SETARdaI,
SEATR model identification, estimation and evaloatof the selected model and then

forecasting.
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2.2.1 AR Specification and Linearity Test

In order to apply the SETAR model to an observéibhe series, the series must first be
nonlinear in nature. That is the existence of maar behaviour in the series must first be
checked. To test for nonlinearity in the seriesfigt have specifies an appropriate linear
AR(p) model for the series under consideration. Asudiscin Franses and van Djik
(2000) the choice of the maximum lag order is basecherautoregressive lag order that
minimize the AIC value. After determine the lineAR(p) model we then test for
linearity using a well known linearity test suchdfan test and Tsdytest.

Keenan testwas introduced byKeenan (1985)to detect nonlinearity in an
observable time series. The test is considered apeaial case of the RESET test
proposed byRamsey (1969) It is a special case in the sense that it avoids
multicollinearity. As describe i€ryer and Chan (2008)he Keenan test for nonlinearity
analogous to Tukey’s one degree of freedom for ddmiaity test. As in Cryer and Chan,
the Keenan test is motivated by approximating alinear stationary time series by a
second-order Volterra expansion which is give by:

Vo=ut Y e+ Y)Y Bubitin (34)

where{g,,—o0 <t < w}is a sequence of independent and identicallyidigtd with zero-
mean random variable. The procggg is linear if the double sum of the right-hand side

of (34) does not exist. Thus we can test the litaf the time series by testing whether
or not the double sum of (34) does not exist. Thahe test requires that one distinguish
between linearity versus a second-order Volterrpaegion, by examining,, = @s
well as the coefficients on higher orders.

It is shown inCryer and Chan (2008phat the Keenan’s test is equivalent to testing if

n =0 in the multiple regression model (with the constabeing absorb ini, ):

Y =0t @Yt @Y TVt E (35)

The Keenan'’s test statistic for the null hypothedibnearity (H, : /7 = O)is given as:

2 —_— —_—
£ (n—-2m-2)

36
RSS2 (36)
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where

m = lag order of the linear autoregressive process

n = same size considered

RSS = the residual sum of squares from themRfocess
When the null hypothesis is satisfiell, is approximatelyF-distributed with 1 and
n—-2m-2 degrees of freedom. The null hypothesis of lirigars rejected if the
p - value associated wittF is small(p —value< a) or when the value oF is greater
than the selected critical value of thedistribution with 1 andh—2m-2 degrees of
freedom.

Tsay’s F-test introduced byr'say (1989)s a test for detecting nonlinearity in an
observable time series. The test considers a mamergl nonlinear alternative and is a
combined version of the nonlinear testkadfenan (1985), Tsay (1986andPetruccelli
and Davies (1986)According to the author the test is based omged autoregression
and predictive residuals. In the Tsay’s arrangegession approach, the linear AIR(
model is considered in the null against the alt@&raahypothesis of nonlinear threshold

model. For an AR{) regression withn observation asy, = (L Y,;,..., Y¥,.,)B+& for
t=p+L1...,n where 8 is a(p+1) dimensional vector of coefficients ara is the
noise. The author refers {9, 1 y,,,..., ¥,-,) as a case of data for the AR(p) model. Then

an arranged autoregression is an autoregressibrcases rearranged based on the values
of a particular regressor. Consider a two regimdr{2y,d) model withn observations,

the threshold variable y,_, may assume values{y,,...,Y,4 } Where
h=max{l, p+1-d}. Let 7z be the time index of theth smallest observation of
{¥p:---1Y.-q}- Then the arranged autoregression with the firsases in the first regime

and the rest in the second regime is given by:
p
O +Y Oy, ., +all, ifiss
—_ =1
yn;+d - Vp (37)
OP + OPY, ., +al,  ifi>s
v=l

7% +d

'F@LNn-2m-2)
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wheres satisfiesy, <7, <y, .The arranged autoregression provides a means tghwhi

the observations are separated into two groups thethif the true model is indeed
TAR(2;p,d) process, the observations in a groufpWolthe same linear autoregressive
model. According to the author the separation & tbservation does not require

knowing the precise value af and only the number of observation in each group
depends on,. But since the threshold value is unknown, howeaher sequential least
square estimate®® are consistent fod® if there is sufficiently large number of
observations in the first regime.

For the arranged autoregression, /fgt be the vector of least squares estimates based on

the firstm cases P, the associate X inverse matrix, anc,,,, the vector regressor of

m+1

the next observation to enter the autoregresgiQn . Then the recursive least squares

estimates can be computed efficiently by

ﬁmﬂ = ﬁm + Km+1[yd+77m+1 - X;n+1ﬁm ]! (38)

Dm+1 = 10 + X;n+l I:)m Xm+l' (39)

Km+l = mem+l/ Dm+1 7and (40)

Pu= [| -P, Mjpm (41)
Dm+1

and the predictive and standardized predictivedteds is given by:

ad+ﬂm+l = yd+7Tm+1 - X;n+1ﬁm (42)
and
éd+77m+1 = ad+rrm+1 / V Dm+l (43)

For fixed p andd, the effective humber of observations in arrangatbregression is
n—-d-h+1 Assuming the recursive autoregressions begin Wittbservation so that
the there aren—d —b- p—hpredictive residuals available. We do the leastaseg!
regression

p
é;-ri+d = wo + Z wv yrri+d—v + grri+d (44)

v=1
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for i=b+1...,n-d-h+1 and compute the associatéd statistic under the null

hypothesis of linear ARY

Q&2 -D &) (p+))
S &Zn-d-b-p-h)’

where theg, is the square residual of (44) and the argun¢end) of F is used to signify

F(p,d)= (45)

the dependence of thE-ratio on p and d. Suppose thaty, is a linear stationary

autoregressive process of order then for largen the statisticF(p,d Yollows an

asymptoticF distribution with p+landn—-d -b- p—h degrees of freedom.
The null hypothesis of linearity is rejected if tipe- value associated withF(p,d )s

small (p - value< a) or when the value oF (p,d Js greater than the selected critical

value of theF-distribution with p+1andn—-d -b- p—-h degrees of freedom

2.2.2 Model Identification

After the null hypothesis of linearity has beereotgd we then select appropriate SETAR
model that best fit the data. In this research aresler two regime SETAR model where
the orderp of AR model in both regimes are equal, that is BE[2;p,d). For a given
nonlinear time series, different SETAR models wilifferent delay parametedt and
threshold valug can be identified. The value of delay parameteieitned as the value
for which the TsayF statistic is significant and maximum. Also accaglio Tsay (1989)
the predictive residual can be used to locate liheshold values once the need for a
threshold model is detected, see details fferanses and van Dijk (20Q®ivot and
Wang (2006) From all the possible models by a grid searchctiwce of the best model
can be selected based on the minimum of the ust@mation criterion which are the
AIC and BIC. The AIC and BIC for the AR model irethwo regimes as defined bhypng
(1990)and presented iRranses and van Dijk (200[3) given by:

AIC(p,, p,) = nlln&f +n, |n5'22 +2(p, +)+2(p, +1) (46)
BIC(p,, p,) =N, InGY +n,Ing; +(p, +Inn, +(p, +1)Inn, (47)
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where

n;, j =12 is the number of observations in tith regimes and
61.2, j =12 is the variance of the residuals in tjta regimes

p,and p, are the selected lag order in regime 1 and 2 ctispey for which the

information criterion is minimized.

2.2.3 Parameter Estimation and Evaluation

After the desired model has been selected, the sy is to estimate the
parameters of the selected model. The parametarbeastimated using a sequential
conditional least square method. According to Feanand van Dijk, by using this
method the resulting estimates are equivalent tgirman likelihood estimates (MLE)
under the additional assumption that the residar@sormally distributed.

After the parameters of the selected model hava begmated, we then evaluate
the adequacy of the selected model by accessingetiduals from the model which is
usually called model diagnostics. The approachcoéss the adequacy of SETAR model
may follow the same way as describe in section&sldescribe byranses and van Dijk
(2000) the usual ARCH-LM test and thetest can be used to test the hypothesis of
constant variance and zero mean of the residusfsecéively. But for the test of serial
correlation the authors argue that the Ljung-Batistic is invalid for the residuals from
the nonlinear SETAR model and hence suggestedhéype test proposed by Breusch-
Godfrey.

The Breusch—-Godfrey (BG) testproposed byBreusch (1979)and Godfrey
(1978)is a Lagrange Multiplier test used to test for leighrder serial correlation in the

residuals from a given regression model. Suppasgrassion model given by:
Yo =B+ BX U, (48)
where u, is the OLS residuals from the regression modelclvhmight follow an

autoregressive process of orgexhich is given by:

U =au, +au,_, +---+ aput—p & (49)
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The BG test uses the OLS estimation procedure lte sbhe auxiliary regression model

given by:
U =58, +Bx +a,U_ +a,u_, +--+a,0_, +& (50)
The test statistic for the null hypothesi8 (. a, =a, =---=a, =0) is given by:
LM =TR? (51)
where

T = the sample size

R?= the usual coefficient of determination calculafiesn the model
When the null hypothesis is satisfiddyl is asymptotically y*(p Mistributed withp
degrees of freedom. The null hypothesis of no kedeelation of any order up tois
rejected if thep —value associated witth.M is small (p - value< a) or when the value
of LM is greater than the selected critical value of ¢hesquare distribution witlp

degrees of freedom.

2.2.4 Forecasting From SETAR Model
The important aim of considering nonlinear typemafdel such as SETAR as compare to
the linear counterpart is to adequately descrilbedynamic behaviour of the observable
series under consideration and also to produceuatiedorecast values that are far better
than the one produced by the simple linear mo&H3. AR models have been successful
been used to model and forecast a number of eceramdifinancial data.
The optimal one step-ahead forecast from the otiggngiven by (seekranses and van
Dijk, 2000}

Yeryr = E[Yen [Q 1= F(X;9) (52)
where y,,, is the forecast value for the tinfe+1), and Q,is the history of the time

series up to and including the observation at tinf&(x, ; @)is the nonlinear function that

represent the SETAR model. The next optimal stegadHorecast is given by:
yt+2|t = E[yt+2 |Qt] = E[F(Xt+1’¢) | Qt] (53)
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In general, the linear conditional expectation ap@r E can not be interchanged with the

nonlinear operator F, that is

E[F(D]# F(ED) (54)
Put differently, the expected value of a nonlinkarction is not equal to the function

evaluated at the expected value of its argumerricéle

E[F(Yur: D1 Q] # F(E[Y1n [ Q]9 = F(Yiy: @ (55)

The optimal h-step-ahead forecast can be obtaisied a
yt+h|t = E[yt+h |Qt] = F(Xt+h—1;¢) (56)

2.3 FORECAST COMPARISON

In applied economic and financial modelling, therecqpoint for estimating an
econometric or time series model is so that thenes¢d model can be used to predict
future value for decision making and policy evaluat Forecasting is the process of
making statements about events whose actual outchme not yet been observed. It is
an important application of time series. If a doigamodel for the data generation process
(DGP) of a given time series has been found, it lmarused for forecasting the future
development of the variable under consideratiorgodd model for forecasting can be
described as a model that produces minimum foreeastrs as compare to other
competing models. And to choose a final model dmecasting the accuracy of the model
must be higher than that of all the competing n&d€he accuracy for each model can
be checked to determine how the model performéerins of both in-sample and out-of-
sample forecast. Usually the model producing femet-of-sample forecast errors is
preferred than a model producing fewer in-samptedast errors. The forecast errors are
the difference between the actual observations thadobservations predicted by the
estimated model. Usually in time series modellinghe of the observations are left out
during the model building process in other to ascascuracy of the out-of-sample
forecast of the estimated models. The accurachhe@fmodels can be compared using

forecast measure such as Mean Absolute Error (MAEpt RMean Square Error
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(RMSE). A model with a minimum of MAE or RMSE is codered to be the best for

forecasting. In mathematical notation the MAE and FMfBe define as:

1< 1<
MAE=Z=>'|y, - v|==D |e] (57)
TS TS

RMSE= J%i(yt -y =Jii(q i (58)

t=1 T t=1

wherey, is the actual observationy, is the forecasted value afds the sample size.

The DM test proposed by Diebold-Mariano (1995) cao dle used to check if there exist
significant differences between the forecast aayud the two competing models. The

null hypothesis of DM test is that there is no d#fece between the forecast accuracy
from the two models against the alternative hypsithéhat there is difference between

the forecast accuracy from the two models. Onedsiggt can also be performed.
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3 DATA AND EMPIRICAL RESULTS

This section starts by describing the source angeoties of the inflation series and how
both models under consideration were applied. Téeia also describes how the
forecast results from both were compared to eaetrofhe entire analysis made use of

automatic codes and functions producedrldyevelopment Core Team (2010).

3.1 Descriptive Statistics

The data employed in this research is inflatioe @t Ghana from January 1980 to
December 2010, which is made up of 372 observatibns data was obtained from the
Statistical Service Department of Ghana. The seseseasonally unadjusted monthly
observations. The full sample is divided into twartpns, that is, the first part which
starts from 1980:1 and ends in 2009:12 (360 obsiens) is used for model construction
purposes while the 12 months observations arenextato assess the out-of-sample
forecast performance of the derived models, andédare not used in modelling.
Figures 3.1 and 3.2 below describe the dynamic\ehaof Ghana inflation. The right
panel of Figure 3.1 display the time series planf@étion rates in its original form which

is denoted byR whiles the left panel display the density plotla# inflation rates. Table

3.1 also provides summary statistics of the irdlatiates series.

From Figure 3.1, it can be confirmed that the tidla of Ghana exhibit volatility
starting from somewhere around 1993. The volatilityGhana inflation series can be
attributed to several economic factors. Some ofdhtactors are partly transmitted
internationally. Examples of these factors includereases in monetary aggregates
(money supply), exchange rate depreciation, petroleprice increases, and poor
agricultural production (se&idoo, 2010 etc.Ocran (2007)escribe inflation in Ghana as
monetary phenomenalhe summary statistics shown in Table 3.1 implikeat the
dynamic structure of the inflation rates seriestams an asymmetric pattern with a high
variation among the observations. The sample mar&mggest that the right tail of the
distribution is fatter than the left tail and alsas a higher peak (leptokurtic) which is

confirmed by the density plot. The p-value of therglie-Bera normality test also
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confirms the asymmetric nature of the distributidrihe inflation rates series at 5% level

of significance.
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FIG 3.2: ACF and PACF of Inflation Rates (1980:169012)

Table 3.1: Descriptive Statistics oR;

Statistic Sub-sample (N=360)
Minimum 1.14
Maximum 174.14

Mean 32.09
Median 22.93
Standard Deviation 29.78
Skewness 2.36
Kurtosis 5.39
Jarque-Bera (p-value) 2.2e-16
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3.2 SARIMA Modelling

In this section we use Seasonal ARIMA model apgraacmodel and forecast Ghana
inflation rates. In the modeling cycle, we followet Box and Jenkins procedure as

described in section 2.2.

3.2.1 Stationarity Test and Model Identification
As described in Section 2, the approach of SARIMAdeiling requires stationary
series hence we have to test for unit root in tiflation series. Using the method of

KPSS in testing for stationarity, we test the ylpothesis that the inflation ra{® i9

stationary. Table 3.2 below presents the resultts) fthe unit root test with which the
critical values at 5% level are placed in the pHresis. In the test, we considered a
model with a constant term as well as a model withstant term and a trend. From the
test results we reject the null hypothesis of stediity for a model with only constant
term. But for a model with constant term and treved fail to reject null hypothesis of
stationarity. Looking at the situation, making aciden for stationarity or unit root
becomes very difficult. As described by severakaesh works, most conventional unit
root test has problems when there is chock witha geriesCaner and Kilian (2001)
show by simulation that the KPSS test is subjedtrimense size distortions when the
null is close to the alternative of a unit rootofrthe left panel of Figure 3.1 above, it is
clear that Ghana inflation rates have experieneggs of chocks within the period of
this study. In this situation we employ the ZA umbt test approach to enable us to draw
conclusion on stationarity or unit root in the atfbn series. This method is capable of
handling time series with chocks. From the testultesas shown in Table 3.2, we
conclude that the inflation series has unit rodtisTis confirmed in both cases, that is
using a model with only constant term and also aehavith both constant term and
trend. Now since the series is non-stationary wesicter first differencing to render it

stationary and it is denoted BYy. After considering the first differencing, we useth

test to check again if the series is now statiormarjtas second unit root. From the test
results as shown in Table 3.3 below, we conclud@@tevel of significance that the first

differenced series is now stationary.
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Table 3.2 Unit Root Test for Inflation Rates

Test Statistic

Test type Constant Constant + trend
KPSS 1.5638 (0.463) 0.1035 (0.146)
ZA -4.6685 (-4.8) -4.7929 (-5.08)

Table 3.3 Unit Root Test for difference Inflation Rates

Test Statistic

Test type Constant Constant + trend
KPSS 0.0269 (0.463) 0.0243 (0.146)
ZA -9.8368 (-4.8) -10.438 (-5.08)

From the acf and pacf plot as display by in Fig, 8v2 can see that the inflation series
slowly decline and portray a sin wave pattern whielscribe seasonal and non-seasonal
component of the series. And since the series hatlefeatures it becomes necessary to
test for the behaviour of the seasonality (deteisticnor stochastic) in the data. In this
case we also need to test for seasonal unit road. Will enable us to be sure that the data
is now stationary (i.e. at both seasonal and nase®l frequencies) for modelling.

Using HEGY approach as described in Section 2,estthe null hypothesis that the

first non-seasonal differenced inflation ra®s ha$ seasonal unit root. From the HEGY

test results as presented in Table 3.4, we refecinull hypothesis of unit root at the
seasonal frequencies. The test also confirms lleatdn-seasonal part of the series is also
stationary. As described by some researchers, some most of the test has low power
of rejecting the hypothesis and in such case iallsbecomes advisable to employ more
than one test before drawing conclusion. In otleemiake good conclusion we also
employ the seasonal unit root test approach by Gahiansen. From the results as
presented in Table 3.5 we fail to reject the nyppdthesis of no seasonal unit root at all

the seasonal frequency in our first differencedesé€Y, ). Hence we conclude that the

first differenced series is now stationary at be#hsonal and non-seasonal frequency.
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Table 3.4: HEGY Seasonal Unit Root Test for ¥
Variable
t-statistics (one sided) Constant Constant + Sealsbnmmies
T, -4.569* -4.344*
11, -4.130* -4.640*
t-statistics (two sided)
TT, -6.192* -6.456*
7, -2.238* -1.964 *
T, -7.748* -7.925*
T, 2.807 3.429
T, -9.383* -9.281 *
T, -1.423* -1.829 *
TT, -12.350* -12.596*
1T, 6.011 5.839
7T, -7.429* -7.861*
1T, -0.099 -0.068
F-statistics
TT,, 7T, 21.704* 22.315*
1L, , 7T, 33.610* 37.090*
T, , 71, 46.098* 44.978*
T, 7T, 76.267* 79.370*%
1T, 7T, 28.368* 31.693*

* null hypothesis of seasonal unit root is rejecie&% significant level

Table 3.5: CH Seasonal Unit Root Test of,

Frequency L-statistic
% 0.328**
% 0.069 **
% 0.336 **
2% 0.085 **
5% 0.059 **

7l 0.105 **

** not significant at 5% level
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Following the Box-Jenkins procedure, since our dataow stationary and has no unit
root at both seasonal and non-seasonal frequerib@siext step in the model building
procedure is to determine the order of the AR and fdAboth seasonal and non-
seasonal component. This can be determine by tisngcf and pacf plot of the series as
suggested by Box-Jenkins and also described imoge2t The Figure 3.3 below display
the acf and pacf plot of the first differenced seriand ninety-five percent (95%)
confidence band(;iZ/ﬁ) are plotted on both panels. As described in se@jdhe non-
seasonal order are denoted pynd g whiles the seasonal order are denote® layndQ.
From the figure the acf has an exponential decastiisyj from nonseasonal lag 1 and
seasonal lag 12 and the pacf also has a spikegal land seasonal lag 12. After
comparing about 16 different models using theiroinfation criterion the most
appropriate models were selected. The models asepted in Table 3.6 below with their
AIC and BIC values. The choice of the models isedagn the model with a minimum
AIC and BIC value.

Autocorrelation of Yt Partial Autocorrelation of Tt
= =
wr | LW
[ } O _ L
2R = I 111 s ottt 1111111 ittt = it it eVl Wl ! el TRt el
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FIG 3.3: ACF and PACF of first non-seasonal diffezed series

Table 3.6: AIC and BIC for the Suggested ARIMA Models

Model AlIC BIC
ARIMA(1,1,0)(2,0,1):2 2052.99 2072.40
ARIMA(1,1,0)(1,0,1)12 2052.34 2067.87
ARIMA(1,1,0)(0,0,2):2 2052.37 2067.87
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3.2.2 Parameter Estimation and Evaluation

Looking at Table 3.6, ARIMA(1,1,0)(1,0&)xould be judge as the best model that fit the
data well since it has the minimum value for botiC Aand BIC. As described by some
research work (e.dgseunts and Ibrahim, 19Y,5the selected model is not necessary the
model that provides best forecasting results andeswe are interested in a model that
will give the best out of sample forecast resuiexce we decided to maintain the three
models for further assessment and accuracy fkest our derived models, using the
method maximum likelihood the estimated parameteisthe models with their
corresponding standard error is shown in Tables3387and 3.9 below.

After the parameters of the models have been etgththe models needs to be
checked to determine if they satisfies all the ag#tions of seasonal ARIMA model.
That is the residuals of the model must follow atevimoise process. This is to say that
residuals should have zero mean, constant variandealso uncorrelated. Figure 3.4
below display the acf of the residuals of the geld SARIMA models. From the plot we
can see that the autocorrelation of the residuala the three models are all zero, hence
we can conclude that the residuals are uncorrelatsitlg ARCH-LM and test, we can
test for constant variance and zero mean assumpgpectively of the residuals of the
selected models. Table 3.10 below provides theréssiits for ARCH-LMt and Ljung-
Box test. From the table, since the p-value ofARECH-LM andt test is greater than 5%
significant level, we fail to reject the null hypaisis of no ARCH effect and the null
hypothesis of approximately zero mean respectivelthe residuals of the selected
models. Hence we conclude that there is a const@m@nce among residuals of the
selected models and the true mean of the residualgproximately equal to zero. Also
since the p-values for the Ljung-Box test exceed, 38dicating that there is no
significant departure from white noise for the desils.

Thus, since the selected models satisfy all thesssry assumptions, now we can

say that the models can provide an adequate repatise of the data.
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Table 3.7: Estimates of Parameters for ARIMA (1,1,0)(2,0,1)
Variable Estimate Standard Error 95% Confidence Interval
Lower Limit Upper Limit

AR(1) 0.5520 0.0448 0.464 0.640

SAR(1) 0.1132 0.0996 -0.082 0.308

SAR(2) 0.0928 0.0781 -0.060 0.246

SMA(1) -0.7894 0.0834 -0.953 -0.626
E 16.93

Table 3.8: Estimates of Parameters for ARIMA (1,1,0)(1,0,1)

Variable Estimate Standard Error 95% Confidence Interval

Lower Limit Upper Limit
AR(1) 0.5506 0.0449 0.463 0.639
SAR(1) 0.0366 0.0947 -0.149 0.222
SMA(1) -0.7112 0.0790 -0.866 -0.556
g2 17.01

Table 3.9: Estimates of Parameters for ARIMA (1,1,0)(0,0,2)
Variable Estimate Standard Error 95% Confidence Interval
Lower Limit Upper Limit

AR(D) 0.5501 0.0448 0.462 0.638
SMA(1) -0.6770 0.0548 -0.784 -0.570
SMA(2) -0.0200 0.0581 -0.134 0.094
52 17.01

Table 3.10: Residuals Diagnostics Test for SARIMA model

Model P-value
ttest ARCH-LMtest Ljung-Box test
ARIMA(1,1,0)(2,0,1y, 0.5971 0.6594 0.07149
ARIMA(1,1,0)(2,0,1y, 0.6369 0.5483 0.0711
ARIMA(1,1,0)(0,0,2).,  0.6411 0.5402 0.06929
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ACF of ARTMA(1,1,00(2,0,13;, Residuals
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FIG 3.4: ACF Plot of the Residuals of the Sele@edsonal ARIMA Models
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3.3 SETAR Modelling

In this section we use 2 regime Self Excited Tho&sAutoregressive (SETAR) model
approach to model and forecast Ghana inflatiorsrdtethe SETAR modelling cycle we

follow the approach presentedirnanses and van Dijk (2000)

3.3.1 Linearity Test

As described in section 2, in order to model a tsedes with SETAR model, the
series must be nonlinear, hence we have to teshéexistence of nonlinearity in the
inflation rates. To test for nonlinearity in theiss we first specifies linear AB( model.
Using akaike information criterion, we found AR(I@pdel for the series. The choice of
the maximum lag order is based on the autoregmes$ag order that gives the minimum
AIC value. After determine the linear AR model wapoy TsayF-test and the Keenan
1-degree test to test for linearity against therahtive of nonlinearity for the Keenan
test. TheF-test of Tsay has the alternative of threshold-typelinearity. Both linearity
tests depend on the linear AR(16) model selectadhleT3.11 below summarizes the
results from the Tsay and Keenan 1-degree testn Ene results, in the Keenan 1-degree
test we reject the null hypothesis of linearitycgirthe p-value of 0 is less than the 5%
significant level. Also in the Tsay test, we rejelse null hypothesis of no threshold
nonlinearity since the p-value is less the 5% s$icgmt level. Hence we conclude that the
data follows a threshold nonlinear. From both &d®iut the nonlinearity of our data we
conclude that the inflation rates of Ghana is m@dr and it can be well explained by the

regime switching model as compare to the simpleali model.

Table 3.11: Linearity test

Test Test statistic  P-value Decision
Keenan 1-degree 22.187 <0.001 Linearity rejected
Tsay 14.28 <0.001 No threshold nonlinearity rejected
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3.3.2 Model Identification
After confirming that the inflation data is nonlare we then identify the specific SETAR
model that best fit the data. We do this by deteenthe autoregressive lag ordem

each regime and the threshold variahlg whered represent the delay parameter. We
choose the model witlp lag order for both regimes anygl_, threshold variable that

minimize the AIC value. After performing a grid seta on all possible combination of
SETAR models that can be fitted to the data, SET2R6,8) model with a threshold
variable y,_;, and SETAR (2;16,9) model with a threshold varialple, could be

appropriate to explain the nonlinearity in the atiftn data. These two models of course
have closed minimum AIC value. The AIC values a&sh competing SETAR models are

presented in Table 3.12 below.

3.3.3 Parameter Estimation and Evaluation
From the model identification stage we found thBTAR(2;16,8) and SETAR(2;16,9)

models with threshold variablg,_, and vy, , respectively could be judge as the best

model that fit the data well since it has the mimmvalue for both AIC. As done in
section 3.2.1, we prefer to maintain the two models further assessment on their
forecast ability. From our derived models, follogithe approach ofranses and van
Dijk (2000), we use the method of conditional least squarestimate the parameters of
the models. Table 3.13 and 3.14 below present shmated parameters of the selected
SETAR models with their corresponding thresholdieal

After the parameters of the two SETAR models ha@nlestimated we check the
residuals of the models for best fit. That is weeath for nonexistence of serial
autocorrelation, zero mean and constant variantkeofesiduals. As done in section 3.2
we use the ARCH-LM and t test to check for constatance and zero mean of the
residuals respective. Lagrange Multiplier BG tes$ a0 used to check for higher-order
serial correlation. From the results as shown ibl&&8.15, we fail to reject the null
hypothesis of all the three test for SETAR (2;16y8)del. On the hand, we reject the
hypothesis of no ARCH effect and no serial corretatip to order 6 for SETAR (2;16,8)

model.
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Table 3.12: AIC for the Suggested SETAR Models
Model AIC BIC
SETAR(2;16,8) 807.7925 943.806
SETAR(2;16,9) 807.2694 943.283
Table 3.13: Estimates of Parameters for SETAR (2;16,8)
. Low Regime High Regime
Coefficient
Estimate  Std Error t-value Estimate  Std Error tual
Constant 15763 2.4127 0.6533 0.1622 0.3399 0.4773
] 0.5466 0.1605 3.4064 1.6874 0.0545 30.9872
@ 0.2186 0.3737 0.5850 -0.5780 0.0976 -5.9216
@ 0.2125 0.4610 0.4608 -0.1528 0.0773 -1.9756
@, -0.1686 0.4568 -0.3690 0.0060 0.0716 0.0832
@ -0.0106 0.4325 -0.0246 0.0962 0.0677 1.4201
@ 0.1378 0.3854 0.3575 -0.0092 0.0679 -0.1360
@ 0.0124 0.4223 0.0295 -0.1523 0.0671 -2.2675
@ -0.0794 0.4670 -0.1699 0.1705 0.0674 2.5300
@ 0.2847 0.4959 0.5742 -0.0176 0.0678 -0.2588
@ -0.0345 0.3308 -0.1041 | -0.0737 0.0673 -1.0946
@, 0.0145 0.3230 0.0450 -0.0645 0.0674 -0.9560
@, -0.3895 0.3315 -1.1748 | -0.2657 0.0674 -3.9434
@ 0.0923 0.3110 0.2968 0.5675 0.0703 8.0722
@, -0.0316 0.2641 -0.1197 | -0.1603 0.0785 -2.0419
@s -0.0439 0.2892 -0.1517 | -0.2044 0.0731 -2.7951
@s 0.2011 0.1396 1.4408 0.1490 0.0414 3.6012
Threshold 12
value
proportion 15.99% 84.01%
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Table 3.14: Estimates of Parameters for SETAR (2;16,9)

o Low Regime High Regime
Coefficient
Estimate  Std Error t-value Estimate  Std Error toal
Constant 2.8430 2.0642 1.3773 0.2277 0.3599 0.6328
@a 0.5688 0.1095 5.1968 1.6615 0.0555 29.9616
@ 0.1639 0.1723 0.9516 -0.4646 0.1131 -4.1094

@ 0.2864 0.2801 1.0225 -0.2820 0.1049 -2.6877
@, -0.1298 0.3230 -0.4019 0.0230 0.0729 0.3153
@ -0.0754 0.2569 -0.2935 0.1173 0.0700 1.6748
@ 0.0625 0.2550 0.2450 0.0022 0.0694 0.0312
@ 0.0468 0.3075 0.1522 -0.1797 0.0686 -2.6210
@ 0.0744 0.3546 0.2099 0.1813 0.0680 2.6645
@ -0.0162 0.3824 -0.0425 -0.0024 0.0685 -0.0346

@ 0.0145 0.3784 0.0382 -0.0780 0.0673 -1.1592
@, -0.0159 0.3061 -0.0519 -0.0693 0.0673 -1.0288
@, -0.3130 0.3046 -1.0274 | -0.2644 0.0675 -3.9186
@ 0.0820 0.3206 0.2559 0.5631 0.0695 8.1025
@, 0.0883 0.2954 0.2987 -0.1253 0.0792 -1.5807
@ -0.0294 0.2181 -0.1350 | -0.2468 0.0782 -3.1535
@s 0.0435 0.1401 0.3106 0.1596 0.0411 3.8821
Threshold 13.92
value '
proportion 21.22% 78.78%
Table 3.15: Residuals Diagnostics Test SETAR models
P-value
Model
t-test ARCH-LM test BG test
SETAR(2;16,8) 1 0.01536 0.0022
SETAR(2;16,9) 1 0.06523* 0.0640**

Note: * no ARCH effect null hygpesis was not rejected
** no serial correlatiop to order 6 null hypothesis was not rejected
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3.4 Forecast Comparison between SARIMA and SETAR Mtels

The main task of this research work is to compheefbrecast ability between the linear
SARIMA model and the non-linear SETAR model. Forévatues are of importance for
decision making and policy formulation. As descdibley Box and Jenkins (1976)
forecasting provide basis for economic and busipémsning, inventory and production
control and control and optimization of industpabcesses. Obtaining a good model that
produce best forecast is the core point of eveligypmaker/planner.

Once the selected models from both approachesbeereshown to satisfy all the
model assumptions, we can conclude that the madeladequately and can be used to
predict the inflation rates. Hence, we compare ftirecast performance between the
selected models using MAE and RMSE. The preferredainig based on the model with
minimum value of MAE and RMSE. Table 3.16 and 3.1lbwesummarizes the results
from both in-sample and out-of-sample forecast mmu measure of SARIMA and
SETAR model respectively. According to the resshi®wn in Table 3.16 below, since
seasonal ARIMA(1,1,0)(0,0,2)have the minimum value MAE and RMSE for both in-
sample and out-of sample forecast measure as certgpather SARIMA models, hence
we conclude that it is the best linear models tompete with the nonlinear model.
Similarly between the two selected SEATR modelsuse the same approach of MAE
and RMSE to assess their predictive ability in otberthoose the best one between them.
The comparison is also done for both in-sampleariebf-sample forecast. According to
the results shown in Table 3.17 below, though SETARG6,8) model have the minimum
value of MAE and RMSE for both in-sample and out-aimple forecast measure as
compare to SETAR(2;16,9) model, but since it does meet some of the model
assumption hence we conclude that SETAR(2;16,9)eimisdhe best non-linear models
to compete with the linear model.

In comparison of different models within the samypet we also verified as
discussed inGeunts and Ibrahim (1973hat the model that produced minimum AIC
values does not necessary means that it is arfoalel that will give best forecast as
compare to the other models. For instance all tARIBIA models selected have the
same number of parameters but the model that deventnimum information criterion
did not produce minimum forecast errors as compam@her models. This was also the
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same case with the SETAR models selected. Baseth@nout-of-sample forecast
assessment from the linear ARIMA(1,1,0)(0,&,2nd the nonlinear SETAR(2,16,9)
models over the forecast horizon of 12 months dutire period of 2010:1 to 2010:12,
the forecast measure MAE and RMSE suggest that tméinear SETAR model
outperform the linear SARIMA model. This nonlineae TAR model also produced
minimum in-sample forecast errors as compare galfsARIMA model.

Though the nonlinear SETAR model outperform thednSARIMA model as
suggested by the forecast measure MAE and RMSEt Isuinteresting to know weather
there is significant difference in forecast frone ttwo models. Using the approach of
Diebold and Mariano (1995), we can test the nufdiiiesis that there is no difference
between the forecast accuracy from the two modgfat the alternative hypothesis that
the selected SETAR provide better forecast accuagayompare to the selected seasonal
ARIMA model. The results from the test are preseritedable 3.18. From the test
results, we fail to reject the null of equal forsicaccuracy at 5% level of significance and
conclude that the forecast results from both moaedsalmost the same.

Table 3.16: Forecast Comparison among SARMA models
In-sample Out-of-sample
MAE RMSE MAE RMSE
ARIMA(1,1,0)(2,0,1)., 2.063 4.108 4.258 5.249
ARIMA(1,1,0)(2,0,1y, 2.046 4.119 4.054 4.765
ARIMA(1,1,0)(0,0,2),> 2.045 4.119 3.707 4571

Model

Table 3.17: Forecast Comparison among SETAR models
In-sample Out-of-sample

MAE RMSE MAE RMSE
SETAR(2;16,8) 1.647  2.850 3.657 4.298
SETAR(2;16,9) 1.665 2.850 3.679 4.322

Model

Table 3.18: Forecast Accuracy Test Results

Forecast DM statistic P-value
In-sample -1.4416 0.9253
Out-of-sample -0.8236 0.0679
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4 CONCLUSION

In this paper we have shown that Ghana inflatid@sréollow a nonlinear process and the
behaviour of this process can be modeled by a mesulithreshold model. By using a two
regime nonlinear SETAR model we study both in-samguhd out-of-sample forecast
performance of this model by comparing it with linear SARIMA model.

After modelling the inflation series by the two net&l we comparing the forecast
performance between the two models by using thecést measure mean absolute error
(MAE) and root means square error (RMSE).

Based on the in-sample forecast assessment frodmds SARIMA and the nonlinear
SETAR models the forecast measure MAE and RMSE suggesthe nonlinear SETAR
model outperform the linear SARIMA model. Also ugimulti-step-ahead forecast
method we predicted and compared the out-of-safopdeast of the linear SARIMA and
the nonlinear SETAR models over the forecast harziol2 months during the period of
2010:1 to 2010:12. From the results as suggestetMAl and RMSE, the forecast
performance of the nonlinear SETAR models is sapdd that of the linear SARIMA
model in forecasting Ghana inflation rates.

Thought the nonlinear SETAR model is superior te 8ARIMA model according to
MAE and RMSE measure but using Diebold-Mariano test, faund no significant

difference in their forecast accuracy for both ample and out-of-sample.
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