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Abstract

After decades of unrealistic predictions and expectations, robots have fi-
nally escaped from industrial workplaces and made their way into our homes,
offices, museums and other public spaces. These service robots are increas-
ingly present in our environments and many believe that it is in the area of
service and domestic robotics that we will see the largest growth within the
next few years. In order to realize the dream of robot assistants perform-
ing human-like tasks together with humans in a seamless fashion, we need to
provide them with the fundamental capability of understanding complex, dy-
namic and unstructured environments. More importantly, we need to enable
them the sharing of our understanding of space to permit natural cooper-
ation. To this end, this thesis addresses the problem of building internal
representations of space for artificial mobile agents populated with human
spatial semantics as well as means for inferring that semantics from sensory
information. More specifically, an extensible approach to place classification
is introduced and used for mobile robot localization as well as categorization
and extraction of spatial semantic concepts from general place appearance and
geometry. The models can be incrementally adapted to the dynamic changes
in the environment and employ efficient ways for cue integration, sensor fu-
sion and confidence estimation. In addition, a system and representational
approach to semantic mapping is presented. The system incorporates and in-
tegrates semantic knowledge from multiple sources such as the geometry and
general appearance of places, presence of objects, topology of the environment
as well as human input. A conceptual map is designed and used for modeling
and reasoning about spatial concepts and their relations to spatial entities
and their semantic properties. Finally, the semantic mapping algorithm is
built into an integrated robotic system and shown to substantially enhance
the performance of the robot on the complex task of active object search. The
presented evaluations show the effectiveness of the system and its underlying
components and demonstrate applicability to real-world problems in realistic
human settings.

Keywords: spatial understanding, semantic mapping, place recognition,
place categorization, mobile robotics.
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Part I

Introduction





“The eye sees only what the mind is prepared to comprehend”
Henri-Louis Bergson, 1859 –1941

Chapter 1

Introduction

The recipient of the 1969 Turing Award and the pioneer of robotics and artificial
intelligence summarized the progress of robotics in the second half of the 20th
century by saying:

In the fifties, it was predicted that in 5 years robots would be everywhere.
In the sixties, it was predicted that in 10 years robots would be everywhere.
In the seventies, it was predicted that in 20 years robots would be everywhere.
In the eighties, it was predicted that in 40 years robots would be everywhere.

Marvin Minsky

Those sentences clearly illustrate the unrealistic beliefs and expectations of the
robotics community which did not foresee the challenges stemming from the com-
plexity of unstructured human environments. Challenges, which required decades
of research in such fields as signal processing, statistics, machine learning and com-
puter vision to reach the level where the developed algorithms can be applied in
real-world, practical applications.

Despite the fact that we might still be far from building robots that could pos-
sess human-like intelligence, we are closer than ever to actually fulfilling the dream
of ubiquitous robots. Robots have already made their way to our homes, and many
believe that within the next few years, we will see a dramatic growth in the area
of domestic and service robotics [68, 67, 44]. Our idea of robots diverges from
stationary machines operating in typical industrial workplaces and starts to resem-
ble what Karel Čapek [127], the inventor of the word robot itself, had in mind:
cheap, mobile intelligent machines present in every home. Those expectations are
further confirmed by the development programs implemented by the robotics in-
dustry [68, 44] as well as government agencies ([23], the Korean Ubiquitous Robot
Companion program) which assumes popularization of cheap service robots to the
extent of one robot in every household. It is not uncommon to hear statements of
the following kind:
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(a) iRobot Roomba [30] (b) Pleo [35]
(c) Aldebaran Robotics

Nao [19]

(d) Anybots [20]
(e) Home Assistant

Robot AR [134]
(f) Care-O-Bot [21]

Figure 1: Examples of commercially available service and domestic robots.

The question is no longer, Will you have a robot in your home in the future?
But instead, How many?

Helen Greiner, iRobot Chairman and Co-founder, 2005

These next generation robots will not only have to track their position and navigate
between points in space, but reason about space and their own knowledge, plan
tasks and knowledge acquisition and interact with people in a natural way.

The robots deployed in real-world human environments are mostly relatively
small and simple service robots with, so far, very limited capabilities. The market
is dominated by cleaning robots such as iRobot Roomba [30] sometimes enhanced
with additional functionalities such as visual navigation [37] or teleoperation [38].
Telepresence is another quickly developing application area which require robots
operating among humans [43, 20, 29]. Simple robots are becoming popular also in
the education and entertainment sector with such examples as Nao [19] or Pleo [35].
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More complex commercially available platforms are mostly found in the surveil-
lance [31] and human assistance [21, 40, 36] application areas. Those platforms are
not only capable of navigation, but are expected to autonomously interact with the
environment and communicate with the human user. At the forefront of the applied
science of service robotics, we see multiple research and prototyping platforms with
the software and embodiment designed to operate in man-made environments. Plat-
forms such as the Home Assistant Robot [134], Asimo [28] or PR2 [41] were already
shown to perform complex manipulation and navigation tasks (e.g. performing
typical household chores or even preparing pancakes). Pictures presenting some of
the commercially available service and domestic robots are shown in Figure 1.

Many recent advances in fields such as computer vision and cognitive robotics
have been driven by the goal of creating artificial cognitive systems able to perform
human-like tasks in real-world settings. Several attempts have been made to design
integrated cognitive architectures and implement them on mobile robots [24, 111,
26, 54, 27, 69, 25, 85]. Those attempts focused on creating future systems that are
more versatile than those commercially available, able to operate in unstructured
environments and still providing a sufficient level of robustness. The tasks that have
been envisioned for those future robots involve interaction with the environment
and non-expert human users.

A cornerstone for such robotic assistants is their understanding of the space they
are to be operating in. Spatial understanding is a prerequisite for such basic tasks
as navigation, obstacle avoidance, autonomous exploration or even manipulation.
While knowing the position in the world, being able to explore the environment or
find routes to known locations is a fundamental capability for a mobile agent, there
are many other tasks of the future service robots that depend on the ability to per-
ceive and understand space. These include action planning, recording and recalling
episodic memories, reasoning about spatial concepts and their relations, interacting
with objects in the environment and, finally, human-robot communication.

Spatial knowledge constitutes a fundamental component of the knowledge base
of an embodied agent operating in large scale spaces. It is considered founda-
tional to all commonsense knowledge and provides grounding for other knowledge
types [76]. Research on such problems as human augmented mapping identified
spatial knowledge as one of the major elements permitting and facilitating human
robot interaction [71, 75]. In such view, the environment can be considered an ad-
ditional communication channel which allows for disambiguation and extension of
the communicated information. Furthermore, it can be seen as a common ground
or even a “representation” shared between the agent and the human user [51].

We can identify several different types of spatial knowledge depending on the
source, point of reference, spatial scale or level of abstraction and thus different
approaches to spatial knowledge representation. Geometric aspects of space can
be represented in terms of a metric map in which the agent’s location is simply a
set of raw metric coordinates. A different representation could abstract the metric
space into a set of discrete units and focus on the spatial topology. This distinction
resulted, over the years, in a broad range of approaches spanning from purely metric
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[59, 131, 87, 99], to topological [122, 109, 56, 86], and hybrid [117, 118, 110, 52, 135,
48]. Recently, particularly in the case of integrated robotic systems performing more
complex tasks requiring action planning in large-scale environments, topological and
hybrid models are gaining popularity allowing for better scalability as well as easier
access and maintenance [54].

Another important type of spatial knowledge stems from the semantics encoded
in various observable properties of space. In the case of indoor spaces, the environ-
ment provides valuable semantic information originating from humans as designers
and users. Indeed, the ability to understand the semantics of space and associate
semantic terms like “corridor” or “office” with spatial locations, gives a much more
intuitive idea of the position of the robot than pure metric or topological location.
If further extended with such semantic concepts as room shape, size and appearance
or presence of objects of certain types, the robot’s spatial knowledge representation
becomes much more meaningful from the point of view of the robot’s performance
on complex tasks and human interaction. Let’s take the example of a domestic
gopher robot, the task of which is to find objects. Clearly, such a robot could
greatly increase its performance by considering semantic types of rooms and their
correlation with the location of the searched object. Moreover, such a robot should
be able to communicate its internal state of knowledge using concepts known to the
operator to minimize training efforts. At the same time, the semantic information
can extend the capabilities of a robot in the traditional tasks of localization [107],
exploration [112], or navigation [65].

Despite the usefulness and importance of semantic spatial knowledge, this aspect
of spatial modeling has been left out by many of the previous works, mostly due to
its complexity. Producing real-time solutions extracting semantic information in a
robotic system is a challenging problem. In particular, realistic environments pose
challenges due to their dynamic character. Indoors, the appearance of places can
change due to human activity or influence of illumination. Additionally, single ob-
servations are usually not sufficiently informative and spatio-temporal information
fusion is required. Finally, most of the semantics can only be discovered through
visual sensing which tends to be noisy and difficult to interpret. For those reasons,
many of the previous works focused on such problems as pure localization and navi-
gation, and semantic knowledge has been included only in basic forms. At the same
time, the perception of semantics is greatly enhanced by the use and integration of
other information sources such as the general visual appearance, objects discovered
in the environment, topological connectivity or even human actions and dialogue.

To this end, this thesis focuses on providing a robot operating in a real-world
environment with a complete and efficient representation of space including seman-
tic information. The problem is constrained to man-made environments such as
homes or offices which will constitute the working space of many of the future ser-
vice robots [44] and as made by humans for humans are rich in human semantic
information. The representation is meant to support such typical human-like tasks
as retrieving objects, performing household chores or guiding visitors, all of which
require human interaction capabilities.
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More specifically, this work addresses the problem of semantic mapping, i.e.
creating a representation of the environment which grounds human spatial con-
cepts to instances of spatial entities. The problem is addressed holistically from the
point of view of systems and representations, starting from the level of topological
and metric maps, through place classification and building models associating con-
cepts with sensory information, up to the level of ontologies defining more abstract
concepts and their relations.

First, an extensible approach to place classification is introduced providing
models that link spatial concepts to sensory information originating from multiple
modalities such as vision and laser range data. The models can be incrementally
adapted to the dynamic changes in the environment and provide practical mea-
sures of confidence. Second, a complete systems and representational approach is
proposed to address the problem of semantic mapping. This system is capable of
incorporating semantic information extracted from such sources as the geometry
and general appearance of places, presence of objects, topology of the environment
and/or human input. Moreover, it is able to reason about spatial concepts and
infer new knowledge about the environment which cannot be directly observed.
Finally, the semantic mapping algorithm is built into an integrated robotic system
and shown to substantially enhance the performance of the robot on the problem
of active object search.

Thesis Outline

The rest of this thesis is structured as follows.

Chapter 2: Place Classification and Semantic Mapping

Chapter 2 discusses in detail the problems addressed in this thesis, the envisioned
scenario and the resulting challenges. Then, the contributions and proposed solu-
tions are roughly divided into four groups and briefly outlined.

Chapter 3: Related Work

Chapter 3 provides an overview of related work in the areas of place classification
and semantic mapping. Moreover, the approaches proposed in this thesis are placed
in context and compared to other works.

Chapter 4: Summary of the Papers

Chapter 4 introduces the reader to the papers included in the second part of the
thesis. First, an outline of each paper is given. Then, the contributions of the
author of the thesis are summarized.
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Chapter 5: Discussion

Part I concludes with a discussion of the presented solutions and lessons learned.
Moreover, the directions for future research stemming from the presented work are
proposed.

Part II: Included Papers

The second part of the thesis contains the included publications in the order sug-
gested in Chapter 4. The papers provide all the details about the proposed repre-
sentations, algorithms and systems.



Chapter 2

Place Classification and Semantic

Mapping

1 Problem Statement

The fundamental problem considered in this thesis is that of semantic mapping. In
order to provide a clear definition of the problem, a few words must be said about
the spatial semantics in general as seen in this work.

Spatial Semantics

In the view taken by this thesis, semantic information is expressed by the relations
between spatial entities and a set of predefined concepts. These concepts are meant
to be meaningful for humans and therefore are transferred to the robot either
by direct interaction with a human user or by analyzing available common-sense
knowledge databases such as Open Mind [32], ConceptNet [22], OpenCyc [34], or
WordNet [42]. Recently, Internet search engines (e.g. Google Image Search), social
networks (e.g. Facebook) and image repositories (e.g. Flicker) became a valuable
source of common-sense knowledge obtained directly from user generated content.

An important concept employed by humans in indoor spaces is that of a room
which can be loosely defined as a bounded area in the environment. Rooms tend
to share similar functionality as well as many other spatial properties. In most
cases, rooms are naturally categorized based on their functionality and can be
described in terms of discrete concepts such as “a kitchen” or “an office”. Rooms
can also be associated with other concepts describing their spatial properties. The
experiments presented in this thesis employ such properties as the shape of a room
(e.g. square or elongated), the size of a room (e.g. small or large, compared to
other typical rooms) or the general appearance of a room (e.g. corridor-like or
office-like appearance). However, more fine grained semantic descriptions are often
desired. Those can be associated with objects or landmarks in the environment.
One important landmark which facilitates segmentation of continuous space is a

9
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Figure 1: An example of a map augmented with semantic information.

door. Indeed, in the case of indoor environments, rooms are usually separated by
doors or other narrow openings.

Semantic Mapping

Given the view on semantics presented above, semantic mapping can be defined as
a process of building a representation of the environment which associates spatial
concepts with spatial entities. The outcome of semantic mapping should ideally be
a complete and efficient representation of the environment visited by the agent. The
efficiency in this case is defined by the performance of the agent on certain typical
tasks and the representation should not be decoupled from the tasks and treated
in isolation. Such representation should not only contain the semantic information,
but should explicitly represent the spatial entities to which the semantics is tied.
Additionally, it is assumed that the robot starts without any prior knowledge that
comes from actual observations of the environment in which it is to be operating.
Instead, it is equipped with a set of categorical and conceptual models acquired
either in other environments or from databases. An example of a map augmented
with semantic information is shown in Figure 1. In this work, the problem is
expanded by stating that knowledge should not only be derived directly from the
immediate sensory information but should also be inferred based on the whole
body of knowledge available. A typical example would be prediction of categories
of objects that might be present in yet unexplored rooms connected topologically
to a room for which evidence is available.

There are multiple sources of semantic information that the agent can exploit.
Semantic spatial knowledge can be provided directly by the user, for instance
through a situated dialogue. The topology of the environment itself can be a
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valuable cue for discovering semantic categories of rooms. A good example is a
corridor which is likely to be connecting many other rooms. We also mentioned
objects, landmarks and spatial properties of areas such as shape, size, or general
appearance. Perception of these requires robust models of sensory information such
as the visual models of object categories or models describing various shapes and
appearances of spatial regions. The object detection, recognition and categoriza-
tion problem is vastly researched in the computer vision community [101, 58, 66]
and multiple approaches to modeling object categories, each having different limi-
tations, are available both theoretically and as software implementations [33, 88].
This thesis is not concerned about building object or landmark models. Instead,
attention is given to the problem of designing models of geometry and appearance
of spatial regions for the purpose of place classification.

Place Classification

Place classification, can be characterized as a pattern recognition problem of assign-
ing a region in an environment to one of predefined classes based on multi-modal
sensory input and a set of models. In order to support the scenarios considered
in this thesis, we assume a supervised case (either by a human or an independent
sub-system). First, the models are built from a collection of labeled data samples
acquired in places belonging to the modeled classes. The models store intrinsic
visual and geometric properties of the classes. Then, the algorithm is presented
with data samples acquired in one of the same places or in a novel place belonging
to one of the modeled classes, possibly under different conditions. The goal is to
classify correctly as much of the sensory data samples as possible.

Place classification can further be subdivided into place recognition and place
categorization depending on the scenario. We talk about place recognition if the
models are tested on the sensory data collected in the same environment in which
the models were trained. Place recognition is mostly used as a solution for topo-
logical localization [122, 109, 52, 56] or together with traditional localization and
mapping algorithms for initialization (e.g. in case of the kidnapped robot prob-
lem) [108] and loop closing [93, 82]. This is different from the problem of place
categorization where the task is to classify test data captured in a novel, previ-
ously unseen place. In this case, the algorithms have to tackle additional challenges
resulting from the within-category variability. Place categorization models will
be employed as sub-components providing shape, size and appearance information
about places to the semantic mapping system. However, this thesis proposes and
evaluates a model which can be applied in a much broader context and to both
place categorization and recognition.

2 Scenario

This section gives an overview of the general scenario for which the proposed algo-
rithms were designed and in which they were evaluated. The primary assumption
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(a) Office environment (b) Home environment

Figure 2: Illustration of a typical scenario: a mobile robot platform performing
semantic mapping in office and home environments.

is that the environment in which the robot operates is unstructured and does not
contain any artificial markers or beacons. As the primary interest is the human
semantics, the environments were constrained to indoor spaces, such as offices or
homes, which are typical for the interaction between humans and robots [135].
In order to provide natural, real-world conditions, humans could be present and
performing typical actions during the experiments.

The considered scenario assumes a mobile robot platform performing typical
human assistance tasks. The platform is assumed to be equipped with a standard
set of robotic sensors, in particular a monocular camera and optimally a laser range
scanner. The fetch-and-carry task is used as a concrete application example. In this
case, the robot is sent to find objects in a large-scale indoor space, often without any
previous knowledge about that concrete part of the environment. Imagine the case
where a mobile courier robot is tasked with finding and fetching an object on a 15-
room office floor. It is unreasonable to assume that such a robot will receive timely
updates on the exact locations of every relevant object. At the same time, it would
be very inefficient to require the robot to scan the entire environment in search
for the object. In such case, semantic information indicating the functionality of
spatial regions and typical locations of objects belonging to certain categories (e.g.
plates are often found in kitchens) could be very valuable and could greatly improve
the performance of the robot.

From the point of view of the semantic mapping system, there is one more im-
portant element of the scenario. In the application mentioned above, the semantic
mapping or place classification sub-subsystem is integrated into a larger robotic ar-
chitecture. Therefore, the requirements and properties of other sub-systems should
influence the design of the spatial understanding component.
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3 Challenges

The considered scenario results in several challenges that semantic mapping and
place classification systems have to tackle. First, the proposed solutions must co-
exist with other components in an integrated system on a robot platform and work
in real-time. This is a strong constraint on the computational complexity of the
algorithms and their memory consumption. Additionally, the algorithms must deal
with uncertain perceptions and this uncertainty must be modeled and presented
to other components of an integrated robotic system such as a decision theoretic
planner.

Other challenges stem from the characteristics of the environment. Real-world
indoor environments are usually dynamic and their appearance changes over time.
For example, the appearance is affected by illumination changes. For a visual sen-
sor, the same room might look different during the day, during sunny weather, under
direct natural illumination, and at night with only artificial light turned on. The
perception of the environment is also influenced by short term (presence of people)
and long term (furniture moved around, objects being relocated etc.) human ac-
tivities. The models of sensory information must be robust to those variations and,
in case of categorization, must be able to generalize across multiple instances of
places belonging to the same category. Additionally, many indoor places cannot be
uniquely characterized by their geometry, or even general appearance, and integra-
tion of multiple types of information is required. As a result, most approaches that
work well for outdoor environments will perform poorly when applied indoors [103].

Another set of challenges arises due to the properties of the sensors employed.
The fact that the sensors have a limited field of view requires the algorithms to inter-
nally integrate information and deal with frequent occlusions. Moreover, viewpoint
variations cause the sensors to capture different aspects of the same place. Many
viewpoints in separation do not contain discriminative information (e.g. when the
robot is looking towards the wall) and the information that the robot gathers is
not evenly spread across the viewpoints.

The fact that so many different parameters influence the performance of a se-
mantic mapping or place classification system is another challenge itself, especially
burdensome at the design stage. As the results depend on the choice of training
and test input data, which in real environments would change over time, it is hard
to measure the influence of the different parameters on the overall performance of
the system. There is a need for realistic benchmarks and databases which would
allow for precise analysis and simplification of the experimental process.

4 Flexible and Extensible Multi-modal Place Classification

This thesis contributes a method for multi-modal place classification. The method
effectively utilizes information from different robotic sensors by fusing multiple vi-
sual cues and laser range data in order to combine the stability of geometrical
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solutions with the versatility and richness of vision. The method relies on discrimi-
native Support Vector Machine (SVM) [55] models of place classes known for their
superior generalization abilities. The models are built from different types of both
global and local visual features as well as a set of geometrical cues extracted from
range data. For the vision channel, either the Scale-invariant Feature Transform
(SIFT, [81]) or the Speeded Up Robust Features (SURF, [47]) local descriptors are
used, combined with the bag-of-words approach [62] for place categorization. The
Composed Receptive Fields Histograms (CRFH, [80]) are used as global visual fea-
tures. For the laser channel the simple geometrical features proposed in [89] are
applied. The resulting algorithm is capable of real-time and robust place recogni-
tion as well as categorization and was evaluated for both problems. It is robust
to different types of natural variations that occur for indoor environments due to
changing illumination and configuration of furniture and small objects.

Several extensions of the models are proposed that increase the robustness in
different situations. First, a confidence estimation algorithm is contributed which
provides a practical measure of confidence of the decision of the place classifica-
tion algorithm. The method is based on the distance of the test sample from the
SVM hyperplane and the average distance of each training class. Through experi-
ments, it is shown to increase robustness and reliability as well as efficiency in case
of multi-cue classification. Second, an algorithm that integrates various cues and
modalities is proposed which is based on the principle of high-level discriminative
accumulation. For each cue, a discriminative SVM classifier is trained which out-
puts a set of scores encoding confidence of the decision. Integration is then achieved
by either accumulating the scores linearly or feeding them to a Support Vector Ma-
chine (SVM, [55]). Such an approach allows to optimally combine cues, even
obtained using different types of models, with a complex, possibly non-linear func-
tion. Finally, in order to tackle the challenges arising on a mobile platform which
might observe the environment from many, often non-informative viewpoints, an
algorithm is provided performing spatio-temporal integration of evidence.

The thesis presents extensions of the models allowing for incremental learning
and adaptation. A SVM-based incremental method is designed which performs
like the batch algorithm while maintaining bounded complexity of the models, the
last one being an important feature for real-time robotic systems. The approach
is based on a combination of an approximate technique for incremental SVM [114]
with an exact method that reduces the number of support vectors needed to build
the decision function without any loss in performance [61]. The algorithm is ap-
plied in two scenarios: adaptation in presence of dynamic changes and transfer of
knowledge between autonomous agents. In the first scenario, the resulting system
is able to maintain performance of the models despite dynamic changes. In the
second scenario, we consider the case when a robot, proficient in solving the place
recognition task within a known environment, transfers its visual knowledge to an-
other robotic platform with different characteristics. In this case, the incremental
algorithm allows the receiver of the information to gradually adapt the transferred
representation to its own sensing.
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5 A Systems and Representational Approach to Semantic

Mapping

Aiming toward the goal of building a complete semantic mapping system, this work
first analyzes the problem of representing the whole body of spatial knowledge.
As a result, a structure of a layered spatial knowledge representation is proposed
which takes into account assumptions and requirements imposed by the considered
scenario and possible interactions between the representation and other components
of a robotic system.

The structure of the representation is shown in Figure 3. It consists of four
layers corresponding to different levels of abstraction, from low-level sensory input
to high-level conceptual symbols. The lowest level of the representation is the
sensory layer which maintains an accurate representation of the robot’s immediate
environment. Above this are the place and categorical layers. The place layer
discretizes continuous space into a finite number of places, plus paths between
them. As a result, the place layer represents the topology of the environment. The
categorical layer contains categorical models of the robot’s sensory information
such as object models or place classification models. On top of this, the conceptual
layer creates a unified representation relating sensed instance knowledge to general
conceptual knowledge.

The conceptual knowledge constitutes a crucial part of the representation. It
includes taxonomy of human-compatible spatial concepts which are linked to the
sensed instances of these concepts drawn from lower layers. It is the conceptual
layer which contains the information that kitchens commonly contain cereal boxes
and have certain general appearance and allows the robot to infer that the cornflakes
box in front of the robot makes it more likely that the current room is a kitchen. The
conceptual layer is described in terms of a probabilistic ontology defining spatial
concepts and linking those concepts to instances of spatial entities (see Figure 3).
Based on this design, a probabilistic graphical chain graph model is proposed as
a representation for performing inferences on the knowledge represented in the
conceptual layer. This results in an efficient approach to probabilistic modeling
and reasoning about conceptual knowledge.

Based on the principles included into the design of the representation, a com-
plete semantic mapping system is built which maintains it. An overview of the
components of the system is presented in Figure 4. The system incorporates the
conceptual reasoner and the place categorization sub-system as well as components
building representations of other aspects of spatial knowledge such as a SLAM al-
gorithm and object/landmark recognizers. It performs segmentation of space into
rooms based on detected doorways and narrow openings. Moreover, the system
implements a hierarchical structure decoupling the categorical models of sensory
information from the conceptual reasoning by introducing an intermediate level
of the so called properties of space. Those properties can represent the general
appearance of a room, its geometrical attributes such as shape or size or object
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Figure 3: The layered structure of the spatial knowledge representation. The posi-
tion of each layer within the representation corresponds to the level of abstraction
of the spatial knowledge. The conceptual layer illustrates part of the ontology
representing both instance and predefined world knowledge.
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Figure 4: A coarse overview of the elements and the data flow inside the semantic
mapping system.

presence. The universal character of the properties permits integration of semantic
information obtained from multiple sources such as topology, general appearance
and geometry, object information, human input, and potentially, human actions.

6 Implementation and Integration with a Robotic System

The semantic mapping system was implemented in a cognitive robotic software
architecture (CAST [70]). This facilitates integration with other components of a
robotic system and permits analysis of performance and usefulness of the semantic
mapping system on real tasks. This thesis presents a system in which the semantic
mapping is used together with active exploration and view planning components
as well as a switching planner. The planner automatically switches between using
decision-theoretic and classical AI planning procedures in order to create a system
capable of autonomous active visual search for objects in a large-scale environment.
In order to show the importance of semantic information for solving complex tasks,
the performance of the system employing the semantic mapping component is com-
pared to a simplified version which does not have access to semantic information.

7 Evaluation Data, Procedures and Results

In order to evaluate and analyze various properties of the proposed solutions thor-
oughly and in realistic settings, several datasets were collected. The datasets were
designed to capture the input that semantic mapping and place classification sys-
tems would receive when running on a mobile robot platform. The datasets were
collected in multiple office and home environments. Based on the datasets, several
benchmarks were proposed and released to the robotics and computer vision com-
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munities. Those benchmarks served as a basis for evaluation of performance and
analysis of properties of the proposed methods.

The first benchmark was proposed based on two different databases: the IN-
DECS (INDoor Environment under Changing conditionS) database and the IDOL
(Image Database for rObot Localization) database. In case of INDECS, images of
an office environment were captured from a fixed set of points using a standard
camera mounted on a tripod. The resolution of the images is high; this makes
this database suitable for context-based object recognition. The IDOL database,
instead, consists of image sequences recorded using two mobile robot platforms
equipped with perspective cameras, and thus is well suited for experiments with
robot localization. The databases represent a different approach to the problem
and can be used to analyze different properties of a place recognition system. The
acquisition was performed under several different illumination settings and over a
significant span of time. Six months after the acquisition of the IDOL database, an
extension referred to as IDOL2 was acquired. Together, IDOL and IDOL2 capture
significant long-term variations that occur in indoor environments and were used
for evaluating the adaptive place classification models.

In order to evaluate the systems in larger environments and permit experiments
with categorization, another database, COsy Localization Database (COLD), was
acquired in three different office environments across Europe. In each environment,
the acquisition was performed in several rooms of different functionality and short-
term dynamic changes caused by illumination were captured. Unfortunately, the
images were taken with low quality cameras. In order to increase the number of
categories and the image quality, the database was extended with a large dataset
COLD-Stockholm. The new dataset captures appearance and geometry of almost
50 rooms belonging to different semantic categories. This dataset was used during
the offline categorization experiments and to train the appearance and geometry
models of the semantic mapping system. Besides those databases, smaller datasets
were created for the purpose of specific experiments in both home and office envi-
ronments.



Chapter 3

Related Work

This sections provides an overview of the related work in the area of place classi-
fication and semantic mapping. Place classification is a vastly researched topic in
the computer vision and robotics community, usually considered as an independent
problem and employed in a variety of applications. In computer vision the problem
is often referred to as scene classification. Despite the fact that, in this work, place
classification is ultimately used as an intermediate step towards semantic mapping,
the proposed models also have much wider potential applications, often experimen-
tally demonstrated. Therefore, the work on place classification will first be analyzed
followed by the more general area of semantic mapping.

1 Place Classification

As previously mentioned, place classification can be divided into place recognition
and place categorization and several of the proposed approaches were used for both
problems. However, many of them, particularly in robotics, were focused on place
recognition and its typical application - topological localization. Table 1 compares
some of the approaches discussed below and maps them to keywords representing
properties of place classification algorithms.

Place Recognition

Even in the early days, due to its richness, vision was considered a solution for the
problem of place recognition. Already back in 1994, Kortenkamp & Weymouth [72]
proposed an approach to topological localization using vision as one of the sensors
and the concept of vision-based maps has been explored much earlier [49, 50]. Still,
some of the later approaches relied only on geometrical cues and laser range data.
Brunskill et al. [52] used a method based on simple geometrical features previously
proposed for place categorization [89] in the context of topological localization.
In this work, place recognition models were used to select one of the submaps
which were earlier identified by decomposing a map into separate segments using
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[52] X X X

[122] X X X X

[46] X X X X

[92] X X X

[123], [124] X X X X X

[74] X X X X X

[73] X X X X X X

[98] X X X X X

[56], [57] X X X X X X X

[86] X X X X X X

[116] X X X X X X X X

[109] X X X X X

[63] X X X X X X

[125] X X X X X X X

[106] X X X X X

[121] X X X X X X X

[130] X X X X

[62] X X X X

[104] X X X X

[79] X X X X

[133] X X X X X

[103] X X X X X X

[53] X X X X X

[89] X X X

[90] X X X X X X

[132] X X X X X X

[129] X X X X X

[105] X X X X X X X X X

This work X X X X X X X ⋆ X X X

Table 1: Properties of the discussed place classification approaches. The first part
of the table lists place recognition methods. The second part focuses on approaches
applied to place categorization. Finally, the properties of the proposed approach
are listed for comparison. (⋆) Objects are introduced to the semantic mapping
system and integrated with place categorization models on the conceptual level.
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spectral clustering. The model proposed in this thesis, was also evaluated for place
recognition based on similar features.

The early adopters of vision for topological localization in robotics relied mainly
on omnidirectional sensors. Ulrich & Nourbakhsh [122] proposed an appearance-
based method which relied on color histograms extracted from omnidirectional im-
ages and a nearest neighbor image retrieval system. In constrast, in [46], Artač et al.
implemented an incremental eigenspace model for representing the panoramic im-
ages captured at different locations in order to allow for incremental learning and
adaptation without the need to store all the input data. Later approaches employ-
ing omni-directional sensing focused on scalability and large-scale environments;
however, also preferring outdoor settings. Murillo & Košecká [92] presented an al-
gorithm using a global descriptor computed for portions of panoramic images and a
similarity measure for image matching. The method was tested on a large scale out-
door Street View dataset. Finally, in [123, 124] an incremental spectral clustering
algorithm was applied to segment continuous space into topological nodes and local
feature matching was used for localization. These clusters are defined by appear-
ance and the aim is to support localization rather than human robot interaction.
The clusters therefore have no obvious semantic meaning. The work focused on
robustness to seasonal changes in mixed large-scale indoor/outdoor environment.

Many solutions relied on perspective vision being a popular and easily avail-
able sensor. Košecká et al. [74] proposed models of places built by segmenting
temporally adjacent views based on a global appearance-based similarity measure
and using the resulting segments for qualitative topological localization. In later
work [73], local scale-invariant keypoints were used instead and spatial relationships
between locations were modeled using Hidden Markov Models (HMM). In [98], the
experimental setup presented in this thesis was used to evaluate place recognition
models built using online learning extension of Support Vector Machines (SVM) in
order to adapt to long-term appearance variations. As in case of the methods using
omnidirectional vision, several recent works focused on scalability in large outdoor
environments. Cummins & Newman [56, 57] proposed a probabilistic appearance-
based framework for SLAM evaluated on paths up to 1000km length. At the same
time, Milford & Wyeth [86] mapped a suburb with a SLAM system inspired by
computational models of the rodent hippocampus.

Most of the above mentioned approaches only one modality was used for the
recognition of places. However, several authors observed that robustness and effi-
ciency of the recognition system can be improved by combining information pro-
vided by vision and geometrical sensors. Kortenkamp & Weymouth [72] combined
vision with sonar sensing for topological localization. Also, Tapus & Siegwart [116]
combined omnidirectional vision with features extracted from laser range data to
build rotationally invariant descriptors, called fingerprints of places, identifying the
topological locations. Those were then used for incremental topological mapping.
In a similar spirit, several authors integrated multiple types of visual features in or-
der to increase performance. In [109], the use of global and local visual features was
motivated by the studies of human visual capabilities and a biologically-inspired
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vision system was built for computing the gist of a scene and salient local regions.
Those, in turn, were integrated into a Monte-Carlo localization system evaluated
in an outdoor environment. At the same time, Filliat [63] proposed an algorithm
for global localization in an indoor environment based on bag-of-words represen-
tation of scale-invariant local key-points and texture and color information which
is able to incrementally learn the appearance of the environment based on interac-
tion with a human.

A different take to the place recognition problem was offered by Vasudevan
et al. [125] and Ranganathan & Dellaert [106]. In both cases objects detected in
the environment were used as cues for place recognition. In [106], a constellation
object model is extended to 3D and built in a coordinate frame local to the place.
The observed constellation was then matched to the place models for place recogni-
tion. In [125], hierarchical probabilistic representation of space is proposed that is
composed of places which are connected to each other through doors and are rep-
resented by local probabilistic object graphs. In contrast to [106], each object was
first independently detected and used to update the hypothesis about the current
location. In both cases, the object models were learned in a supervised manner.

Place Categorization

The problem of place categorization based on visual information was first addressed
in the computer vision community. In this case, the research focused mainly on the
problem of classifying single images captured in indoor or outdoor environments
(scene classification). At the same time, robotics researchers initially employed
the 2D laser range sensor being much more robust to variations occurring in the
environment and much easier to handle computationally in real time.

In computer vision one of the first works to address the problem of place catego-
rization was by Torralba et al. [121, 120] which employed an image representation
called the gist of the scene [97], which is a vector of principal components of out-
puts of a bank of spatially organized filters applied to the image. The approach
was tested in the context of both recognition and categorization, both indoors and
outdoors, and used a HMM to fuse information over time and space. One of the
key insights in that work is that the context is very important for recognition and
categorization of both places and objects and that these processes are intimately
connected. In [130], the problem of grouping images into semantic categories is
addressed. It is pointed out that many natural scenes are ambiguous and the per-
formance of the system is often quite subjective. They argue that typicality is a key
measure to use in achieving meaningful categorizations. Each cue used in the cate-
gorization should be assigned a typicality measure to express the uncertainty in the
categorization. The system is evaluated in natural outdoor scenes. In [62] another
method is presented for categorization of outdoors scenes based on the distribution
of codewords in each scene category obtained by clustering local interest point de-
scriptors. A similar approach was used by Quelhas et al. [104] which also relies on
the bag-of-words representation and studies analogies between scene classification
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based on visual words and text documents classification. In [62] a Bayesian hier-
archical model was employed, while [104] used SVM for performing classification.
Lazebnik et al. [79] extends the bag-of-words paradigm by introducing a spatial
pyramid encoding approximate global geometric correspondence between local fea-
tures. The approach is evaluated on the Caltech-101 database and the work reports
increased performance compared to the orderless approach. In [133] a a new global
image descriptor, PACT, is presented and shown to give superior results on the
datasets used in [121, 62] when combined with an SVM classifier. Finally, Quattoni
& Torralba [103], extend the previous work in [121] by combining the global gist
descriptor with local features. The method is evaluated on a large database of 67
indoor scene categories.

In robotics, the early systems for place categorization relied on omnidirectional
laser range data for extracting simple semantic descriptions. In their work, Buschka
& Saffiotti [53] partitioned grid maps of indoor environments into two different
classes of open spaces, i.e. rooms and corridors. The division of the open spaces
was done incrementally on local submaps. Mozos et al. [89] applied boosting to cre-
ate a classifier based on a set of geometrical features extracted from range data to
classify different places in indoor environments into rooms, corridors and doorways.
A similar idea was used in [119] to describe regions from laser readings. In [90],
the work by Mozos et al. was extended to also incorporate visual information in
the form of object detections. Furthermore, this work also added a HMM on top
of the point-wise classifications to incorporate information about the connectivity
of space and make use of information such as offices are typically connected to
corridors. Viswanathan et al. [129] adopted a purely object-based approach and
performed automated learning of object-place relations and visual object models
from the online LabelMe database. In [132] the work from [133] is extended with
a new image descriptor, CENTRIS, and a focus on visual place categorization in
indoor environment for robotics. A Bayesian filtering scheme is added on top of the
frame based categorization to increase robustness and give a more smooth category
estimate. Recently, Ranganathan [105] addressed the problem of place categoriza-
tion in a different and novel way. The problem was cast in a fully probabilistic
framework which operates on sequences of images rather than individual images.
The method uses change point detection to detect abrupt changes in the statistical
properties of the data. A Rao-Blackwellized particle filter implementation is pre-
sented for the Bayesian change point detection. All information deemed to belong
to the same segment can then be used to estimate the category for that segment
using a bag-of-words technique.

Properties

Table 1 compares the place classification approaches in terms of their key properties.
The first important difference is the problem to which the approach was applied i.e.
recognition or categorization. Despite that several of the methods are capable of
performing both, many of the place recognition approaches are specifically designed
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for topological localization and utilize a set of techniques and heuristics useful
only in this scenario. In particular, methods focusing on large-scale datasets such
as [86, 56] specialize towards localization in order to achieve high efficiency and
scalability. Compared to those, the model presented in this work is much less
scalable when applied to the topological mapping problem; however, it can be
directly applied to place categorization and learn human spatial concepts. Another
important scenario-related distinction results from the type of the environment for
which the problem is designed. It is not obvious that a method performing well
in an outdoor environment will perform equally well indoors [103]. The model
presented here was evaluated indoors according to the primary scenario outlined in
the previous chapter.

The approaches differ mostly with respect to the way the environment is per-
ceived, and thus the sensory modalities employed and the method used to extract
characteristic features of the scene. Purely geometric solutions based mostly on
laser range data have proven to be successful for certain tasks [53, 52, 89]. Yet,
the inability to capture many aspects of complex realistic environments leads to
the problem of perceptual aliasing [77] and greatly limits the usefulness of purely
geometrical methods. This inspired many researchers to turn towards vision which
nowadays is tractable in real-time applications. The available methods employed
either perspective or omnidirectional cameras. One of the requirements in this work
was to use non-omnidirectional sensors which are commonly used on service robots
and require being robust to partial observations and occlusions which will occur if
the robot is deployed among humans.

Different types of cues were used to represent visual information. Landmark-
based techniques make use of either artificial or natural landmarks in order to
extract information about a place. In [83, 113] information signs are used as a
source of spatial information. [125, 106, 90, 129] rely on objects detected in the
environment. In those cases object models are trained beforehand in a supervised
fashion. Visually distinctive image regions were also used as landmarks [109]. Other
solutions employed mainly local image features such as SIFT [81, 45, 73, 62, 98,
104, 105], SURF [47, 91, 63, 123, 124, 56, 57], also using the bag-of-words approach
[62, 63, 64, 104, 56, 57, 105], or other representation based on information extracted
from local patches [115, 62, 79, 63]. Global features are also commonly used for
place recognition. Torralba et al. [121, 120, 103] used the gist of the scene. Sim-
ilar approach has been adopted by others [109, 92]. Other approaches use color
histograms [122], gradient orientation histograms [74], eigenspace representation of
images [46], Composed Receptive Field Histograms (CRFH) [80, 98], representa-
tions obtained using the Census Transform (CT) [133, 132] or a scanline intensity
profile [86].

Several works combined vision with geometrical sensors [116, 90]. Others, used a
combination of global and local visual features to increase performance and robust-
ness [109, 63, 103]. The place classification approach presented in this thesis seems
to be unique in that it integrates multiple visual cues with geometrical information
extracted from laser range data, only when it is likely to increase performance,
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which thus also improves efficiency. The cue integration technique fuses cues on a
high-level after discriminative classification which has been shown to achieve bet-
ter performances than probabilistic approaches [95]. Moreover, object information
is also used in the final semantic mapping system and is integrated with place
categorization models on the conceptual level.

An important property of a place classification system is the ability to estimate
the confidence of its own decision. Therefore, many systems provide some practical
measure of confidence. In most cases, this is based on the similarity of a query
image to the training images and implemented in terms of nearest neighbor models
or other non-parametric approaches [122, 92, 74, 73, 63, 123] while other methods
use probabilistic models [56, 57, 105]. The advantage of generative probabilistic
models is that it is possible to estimate how novel the observation is i.e. how likely
it is that the observation does not belong to any of the place classes available during
training. In the context of place categorization, the only work that implements
that functionality is [105]. In order to provide good generalization, especially in
presence of the large within-category variability, in this thesis a discriminative SVM
classifier is used. SVMs do not provide an out-of-the-box solution for the confidence
estimation problem. Therefore, a practical method based on the distance to the
SVM hyperplane is designed and when applied yielding good results.

In many of the works, especially when non-omnidirectional sensors are used, the
authors observed that the ability to fuse observations over time and space is crucial
for robust operation. Several works applied techniques known from the metric
localization domain e.g. particle filters [109, 105] or other Bayesian filters [132].
Others employed graphical models such as HMM [121, 73, 90]. In this work, we
use a two step approach. First a technique performing evidence accumulation over
time and space is used for evidence gathering inside places. Then, in the semantic
mapping system, information is fused across places and combined with typical room
connectivity information by a chain graph [78], i.e. a probabilistic graphical model.

Finally, several methods applied to place recognition and topological mapping
build their representations in an incremental fashion and allow updating and adap-
tation of the place models [46, 123, 124, 98, 56, 57, 86, 116, 63, 125]. In case of
place categorization, this feature is not common and only [105] provides a way to
build the representation online. This work shows how the presented discrimina-
tive model can be extended to allow for incremental learning and adaptation to
long-term environment variations.

2 Semantic Mapping

The semantic mapping problem has only recently received significant attention and
several systems were proposed within the last 5 years. As shown above, there ex-
ists a broad literature on mobile robot localization, mapping, navigation and place
classification. Every such algorithm maintains a representation of spatial knowl-
edge. However, this representation is usually specific to the particular problem
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Figure 1: The spatial and semantic information hierarchies. On the left, spatial
information gathered by the robot sensors. On the right, semantic information that
models concepts and relations between them. Anchoring is used to establish the
links between the two hierarchies (solid lines). Additional links can then be inferred
by symbolic reasoning (dotted line). Reproduced from [65].

and designed to be efficient within the single mapping system detached from any
other interacting components. Other, more general concepts, such as the Spatial
Semantic Hierarchy [76] concentrate on lower levels of spatial knowledge abstraction
and do not support higher-level conceptualization or representation of categorical
information.

One of the first systems that was able to build a representation from both spatial
and semantic perspective was proposed by Galindo et al. [65]. In their system, two
hierarchies are maintained, spatial and semantic which are interrelated through the
concept of anchoring (see Figure 1). The spatial hierarchy contains simple sensory
data like camera images or local grid maps as well as the topology of the environ-
ment. The conceptual hierarchy represents concepts and their relations modeled by
employing standard AI languages. This permits the robot to do inferences about
symbols e.g. infer the room category based on detected objects as well as the pres-
ence of typical objects based on room category. However, the representation does
not contain the uncertainties about the instances. Objects are the only source of
semantic information in the system and the semantic hierarchy is built manually.
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Figure 2: Overview of the components of the system presented in [135] as well as
the four layers of the conceptual spatial representation divided into two groups:
mapping (metric, navigation, topological) and reasoning (conceptual). Reproduced
from [135].

In order to identify discrete spatial entities, a grid map segmentation algorithm
is used to detect open spaces. Finally, an AI planner is used together with the
representation to actively resolve ambiguities in the room categorization.

Zender et al. [135] proposed a system that is similar in spirit but with some
extensions. The authors design a representation composed of layers representing
maps at different levels of abstraction: metric, navigation, topological, and concep-
tual divided into two groups: mapping (first 3 layers) and reasoning (last layer). In
that sense, their approach is similar to [65] and the spatial and semantic hierarchies.
The conceptual layer contains an innate conceptual ontology that defines categories
for rooms and objects and how they are related. Also, the information extracted
from sensors and given through situated dialogue is represented as instances of
concepts. The conceptual knowledge is encoded in an OWL-DL ontology and a
description-logic reasoner is used to infer new knowledge about the world that is
neither given verbally nor actively perceived. As in case of [65], uncertainty is not
represented at the conceptual level and the ontology is provided manually. What is
new in this work is the inclusion of place classification models by Mozos et al. [89]
for the purpose of distinguishing rooms from corridors. Additionally, door detection
is used in order to segment space into rooms. The system is integrated in a mobile
robot endowed with laser and vision sensors for place and object recognition. The
system also incorporates a linguistic framework that supports the map acquisition
process. Overview of the system presented in Figure 2.
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Vasudevan & Siegwart [126] focus again on purely object-based semantic map-
ping, but make their representation of the world fully probabilistic. The approach
is based on a generative model of place categories based on a Naive Bayesian Clas-
sifier. These objects detected in the environment are grouped into spatial and
semantic abstractions. The robot then uses the semantic groups as concepts and
assigns them to places identified by spatial object groups. The concepts arise during
the training process and are extracted from input training data. During testing,
the detected objects are used to segment space. The approach is feed-forward i.e.
the object information is used to classify places; however, knowledge about place
categories is not used to infer presence of objects.

In [84], Meger et al. focus on the autonomous detection and perception of objects
and augmenting spatial metric maps with object information. Their system is
much more advanced, compared to the previously described, in terms of the vision
subsystem. The system uses a peripheral-foveal vision and an attention system
combining bottom-up visual saliency with structure from stereo. This is integrated
with FastSLAM for localization and mapping. The object models are trained on
image data collected by submitting text-based queries to internet image search
engines. The system is capable of autonomous exploration and object search and
was demonstrated during the Semantic Robot Vision Challenge [39]. The work by
Viswanathan et al. [128] can be seen as an attempt to provide similar functionality
as in [84] in an more robust and autonomous way. The paper presents a semantic
mapping system able to annotate places with semantic labels based on the object
information. For this purpose, a Bayesian model of place categories is built based on
object occurrence frequencies for various semantic place categories learned from an
online annotated database. Then, these models together with spatial information
are used to cluster the space into discrete places. The resulting representation is
used in to infer typical object locations and perform an informed search for objects.

Another approach for augmenting spatial maps with object-based semantic in-
formation was proposed by Nüchter & Hertzberg [96]. In contrast to all the previ-
ously described approaches, the objects were detected from a 3D representation of
the world built using a 6D SLAM algorithm from laser range data. The system first
analyzes the obtained point-cloud map and identifies coarse scene features such as
walls or floors. Then objects are detected by a trained classifier and projected back
on to the map. The resulting representation is meant to be visualized for human
inspection.

A completely different approach was taken by Nieto-Granda et al. [94]. The
aim of this work is to assign semantic labels obtained from human augmented
mapping directly to the metric space. This is a different approach than that of
Topp & Christensen [119] in case of which the space is segmented into regions. The
semantic layer is a multivariate probability distribution on the coordinates of our
metric map. This multivariate distribution is modeled as a Gaussian model and
each of the Gaussians is based on the robot’s sensor data when it was provided a
label by a human guide. The semantic information can then be expanded to cover
the entire metric map.
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Finally, there is a number of works devoted to semantic mapping of outdoor
environments. Since, many of the approaches can also be relevant in case of indoor
spaces, they are reviewed below for completeness. Posner et al. [102] presents a
system for augmenting the representation of outdoor space with semantic labels.
A supervised learning scheme is employed to train a set of classifiers to respond to
common scene attributes given a mixture of geometric and visual scene information
obtained using a 3D laser scanner and a camera. A set of SVM classifiers is used,
each specialized to detect a certain type of semantic attribute like pavement, tar-
mac, bush. The SVM models are trained on hand-labeled data. A similar problem
was approached by Douillard et al. [60] with a focus on objects. The authors tried
to classify objects in urban environments based on laser and vision data and used
the classification results to augment metric maps. The novelty in this case results
from the applied technique. The system extracts visual features from color images
and shape features from 2D laser scans. From those, a probabilistic model exploit-
ing spatial and temporal dependencies is created based on Conditional Random
Fields (CRF) which can be trained from partially labeled data. Finally, Persson
et al. [100] describe a method for automatic classification of outdoor scenes captured
with omnidirectional vision into two classes: nature or buildings. The classification
is performed using AdaBoost and the results are used to annotate a grid map of
the environment with the semantic information.

Table 2 compares the properties of the discussed semantic mapping approaches.
Out of the above mentioned methods designed for semantic mapping of indoor
environments, none uses topology of the environment as a source of semantic in-
formation. Furthermore, those only two that use general appearance of places as
semantic information, only do so for outdoor settings. This is surprising given the
large body of work on appearance-based place categorization. Two methods, [135]
and [96] make use of geometric place information extracted from laser range sen-
sors, and only [135] applies a previously developed place classification technique
for this purpose. In [135], semantic cues can be obtained by a situated dialogue
with a user and [94] build maps augmented with semantic symbols purely from
human input. Almost every method is focused primarily on using objects for ex-
tracting spatial semantics [65, 135, 126, 84, 128, 96]. Objects clearly carry a lot
of semantic information; however, they are also sparse and reliable object catego-
rization in real-world environments is still a major open challenge. At the same
time, valuable semantic cues are also encoded in geometry, general appearance and
topology and robust methods for extracting that information have been proposed,
including the approach presented in this thesis. The inability to fuse together all
the sources of information is likely a result of the different character of the different
inputs. In this work, we present a system able to combine all the aforementioned
sources of semantic information: general appearance and geometry of places, ob-
ject information, topological structure and human input. This is made possible by
creating a hierarchical, property-based system in which all sources of information
contribute to various properties of space which are then fused seamlessly on the
conceptual level.
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[65] X X X X X X

[135] X X X X X X X

[126] X X X X X

[84] X X X

[128] X X X X X X X

[96] X X X

[94] X X X

[102] X X

[60] X

[100] X

This work X X X X X X X X X X X X

Table 2: Properties of the discussed semantic mapping systems compared to the
proposed approach.

The conceptual map in our system is also a unique feature. The most com-
prehensive relevant representations has been proposed in [65] and [135]. Both ap-
proaches encode an ontology of an indoor environment. However, those ontologies
are built manually and use traditional AI reasoning techniques which are unable
to incorporate uncertainty that is inherently connected with semantic information
obtained through robot sensors in realistic environments. In contrast, we imple-
ment a probabilistic ontology and a probabilistic inference engine incorporating
uncertainty in definitions of concepts and their links to instances of spatial entities.
Moreover, the values of all properties for which direct evidence is not available can
be inferred based on all the available semantic information. Additionally, as in
case of [126] and [128] the concept definitions are built automatically from online
databases and floor plans obtained from robotics datasets. Finally, the semantic
mapping is combined with AI planning components resulting in a system able to
actively search for objects in a similar fashion to [128].
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Summary of the Papers

In this section the included papers are summarized and briefly discussed. First, an
outline of each paper is presented followed by an overview of the contributions of
the author of the thesis. Additionally, Table 1 groups the included papers as well
as the other papers co-authored by the author according to keywords relevant to
the problem considered in this work. The relation of each paper to other works,
including works by the author of the thesis, as well as the impact on the respective
fields are discussed inside the papers.

1 Paper A: Single-cue Place Recognition

1.1 Outline of the Paper

This paper presents two carefully designed and annotated image databases aug-
mented with an experimental procedure and extensive baseline evaluation. The
databases were gathered in an uncontrolled indoor office environment using two
mobile robots and a standard camera. The acquisition spanned across a time range
of several months and different illumination and weather conditions. Thus, the
databases are very well suited for evaluating the robustness of algorithms with re-
spect to a broad range of variations, often occurring in real-world settings. We
thoroughly assessed the databases with a purely appearance-based place recogni-
tion method based on Support Vector Machines and two types of rich visual features
(global and local).

1.2 Contribution by the Author

Acquired the databases used for evaluating the visual place recognition algorithms
in the paper. Designed a benchmark for visual place recognition. Built a visual
place recognition system based on global and local visual features. Performed the
evaluation of the system on two different databases.

31
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[A] X X

[B] X X X

[C] X X X

[D] X X X X X

[E] X

[F] X X X X X X X

[G] X X X X

[1] X X

[2] X X

[3] X X X

[4] X X X X

[5] X X X

[6]
[7] X

[8] X

[9] X

[10] X

[11] X

[12] X

[13] X X X

[14] X X X X X X X

[15] X

[16] X X X

[17] X

[18] X X

Table 1: The papers co-authored by the author of the thesis grouped according to
keywords relevant to the problem considered in this work.
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2 Paper B: Incremental Learning and Knowledge Transfer

2.1 Outline of the Paper

This paper presents an SVM-based algorithm, capable of learning representations
incrementally while maintaining memory requirements. We combine an incremental
extension of SVMs with a method reducing the number of support vectors needed to
build the decision function without any loss in performance introducing a parameter
which permits a user-set trade-off between performance and memory. The resulting
algorithm is able to achieve the same recognition results as the original incremental
method while reducing the memory growth. Our method is especially suited for
autonomous systems in realistic settings. We present experiments on two common
scenarios in this domain: adaptation in presence of dynamic changes and transfer of
knowledge between two different autonomous agents, focusing in both cases on the
problem of visual place recognition applied to mobile robot topological localization.

2.2 Contribution by the Author

Acquired the database used for experiments in the paper. Designed and imple-
mented the memory-controlled incremental SVM algorithm. Performed a part of
the evaluation of the algorithm on the place classification databases. Helped with
the design and implementation of the knowledge transfer algorithm.

3 Paper C: Confidence Estimation and Cue Integration

3.1 Outline of the Paper

This paper presents a recognition algorithm able to measure its own level of con-
fidence and, in case of uncertainty, to seek for extra information so to increase its
own knowledge and ultimately achieve better performance. We focus on the vi-
sual place recognition problem for topological localization, and we take an SVM
approach. We propose a new method for measuring the confidence level of the
classification output, based on the distance of a test image to the average distance
of training vectors. This method is combined with a discriminative accumulation
scheme for cue integration. We show with extensive experiments that the resulting
algorithm achieves better performances for two visual cues than the classic single
cue SVM on the same task, while minimising the computational load. More im-
portant, our method provides a reliable measure of the level of confidence of the
decision.

3.2 Contribution by the Author

Researched several approaches to confidence information extraction for Support
Vector Machines. Combined the confidence estimation approaches with discrimi-
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native cue integration and performed an evaluation of the resulting algorithm in
the context of visual place recognition.

4 Paper D: Multi-modal Place Classification for Semantic

Mapping

4.1 Outline of the Paper

In this paper we present a multi-modal place classification system that allows a
mobile robot to identify places and recognize semantic categories in an indoor envi-
ronment. The system effectively utilizes information from different robotic sensors
by fusing multiple visual cues with laser range data. This is achieved using a high-
level cue integration scheme based on a Support Vector Machine that learns how
to optimally combine and weight each cue. Our multi-modal place classification
approach can be used to obtain a real-time semantic space labeling system which
integrates information over time and space. We perform an extensive experimen-
tal evaluation of the method for two different platforms and environments, on a
realistic off-line database and in a live experiment on an autonomous robot.

4.2 Contribution by the Author

Designed and implemented the multi-modal place classification system. Researched
various cue integration techniques and proposed a modified discriminative cue ac-
cumulation scheme. Performed an extensive experimental evaluation of the place
classification system. Built a semantic mapping system based on the place clas-
sification models. Finally, evaluated the system in real-time on a mobile robot
platform.

5 Paper E: Spatial Knowledge Representation

5.1 Outline of the Paper

In this paper, we carefully analyze the problem and design a spatial knowledge
representation for a cognitive mobile system. Our representation is layered and
represents knowledge at different levels of abstraction. It deals with complex, cross-
modal, spatial knowledge that is inherently uncertain and dynamic. Furthermore,
it incorporates discrete symbols that facilitate communication with the user and
components of a cognitive system. We present the structure of the representation
and propose concrete instantiations.

5.2 Contribution by the Author

Specified the principles behind the spatial knowledge representation. Designed the
general theoretical structure of the representation.
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6 Paper F: Combining Conceptual Knowledge, Objects,

Appearance, Geometry and Topology for Semantic

Mapping

6.1 Outline of the Paper

In this paper, we present a multi-layered semantic mapping algorithm able to com-
bine information about the existence of objects in the environment with knowledge
about the topology and semantic properties of space such as room size, shape and
general appearance. We use it to infer semantic categories of rooms and predict
existence of objects and values of other spatial properties. We perform extensive
experiments offline and online on a mobile robot demonstrating the efficiency and
usefulness of our system.

6.2 Contribution by the Author

Acquired the COLD-Stockholm database being used for the experimental evalua-
tion of the approach. Implemented and tested the categorical models of sensory
information providing basis for the spatial properties. Designed the spatial knowl-
edge representation, the ontology behind the conceptual map and its chain-graph
inference model. Designed and implemented the property-based semantic map-
ping system. Finally, performed online experimental evaluation of the system on a
mobile robot.

7 Paper G: Semantic Mapping for Efficient Behaviour of

Integrated Robotic Systems

7.1 Outline of the Paper

In this work we present a robot system that combines common-sense knowledge
about the structure of the world with probabilistic modeling of the uncertainty
and demonstrate improvements in efficiency and reliability. Our first contribution
is a probabilistic relational model integrating common-sense knowledge about the
world in general, with observations of a particular environment. Our second contri-
bution is a switching planning system which is able to plan on the large problems
posed by that model, by automatically switching between decision-theoretic and
classical procedures. We evaluate our system on object search tasks in two dif-
ferent real-world indoor environments. By reasoning about the trade-offs between
possible courses of action with different informational effects, and exploiting the
cues and general structures of those environments, our robot is able to consistently
demonstrate efficient and reliable goal-directed behavior.
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7.2 Contribution by the Author

Designed and implemented the conceptual map and the semantic mapping algo-
rithm. Integrated the semantic mapping algorithm with other components of the
cognitive system. Finally, performed online experiments in the office environment
evaluating properties of the integrated system.



Chapter 5

Discussion and Conclusions

This thesis explored the problem of enabling mobile robots with the ability to un-
derstand human environments. Several methods have been proposed for extraction
of semantic information from robotic sensors, modeling spatial concepts and finally
building semantic maps. The methods were experimentally evaluated on realistic
offline datasets as well as in real-time on mobile robot platforms. Those evalua-
tions showed that semantic spatial understanding is within our grasp and is getting
ready to be deployed outside research environments. Moreover, several important
scientific questions have been posed and addressed in the course of this work.

Firstly, it was shown that useful models of place instances and place categories
can be constructed from the general appearance of the environment as well as its
geometry measured through laser range sensors. Those models can be made robust
to most typical variations that occur in indoor environments such as illumination
changes and variations caused by human intervention. In case of place recognition,
the models were shown to perform topological localization with high precision, al-
though in relatively small environments compared to the more recent techniques
developed for large-scale outdoor spaces [56, 57, 86]. In the context of place cate-
gorization, it was shown that assuming a certain level of within-category variability
that occurs within a single multi-storey building, the methods can be robust and
provide important spatial semantic concepts.

Secondly, confidence measures for the place classification models have been pro-
posed and thoroughly evaluated. It was shown that confidence measures have
important practical value for increasing robustness of the system as well as its ef-
ficiency in case of multi-cue models. Indeed, in many real-world applications it is
more desirable to refrain from action because of a self-recognized lack of confidence,
rather than take a hard decision which might result in a costly error. When com-
bined with a cue integration scheme, confidence estimation can be used to decide
about acquisition and processing of additional cues only if it is required to im-
prove the confidence of the system. This results in an improved efficiency without
compromising the overall performance.

Furthermore, this thesis studied the problem of cue integration and sensor fusion
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and proposed a method for cue accumulation from multiple sensors applicable to
the place classification model. Through extensive experiments, it was shown that
robustness of the system can be increased if multiple cues extracted from the same
modality (in this case global and local visual features) are integrated. Also, larger
performance gain can be obtained if the cues come from different sensors having
different characteristics. In this work, the most robust solution was obtained when
rich visual cues were combined with illumination invariant geometrical features
extracted from laser range data.

As another way of solving the long-term dynamic variations problem, this thesis
advocated the use of incremental and adaptive systems. An incremental extension
to the SVM discriminative classifier was proposed and applied to the place recog-
nition problem. The method was shown to achieve recognition performances sta-
tistically equivalent to those of the batch algorithm, while obtaining a substantial
memory reduction. Moreover, in case a limit is set on the size of the model, the
method tends to forget the oldest information making it suitable for adaptation to
changing conditions. It was experimentally validated that an adaptive place recog-
nition model can greatly improve its performance by tracking the dynamic changes.
The algorithm was also applied to the problem of knowledge transfer between two
robotic platforms. In this case, the incremental learning algorithm allowed the
receiver of the information to gradually adapt the model to its own sensing.

In order to perform experimental evaluations of the proposed solutions in con-
trolled, yet realistic, settings, several databases were collected including: INDECS,
IDOL, IDOL2, COLD and its recent extension COLD-Stockholm. The offline eval-
uations were then compared to online experiments. The robot achieved comparable
performance to that obtained offline. This suggests that the proposed databases and
benchmarks based on them are indeed realistic. At the same time, using databases
permitted thorough analysis of properties of the methods and their fair comparison.

This thesis expressed a belief that objects play an important role in under-
standing of space, as does spatial topology. However, as shown by the review of
related works, no principled method previously existed for fusing different sources
of semantic information such as objects, general appearance and geometry into one
comprehensive representation. The property-based paradigm proposed in this work
provided a seamless way of integrating objects with place categorization. Moreover,
it was shown that the topology itself can be a strong cue for room categorization,
especially in case of such rooms as a corridor which is likely to be connecting other
rooms. Combination of all sources of knowledge inside the conceptual inference
framework resulted in a reliable place categorization technique.

Another advantage with the property based system is that it permitted training
of the concept definitions independently from the models of sensory information.
As a result, it became possible to train the system with data from common sense
knowledge databases or crawling the internet for information about typical topolo-
gies and objects-room relations. The experiments showed that those can be valuable
source of conceptual information, and through the abstraction provided by place
classification and object models, useful in practice in realistic environments.
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One of the important characteristics of the presented method is the ability to
represent the conceptual knowledge in a probabilistic framework. This turned out
to be particularly important in integrated systems. When the semantic mapping
system was integrated with a planning and execution monitoring component, the
uncertainty presented to the planner allowed for much more efficient behavior. For
example, the planning component could trade the room exploration cost with the
likelihood of finding a particular object in a specific room. Finally, the importance
of semantic knowledge for behavior planning was shown by the experiments with
the active visual object search system. The system was run with and without the
possibility to use the results of semantic mapping and the time required for finding
the object was measured. It became clear that the search behavior becomes much
more efficient if the objects are searched in their canonical positions inferred by the
semantic mapping system.

As final words, it is important to say that despite this thesis being concerned
with the use of semantic mapping system on mobile robot platforms, there are
multiple other applications which could benefit from the availability of semantic
information. Those include wearable devices in contexts such as assistance of elderly
and disabled people. Such devices could provide information about the presence
of objects, the typical actions that should be performed and could monitor the
behavior of a person by comparing it to the typical behavior. Moreover, in the era
of ubiquitous mobile devices equipped with substantial computational units and
multiple sensors, we can think about the presented system running in our pockets
and extending our experience of localization services or social networks. Surely,
the future will bring many new exciting scenarios and applications for artificial
intelligent systems understanding and exploiting spatial semantics.

Future Work

The presented work can be extended in many directions and several possible direc-
tions for future research are outlined briefly below.

3D sensing Recently, cheap RGB-D sensors became broadly available providing
depth information fused with the visual input. This inspired many researchers to
introduce 3D information into their approaches. The place classification technique
presented in this work could benefit from introducing depth information and in-
tegrating it with the appearance models. Moreover, the geometrical information,
so far provided by expensive laser range sensors could instead be computed from
RGB-D sensing.

Online learning of place models An incremental adaptive model of places was
presented in this work. However, optimally, the models should be updated not in
batches, but online and in real time. At the same time, the complexity of the
models must be controlled. The future work will address this issue.
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Novelty detection and learning of novel concepts The probabilistic gen-
erative model of the conceptual information opens new possibilities in terms of
automatic detection and learning of novel concepts. In future, the approach should
be extended with the ability to identify gaps in spatial and semantic knowledge and
perform learning of new concepts.

Using properties for space segmentation Currently, the doors and narrow
openings detected in the environment are used as the only cue for segmentation of
space into rooms. However, the conceptual map already assigns spatial properties
to distinct places in the environment identified in an unsupervised fashion. This
semantic information associated with places should be used for more informative
and robust room segmentation and detected doorways should be fused with other
spatial properties.

Life-long learning and autonomy Finally, the future work will investigate the
use of the system on a mobile platform operating uninterruptedly over long periods
of time. This will create opportunities for the system to update its representation
gradually to changing conditions in an unsupervised or semi-supervised fashion.
This should provide a setting to study many problems currently addressed by ex-
tensive offline training or generalization abilities of the learning algorithms. More-
over, the concept definitions currently generated based on common sense knowledge
databases could be used only for bootstrapping and the robot could update or ex-
tend those definitions based on its own experience. Lastly, many properties of space
related to its functionality only become apparent after long-term observations. A
robot operating with humans in an indoor environment could learn to link actions
to room categories and objects. Life-long learning is a complex problem which to-
gether with opportunities brings many challenges. Identifying and tackling those
challenges is one of the most exciting directions for the future work.
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