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ABSTRACT 
 
 
In recent years, many research works such as Tiao and Tsay (1994), Stock and Watson 

(1999), Chen et al. (2001), Clements and Jeremy (2001), Marcellino (2002), Laurini and 

Vieira (2005) and others have described the dynamic features of many macroeconomic 

variables as nonlinear. Using the approach of Keenan (1985) and Tsay (1989) this study 

shown that Ghana inflation rates from January 1980 to December 2009 follow a threshold 

nonlinear process.  In order to take into account the nonlinearity in the inflation rates we 

then apply a two regime nonlinear SETAR model to the inflation rates and then study both 

in-sample and out-of-sample forecast performance of this model by comparing it with the 

linear SARIMA model. 

Based on the in-sample forecast assessment from the linear SARIMA and the nonlinear 

SETAR models, the forecast measure MAE and RMSE suggest that the nonlinear SETAR 

model outperform the linear SARIMA model. Also using multi-step-ahead forecast method 

we predicted and compared the out-of-sample forecast of the linear SARIMA and the 

nonlinear SETAR models over the forecast horizon of 12 months during the period of 

2010:1 to 2010:12. From the results as suggested by MAE and RMSE, the forecast 

performance of the nonlinear SETAR models is superior to that of the linear SARIMA 

model in forecasting Ghana inflation rates. 

Thought the nonlinear SETAR model is superior to the SARIMA model according to MAE 

and RMSE measure but using Diebold-Mariano test, we found no significant difference in 

their forecast accuracy for both in-sample and out-of-sample. 

 
KEY WORDS:  Ghana Inflation, SARIMA model, SETAR model, Forecast comparison,     

                           CH test, ZA test, KPSS test, HEGY test, Tsay test, Keenan test 
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1 INTRODUCTION 
 
 

n recent years there has been an increase in both applied and theoretical research in 

time series modelling and forecasting. The research in this area has contributed to the 

success of several economies in the world. One of the economic variables that have 

received much attention in time series modelling is inflation. This is because inflation is 

one of the macroeconomic variables that have great impact in every economy and its 

forecasting has great importance for policy makers, investors, firms, traders as well as 

consumers. For instance, forecasting future inflation will enable policy makers to foresee 

ahead of time the requirement needed to design economic strategies to combat any 

expected or unexpected change in inflation. It will also enable investors, firms and others 

governmental and nongovernmental organisation to develop and evaluate economic 

policies and business strategies and also to take good decisions on their financial 

planning. Inflation is the major focus of economic policy worldwide as described by 

David (2001). Inflation as defined by Webster (2000) is the persistent increase in the 

level of consumer prices or a persistent decline in the purchasing power of money. 

Inflation causes global concern because it can distort economic patterns when not 

anticipated. Inflation as described by Aidoo (2010) can cause uncertainty about the future 

price, interest rate, and exchange rate etc which as a result might increase the risk among 

potential traders and partners of a country. 

In inflation modelling and forecasting, ARIMA class of models have been 

extensively used due to its ability in forecasting as compare to other linear time series 

models. The most commonly used model in the ARIMA class of models for inflation 

rates is the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. For 

example, Aidan et al (1998) used SARIMA model to forecast Irish Inflation, Junttila 

(2001) applied SARIMA model approach in other to forecast finish inflation, and Pufnik 

and Kunovac (2006) applied SARIMA model to forecast short term inflation in Croatia, 

Aidoo (2010) applied SARIMA models to forecast Ghana inflation rates etc. The 

SARIMA model is an extension of the ordinary ARIMA model proposed by Box and 

Jenkins (1976). This model is use to analyzes time series data which contain seasonal and 

non-seasonal behaviors. The models are also known to be good in modeling and 

I 



Eric Aidoo                                                                                                            MSc Thesis 
 

2 
 

forecasting other macroeconomic time series such as unemployment rate and GDP. Due 

to the effect from business cycles, the dynamic features of inflation and other 

macroeconomic variables have been described as nonlinear by other research work such 

as Tiao and Tsay (1994), Stock and Watson (1999), Chen et al. (2001), Clements and 

Jeremy (2001),  Marcellino (2002) etc. Laurini and Vieira (2005) argue that Brazilin 

inflation rate follows a nonlinear process. This means that the inflation and other 

macroeconomic variables display different features during economic expansion and 

recession. Hence, these variables have asymmetric properties which can not be captured 

by the simple linear models and also the forecast values based on this model may not be 

reliable. The required model to capture this asymmetric fluctuations or behaviour is the 

nonlinear times series models. An example of the nonlinear type of models includes the 

Self Excited Threshold Autoregressive (SETAR) model which is a special type of the 

TAR proposed by Tong (1978, 1983) and further discussed by Tong and Lim (1980), the 

Smooth Transitional Autoregressive (STAR) models proposed by Teräsvirta (1994), and 

the Markov Switching Autoregressive (MS-AR) models introduced by Hamilton (1989). 

If the data generation follow a nonlinear process it is believed that a nonlinear model is 

suppose to perform better in terms of forecasting as compare to the linear model since it 

will be capable of handling the asymmetric features in the data. However as describe in 

some research the nonlinear models sometimes perform poor in forecasting as compare to 

the linear counterpart. In this we consider the Self Exited Threshold Autoregressive 

(SETAR) model.  

In theoretical and applied research work of economic modelling the SETAR 

model have extensively been studied see Tong (1978, 1983), Tong and Lim (1980), Tiao 

and Tsay (1994), Potter (1995), Clements and Smith (1997), Rothman (1998),  Clements 

and Krolzig (1998), Clements et al (1999), Feng and Liu (2002), Ismail and Isa (2006). 

The SETAR model is a set of different linear AR models, changing according to the 

value of the threshold variable(s) which is the past values of the series. The process is 

linear in each regime, but the movement from one regime to the other makes the entire 

process nonlinear. For some number of research work the model has proved to perform 

better as compare to other nonlinear models. For example, Feng and Liu (2002) 

compared the out-of-sample forecast performance between SETAR model and the linear 
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ARIMA model in forecasting the nonlinear Canadian real GDP data using two evaluation 

forecast techniques (multi-step and 1-step ahead forecast). They found out that the 

SETAR model performs better the ARIMA model in both in-sample and out-of-sample 

fit. 

In this study, our main objective is to compare both in-sample and out-of-sample 

forecasting performance between linear SARIMA models and nonlinear SETAR model 

applied to monthly Ghana inflation rate, and to answer the question; Does Ghana 

inflation rates exhibit nonlinear behaviour? If so, do nonlinear models have superiority in 

forecasting Ghana inflation rates?  

Also since there is limited amount of research concerning the application of SETAR 

model on inflation rate, we believed that this research will serve as a literature for other 

researchers who wish to embark on similar studies. 

The study made use of monthly Ghana inflation rate from January 1980 to 

December 2010 which was obtained from the Statistical Service Department of Ghana. 

The study applied the SARMA and SETAR model following their modelling procedures 

in other to model the dynamics of Ghana inflation rates from 1980 to 2009. The 

remaining observations were used to access the out-of sample forecast performance from 

both models. After obtaining the forecast from both models, root mean squared error 

(RMSE) and mean absolute error (MAE), was employed to measure the accuracy of the 

forecasting from both models. A model with a minimum of these statistics was 

considered to be the best in terms of forecasting. Also the Diebold-Mariano test of 

forecast accuracy was used to test the significant difference between the forecast from 

both models 

 The structure of the remaining part of the paper is as follows: Section 2 introduces 

the SARIMA and SETAR models and describes the modeling cycles in each model. 

Section 3 also describes source and features of Ghana inflation rates and also illustrates 

how the theoretical methodology of both models were applied to model and forecast the 

inflation rates and also how the forecast performance between the two models were 

measured. Section 4 presents the concluding remarks. 
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2 MODELS AND METHODS  
 

 

In this section we discuss the competing models used in this research work. The 

discussion begins by introducing the linear SARIMA model and the modelling cycle 

associated with the model. Then we consider the nonlinear SETAR model as well. The 

section also discussed how the two models will be compared to each other using forecast 

accuracy measure.     

 
 
2.1 SARIMA Model 

Seasonal AutoRegressive Integrated Moving Average (SARIMA) model is the 

generalization of the well known Box-Jenkins ARIMA model to accommodate a data 

with both seasonal and non-seasonal feature. The ARIMA model which is known to be a 

combination of the AutoRegressive (AR) and Moving Average (MA) models utilize past 

information of a given series in other to predict the future. The AR part of the model 

deals with the past observation of the series whiles the MA part deals with the past error 

of the series (see Hamilton, 1994; Pankratz, 1983). The ARIMA model is applied in the 

case where the series has no seasonal features and also differenced stationary. This means 

that an initial differencing is required for the data to be stationary. The ARIMA model 

with its order is usually presented as ARIMA (p,d,q) model where p, d, and q are integers 

greater than or equal to zero and refer to the order of the autoregressive, integrated, and 

moving average parts of the model respectively. The first parameter p refers to the 

number of autoregressive lags, the second parameter d refers to the order of integration 

that makes the data stationary, and the third parameter q gives the number of moving 

average lags (see Pankratz, 1983; Hurvich  and Tsai, 1989; Hamilton, 1994; Kirchgässner 

and Wolters, 2007; Kleiber and Zeileis, 2008; Pfaff, 2008)  

 A process, }{ ty  is said to be ARIMA (p,d,q) if  t
d y∆  is described by a  stationary 

ARMA(p,q) model. ∆  means differencing of ty  in d order to achieve stationarity. In 

general, we will write the ARIMA model as 

                                 ),0(~}{;)()1)(( 2σεεθφ WNLyLL ttt
d =−                         (1) 
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where tε  follows a white noise (WN) process. The autoregressive operator and moving 

average operator are defined as follows: 

                                    p
pLLLL φφφφ −−−−= L

2
211)(     (2) 

q
qLLLL θθθθ ++++= L

2
211)(     (3) 

0)( ≠Lφ  for 1<φ , the process }{ ty  is stationary if and only if d=0, in which case it 

reduces to an ARMA(p,q) process. 

 The generalization of ARIMA model to the SARIMA model occurs when the 

series contains both seasonal and non-seasonal behavior. This behavior of the series 

makes the ARIMA model inefficient to be applied to the series. This is because it may 

not be able to capture the behavior along the seasonal part of the series and therefore 

mislead to a wrong order selection for non-seasonal component. The SARIMA model is 

sometimes called the multiplicative seasonal autoregressive integrated moving average 

model and is denoted by ARIMA(p,d,q)(P,D,Q)S. This can be written in its lag form as 

(Halim & Bisono, 2008): 

t
S

t
DSdS LLyLLLL εθφ )()()1()1)(()( Θ=−−Φ             (4) 

p
PLLLL φφφφ −−−−= L

2
211)(               (5) 

PS
P

SSS LLLL Φ−−Φ−Φ−=Φ L
2

211)(              (6) 

q
qLLLL θθθθ −−−−= L

2
211)(                          (7) 

QS
q

SSS LLLL Θ−−Θ−Θ−=Θ L
2

211)(                         (8) 

where, 

     p, d and q are the order of non-seasonal AR, differencing and MA respectively. 

    P, D and Q is the order of seasonal AR, differencing and MA respectively. 

    yt represent observable time series data at period t. 

   tε  represent white noise1 error (random shock) at period t. 

    L represent backward shift operator ( ktt
k yyL −= )  

    S represent seasonal order (e.g.4=s  for quarterly data and 12=s  for monthly data).  

                                                 
1 The error term is said to be white noise if has the following characteristics: 

0)( =tE ε  , 22)( σε =tE  and stallforE st ≠= 0)( εε  
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For effective model selection, there is a need to follow the model building stages 

suggested by Box-Jenkins. These model building stages includes model identification, 

parameter estimation and evaluation and then forecasting stage.  

 

 

2.1.1 Model Identification 

In the identification stage of model building steps, we determine the possible SARIMA 

models that best fit the data under consideration. But before the search of the possible 

model for the data, the data under consideration must satisfy the condition of stationarity. 

This is because the SARIMA model is appropriate for stationary time series data (i.e. the 

mean, variance, and autocorrelation are constant through time). If a time series is 

stationary then the mean of any major subset of the series does not differ significantly 

from the mean of any other major subset of the series. Also if a data series is stationary 

then the variance of any major subset of the series will differ from the variance of any 

other major subset only by chance (see Pankratz, 1983). The stationarity condition 

ensures that the properties of the estimated parameters from the model are standard. That 

is the t statistic will asymptotically follow the usual t distribution.  

If this condition is assured then, the estimated model can be used for forecasting (see 

Hamilton, 1994). To check for stationarity, we sometimes test for the existence or 

nonexistence of what we called unit root. Unit root test is performed to determine 

whether a stochastic or a deterministic trend is present in the series. If the roots of the 

characteristic equation (such as Equation 2) lie outside the unit circle, then the series is 

considered stationary1. This is equivalent to say that the coefficients of the estimated 

model are in absolute value is less than 1 (i.e.  pifori ,,11 K=<φ ). In testing for unit 

root in a given series the features of the series must be known. When the series contains 

both seasonal and non-seasonal behaviour, the test of stationarity must be conducted on 

both components (seasonal and non-seasonal frequencies). In testing for stationarity 

under non-seasonal frequencies the most used approach is the one of Kwiatkowski et. al. 

(1992) and also Zivot and Andrews (1992).  

                                                 
1 If a series is non-stationary, it means that the random shock in the series have permanent effect.   
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Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test proposed by Kwiatkowski et 

al. (1992) is an LM type test used to test the null hypothesis that a given observable series 

is level stationary and/or stationary1 around a deterministic trend. As describe in Pfaff 

(2008) the test take the null hypothesis as a stationary process against the alternative 

hypothesis of unit root process. The model considered in the test is given by (see Pfaff, 

2008): 

  ttt rty εξ ++=        (9) 

where tr is a random walk, i.e. ttt urr += −1 , and the error process tu  is assumed to be 

),0.(.. 2
udii σ ; tξ  is a deterministic trend; tε  is also a stationary error. If 0=ξ , then this 

model is in terms of constant as deterministic regressor. The test statistics is constructed 

as either the series ty  is regress on only constant term (level) or constant term and 

deterministic trend (level and trend) depending on whether one wants to test level and/or 

trend stationary. Let the partial sum series of the residualstε) from the regression model be 

          ∑
=

==
t

i
it TtS

1

.,,2,1, K
)ε                   (10) 

Then the KPSS test statistic for the null hypothesis of stationarity is given by:  

22
1

2

εσ)T

S
LM

T

t
t∑

==                   (11) 

where 2
εσ) is an estimate of the error variance of tε  from the regression model. The 

optimal weighting function which correspond to the Bartlett window 
1

1),(
+

−=
l

s
lsw  is 

used as suggested by the authors to estimate the long-run variance2
εσ) ; that is  

                    ∑ ∑ ∑
= = +=

−
−

+
−−+==

T

t

l

s

T

st
ttt l

s
TTls

1 1 1
1

2122

1
112)( εεεσ ε

))))
   (12) 

where l  is the lag truncation parameter. In this exercise =l integer ].)100/(4[ 4
1

T   

The approximate upper tail critical values of the asymptotic distribution of the KPSS test 

are taken from Kwiatkowski et al. (1992).  

                                                 
1 For a given series ty the null hypothesis of the test is given by H0: ty ~ I(0) and H1: ty ~ I(1) 
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As described by some research that some of the conventional unit root has low 

power against the null hypothesis and it is always advisable to use more that one test as 

discuss in Cheung and Chin (1997), Maddala and Kim (1998), Gabriel (2003) to obtained 

robust conclusion about the properties of the underling time series. For instance, Perron 

(1989) shown that the power of the ADF test has low power of rejecting the null 

hypothesis of unit root when there is break in the underling series. Engel (2000) warns 

about the use of the KPSS because of its lack of power. Caner and Kilian (2001), 

indicated that the KPSS tests show size distortions when the stochastic process is near to 

non-stationarity. Chen (2002) also investigated the behaviour of the KPSS test in the 

presence breaks and found that the test has power to reject the null hypothesis stationarity 

of the series in the presence of breaks. Otero and Smith (2003) also investigated the effect 

of the KPSS test in the presence of outlier and in their research they found that the power 

of the KPSS test to reject the null hypothesis of stationarity falls when the series has a 

unit root with outliers.  

 To avoid false conclusions the ZA test which is capable of handling data with breaks and 

also use different approach from the KPSS test can be employed. 

Zivot and Andrews (ZA) test proposed by Zivot and Andrews (1992) is usually 

applied to test for stationarity of an observable series which is believed to have been 

affected by breaks. The test is sometime called a sequential break test. As discuss in 

Perron (1989), if there is structural break in the observable series, the conventional unit 

root test such as ADF, KPSS, and PP test may reflect misspecification of the 

deterministic trend. So the ZA test which gives an alternative of the Perron (1989) test of 

unit root that assumes a known break point which is based on an exogenous phenomenon. 

With the ZA test the break points are endogenously determined within the model. The 

ZA test considers three different models in testing the null hypothesis of unit root against 

the alternative hypothesis of stationary with a one time break. The models considered in 

the test are given by (see Narayan, 2005; Harvie et. al, 2006; Waheed et. al 2006): 

 

Model A 

∑
=

−− +∆++++=∆
k

j
tjtjttt ydDUtycy

1
1 εγβα     (13) 
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Model B 

∑
=

−− +∆++++=∆
k

j
tjtjttt ydDTtycy

1
1 εθβα     (14) 

Model C 

∑
=

−− +∆+++++=∆
k

j
tjtjtttt ydDTDUtycy

1
1 εθγβα    (15) 

where ty represent the observable series with ,,,2,1 Tt K= ∆ is the first difference 

operator, tε represent a white noise disturbance. Also tDU  represent an indicator dummy 

variable for a mean shift occurring at the break date (TB) whiles DT is an indicator 

dummy variable corresponding to the trend shift. The function of  tDU  and DT is given 

by: 

     


 >

=
otherwise

TBtif
DU t 0

1
           and        



 >−

=
otherwise

TBtifTBt
DTt 0

 

 

The jty −∆ term in the model allows for serial correlation and ensures the disturbance term 

in the model is white noise. From above, Model A allows for a one-time change in the 

intercept, Model B allows for a one-time change in the trend, and Model C allows for 

one-time change in both the intercept and the trend.  

According to Zivot and Andrew (1992), in the implementation of the ZA test the 

inclusion of the end points of the sample causes the asymptotic distribution of the 

statistics diverges to infinity. In this case some region must be chosen such that the end 

points of the sample are not included. The authors suggest that a trimming region be 

specified as (0.15T, 0.85T). The test consider all points as a potential candidate of break 

point but the final break point suggested by each model is selected recursively by 

choosing the value of TB for which the absolute value of the one-sided t-statistic for α  is 

minimized. The critical values of the ZA test can be obtain from Zivot and Andrew 

(1992).  

The stationarity under the seasonal frequencies can also be test to determine if the 

seasonal behaviour in the data is deterministic or stochastic. The most common approach 

is the one of Hylleberg et al (1990), see also Canova and Hansen (1995). 
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Hylleberg-Engle-Granger-Yoo (HEGY) test proposed by Hylleberg et al. 

(1990) is used to test the presence of seasonal unit root in an observable series. The test 

was first developed to apply to quarterly time series by the authors. The approach was 

extended by Franses (1990) to be applied to monthly time series. As discussed in Franses 

(1991) the seasonal differencing operator 12∆ will have 12 roots on the unit circle which 

can be decomposed as: 

                     

( )( )( )( )
( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ],231231

231231

231231

231231

11111 12

BiBix

BiBix

BiBix

BiBix

iBiBBBB

−++−

−−++

−−+−

−+++

+−+−=−

    (16) 

where all the terms other than ( )B−1 correspond to seasonal unit roots. Testing for unit 

roots in monthly time series is equivalent to testing for the significance of the parameters 

in the auxiliary regression presented below:  

            

,

)(*

2,7121,711

2,6101,692,581,572,4,6

1,452,341,331,221,11,8

tttt

ttttt

tttttt

yy

yyyyy

yyyyyyB

εµππ
πππππ

πππππϕ

++++
+++++

++++=

−−

−−−−−

−−−−−

  (17) 

where tµ  represent the deterministic part in the regression model consisting of a constant, 

11 seasonal dummy variables or a trend. )(* Bϕ is a polynomial function of B for which 

the usual assumption applies and where  
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The estimates of the iπ can be obtained by applying the ordinary least squares method. 

Testing for the significance of the iπ terms implies testing for both seasonal and non-

seasonal unit roots. The null hypothesis of unit roots is tested by t-test of the separates'π . 

The test involves the use of one-sided t-test in testing for the null hypothesis of 01 =π  

and the null hypothesis of 02 =π . The two-sided t-test are used in testing for the null 

hypothesis of 123,0 K== iiπ . The F-test is used in testing the null hypothesis that pairs 

of s'π  are equal to zero simultaneously (e.g. 043 == ππ ) as well as the joint test of s'π  

( 0123 === ππ L ). There is no seasonal unit root if 2π through 12π  are significantly 

different from zero. If 01 =π , then the presence of non-seasonal unit root 1 can not be 

rejected. According to Franses (1991), pairs of the complex unit roots are conjugates, so 

roots are only present when pairs of s'π  are equal to zero simultaneously and also in the 

case of all 122,1, K=iiπ are equal to zero, it is appropriate to apply the 12∆  filter. The 

critical values for t-tests of the separates'π , and for F-tests of pairs of s'π , as well as for 

a joint F-test of 123 ππ ==L  can be taking from Franses (1990).   

The Canova-Hansen (CH) test proposed by Canova and Hansen (1995) is one of 

the well known tests which are used to test for whether seasonality in observable time 

series is stochastic or deterministic. The test is usually considered as an extension of the 

KPSS test proposed by Kwiatkowski et al (1992) to test for null hypothesis of stationary 

seasonal against the alternative of seasonal unit root (non-stational due to seasonal unit 

root). As discussed in Caner (1998), the CH test statistics is a Lagrange Multiplier tests 

which include serially correlated and heteroscedastic processes. The autocorrelation in 

the process is handled by using a nonparametric adjustment. Given a regression model as 

in Banik and Silvapulle (1999): 

                        ntedxy tttt ,,2,1!!
K=++= αβ       (18) 

where ty is the dependent variable, tx  is set of fixed regressors which includes and 

intercept and/or linear trend, td is a set of deterministic seasonal component and te is a 

white noise process. The CH test consider trigonometric representation of (18) as 

                             tttt efxy +++= γβµ !!             (19) 
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where ,,
11
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In the test, in order to distinguish between non-stationarity at a seasonal frequency and at 

the zero frequency, it is require that ty does not have a unit root at the zero frequency. If 

ty  has a unit root at zero frequency then 1−−=∆ ttt yyy is considered as dependent 

variable (see Banik and Silvapulle, 1999).  

In testing for unit root at a specific frequency, we rewrite (19) in such a way for 

individual seasonal frequency as: 

                               ∑
=

+++=
q

j
tjjttt efxy

1

!! γβµ       (20) 

where jγ represent the seasonal cycle for the frequency )./( qjπ Hence test for a seasonal 

unit root at frequency )/( qjπ  reduces to testing for unit root in .jγ  Letting f
jjΩ

)
denote 

the jth  block diagonal of fΩ
)

, the test statistic which is an LM test under the null 

hypothesis of  stationary at the seasonal frequency  )/( qjπ is given as: 

                              ∑
=

−Ω=
n

t
jt

f
jjjtqj FF

n
L

1

1!
2)/( ,)(

1 )))

π       (21) 

for qj ,,2,1 K=  where ∑ =
= t

i ijijt efF
1

))
is the sub-vector of tF

)
 partitioned conformably 

with .γ  When the null hypothesis is satisfied, the distribution of )/( qjL π is non-standard 

and the critical values are given in Canova and Hansen (1995).   

According to Hylleberg (1995), the CH and the HEGY test complement each other. 

When the stationarity condition of the data is satisfied, the possible models 

suitable for the data can now be determined. The order of the model which AR, MA, 

SAR and SMA terms can be determine with the help of the ACF and the PACF plot of 

the stationary series. The ACF and PACF give more information about the behavior of 

the time series. The ACF gives information about the internal correlation between 

observations in a time series at different distances apart, usually expressed as a function 



Eric Aidoo                                                                                                            MSc Thesis 
 

13 
 

of the time lag between observations. These two plots suggest the model we should build. 

Checking the ACF and PACF plots, we should both look at the seasonal and non-

seasonal lags. Usually the ACF and the PACF has spikes at lag k and cuts off after lag k 

at the non-seasonal level. Also the ACF and the PACF has spikes at lag ks and cuts off 

after lag ks at the seasonal level. The number of significant spikes suggests the order of 

the model. Table 2.1 and 2.2 below describes the behaviour of the ACF and PACF for 

both seasonal and the non-seasonal series (see Shumway and Stoffer, 2006). 

 

Table 2.1: Behavior of ACF and PACF for Non-seasonal ARMA(p,q) 

 AR(p) MA( q) ARMA( p,q) 

ACF Tails off at lag k 

k=1,2,3,….. 

Cuts off after lag q Tails off 

PACF Cuts off after lag p Tails off at lags k 

k=1,2,3,…… 

Tails off 

 

 

 

Table 2.2: Behavior of ACF and PACF for Pure Seasonal ARMA(P,Q)S 

 AR(P)S MA( Q)S ARMA(P ,Q)S 

ACF Tails off at lag ks 

k=1,2,3,….. 

Cuts off after lag Qs Tails off at lag ks 

PACF Cuts off after lag Ps Tails off at lags ks 

k=1,2,3,…… 

Tails off at lag ks 

 

The ACF and PACF plot suggest the possible models that can be obtained for the data but 

it does not give the final model for the data. This means that for a given series, several 

possible models can be obtained. In other to select the best model among the possible 

models, the penalty function statistics such as Akaike Information Criterion (AIC or 

AICc) or Bayesian Information Criterion (BIC) can be used (see Sakamoto et. al., 1986; 

Akaike, 1974; and Schwarz 1978). The AIC, AICc and BIC are a measure of the 

goodness of fit of an estimated statistical model. Given a data set, several competing 
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models may be ranked according to their AIC, AICc or BIC with the one having the 

lowest information criterion value being the best. These information criterion judges a 

model by how close its fitted values tend to be to the true values, in terms of a certain 

expected value. The information criterion value assigned to a model is only meant to rank 

competing models1 and tell you which one is the best among the given alternatives. The 

criterion attempts to find the model that best explains the data with a minimum of free 

parameters but also includes a penalty that is an increasing function of the number of 

estimated parameters. This penalty discourages over fitting. In the general case, the AIC, 

AICc and BIC take the form as shown below: 

       







+−=
n

RSS
nkorLkAIC log2)log(22      (22) 

        1

)1(2

−−
++=

kn

kk
AICAICc                     (23) 

       
)log()log()log()log(2 2 n

n

k
ornkLBIC e ++−= σ                (24) 

where  

      k = the number of parameters in the statistical model, (p+q+P+Q+1) 

      L = the maximized value of the likelihood function for the estimated model.  

     RSS = the residual sum of squares of the estimated model.  

     n = the number of observation, or equivalently, the sample size 

    
2
eσ  = the error variance 

The AICc is a modification of the AIC by Hurvich and Tsai (1989) and it is AIC with a 

second order correction for small sample sizes. Burnham & Anderson (1998) insist that 

since AICc converges to AIC as n gets large, AICc should be employed regardless of the 

sample size.  

 

 

 

                                                 
1 If two or more different models have the same or similar AIC or BIC values then the principles of 
parsimony can also be applied in order to select a good model. This principle states that a model with fewer 
parameters is usually better as compared to a complex model. Also some forecast accuracy test between the 
competing models can also help in making a decision on which model is the best.  
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2.1.2 Parameter Estimation and Evaluation 

After identifying a possible model for the data, the next step in the model building 

procedure is to estimate the parameters of the selected model. The parameters are 

estimated using method of maximum likelihood estimation (MLE). At this stage we get 

precise estimates of the coefficients of the chosen model. That is we fit the chosen model 

to our time series data to get estimates of the coefficients. This stage provides some 

warning signals about the adequacy of our model. In particular, if the estimated 

coefficients do not satisfy certain mathematical inequality conditions1  that model is 

rejected.  

After estimating the parameters of the chosen model, we then check the adequacy 

of that model which is usually called model diagnostics or model evaluation. Ideally, a 

model should extract all systematic information from the data. The part of the data 

unexplained by the model (i.e., the residuals) should be small as possible. The diagnostic 

check is used to determine the adequacy of the chosen model. These checks are usually 

based on the residuals of the model. One assumption of the SARIMA model is that, the 

residuals of the model should be white noise. If the assumption of are not fulfilled then 

different model for the series must be search for. A statistical tool such as Ljung-Box Q 

statistic, ARCH–LM test and t-test can be used to test the hypothesis of independence, 

constant variance and zero mean of the residuals respectively.    

Ljung-Box statistic proposed by Ljung and Box (1978) is used to check if a 

given observable series is linearly independent. The test is usually used to check if there 

is higher-order serial correlation in the residuals of a given model. The null hypothesis of 

linearly independence of the series is examined by the test. The Ljung-Box test statistic is 

given by: 

               ( )∑
= −

+=
h

k

k

kT
TThQ

1

2

2)(
ρ)

      (25) 

 

where 

                                                 
1 After the estimation of the parameters of the model, usually the assumptions based on the residuals of the 
fitted model are critically checked. The residuals are the difference between the observed value or the 
original observation and the estimate produced by the model. For the case of SARIMA model the 
assumption or the condition is that the residuals must follow a white noise process. If this assumption is not 
met, then necessary action must be taking.  
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 kρ) = the sample autocorrelation at lag k 

 T = the sample size 

 h = the number of time lags included in the test 

When the null hypothesis is satisfied, )(hQ  is asymptotically 2χ distributed with h 

degrees of freedom. The null hypothesis of linear independence is rejected if the 

valuep −  associated with )(hQ is small )( α<− valuep or when the value of )(hQ  is 

greater than the selected critical value of the chi-square distribution with h degrees of 

freedom. 

ARCH-LM  test of Engle (1982) is used to check for conditional 

heteroscedasticity of the squared residuals 2
ta  of a given model. Suppose a linear 

regression model given by; 

 ,,,1,
22

110
2 Tmteaaa tmtmtt KK +=++++= −− ααα     (26) 

where te  denotes the error term, m is a prespecified positive integer, and T is the sample 

size. According to Tsay (2005), the test for conditional heteroscedasticity which is also 

known as Arch effect is the Lagrange Multiplier test and is equivalent to the usual F  

statistic for testing 0=iα ),,1( mi K=  in the above Equation (26). The null hypothesis of 

no Arch effect in the squared residuals )0..( 1 === mei αα K is examined by the test.  

Let ∑
+=

−=
T

mt
taSSR

1

22
0 )( ω  where ∑

=







=
T

t
ta

T 1

21ω is the sample mean of ,2
ta  and 

∑
+=

=
T

mt
teSSR

1

2
1

)
where te

)
is the least squares residual of the prior linear regression. The F 

statistic as in Tsay (2005) is given by: 

              ,
)12/(

/)(

1

10

−−
−

=
mTSSR

mSSRSSR
F      (27) 

When the null hypothesis is satisfied, F is asymptotically )(2 mχ distributed with m 

degrees of freedom. The null hypothesis of no Arch effect is rejected if the valuep −  

associated with F is small )( α<− valuep or when the value of F is greater than the 

selected critical value of the chi-square distribution with m degrees of freedom 
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2.1.3 Forecasting From Seasonal ARIMA Models 

The last step in Box-Jenkins model building approach is Forecasting. After a model has 

passed the entire diagnostic test, it becomes adequate for forecasting. For example Given 

Seasonal ARIMA (0,1,1)(1,0,1)12  model we can forecast the next step which is given by 

(see Cryer  & Chan, 2008) 

1312113121 )( −−−−−− Θ+Θ−−+−Φ=− tttttttt yyyy εθεθεε              (28) 

1312113121 −−−−−− Θ+Θ−−+Φ−Φ+= tttttttt yyyy εθεθεε              (29) 

The one step ahead forecast from the origin t is given by 

121112111 −−−−+ Θ+Θ−−Φ−Φ+= ttttttt yyyy εθεθε)
    (30) 

The next step is 

1110111012 −−−−=+ Θ+Θ−Φ−Φ+= tttttt yyyy εθε))
    (31) 

and so forth. The noise terms 110111213 ,,,,, εεεεε K (as residuals) will enter into the 

forecasts for lead times ,13,,2,1 K=l but for 13>l  the autoregressive part of the model 

takes over and we have  

 1313121 >Φ−Φ+= −+−+−=+ lforyyyy ltltltlt

))
                    (32) 
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2.2 SETAR Model 

Self Excited Threshold Autoregressive (SETAR) model is a class of the Threshold 

Autoregressive (TAR) model proposed by Tong (1978) and further discussed in Tong and 

Lim (1980), Tong (1983, 1990). The SETAR model is a set of different linear AR 

models, changing according to the value of the threshold variable(s) which is the lagged 

values of the series. The process is linear in each regime, but the movement from one 

regime to the other makes the entire process nonlinear. The two regime version of the 

SETAR model of order p is given by (see Boero and Marrocu, 2004): 
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    (33) 

where )1(
iφ  and )2(

iφ are the coefficient in lower and higher regime respectively which 

needs to be estimated; τ  is the threshold value; )1(p  and )2(p  are the order of the linear 

AR model in low and high regime respectively. In this work the order of the AR model in 

both regimes are equal.  dty −  is the threshold variable that governs the transition between 

the two regimes with d being the delay parameter which is a positive integer )( pd < ; 

{ })1(
tε  and { })2(

tε  are sequence of independently and identically distributed random 

variables with zero mean and constant variance (i.e. ),0.(.. 2
εσdii ). The two regime 

SETAR model in its simplest form can be written as SETAR (2, p, d). As discussed in 

Tsay (2005), the properties of the general SETAR model are hard to obtain. Also from 

the discussion of Franses and van Dijk (2000), little is known about the condition under 

which the SETAR models generate time series that are stationary. Such condition has 

only been established for firs-order SETAR model. For effective model selection, we 

follow the procedure discussed in Franses and van Dijk (2000). The approach of SETAR 

modelling start with AR(p) model specification and linearity against SETAR model, 

SEATR model identification, estimation and evaluation of the selected model and then 

forecasting. 
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2.2.1 AR Specification and Linearity Test  

In order to apply the SETAR model to an observable time series, the series must first be 

nonlinear in nature. That is the existence of nonlinear behaviour in the series must first be 

checked. To test for nonlinearity in the series we first have specifies an appropriate linear 

AR(p) model for the series under consideration. As discuss in Franses and van Djik 

(2000), the choice of the maximum lag order is based on the autoregressive lag order that 

minimize the AIC value. After determine the linear AR(p) model we then test for 

linearity using a well known linearity test such Keenan test and Tsay F-test.  

 Keenan test was introduced by Keenan (1985) to detect nonlinearity in an 

observable time series. The test is considered as a special case of the RESET test 

proposed by Ramsey (1969). It is a special case in the sense that it avoids 

multicollinearity. As describe in Cryer and Chan (2008), the Keenan test for nonlinearity 

analogous to Tukey’s one degree of freedom for nonadditivity test. As in Cryer and Chan, 

the Keenan test is motivated by approximating a nonlinear stationary time series by a 

second-order Volterra expansion which is give by: 

                          ∑ ∑ ∑
∞

−∞=

∞

−∞=

∞

−∞=
−−− ++=

u v u
vtutuvutut uy εεθεθ       (34) 

where { }∞<<−∞ tt ,ε is a sequence  of independent and identically distributed with zero-

mean random variable. The process { }ty  is linear if the double sum of the right-hand side 

of (34) does not exist. Thus we can test the linearity of the time series by testing whether 

or not the double sum of (34) does not exist. That is, the test requires that one distinguish 

between linearity versus a second-order Volterra expansion, by examining 0=uvθ  as 

well as the coefficients on higher orders. 

It is shown in Cryer and Chan (2008) that the Keenan’s test is equivalent to testing if 

0=η  in the multiple regression model (with the constant 1 being absorb into0θ  ): 

                        ttmtmtt yyyy εηφφθ +++++= −−
2

110

)
K     (35) 

The Keenan’s test statistic for the null hypothesis of linearity )0:( 0 =ηH is given as: 

                                
2

2 )22(

η
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−−=
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      (36) 
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where 

 m = lag order of the linear autoregressive process 

 n = same size considered 

 RSS = the residual sum of squares from the AR(m) process 

When the null hypothesis is satisfied, F
)

 is approximately F-distributed1 with 1 and 

22 −− mn  degrees of freedom. The null hypothesis of linearity is rejected if the 

valuep −  associated with F
)

 is small )( α<− valuep or when the value of F
)

 is greater 

than the selected critical value of the F-distribution with 1 and 22 −− mn  degrees of 

freedom. 

Tsay’s F-test introduced by Tsay (1989) is a test for detecting nonlinearity in an 

observable time series. The test considers a more general nonlinear alternative and is a 

combined version of the nonlinear test of Keenan (1985), Tsay (1986), and Petruccelli 

and Davies (1986). According to the author the test is based on arranged autoregression 

and predictive residuals. In the Tsay’s arranged regression approach, the linear AR(p) 

model is considered in the null against the alternative hypothesis of nonlinear threshold 

model. For an AR(p) regression with n observation as tpttt ayyy += −− β),,,1( 1 K for 

npt ,,1K+=  where β  is a )1( +p dimensional vector of coefficients and ta  is the 

noise. The author refers to ),,,1,( 1 pttt yyy −− K as a case of data for the AR(p) model. Then 

an arranged autoregression is an autoregression with cases rearranged based on the values 

of a particular regressor. Consider a two regime TAR(2;p,d) model with n observations, 

the threshold variable dty −  may assume values },,,{ dnh yy −K where 

}.1,1max{ dph −+=  Let iπ be the time index of the ith  smallest observation of 

}.,,{ dnh yy −K Then the arranged autoregression with the first s cases in the first regime 

and the rest in the second regime is given by: 
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1 )22,1( −− mnF  
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where s satisfies .
11 +

≤<
SS

yy ππ τ The arranged autoregression provides a means by which 

the observations are separated into two groups such that if the true model is indeed 

TAR(2;p,d) process, the observations in a group follow the same linear autoregressive 

model. According to the author the separation of the observation does not require 

knowing the precise value of 1τ  and only the number of observation in each group 

depends on1τ . But since the threshold value is unknown, however the sequential least 

square estimates )1(
vΦ

)
are consistent for )1(

vΦ if there is sufficiently large number of 

observations in the first regime.    

For the arranged autoregression, let mβ
)

 be the vector of least squares estimates based on 

the first m cases, mP the associated XX ' inverse matrix, and 1+mx  the vector regressor of 

the next observation to enter the autoregression 
1++ mdy π . Then the recursive least squares 

estimates can be computed efficiently by  
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     (38) 
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and the predictive and standardized predictive residuals is given by: 

                                  mmdd xya
mm

βππ

)) '
111 +++ −=

++
     (42) 

and  

                                   1/
11 +++ ++

= mdd Dae
mm ππ

)
     (43) 

 

For fixed p and d, the effective number of observations in arranged autoregression is 

.1+−− hdn  Assuming the recursive autoregressions begin with b observation so that 

the there are hpbdn −−−− predictive residuals available. We do the least squares 

regression  

                        ∑
=

+−++ ++=
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v
dvdvd iii
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0 πππ εωω)
      (44) 
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for ,1,,1 +−−+= hdnbi K  and compute the associated F statistic under the null 

hypothesis of linear AR(p)  

                      ,
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        (45) 

where the tε)  is the square residual of (44) and the argument ),( dp of F
)

is used to signify 

the dependence of the F-ratio on p and d. Suppose that ty  is a linear stationary 

autoregressive process of order p, then for large n the statistic ),( dpF
)

follows an 

asymptotic  F distribution with 1+p and hpbdn −−−−  degrees of freedom. 

The null hypothesis of linearity is rejected if the valuep −  associated with ),( dpF
)

 is 

small )( α<− valuep or when the value of ),( dpF
)

 is greater than the selected critical 

value of the F-distribution with 1+p and hpbdn −−−−  degrees of freedom 

 

 

2.2.2 Model Identification  

After the null hypothesis of linearity has been rejected we then select appropriate SETAR 

model that best fit the data. In this research we consider two regime SETAR model where 

the order p of  AR model in both regimes are equal, that is SETAR(2;p,d). For a given 

nonlinear time series, different SETAR models with different delay parameter d and 

threshold value τ  can be identified. The value of delay parameter is defined as the value 

for which the Tsay F statistic is significant and maximum. Also according to Tsay (1989) 

the predictive residual can be used to locate the threshold values  once the need for a 

threshold model is detected, see details from Franses and van Dijk (2000), Zivot and 

Wang (2006). From all the possible models by a grid search the choice of the best model 

can be selected based on the minimum of the usual information criterion which are the 

AIC and BIC. The AIC and BIC for the AR model in the two regimes as defined by Tong 

(1990) and presented in Franses and van Dijk (2000) is given by:  

                   )1(2)1(2lnln),( 21
2
22

2
1121 +++++= ppnnppAIC σσ ))

  (46) 

                  2211
2
22

2
1121 ln)1(ln)1(lnln),( npnpnnppBIC +++++= σσ ))

  (47) 
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where 

 2,1, =jn j  is the number of observations in the jth  regimes and  

 2,1,2 =jjσ)  is the variance of the residuals in the jth  regimes 

 1p and 2p  are the selected lag order in regime 1 and 2 respectively for which the  

 information criterion is minimized. 

 

2.2.3 Parameter Estimation and Evaluation  

After the desired model has been selected, the next step is to estimate the 

parameters of the selected model. The parameters can be estimated using a sequential 

conditional least square method. According to Franses and van Dijk, by using this 

method the resulting estimates are equivalent to maximum likelihood estimates (MLE) 

under the additional assumption that the residuals are normally distributed.  

After the parameters of the selected model have been estimated, we then evaluate 

the adequacy of the selected model by accessing the residuals from the model which is 

usually called model diagnostics. The approach of access the adequacy of SETAR model 

may follow the same way as describe in section 2.1. As describe by Franses and van Dijk 

(2000), the usual ARCH-LM test and the t-test can be used to test the hypothesis of 

constant variance and zero mean of the residuals respectively. But for the test of serial 

correlation the authors argue that the Ljung-Box statistic is invalid for the residuals from 

the nonlinear SETAR model and hence suggested the LM-type test proposed by Breusch- 

Godfrey. 

The Breusch–Godfrey  (BG) test proposed by Breusch (1979) and Godfrey 

(1978) is a Lagrange Multiplier test used to test for higher-order serial correlation in the 

residuals from a given regression model. Suppose a regression model given by: 

            ttt uxy ++= 10 ββ         (48)  

where tu  is the OLS residuals from the regression model which might follow an 

autoregressive process of order p which is given by: 

                      tptpttt uuuu εααα ++++= −−− L2211      (49) 
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The BG test uses the OLS estimation procedure to solve the auxiliary regression model 

given by: 

 tptptttt uuuxu εαααββ ++++++= −−−
)

L
)))

221110     (50) 

The test statistic for the null hypothesis ( 0: 21 ==== poH ααα L ) is given by: 

                          2TRLM =         (51) 

where  

 T = the sample size 

 2R = the usual coefficient of determination calculated from the model 

When the null hypothesis is satisfied, LM is asymptotically )(2 pχ distributed with p 

degrees of freedom. The null hypothesis of no serial correlation of any order up to p is 

rejected if the valuep −  associated with LM is small )( α<− valuep or when the value 

of LM is greater than the selected critical value of the chi-square distribution with p 

degrees of freedom. 

 
 

2.2.4 Forecasting From SETAR Model 

The important aim of considering nonlinear type of model such as SETAR as compare to 

the linear counterpart is to adequately describe the dynamic behaviour of the observable 

series under consideration and also to produce adequate forecast values that are far better 

than the one produced by the simple linear models. SETAR models have been successful 

been used to model and forecast a number of economic and financial data.  

The optimal one step-ahead forecast from the origin t is given by (see, Franses and van 

Dijk, 2000): 

                );(]|[ 1|1 φttttt xFyEy =Ω= ++
)

     (52) 

where 1+ty
)

 is the forecast value for the time )1( +t , and tΩ is the history of the time 

series up to and including the observation at time t. );( φtxF is the nonlinear function that 

represent the SETAR model. The next optimal step-ahead forecast is given by: 

             ]|);([]|[ 12|2 tttttt xFEyEy Ω=Ω= +++ φ)
    (53) 
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In general, the linear conditional expectation operator E can not be interchanged with the 

nonlinear operator F, that is  

                            ])[()]([ ⋅≠⋅ EFFE        (54) 

Put differently, the expected value of a nonlinear function is not equal to the function 

evaluated at the expected value of its argument. Hence, 

                    );()];|[(]|);([ |111 φφφ tttttt yFyEFyFE +++ =Ω≠Ω )
  (55) 

 
The optimal h-step-ahead forecast can be obtained as  

                           );(]|[ 1| φ−+++ =Ω= htthttht xFyEy
)

    (56) 

  

 
2.3 FORECAST COMPARISON 

In applied economic and financial modelling, the core point for estimating an 

econometric or time series model is so that the estimated model can be used to predict 

future value for decision making and policy evaluation. Forecasting is the process of 

making statements about events whose actual outcomes have not yet been observed. It is 

an important application of time series. If a suitable model for the data generation process 

(DGP) of a given time series has been found, it can be used for forecasting the future 

development of the variable under consideration. A good model for forecasting can be 

described as a model that produces minimum forecast errors as compare to other 

competing models. And to choose a final model for forecasting the accuracy of the model 

must be higher than that of all the competing models. The accuracy for each model can 

be checked to determine how the model performed in terms of both in-sample and out-of-

sample forecast. Usually the model producing fewer out-of-sample forecast errors is 

preferred than a model producing fewer in-sample forecast errors. The forecast errors are 

the difference between the actual observations and the observations predicted by the 

estimated model. Usually in time series modelling some of the observations are left out 

during the model building process in other to access accuracy of the out-of-sample 

forecast of the estimated models. The accuracy of the models can be compared using 

forecast measure such as Mean Absolute Error (MAE), Root Mean Square Error 
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(RMSE). A model with a minimum of MAE or RMSE is considered to be the best for 

forecasting. In mathematical notation the MAE and RMSE are define as: 

 

                              ∑∑
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where ty  is the actual observation , ty

)
 is the forecasted value and T is the sample size. 

The DM test proposed by Diebold-Mariano (1995) can also be used to check if there exist 

significant differences between the forecast accuracy of the two competing models. The 

null hypothesis of DM test is that there is no difference between the forecast accuracy 

from the two models against the alternative hypothesis that there is difference between 

the forecast accuracy from the two models. One sided test can also be performed.  
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3 DATA AND EMPIRICAL RESULTS 

 
This section starts by describing the source and properties of the inflation series and how 

both models under consideration were applied. The section also describes how the 

forecast results from both were compared to each other. The entire analysis made use of 

automatic codes and functions produced by R Development Core Team (2010). 

 

3.1 Descriptive Statistics 

The data employed in this research is inflation rate of Ghana from January 1980 to 

December 2010, which is made up of 372 observations. The data was obtained from the 

Statistical Service Department of Ghana. The series is seasonally unadjusted monthly 

observations. The full sample is divided into two portions, that is, the first part which 

starts from 1980:1 and ends in 2009:12 (360 observations) is used for model construction 

purposes while the 12 months observations are retained to assess the out-of-sample 

forecast performance of the derived models, and hence are not used in modelling.   

Figures 3.1 and 3.2 below describe the dynamic behaviour of Ghana inflation. The right 

panel of Figure 3.1 display the time series plot of inflation rates in its original form which 

is denoted by tR  whiles the left panel display the density plot of the inflation rates. Table 

3.1 also provides summary statistics of the inflation rates series.  

From Figure 3.1, it can be confirmed that the inflation of Ghana exhibit volatility 

starting from somewhere around 1993. The volatility in Ghana inflation series can be 

attributed to several economic factors. Some of those factors are partly transmitted 

internationally. Examples of these factors include increases in monetary aggregates 

(money supply), exchange rate depreciation, petroleum price increases, and poor 

agricultural production (see Aidoo, 2010) etc. Ocran (2007) describe inflation in Ghana as 

monetary phenomena. The summary statistics shown in Table 3.1 implies that the 

dynamic structure of the inflation rates series contains an asymmetric pattern with a high 

variation among the observations. The sample moments suggest that the right tail of the 

distribution is fatter than the left tail and also has a higher peak (leptokurtic) which is 

confirmed by the density plot. The p-value of the Jarque-Bera normality test also 
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confirms the asymmetric nature of the distribution of the inflation rates series at 5% level 

of significance.  

 
 

FIG 3.1: Monthly Inflation Rates of Ghana (1980:1–2009:12) 
 

 

 
 

FIG 3.2: ACF and PACF of Inflation Rates (1980:1–2009:12) 
 
 

Table 3.1: Descriptive Statistics of Rt 

Statistic Sub-sample (N=360) 

Minimum 1.14 
Maximum 174.14 
Mean 32.09 
Median 22.93 
Standard Deviation 29.78 
Skewness 2.36 
Kurtosis 5.39 
Jarque-Bera (p-value) 2.2e-16 
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3.2 SARIMA Modelling  

In this section we use Seasonal ARIMA model approach to model and forecast Ghana 

inflation rates. In the modeling cycle, we follow the Box and Jenkins procedure as 

described in section 2.2.  

 

3.2.1 Stationarity Test and Model Identification 

As described in Section 2, the approach of SARIMA modelling requires stationary 

series hence we have to test for unit root in the inflation series. Using the method of 

KPSS in testing for stationarity, we test the null hypothesis that the inflation rate )( tR  is 

stationary. Table 3.2 below presents the results from the unit root test with which the 

critical values at 5% level are placed in the parenthesis. In the test, we considered a 

model with a constant term as well as a model with constant term and a trend. From the 

test results we reject the null hypothesis of stationarity for a model with only constant 

term. But for a model with constant term and trend we fail to reject null hypothesis of 

stationarity. Looking at the situation, making a decision for stationarity or unit root 

becomes very difficult. As described by several research works, most conventional unit 

root test has problems when there is chock within the series. Caner and Kilian (2001) 

show by simulation that the KPSS test is subject to immense size distortions when the 

null is close to the alternative of a unit root. From the left panel of Figure 3.1 above, it is 

clear that Ghana inflation rates have experienced series of chocks within the period of 

this study. In this situation we employ the ZA unit root test approach to enable us to draw 

conclusion on stationarity or unit root in the inflation series. This method is capable of 

handling time series with chocks. From the test results as shown in Table 3.2, we 

conclude that the inflation series has unit root. This is confirmed in both cases, that is 

using a model with only constant term and also a model with both constant term and 

trend. Now since the series is non-stationary we consider first differencing to render it 

stationary and it is denoted by tY . After considering the first differencing, we use both 

test to check again if the series is now stationary or has second unit root. From the test 

results as shown in Table 3.3 below, we conclude at 5% level of significance that the first 

differenced series is now stationary. 
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Table 3.2 Unit Root Test for Inflation Rates 

 Test Statistic 

Test type Constant Constant + trend 

KPSS 

ZA 

1.5638 (0.463) 

-4.6685 (-4.8) 

0.1035 (0.146) 

-4.7929 (-5.08) 

 

Table 3.3 Unit Root Test for difference Inflation Rates 

 Test Statistic 

Test type Constant Constant + trend 

KPSS 

ZA 

0.0269 (0.463) 

-9.8368 (-4.8) 

0.0243 (0.146) 

-10.438 (-5.08) 

      

From the acf and pacf plot as display by in Fig 3.2, we can see that the inflation series 

slowly decline and portray a sin wave pattern which describe seasonal and non-seasonal 

component of the series. And since the series have both features it becomes necessary to 

test for the behaviour of the seasonality (deterministic or stochastic) in the data. In this 

case we also need to test for seasonal unit root. This will enable us to be sure that the data 

is now stationary (i.e. at both seasonal and non-seasonal frequencies) for modelling.      

Using HEGY approach as described in Section 2, we test the null hypothesis that the 

first non-seasonal differenced inflation rates )( tY has seasonal unit root. From the HEGY 

test results as presented in Table 3.4, we reject the null hypothesis of unit root at the 

seasonal frequencies. The test also confirms that the non-seasonal part of the series is also 

stationary. As described by some researchers, some times most of the test has low power 

of rejecting the hypothesis and in such case it usually becomes advisable to employ more 

than one test before drawing conclusion. In other to make good conclusion we also 

employ the seasonal unit root test approach by Canova-Hansen. From the results as 

presented in Table 3.5 we fail to reject the null hypothesis of no seasonal unit root at all 

the seasonal frequency in our first differenced series )( tY . Hence we conclude that the 

first differenced series is now stationary at both seasonal and non-seasonal frequency. 
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Table 3.4: HEGY Seasonal Unit Root Test for Yt 

 Variable 
t-statistics (one sided) Constant Constant + Seasonal Dummies 

1π  -4.569* -4.344* 

2π  -4.130* -4.640* 

t-statistics (two sided)   

3π  -6.192* -6.456*     

4π  -2.238* -1.964 *    

5π  -7.748* -7.925 *    

6π  2.807 3.429     

7π  -9.383* -9.281 *    

8π  -1.423* -1.829 *    

9π  -12.350* -12.596*     

10π  6.011 5.839     

11π  -7.429* -7.861*     

12π  -0.099 -0.068     

F-statistics   

43,ππ  21.704* 22.315* 

65 ,ππ  33.610* 37.090* 

87 ,ππ  46.098* 44.978* 

109 ,ππ  76.267* 79.370* 

1211,ππ  28.368* 31.693* 

* null hypothesis of seasonal unit root is rejected at 5% significant level 

 

Table 3.5: CH Seasonal Unit Root Test of tY  

Frequency L-statistic 

6
π  0.328**  

3
π  0.069 ** 

2
π  0.336 ** 

3
2π  0.085 ** 

6
5π  0.059 ** 

π  0.105 ** 
** not significant at 5% level 
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Following the Box-Jenkins procedure, since our data is now stationary and has no unit 

root at both seasonal and non-seasonal frequencies, the next step in the model building 

procedure is to determine the order of the AR and MA for both seasonal and non-

seasonal component. This can be determine by using the acf and pacf plot of the series as 

suggested by Box-Jenkins and also described in section 2. The Figure 3.3 below display 

the acf and pacf plot of the first differenced series and ninety-five percent (95%) 

confidence bands )/2( T± are plotted on both panels. As described in section 2, the non-

seasonal order are denoted by qandp  whiles the seasonal order are denoted by P and Q.   

From the figure the acf has an exponential decay starting from nonseasonal lag 1 and 

seasonal lag 12 and the pacf also has a spike at lag 1 and seasonal lag 12. After 

comparing about 16 different models using their information criterion the most 

appropriate models were selected. The models are presented in Table 3.6 below with their 

AIC and BIC values. The choice of the models is based on the model with a minimum 

AIC and BIC value.  

 

 

FIG 3.3: ACF and PACF of first non-seasonal differenced series 

 

Table 3.6: AIC and BIC for the Suggested ARIMA Models 
Model AIC BIC 

ARIMA(1,1,0)(2,0,1) 12 2052.99 2072.40 
ARIMA(1,1,0)(1,0,1) 12 2052.34 2067.87 
ARIMA(1,1,0)(0,0,2) 12 2052.37 2067.87 
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3.2.2 Parameter Estimation and Evaluation  

Looking at Table 3.6, ARIMA(1,1,0)(1,0,1)12 could be judge as the best model that fit the 

data well since it has the minimum value for both AIC and BIC. As described by some 

research work (e.g. Geunts and Ibrahim, 1975), the selected model is not necessary the 

model that provides best forecasting results and since we are interested in a model that 

will give the best out of sample forecast results, hence we decided to maintain the three 

models for further assessment and accuracy test. From our derived models, using the 

method maximum likelihood the estimated parameters of the models with their 

corresponding standard error is shown in Tables 3.7, 3.8 and 3.9 below.  

After the parameters of the models have been estimated the models needs to be 

checked to determine if they satisfies all the assumptions of seasonal ARIMA model. 

That is the residuals of the model must follow a white noise process. This is to say that 

residuals should have zero mean, constant variance and also uncorrelated. Figure 3.4 

below display the acf of the residuals of the selected SARIMA models. From the plot we 

can see that the autocorrelation of the residuals from the three models are all zero, hence 

we can conclude that the residuals are uncorrelated. Using ARCH-LM and t test, we can 

test for constant variance and zero mean assumption respectively of the residuals of the 

selected models. Table 3.10 below provides the test results for ARCH-LM, t and Ljung-

Box test. From the table, since the p-value of the ARCH-LM and t test is greater than 5% 

significant level, we fail to reject the null hypothesis of no ARCH effect and the null 

hypothesis of approximately zero mean respectively in the residuals of the selected 

models. Hence we conclude that there is a constant variance among residuals of the 

selected models and the true mean of the residuals is approximately equal to zero. Also 

since the p-values for the Ljung-Box test exceed 5%, indicating that there is no 

significant departure from white noise for the residuals.  

Thus, since the selected models satisfy all the necessary assumptions, now we can 

say that the models can provide an adequate representation of the data. 
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Table 3.7: Estimates of Parameters for ARIMA (1,1,0)(2,0,1)12 
95% Confidence Interval Variable Estimate Standard Error 

Lower Limit Upper Limit 
AR(1) 0.5520 0.0448 0.464 0.640 

SAR(1) 0.1132 0.0996 -0.082 0.308 

SAR(2) 0.0928 0.0781 -0.060 0.246 

SMA(1) -0.7894 0.0834 -0.953 -0.626 

2σ)  16.93   

 
 

Table 3.8: Estimates of Parameters for ARIMA (1,1,0)(1,0,1)12 
95% Confidence Interval Variable Estimate Standard Error 

Lower Limit Upper Limit 
AR(1) 0.5506   0.0449   0.463 0.639   

SAR(1) 0.0366   0.0947    -0.149 0.222 

SMA(1) -0.7112 0.0790 -0.866 -0.556 

2σ)  17.01   

 
 

Table 3.9: Estimates of Parameters for ARIMA (1,1,0)(0,0,2)12 
95% Confidence Interval Variable Estimate Standard Error 

Lower Limit Upper Limit 
AR(1) 0.5501   0.0448    0.462 0.638 

SMA(1) -0.6770   0.0548    -0.784 -0.570   

SMA(2) -0.0200 0.0581 -0.134 0.094 

2σ)  17.01   

 
 

Table 3.10: Residuals Diagnostics Test for SARIMA model 
P-value Model 

t test ARCH-LM test Ljung-Box test 
ARIMA(1,1,0)(2,0,1) 12 0.5971 0.6594 0.07149 

ARIMA(1,1,0)(1,0,1) 12 0.6369 0.5483 0.0711 

ARIMA(1,1,0)(0,0,2) 12 0.6411 0.5402 0.06929 
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FIG 3.4: ACF Plot of the Residuals of the Selected Seasonal ARIMA Models 
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3.3 SETAR Modelling 

In this section we use 2 regime Self Excited Threshold Autoregressive (SETAR) model 

approach to model and forecast Ghana inflation rates. In the SETAR modelling cycle we 

follow the approach presented in Franses and van Dijk (2000).    

 

3.3.1 Linearity Test 

As described in section 2, in order to model a time series with SETAR model, the 

series must be nonlinear, hence we have to test for the existence of nonlinearity in the 

inflation rates. To test for nonlinearity in the series we first specifies linear AR(p) model. 

Using akaike information criterion, we found AR(16) model for the series. The choice of 

the maximum lag order is based on the autoregressive lag order that gives the minimum 

AIC value. After determine the linear AR model we employ Tsay F-test and the Keenan 

1-degree test to test for linearity against the alternative of nonlinearity for the Keenan 

test. The F-test of Tsay has the alternative of threshold-type nonlinearity. Both linearity 

tests depend on the linear AR(16) model selected. Table 3.11 below summarizes the 

results from the Tsay and Keenan 1-degree test. From the results, in the Keenan 1-degree 

test we reject the null hypothesis of linearity since the p-value of 0 is less than the 5% 

significant level. Also in the Tsay test, we reject the null hypothesis of no threshold 

nonlinearity since the p-value is less the 5% significant level. Hence we conclude that the 

data follows a threshold nonlinear. From both test about the nonlinearity of our data we 

conclude that the inflation rates of Ghana is nonlinear and it can be well explained by the 

regime switching model  as compare to the simple linear model.   

 

Table 3.11: Linearity test 

Test Test statistic P-value Decision 

Keenan 1-degree 22.187 < 0.001 Linearity rejected 

Tsay 14.28 < 0.001 No threshold nonlinearity rejected 
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3.3.2 Model Identification 

After confirming that the inflation data is nonlinear, we then identify the specific SETAR 

model that best fit the data. We do this by determine the autoregressive lag order p in 

each regime and the threshold variabledty −  where d represent the delay parameter. We 

choose the model with p  lag order for both regimes and dty − threshold variable that 

minimize the AIC value. After performing a grid search on all possible combination of 

SETAR models that can be fitted to the data, SETAR (2;16,8) model with a threshold 

variable 8−ty  and SETAR (2;16,9) model with a threshold variable 9−ty  could be 

appropriate to explain the nonlinearity in the inflation data. These two models of course 

have closed minimum AIC value. The AIC values of these competing SETAR models are 

presented in Table 3.12 below. 

 

3.3.3 Parameter Estimation and Evaluation 

From the model identification stage we found that SETAR(2;16,8) and SETAR(2;16,9) 

models with threshold variable 8−ty  and 9−ty  respectively could be judge as the best 

model that fit the data well since it has the minimum value for both AIC. As done in 

section 3.2.1, we prefer to maintain the two models for further assessment on their 

forecast ability. From our derived models, following the approach of Franses and van 

Dijk (2000), we use the method of conditional least squares to estimate the parameters of 

the models. Table 3.13 and 3.14 below present the estimated parameters of the selected 

SETAR models with their corresponding threshold value.  

After the parameters of the two SETAR models have been estimated we check the 

residuals of the models for best fit. That is we check for nonexistence of serial 

autocorrelation, zero mean and constant variance of the residuals. As done in section 3.2 

we use the ARCH-LM and t test to check for constant variance and zero mean of the 

residuals respective. Lagrange Multiplier BG test was also used to check for higher-order 

serial correlation. From the results as shown in Table 3.15, we fail to reject the null 

hypothesis of all the three test for SETAR (2;16,9) model. On the hand, we reject the 

hypothesis of no ARCH effect and no serial correlation up to order 6 for SETAR (2;16,8) 

model.  
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Table 3.12: AIC for the Suggested SETAR Models 
Model AIC BIC 

SETAR(2;16,8)  807.7925 943.806 

SETAR(2;16,9)  807.2694 943.283 

 

 

Table 3.13: Estimates of Parameters for SETAR (2;16,8)  

Low Regime High Regime 
Coefficient 

Estimate Std Error t-value Estimate Std Error t-value 

Constant 1.5763 2.4127 0.6533 0.1622 0.3399 0.4773 

1φ  0.5466 0.1605 3.4064 1.6874 0.0545 30.9872 

2φ  0.2186 0.3737 0.5850 -0.5780 0.0976 -5.9216 

3φ  0.2125 0.4610 0.4608 -0.1528 0.0773 -1.9756 

4φ  -0.1686 0.4568 -0.3690 0.0060 0.0716 0.0832 

5φ  -0.0106 0.4325 -0.0246 0.0962 0.0677 1.4201 

6φ  0.1378 0.3854 0.3575 -0.0092 0.0679 -0.1360 

7φ  0.0124 0.4223 0.0295 -0.1523 0.0671 -2.2675 

8φ  -0.0794 0.4670 -0.1699 0.1705 0.0674 2.5300 

9φ  0.2847 0.4959 0.5742 -0.0176 0.0678 -0.2588 

10φ  -0.0345 0.3308 -0.1041 -0.0737 0.0673 -1.0946 

11φ  0.0145 0.3230 0.0450 -0.0645 0.0674 -0.9560 

12φ  -0.3895 0.3315 -1.1748 -0.2657 0.0674 -3.9434 

13φ  0.0923 0.3110 0.2968 0.5675 0.0703 8.0722 

14φ  -0.0316 0.2641 -0.1197 -0.1603 0.0785 -2.0419 

15φ  -0.0439 0.2892 -0.1517 -0.2044 0.0731 -2.7951 

16φ  0.2011 0.1396 1.4408 0.1490 0.0414 3.6012 

Threshold 
value 

                          12 

proportion 15.99% 84.01% 
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Table 3.14: Estimates of Parameters for SETAR (2;16,9) 

Low Regime High Regime 
Coefficient 

Estimate Std Error t-value Estimate Std Error t-value 

Constant 2.8430 2.0642 1.3773 0.2277 0.3599 0.6328 

1φ  0.5688 0.1095 5.1968 1.6615 0.0555 29.9616 

2φ  0.1639 0.1723 0.9516 -0.4646 0.1131 -4.1094 

3φ  0.2864 0.2801 1.0225 -0.2820 0.1049 -2.6877 

4φ  -0.1298 0.3230 -0.4019 0.0230 0.0729 0.3153 

5φ  -0.0754 0.2569 -0.2935 0.1173 0.0700 1.6748 

6φ  0.0625 0.2550 0.2450 0.0022 0.0694 0.0312 

7φ  0.0468 0.3075 0.1522 -0.1797 0.0686 -2.6210 

8φ  0.0744 0.3546 0.2099 0.1813 0.0680 2.6645 

9φ  -0.0162 0.3824 -0.0425 -0.0024 0.0685 -0.0346 

10φ  0.0145 0.3784 0.0382 -0.0780 0.0673 -1.1592 

11φ  -0.0159 0.3061 -0.0519 -0.0693 0.0673 -1.0288 

12φ  -0.3130 0.3046 -1.0274 -0.2644 0.0675 -3.9186 

13φ  0.0820 0.3206 0.2559 0.5631 0.0695 8.1025 

14φ  0.0883 0.2954 0.2987 -0.1253 0.0792 -1.5807 

15φ  -0.0294 0.2181 -0.1350 -0.2468 0.0782 -3.1535 

16φ  0.0435 0.1401 0.3106 0.1596 0.0411 3.8821 

Threshold 
value 

                        13.22 

proportion 21.22% 78.78% 

 
Table 3.15: Residuals Diagnostics Test SETAR models 

P-value 
Model 

t-test ARCH-LM test BG test 

SETAR(2;16,8)  1 0.01536 0.0022 

SETAR(2;16,9)  1 0.06523* 0.0640** 

                   Note: * no ARCH effect null hypothesis was not rejected  
                          ** no serial correlation up to order 6 null hypothesis was not rejected 
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3.4 Forecast Comparison between SARIMA and SETAR Models 

The main task of this research work is to compare the forecast ability between the linear 

SARIMA model and the non-linear SETAR model. Forecast values are of importance for 

decision making and policy formulation. As described by Box and Jenkins (1976), 

forecasting provide basis for economic and business planning, inventory and production 

control and control and optimization of industrial processes. Obtaining a good model that 

produce best forecast is the core point of every policy maker/planner. 

Once the selected models from both approaches have been shown to satisfy all the 

model assumptions, we can conclude that the models are adequately and can be used to 

predict the inflation rates. Hence, we compare the forecast performance between the 

selected models using MAE and RMSE. The preferred model is based on the model with 

minimum value of MAE and RMSE. Table 3.16 and 3.17 below summarizes the results 

from both in-sample and out-of-sample forecast accuracy measure of SARIMA and 

SETAR model respectively. According to the results shown in Table 3.16 below, since 

seasonal ARIMA(1,1,0)(0,0,2)12 have the minimum value MAE and RMSE for both in-

sample and out-of sample forecast measure as compare to other SARIMA models, hence 

we conclude that it is the best linear models to compete with the nonlinear model. 

Similarly between the two selected SEATR models we use the same approach of MAE 

and RMSE to assess their predictive ability in other to choose the best one between them. 

The comparison is also done for both in-sample and out-of-sample forecast. According to 

the results shown in Table 3.17 below, though SETAR (2;16,8) model have the minimum 

value of MAE and RMSE for both in-sample and out-of sample forecast measure as 

compare to SETAR(2;16,9) model, but since it does not meet some of the model 

assumption hence we conclude that SETAR(2;16,9) model is the best non-linear models 

to compete with the linear model.  

In comparison of different models within the same type, we also verified as 

discussed in Geunts and Ibrahim (1975) that the model that produced minimum AIC 

values does not necessary means that it is a final model that will give best forecast as 

compare to the other models. For instance all the SARIMA models selected have the 

same number of parameters but the model that gave the minimum information criterion 

did not produce minimum forecast errors as compare to other models. This was also the 
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same case with the SETAR models selected. Based on the out-of-sample forecast 

assessment from the linear ARIMA(1,1,0)(0,0,2)12 and the nonlinear SETAR(2,16,9) 

models over the forecast horizon of 12 months during the period of 2010:1 to 2010:12, 

the forecast measure MAE and RMSE suggest that the nonlinear SETAR model 

outperform the linear SARIMA model. This nonlinear SETAR model also produced 

minimum in-sample forecast errors as compare to linear SARIMA model.   

Though the nonlinear SETAR model outperform the linear SARIMA model as 

suggested by the forecast measure MAE and RMSE, but it is interesting to know weather 

there is significant difference in forecast from the two models. Using the approach of 

Diebold and Mariano (1995), we can test the null hypothesis that there is no difference 

between the forecast accuracy from the two models against the alternative hypothesis that 

the selected SETAR provide better forecast accuracy as compare to the selected seasonal 

ARIMA model. The results from the test are presented in Table 3.18. From the test 

results, we fail to reject the null of equal forecast accuracy at 5% level of significance and 

conclude that the forecast results from both models are almost the same.  
 

Table 3.16: Forecast Comparison among SARMA models 
In-sample Out-of-sample 

Model 
MAE RMSE MAE RMSE 

ARIMA(1,1,0)(2,0,1) 12 2.063 4.108 4.258 5.249 

ARIMA(1,1,0)(1,0,1) 12 2.046 4.119 4.054 4.765 

ARIMA(1,1,0)(0,0,2) 12 2.045 4.119 3.707 4.571 

 
Table 3.17: Forecast Comparison among SETAR models 

In-sample Out-of-sample 
Model 

MAE RMSE MAE RMSE 

SETAR(2;16,8)  1.647 2.850 3.657 4.298 

SETAR(2;16,9)  1.665 2.850 3.679 4.322 
 

Table 3.18: Forecast Accuracy Test Results 

Forecast  DM statistic P-value 

In-sample  -1.4416 0.9253 

Out-of-sample  -0.8236 0.0679 
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4 CONCLUSION 
 

In this paper we have shown that Ghana inflation rates follow a nonlinear process and the 

behaviour of this process can be modeled by a nonlinear threshold model. By using a two 

regime nonlinear SETAR model we study both in-sample and out-of-sample forecast 

performance of this model by comparing it with the linear SARIMA model.  

After modelling the inflation series by the two models we comparing the forecast 

performance between the two models by using the forecast measure mean absolute error 

(MAE) and root means square error (RMSE).  

Based on the in-sample forecast assessment from the linear SARIMA and the nonlinear 

SETAR models the forecast measure MAE and RMSE suggest that the nonlinear SETAR 

model outperform the linear SARIMA model. Also using multi-step-ahead forecast 

method we predicted and compared the out-of-sample forecast of the linear SARIMA and 

the nonlinear SETAR models over the forecast horizon of 12 months during the period of 

2010:1 to 2010:12. From the results as suggested by MAE and RMSE, the forecast 

performance of the nonlinear SETAR models is superior to that of the linear SARIMA 

model in forecasting Ghana inflation rates. 

Thought the nonlinear SETAR model is superior to the SARIMA model according to 

MAE and RMSE measure but using Diebold-Mariano test, we found no significant 

difference in their forecast accuracy for both in-sample and out-of-sample.   
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