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Abstract

Audio editing in the time-frequency domain using the
Gabor Wavelet Transform

Ulf Hammarqvist

Visualization, processing and editing of 
audio, directly on a time-frequency 
surface, is the scope of this thesis. 
More precisely the scalogram produced by 
a Gabor Wavelet transform is used, which 
is a powerful alternative to traditional 
techinques where the wave form is the 
main visual aid and editting is 
performed by parametric filters. 
Reconstruction properties, scalogram 
design and enhancements as well audio 
manipulation algorithms are investigated 
for this audio representation.

The scalogram is designed to allow a 
flexible choice of time-frequency ratio, 
while maintaining high quality 
reconstruction. For this mean, the 
Loglet is used, which is observed to be 
the most suitable filter choice.  Re-
assignment
are tested, and a novel weighting 
function using partial derivatives of 
phase is proposed.  An audio 
interpolation procedure is developed and 
shown to perform well in listening 
tests.

The feasibility to use the transform 
coefficients directly for various 
purposes is investigated. It is 
concluded that Pitch shifts are hard to 
describe in the framework while noise 
thresh holding works well. A 
downsampling scheme is suggested that 
saves on operations and memory 
consumption as well as it speeds up real 
world implementations significantly. 
Finally, a Scalogram 'compression' 
procedure is developed, allowing the 
caching of an approximate scalogram.
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Introduction

This thesis covers the design of Wavelet based �lters for audio analysis and
also contains applications where these �lters are used for audio restoration.

The material is best understood with knowledge about signal processing
and audio analysis. The reader is directed to literature [1, 2] for a more
comprehensive background on the mathematical and engineering aspects,
and for an explanation of basic terminology.

Background

Traditionally, user interfaces in audio editing software presents multiple
channels or clips of waveforms parallel along a time line, which gives a work
�ow analogous to editing with multiple tape-recorders.

With such approach, the visual representation of the audio, where the
amplitude of the waveforms are plotted over time, has a vague perceptual
connection to the produced audio signal, as it only gives a rough idea of the
instantaneous sound pressure but not the signal, spectral, content. This is
why using some time-frequency representation, usually a spectrogram or a
spectrometer, becomes a vital analysis and visual reference tool.

A time-frequency representation can also be used for interactive editing
as long as the generating transformation has an inverse. Changing the coef-
�cients from the transformation is conceptually the same as applying time
dependent �lters controlled by user input. Some intricate operations, for ex-
ample smoothing of transients, normally done by specialized algorithms can
now just as well be done by manual user interaction. Another example is
the removal of speci�c overtones in speech, which this approach signi�cantly
simpli�es.

The problems stated in the thesis are based on the needs of Sonic AWE
[3], a piece of software that allows editing audio in a time-frequency represen-
tation. The software has its focus on interactive direct editing of audio but
here the focus is on the transform that maps the sound into a time-frequency
representation and a few speci�c algorithms using the transformed data. The
thesis will not deal with the speci�cs of how to implement these interactive
�lter operations, even if some design guidelines are discussed brie�y, but in-
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stead focuses on both a lower and a higher level. Even though the thesis is
associated with a speci�c software project, the methods are general.

Goal

The problems reached for by this thesis are both theoretical, concerning the
actual transformation, as well as practical, developing some speci�c end user
audio processing tools that uses the time-frequency data as input.

Three main objectives were set for the thesis.

1. Design of the time-frequency representation to:

• Find a way to change the time-frequency resolution of the repre-
sentation by a user parameter while ensuring stable reconstruction
and keeping �lter the amount of overlap low, and,

• see if there are any possible enhancements to the visual represen-
tation supporting interpretation.

2. Develop tools and algorithms that serve to:

• interpolate audio to replace missing or damaged sections,

• remove noise by spectral thresh holding, and,

• move audio signals perceptually in frequency and stretch them in
time.

3. Take a closer look at implementation details of the transformation to:

• investigate ways to compute it faster, and,

• ensure low reconstruction errors.

Method

The work started with a literature study in order to get an overview of the
vast amount of previously published material in the related �elds, audio
engineering, signal processing, image analysis and wavelet theory.

Since hearing is a non-linear process and audio quality a subjective mea-
sure, performance of the audio tools are hard to measure with numerical
means. In order to test methods found in literature as well as the authors
own ideas a lot of time was spent on implementation. A formal listening test
has also been conducted in order to evaluate one of the methods.

The code for all experiments and algorithms, except the listening test,
including the Wavelet transform was implemented by the author. To this
end MATLAB was used.
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Chapter 1

Theory

Audio is, in the physical and biological sense, pressure oscillations picked
up by our auditory system. Roughly speaking, the perceptual system only
perceives how the air pressure changes. A slow increase in pressure, or a
static pressure, has no real meaning for the hearing perception. Exactly how
the conversion to a pressure wave to our perception works is a subject of
biological and neural research itself. In fact, the nerves seem to constitute
some sort of (non-linear) �lter bank [4].

A repeating structure has a frequency - the rate of repetition. The
smoothest form of repeating signal is a harmonic function. In the one di-
mensional case, this is mathematically expressed by a cosine (or sine),

f(t) = cos(ωt+ Φ), (1.1)

where ω is the frequency and Φ a phase o�set.
A Fourier transform conceptually expresses a signal as sum of such, com-

plex valued and harmonic waves. The mathematical details, and history, of
Fourier transforms and relations to Fourier series can be found in literature
[5]. In the continuous case, the Fourier transform of an analytical function
is given by,

f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωx dx. (1.2)

This is one of many de�nitions, this one is the unitary transform ex-
pressed with angular frequencies (as opposed to ordinary frequencies). A
unitary transformation means that ||f̂ || = ||f ||. In the digitized world sig-
nals have to be sampled discretely in time and amplitude. In this context
the Discrete Fourier Transform is used. It is expressed as:

Xk =
N−1∑
n=0

xne
−i2πkn/N , (1.3)

where xn are the samples of a discrete signal of length N .
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1.1 Time-frequency analysis

If the goal is to analyze audio in a sense that relates to our hearing, so that
an intuitive connection can be made, computing and visualizing the Fourier
transform of the signal is a poor choice. We need a signal representation that
shows spectral content as a function of time. A straightforward remedy is to
make the Fourier analysis over short consecutive time segments of the signal
instead of the whole signal. This is called Short Time Fourier Transform,
STFT, and generalized in Gabor Frame theory as a Gabor Transform [6].

The Discrete Fourier transform, Eq. 1.3, of a signal of N samples pro-
duces N frequency bins, N/2 positive and N/2 negative frequencies. The fre-
quency localization of each bin depends on time windowing used. A square
window will create sinc shaped frequency bins. To get smoother frequency
localization a smoother time window is often used, which in turns means
that, in practice, the time windows have to overlap or the signal cannot be
completely reconstructed. For a deeper discussion about window shapes and
their Fourier transforms see literature, such as textbooks on spectral analysis
[7].

If a signal, or signal component, �uctuates in frequency over the time
span of the window this is generally obscured. This uncertainty is usually
explained in the form of the Heisenberg uncertainty principle. If denoting
the time uncertainty as σt and the frequency uncertainty as σω for a given
point in the time-frequency plane, the uncertainty principle can be explained
with the relation

σωσt ∝ 1.

This concept is very important to understand as it applies to all time-
frequency analysis.

Other time-frequency representations are produced by the family of Wavelet
Transforms. From an engineering standpoint, �lter banks are also at the
disposal. However, both STFT and Wavelet Transforms can be interpreted
as �lter banks as well. It is just a matter of mathematical formulation
and implementation aspects. Comprehensive reviews and overviews of time-
frequency distributions can be found in litterature [8, 9, 10, 1].

1.1.1 Time-frequency vs Time-Tonal bandwidth

The Fourier Transform maps the signal into a combination of basis functions
linearly spaced in frequency. The Mel scale [11], which is derived as the
perceived unit distance between frequencies, follows something more like a
logarithmic scale. Notes in music follow a logarithmic scale - an octave step
means the double (or half) frequency. The scale axis in the Wavelet domain
is analogous to a logarithmic frequency axis. The time-frequency bandwidth
in the Short Time Fourier domain is exchanged for a period-tonal bandwidth
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in the Wavelet domain. Fig. 1.2(b) and 1.2(a) illustrates this by with boxes
depicting the time and frequency spread - so called Heisenberg boxes.

Figure 1.1: Heisenberg box representation comparing Gabor Wavelet Frames
and Gabor Frames

ω

t0

(a) Time frequency spread of Gabor

Wavelet Atoms

ω

t0

(b) Time frequency spread of Gabor

Atoms

This shows how the wavelet transform has, relatively, increasingly better
frequency localization for lower frequencies (but worse time localization) as
compared to the STFT.

1.2 Complex Gabor Wavelet Transform

Generally speaking a Wavelet Transform describes a signal as combination
of scaled and spatially shifted versions of some function. This function is
called the Mother Wavelet and the scaled versions are called Child Wavelets.

The formulation of a Wavelet transform is split up into a series of the-
orems, which are needed in order to ensure that the wavelet decomposition
completely describes the signal and allows a reconstruction from the coe�-
cients (a way back). Most noteworthy is the necessity to split the transfor-
mation up into an analysis part and a reconstruction part. This is explained
as frames and their corresponding dual frames, which is a generalization of
bases and dual bases [6, 1]. This is a very general form that allows more
freedom in the wavelet shape - as long as a dual wavelet can be found recon-
struction is possible.

The speci�c wavelet used in this thesis is the Complex Gabor Wavelet.
In a sense, it is one of the simplest wavelets and also one of the original
wavelets, closely related to the Morlet [12, 1, 13]. In the time domain it
can be described as a complex harmonic wave multiplied by some window
function. The most common choice for window is a Gaussian, as it is very
well localized in both time and frequency. It can also be explained in the
frequency domain by it's Fourier transform - in this case a Gaussian shaped
band pass �lter.

The equations involved for the Continuous Gabor Wavelet Transform are
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presented below for completeness. The equations and notations are taken
from Stephane Mallat's textbook [1].

A Wavelet transform is de�ned by it's Mother Wavelet. The Complex
Gabor Mother Wavelet is de�ned as:

ψ(t) = g(t)eiηt,

where

g(t) =
1

(σ2π)
1
4

e
−t2
2σ2 , (1.4)

is a Gaussian bell, and it's Fourier transform is:

ĝ(ω) = (4πσ2)
1
4 e−

σ2ω2

2 . (1.5)

The reason for expressing the wavelets in the Fourier domain is two-fold,
understanding the how they 'cover' the frequency axis and the actual calcu-
lation, a common choice for the redundant Gabor Wavelet is to compute the
coe�cients via multiplications in the Fourier domain.

The Mother Wavelet is scaled into the so called Child Wavelets. A Child
Wavelet at scale j is, in Fourier domain, given by:

ψ̂j(ω) =
√
ajψ̂(ajω) =

√
aj ĝ(ajω − η),

ψ̂j(ω) = (4π(ajσ)2)
1
4 e−

(ajσ)2(ω− η

aj
)2

2 .

In this sense, a Child wavelet can be understood as a �lter and the transform
as a �lter bank � a collection of �lters. This analogy will be clearer in the
discrete case.

The Wavelet transform is then de�ned as:

Wf(t, aj) =

∫ ∞
0

f(u)ψ∗j (u− t)du = f ~ ψj(t) (1.6)

and the inverse as:

f(t) =
2

Cψ
Re

{∫ ∞
0

∫ ∞
−∞

Wf(u, aj)ψja(t− u)du
ds

s2

}
,

with
Cψ = |φ̂(0)|2,

|φ̂(ω)|2 =

∫ ∞
ω

|ψ̂(ξ)|2

ξ
dξ. (1.7)

where φ(t) is so called 'scaling function', or sometimes 'father wavelet'.
The discrete version of Eq. 1.6 is:

f [n] ≈ logea

Cψ

J∑
j=1

1

aj
Wf

[
., aj

]
~ ψj [n] +

1

Cψaj
Lf
[
., aj

]
~ Φj [n] , (1.8)
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where Φj [n] is the concatenation of all scales larger than J and:

Wf
[
., aj

]
= f ~ ψ̄j [n] (1.9)

Lf
[
., aj

]
= f ~ Φ̄J [n] .

1.2.1 The scalogram

The scalogram is a visual representation of the Wavelet coe�cients con-
structed by mapping the absolute values onto a two-dimensional plane. The
�rst dimension is scale, analogous to a logarithmic frequency, and expressed
by the scale number j. The second dimension is dilation, the time shift of
the Child wavelets, which is interpreted as time. In this thesis the Complex
Gabor Wavelet is used to create the scalograms. The motivation behind us-
ing a complex valued wavelet is best understood by investigating it's Fourier
transform and by explaining the idea behind the analytical signal represen-
tation � the Gabor Wavelet transform is essentially a quadrature �lter bank.

1.2.2 Analytical signal representation

Any real valued signal can be expressed by:

f(t) = Re {fa(t)} ,

where fa(t) is the analytical signal form of f(t). In some formulations a
factor 2 is seen in the right hand side. This depends on how fa(t) is de�ned.
In this thesis the following is used:

fa(t) = f(t) + if̂(t), (1.10)

where f̂(t) is the Hilbert transform of f(t).

In order to express a discrete real valued signal f [n] of length 2N on
analytical form fa [n], the Discrete Fourier Transform X̂ [m] is computed
and modi�ed, i.e. multiplied with a Heavy-side window, so that:

X̂ [m] =


X̂ [m] if m ∈ {1, N + 1}

2X̂ [m] if m ∈ {2, ... , N}
0 otherwise

. (1.11)

and then inverse transformed.

The Complex Gabor Wavelet is in this context the impulse response
of a band-pass �lter that transforms the �ltered signal onto an analytical
representation. The equivalent to a power spectrum is then given by taking
the absolute value of the coe�cients. These types of �lters are sometimes
called Quadrature �lters.
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Informally, the Hilbert transform of a signal is the signal itself phase
shifted by π and multiplied by the complex number 1i. Thus, the analytical
signal representation can be used to extract an estimate of the instantaneous
phase and amplitude. The phase is extremely useful when analyzing narrow
band signals. For a cosine this phase is a very good approximation of the
actual phase. This also makes it possible to express signals on polar form
as:

f(t) ≈ A(t)e−ßΦ(t) (1.12)

A(t) = |fa(t)|
Φ(t) = ∠fa(t).

The instantaneous frequency is then:

ω(t) =
δΦuw(t)

δt
, (1.13)

where Φuw(t) is the unwrapped phase. The phase is a discontinuous function
ranging from −π to π. Unwrapping it means adding a function to the phase
so that the discontinuities disappear. If considering the phase of the last
point in the �rst phase cycle, φ0, and the phase of the �rst point in the
second cycle, φ1, unwrapping these two phase cycles then means adding 2π
to the phase values of the second cycle so that φ1 = φ0 + φδ, where φδ is
small. Extending this to n phase cycles means that the n:th phase cycle has
a term 2πn added added to the phase.

1.2.3 The Gabor Wavelet Transform as a �lter bank

It has been demonstrated by Ingrid Daubechies that using a Gaussian as
window function the resulting �lters do not constitute a proper wavelet frame
[13], however it is possible to construct an almost tight frame, which makes
it possible to approximate the dual frame with the original frame. Another
option is synthesizing a dual frame [1]. It is argued however that such a dual
frame does not really improve the reconstruction [14], so approximating the
dual frame with the frame itself is reasonable.

Two consecutive �lter operations, convolutions, with the same �lter are
equivalent to one �lter constructed from multiplying the �lters in Fourier
domain. Since the Fourier transform of the Gabor Mother Wavelets are
symmetrical around their center frequency, the Gabor Wavelet transform can
be simpli�ed into one �lter bank and the scalogram is constructed from these
coe�cients instead. The inversion is then the real part of the summation of
the coe�cients for all scales.

The number of scales per octave is expressed as v. This parameter con-
trols the density of the �lters in frequency domain, how many Child Wavelets
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that are constructed for every octave. The coe�cients from �ltering f(t) with
the �lter at scale j is now expressed as:

f(t)aj =
ln(21/v)

Cψ
F−1{f̂ ψ̂?aj} (1.14)

f(t) = Re

{
J∑
0

f(t)aj + φ?J

}
,

where

ψ̂?aj (ω) =
ψ̂2
aj

a2j
,

and

φ?J =
M∑
J+1

,M →∞ (1.15)

is the sum of all �lters corresponding to scales larger than J .
The scale parameter aj is chosen as 21/v in order to discretize the scales

as fractions of octaves, and the ratio 1
σ is su�ciently large so the Fourier

transform of the Child Wavelets (approximately) sums to a constant for the
choice of v.

An example of a Gabor Wavelet �lter bank is shown in Fig. 1.2.
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Figure 1.2: The Fourier transform of Gabor Wavelet �lter bank, a collection
of Child Wavelets, plotted on a linear frequency axis.
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Chapter 2

The time-frequency surface

In this section two aspects are covered. First the impact of di�erent time-
frequency resolutions is illustrated. Following that attempts at re�ning the
scalogram, essentially seeking to bend the uncertainty principle, are inves-
tigated. This involves the introduction of novel, to the author's knowledge,
weighting function.

As there is no generic 'best' choice of basis (or frame) for a generic audio
signal it is an inherit design of choice to o�er multiple choices. The user
can then pick a representation that works best for the task at hand, and
additionally tweak parameters such as time-frequency resolution ratio to get
a better understanding and precision for tools acting on the underlying data.

The methods that seek to re�ne the scalogram are judged by visual im-

provement, �exibility and computational burden. Visual improvement is a
subjective measure. Flexibility in this context is whether there can be inter-
mediate results of a normal and re�ned scalogram. Computational burden
is the amount of extra computations needed (in rough terms).

2.1 Time-Frequency resolution ratio

The �rst design objective was to allow a scalable time frequency resolution.
This is achieved by modifying the mother wavelets time support, by widening
and narrowing the time domain window given in Eq. 1.4. Equivalently this
is a narrowing and widening of the frequency support respectively, from
Eq. 1.5. The relationship between the center frequencies η

aj
and the width

of the Gaussian shaped �lters, expressed in terms of a
j

σ , is so that the bells
overlap 'enough' to still constitute a (approximately) tight frame. This is
discussed and addressed numerically in Chapter 5. A test signal consisting of
noise, a transient and two sinusoids is presented in Fig. 2.1(a) and Fig. 2.1(b),
in the form of scalograms with di�erent time-frequency resolutions.
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2.1.1 Linear combinations of resolution ratios

An interesting idea is to construct a linear combination of several resolution
ratios - thus e�ectively creating a new wavelet that is a linear combination
of other wavelets. The idea is that traits from several resolution ratios is
combined - thus concentrating the energy to some degree in both time and
frequency. This can be achieved by freezing v, but modifying the resolution
parameter (in this case, σ). This way the coe�cients will e�ectively be linear
combinations from other time-frequency ratios. The resulting wavelet is then
also a Gabor Wavelet, with an additional parameter (or set of parameters)
that controls what other resolution ratios to include (and how much of them,
if constructing the combination as a weighted sum). The result is a scalo-
gram where sinusoids are better localized in frequency, and impulses better
localized time. However, the vice versa also applies. In Fig. 2.1(b) such a
surface constructed with σ/4, σ/2, σ, 2σ, 4σ is presented and compared with
a normal scalogram using σ.

Result and Discussion

Combining several choices of time-frequency resolutions (e�ectively forming
a new wavelet) can be a useful to the user interpretation - as the resulting
wavelet have an increased localization of transients in time direction and
sinusoidal components in frequency direction. This can be implemented
as two additional parameters to change the shape of the time-frequency
plane, while still retaining a perfect inverse (if each frame itself allows perfect
inverse, that is).
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(a) Top: Scalogram using 4 σ. Bottom: Scalogram using σ/4

(b) Top: Scalogram using σ. Bottom: Linear combination of time-frequency ratios,

e�ectively forming a new wavelet.

Figure 2.1: Four scalograms with di�erent time-frequency resolutions. The
test signal is composite signal of a noise burst, followed by a silent period
with a sharp transient, and last two sinusoids. The y-axis (bottom to top)
is log frequency, and x-axis (left to right) is time. Notice that the higher
frequency sinusoid changes frequency slightly over time.
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The linear combination of wavelets will inherent both the worst and best
traits of the wavelets it is constructed from - it is e�ectively just pushing the
time-frequency uncertainty into a star like pattern when constructed as in
the example. To the author's knowledge this type of �lter is not used in time-
frequency analysis of audio. This combination can be generalized in many
ways and the speci�cs was left as an implementation detail. The simplest
form however would be to do as in the example shown in Fig. 2.1(b) - adding
a few extra resolution ratios symmetrically around a center resolution.

• Visual improvement. There seems to be some bene�t in creating a com-
binational frame. The uncertainty principle is naturally still present,
however manifests itself in a di�erent manner than the usual Gaussian
blob.

• Flexibility. The amount of extra frames, or rather how the �lters are
reshaped, can be controlled freely as it's de�ned as a mean represen-
tation of other frames.

• Computational burden. The extra computation is low, as this is simply
another �lter shape than the usual Gaussian. Any additional compu-
tation is therefor in more terms in the �lter equation. However, more
�lters needs to be computed if adding terms of more narrow band, in
order to retain the reconstruction properties.

2.2 Restructuring the time-frequency distribution

Since the the spectrogram and scalogram both can be seen as smoothed
variants of the Wigner Ville distribution (formalized as Cohen's class) [15],
many authors seek to 'sharpen' the time-frequency representations � for bet-
ter localization of partials and transients for feature extraction or sinusoidal
model construction. As an illustration of this smearing, the scalogram of a
set of sinusoid is presented in Fig. 2.2(a). This is obscured in the scalogram,
as that only shows the absolute value. The phase plot of the same signal
shows this a little better, this is presented in Fig. 2.2(b). Notice how the
intermediate scales drift apart.

The ideas presented here all makes use of the phase information to alter
the scalogram.
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(a) Instantaneous amplitude of sinusoids of di�erent frequencies.

(Scalogram)

(b) Instantaneous phase of sinusoids of di�erent frequencies (weighted

by amplitude for visual localization)

Figure 2.2: Example signal that shows how the scalogram obscures essential
information, the phase, of the signals. The phase gives a hint how the scales
can add up to form a perfect reconstruction even if they appear to have been
'smeared' in the scalogram.
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2.2.1 Re-assignment

Re-assignment of a time-frequency distribution is moving coe�cients to other
coordinates as de�ned by the partial derivatives [16], in respect to time
and frequency, of the instantaneous phase. If this is a theoretically sound
approach or not is not discussed here, but as several authors seems to have
bene�ted from this approach [17] [18] we were curious to see what it would
do for the visual interpretation in the case of the scalogram. The equations
were translated from a spectrogram context into a Gabor Wavelet context:

IF =
d

dt
∠F (ω, t),

LGD = − d

dω
∠F (ω, t),

where ω is the center frequency of Child Wavelet at a certain scale.

IF is the instantaneous frequency. The LGD is interpreted as a timing
error. The re-assignment 'coordinates' are then given by the scale corre-
sponding to IF and time to t - LGD.

For reference, the absolute value of the LGD is shown next to the scalo-
gram of the same signal in Fig. 2.3

(a) Absolute value of LGD (phase deriva-

tive in scale direction), blue region are

close to zero.

(b) Scalogram reference

Figure 2.3: Exploiting information about the derivatives of phase in the coef-
�cients, common onset, true time support and similar features can be found.
Here the phase derivative in scale direction is shown next to a scalogram for
the same signal. The signal is �ve sinusoids, four have a common onset in
time.

Result and Discussion

An experiment of reassignment of coe�cients for the scalogram of a speech
signal is presented in 2.4, where the derivatives have been approximated
with �nite di�erences and the congregation points are where the underlying
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coe�cients have a certain phase value (π in this case). These clustering
of points is then represented by a rectangle with timespan equal to a child
wavelet at the particular scale.

(a) Re-assigned scaleogram

(b) Scaleogram, reference

Figure 2.4:

• Visual improvement. It is questionable if there is any visual improve-
ment.

• Flexibility. Re-assignment is non-�exible. Intermediate forms can be
done by only taking into account one of the derivatives, however that
is not the �exibility that was sought.

• Computational burden. Re-assignment involves several steps. Two
set of derivatives and time-di�erences are calculated and lastly the
congregation points have to be chosen.

Re-assignment in general will reasonably only work well when the under-
lying data is well separated (low level of interference between signal compo-

19



nents) already. This raises the question if it is motivated at all for interpre-
tation purposes. The attempts to re-assign the coe�cients in scale direction
were motivated by the fact that such a re-assignment could possibly used for
clustering of partials for tonal signals � in a sense segmenting the scalogram
by creating a sinusoidal model of sorts. However, several interesting schemes
have been developed for the purpose of sinusoidal modeling STFT [19], [20],
[21] so any further work in this direction should start with evaluating those
and other similar methods �rst.

2.2.2 Wavelet Ridges

In wavelet literature, much attention is given to the ridges corresponding
to the maximum points in the scalogram [1], where they are said to give a
representation of the underlying data. With narrow bandwidth �lters the
resulting scalogram is so smeared in time that the ridge points based solely
on the maximum becomes a poor representation of the underlying data. This
does not correlate with the ridges except well into the timespan of stationary
signals (corresponding to the time support of the child wavelet). This is why
using the phase derivatives becomes important.

Constructing a new time-frequency representation by moving and adding
coe�cients in scale direction does not void the �nal reconstruction summa-
tion in Eq. 1.15, it merely gathers the coe�cients in partial sums for each
time step. Thus, a re-assign method acting this way could potentially serve
to both improve the readability while still be a valid representation of the
signal in the reconstruction sense � and possibly decompose the signals in
a meaningful way. Motivated by this some experimentation was conducted
with combining the ridges and derivatives. For simple signals of only a few
sinusoids, it is possible to decompose the components by moving all the coef-
�cients to the closest ridge point that also ful�lls a threshold on LGD (inter
scale phase derivative) � if this value is small 'enough' the ridge point has
true time support.

Result and Discussion

The result of an experimental algorithm that moves coe�cients to local maxi-
mum points in scale direction that also ful�ll a criterion on the phase deriva-
tive, is shown in Fig. 2.5. The signal is constructed from sinusoids and
broadband noise and the result is presented in the form of scalograms.
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Figure 2.5: Scalogram, Ridge points and discarded Ridge segment reassign-
ment. The true time support is shown by horizontal black lines. Taking
advantage of the phase derivatives makes it possible to discard ridge points
that are a result of time-smearing.
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For simple signals it was possible to separate the signal components,
however for more complex signals this method did not give a robust decom-
position. It is believed that more work regarding how the coe�cients are
re-distributed could turn this into a fairly robust decomposition algorithm,
but further work warrants also comparing to related decomposition methods
and sinusoidal models.

• Visual improvement. Pure ridges is a poor representation, however
exploiting the phase derivatives makes it somewhat more readable.

• Flexibility. Just like re-assignment, it is not �exible. It cannot be
applied in intermediate forms.

• Computational burden. One phase derivative for every coe�cient and
the local maximum points in scale direction are computed for every
time step. Some search method �nds the closest peak that ful�lls the
phase derivative criteria.

2.2.3 Weighted Scalogram

To apply a re-assignment procedure after the wavelet transform requires
many additional computations � two phase derivatives for every coe�cient
and then an e�cient algorithm to cluster the re-assigned coe�cients in a
meaningful way. The bene�t was not clear. A simpler, and more �exible
solution was sought. This was found by using the values from the derivatives
themselves, to create a weight function. A weighting function is proposed,
constructed as:

WLGD(t, aj) = a−|(LGD(t,aj))|b ,

where a and b control the amount of weight.
The LGD value is close to zero when near to the true support of a signal

component. This means that the resulting weight WLGD will be (almost)
1 on the true time support and (almost) 0 outside, e�ectively zeroing the
components that do not belong to any true time support.

Result and Discussion

From the experimentation with re-assignment a simpler method is proposed,
that to some degree achieves a similar result. Based on the inter scale phase
di�erence, a weight overlay is suggested as a tool to aid the user interpreta-
tion of the scalogram. The degree of 'sharpening' can be altered seamlessly.

The visual result of using a = e and b = 1 is presented in Fig. 2.6 showing
that the visual e�ect of the weighting function on a speech signal.
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Figure 2.6: Top: Scalogram of a speech signal, Bottom: Weighted scalogram
using the proposed method based on the phase derivative in scale direction.

As the WLGD weight also punishes the coe�cients near the edge of the
time support of a component, the weight has to be used with moderation or
there is a great risk to instead degrade the visual representation. However it
is a very simple method that seems to be a very useful addition to a creative
environment for getting a better idea of where the signal components true
support are in the time-frequency plane.

• Visual improvement. Due to the weighting, the resulting scalogram is
still smooth. This makes it easier to maintain readability. However,
regions where signal components interfere can however show strange
or misleading results. In this sense it su�ers from the same problems
as re-assignment.

• Flexibility. As this is a weight, the amount of weighting as well as the
shape of the weighting function can be adjusted freely. In that sense
it is very �exible.

• Computational burden. One phase derivative and a weight function
based on an exponential, as well as a multiplication with said weight,
is computed for every coe�cient.
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The smoothness combined with the �exibility makes this an interesting
candidate for 'enhancing' the scalogram.

Using the IF value in a similar manner was tested brie�y but the visual
e�ect was only marginal, so it was not presented here.

2.3 Conclusion

From the experiments on 're�ning' the scalogram, two methods stand out
as promising: the combination of frames and the phase derivative weighting
function.

The �rst is simply a combination of several time-frequency resolutions
and while it is to the author's knowledge novel in the audio-scalogram con-
text, �lters with such shapes are used in engineering. The fact that the
result is still a proper scalogram from which an inverse can be computed is
attractive in the audio editing context. (Modifying coe�cients as explained
in the Introduction and Chapter 4)

The second method is the weight method proposed, that was inspired
by re-assignment, but exhibits a much smoother and most importantly a
�exible result. The amount of 'sharpening' is controlled by the weighting
parameters. To the author's best knowledge, this type of weight have not
been used before.

Re-assigning the scalogram did not impress the author. Partial summing
towards ridges in the scalogram can prove to be useful with more work in
regards on how to take advantage of the phase derivatives.

The �nal conclusion is that regardless of what method is used, the result
will be poor if the signal is not well separated in the time-frequency plane.
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Chapter 3

Audio interpolation

A challenging problem in audio restoration is to replace larger segments of
noisy or damaged data with something meaningful. For instance, burst noise
or unwanted signal components during a instrumental tone.

This chapter outlines a method that uses the Gabor Wavelet Transform
for this purpose. Some other audio manipulation and restoration methods
are covered in Chapter 4.

The performance was measured with a listening test.

3.1 Method

There are several ways to approach the problem as it is the perceived result
that matters. Linear prediction [22] , [23], [24], [25], non-linear prediction
[26], �lter banks and sinusoidal modeling [27] are all examples on how this
problem can be approached. Since the Gabor Wavelet Transform is a collec-
tion of narrow band pass �lters, it should be possible to use the instantaneous
information around a 'damaged' segment and �ll in sinusoidal content in a
way so that they �t the boundary values on phase and amplitude (and their
derivatives) for every scale - just as can be done for every bin in the STFT
case.

Interpolation of the instantaneous values

Eq. 1.13 shows how phase and amplitude values are obtained from the com-
plex wavelet coe�cients. The most straightforward way of using this in-
formation is to let sinusoids propagate from all scales and both ends of the
segment and linearly interpolate these. If both ends have a very similar spec-
tral content, this will work well. However, if there is an ever so slight phase
shift or pitch shift there will unavoidably be undesirable interference occur-
ring over the interpolated region. A solution to this problem is to interpolate
the arguments themselves, i.e. phase and amplitude.

25



A small mismatch in phase or amplitude will give rise to a subtle, but
very noticeable click. Therefore great care has to be taken as to avoid shifting
any of the arguments. When considering an analytical signal with only one
harmonic component, but a sharp transition, it is apparent the instantaneous
values oscillate. Fig. 3.1 shows an example of this. In the case of �lter
responses from the scales the values can be assumed to be smooth enough,
as the narrowness of the �lters ensures a smoothness in time, so this is of no
real concern in the interpolation procedure.

Figure 3.1: An illustration of oscillations in instantaneous amplitude as a
function of time when calculated via the analytical signal form. The signal
in question are two sinusoidal tones of constant amplitude, separated by a
silent gap.

The wrapped phase issue

The phase values are known only in a modulus sense. Unwrapping over
the region to get the relative phase o�set will not work, as the coe�cients
have been heavily in�uenced by the damage in an unknown way - thus any
attempt to interpolate such a phase will cause a shift in frequency over the
interpolated region as compared to the boundaries.

In order to get an unwrapped phase that can be used, a few steps have
to be taken. To simplify the notations, a wrapping operator is introduced:
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W∠Φ =

{
Φ? − 2π if Φ? ≥ π,

Φ? otherwise
(3.1)

Φ? = mod(Φ, 2π).

The target phase, P̂1 , can then be derived as follows:

P̂1 = P̄1 − ε, (3.2)

P̄1 = W∠P0 + ∆t
(ω1 + ω2)

2
,

ε = W∠(P̄1 −W∠P1).

Matching both phase and frequency

Assuming that a phase shift has occurred in the actual data (not caused by
the damage) but both sides having the same frequencies, linearly interpo-
lating the phase values will still cause a slight shift in frequency. Thus, a
higher order interpolation has to be used to meet the boundary conditions
on frequency. The design choice is to take into account the boundary values
in frequency and phase, which means that the frequency must be allowed
to drift slightly from the boundary values. This can be achieved by using
the target phase from the linear case and �tting a third degree polynomial
(there are 4 degrees of freedom):

P (t) = w0t+
b

2
t2 +

c

3
t3 + P0, (3.3)

b =
6

∆2
t

(P̂1 −W∠P0 −
∆t(w0 + w1)

3
),

c =
w1− w0

∆2
t

− b

∆t
.

The interpolated signal for one scale, on polar form, is then given by:

f∆t
a (t) = A∆t(t)e−iP (t), (3.4)

where A∆t(t) is the linearly interpolated amplitude arguments.
This lends itself to three slightly di�erent ways of interpolating audio -

the choice is in how the instantaneous values should be faded. Fig. 3.2 shows
the result in waveform for interpolation between two sinusoidal segments that
has a relative shift in frequency (and di�erent phase o�sets).
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Figure 3.2: Top: Two sinusoids of di�erent frequency and phase o�set, with
a silent gap between. Below: The silent gap is replaced by three di�erent
interpolation approaches using instantaneous values on amplitude, phase and
frequency.

Amplitude interpolation limitations

When considering amplitude interpolation it is tempting to use a higher
order of interpolation than a linear one when considering long segments.
However, initial tests showed clearly that such an interpolation scheme for
the amplitude causes very intrusive interference. This is explained by the
relationship between scales being changed slightly so that interference gives
rise to short tones. This point was not investigated further and amplitude
interpolation was restricted to linear.

Time-frequency uncertainty

The next issue is related to the uncertainty principle. In order to get very
narrow band signals in the scales the scales per octave parameter, v, has to
be chosen fairly large. Since this �res back as an increased time smearing,
the 'sample' points for the instantaneous values have to be moved further
away from the actual damage. The distance in time for a given scale depends
on its corresponding Child Wavelet's e�ective time support. In Fig. 3.3 an
example of damaged sound is presented along with the result of the three
interpolation methods.

If the damage is of high intensity and over the whole frequency region,
it should prove bene�cial to zero the a�ected samples in the time domain,
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thus making the instantaneous values usable closer to the 'damage'.

The �nal method

The interpolation method given by Eq. 3.4 yields a method that should work
well for semi-static sounds dominated by sinusoids, such as musical tones and
portions of speech. Informal tests show that it works very well and can even
work to some degree on chopped up speech signals (�lling in the gaps). To
investigate its feasibility a more formal listening test was conducted.
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Figure 3.3: Top: A scalogram of a musical audio segment with added white
noise added in a time segment. Below: The results of three di�erent inter-
polation procedures using instantaneous values of amplitude and phase for
all scales. 30



3.1.1 Listening test for performance evaluation

The �rst question to be asked when designing a listening test is what type of
sound is to be used. Synthetic tests show that the method performs almost
perfectly on simple sinusoidal combinations. It is also clear that a very rich
sound containing various noise processes, transients, chirps etc will not work
very well if the goal is to compare with a ground truth. With that in mind,
the target was set for some sort of balance - a fairly static sound but not
one constructed from synthetic signals. A sound was chosen from Creative
Commons [28]. It is a polyphonic signal consisting of sampled signals played
on a keyboard. The melody is played with a �ute - thus it is not a perfect
sum of sinusoids but rather a very narrow band process. Furthermore, there
are traces of broad band noise, possibly caused by breath noise, with low
energy. The target region was chosen to start at 27s (by the sample) into
the clip as the transition between notes was to be avoided. Only the left
channel was used to avoid the complexity with correlation, or lack thereof,
between the stereo channels.

The actual evaluation method was chosen as a threshold test, usually
used in psycho-acoustics for �nding limits of perception [29]. The concept
is to present the test subject with a set of sounds where one is di�erent in
some way. The test subject must listen carefully, and choose the one that is
di�erent from the rest. In order to rule out guesses, the process is repeated
a number of times. If the consensus is that the subject can distinguish what
sound is di�erent, a new set with a smaller di�erence is presented. If the test
subject chooses the wrong sound, a set with a larger di�erence is presented.
The method counts the number of turns of right and wrong answers and an
estimated threshold is produced.

Preparatory testing showed that an octave bandwidth of 1/32 (v = 32)
gave good results. To be sure, a 64th octave bandwidth was chosen. Dis-
tances from 10 samples up to 22000 samples were interpolated from the
starting point. The limit was set at 22000 because longer interpolations did
not make sense - if the method performed well at such a range that was ev-
idence enough. Any longer ranges requested by the software would instead
yield a completely di�erent sound as to make sure that the testing procedure
actually stopped.

The hypothesis was that some participants would get down to a thousand
samples as any shorter interval was di�cult to perceive even by the author.
It also seemed very likely that some participants would have issues perceiving
any but the longest intervals, as their hearing might not be trained for such
small details.
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3.2 Results and Discussion

Seventeen participants with varying degree of audio expertise participated.
The result is presented in the form of a histogram over in Fig. 3.4. The fallout
was such that no concise threshold could be drawn, most participants could
not perceive the di�erence between the original and synthesized segment
even for the longest interpolation length.

Figure 3.4: A histogram showing the result of the listening test. The x-axis is
the number of samples the participants managed to distinguish as 'di�erent'.
The large cluster to the right are participants that could not even distinguish
the largest length considered in the test.

The results were unexpectedly good for this particular sample - all but
a few outliers had issues even with the longest interpolation region.

After asking the outliers how they were able to perceive the di�erence
it was clear that they had perceived the gap in the low energy broad band
noise for the interpolated segment.

The excellent result shows that the method works. However, some ex-
planation for the result lies in the sound not being challenging enough and
the bulk of test participants not having high audio expertise. However, the
goal was to see if this worked at all. In real applications the choice is be-
tween a noisy burst, silence or an interpolation. In that perspective, this
interpolation approach should be readily applicable.

The informal tests on speech also suggest that the method can produce
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meaningful results even on portions of signals that are not strictly a sum of
sinusoids.

A good complement for the sinusoidal interpolation is attempting to es-
timate any noise processes and to excite them as well over the interpolation
region. This was left as a future addition as it was not clear as to how to
tackle the problem, as the noise processes are generally unknown. Experi-
mentations with thresholding the coe�cients in order to extract some sort of
sample of the noise process, and later adding this to the interpolated area,
showed improved perceived results. If this could instead be done with linear
prediction that estimates the parts of the signal best described by noise pro-
cesses and somehow combines this with the interpolation procedure, �lling
gaps of more noisy data would be possible.

Furthermore, it must be said that even if this method proved successful,
it could be improved to mimic the method constructed by Lagrange et al
[27]. In this method a sinusoidal model is employed by tracking the par-
tials over time and storing the instantaneous frequency and amplitude as
separate time series for ever partial. With this approach, pitch derivatives,
frequency and amplitude modulations become approachable. However, this
assumes a robust sinusoid model technique and this seemed out of reach for
the timespan of the thesis.

In closing it must be said that the approach of interpolating the argu-
ments instead of two sinusoids from each direction might not always improve
the result - sometimes an oscillating interference �ts better to the neighbor-
ing regions.

3.3 Conclusion

The method that was developed worked very well. The result is a well
performing and robust interpolation scheme for long gaps in audio. More
testing can be conducted to see how well it performs for more challenging
sounds, but in order to make such an investigation fruitful it should be
compared to the performance of more elaborate methods. The author's
belief is that in most cases this type of interpolation will work very well from
a perceptual standpoint.
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Chapter 4

Audio restoration and

manipulation

In this chapter, two standard operations for audio editing purposes were
developed and tested, using the Gabor Wavelet coe�cients.

• Noise reduction

• Pitch-shift

Before covering those topics in details, we start o� with some background.
As stated in the introduction the e�ort put into the thesis work is largely

motivated by the wish to edit audio directly on in a time-frequency repre-
sentation. The simple but perhaps most important operations, i.e. multipli-
cations, are not a focus of the thesis but a few key points are pointed out
here.

Editing the coe�cients directly

Firstly, multiplying only some of coe�cients belonging to a signal compo-
nent may produce unexpected results. For instance, if editing outside the
true time support of a single component, on the part belonging to the time
'smearing' of the �lters, arti�cial components may arise as the coe�cients no
longer cancel out. For this particular example, the weighting method sug-
gested in section 2.2.3 may be bene�cial as a visual cue on what coe�cients
are on the true time support is shown more clearly.

Secondly, in order to get a wysiwyg
1 editing environment the opera-

tions on a group of coe�cients should adhere, roughly, to the time-frequency
spread at those scales in the time-frequency domain. Windowing, with a
smooth window, in time direction is essential or the sharp change will give
rise to a very undesirable impulse. Since each scale is a band pass �lter

1what-you-see-is-what-you-get
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there is no such requirement in scale direction however in order to achieve
wysiwyg it may still be desirable. True wysiwyg editing is only achieved
when the edited time-frequency plane corresponds to a transformed signal.

4.1 Noise reduction by spectral thresholding

In this section a method for removing broad band noise by thresholding the
Wavelet coe�cients is presented. It is based on references [1], and mainly
serve to show how such a thresholding procedure can be realized.

A common problem for home recordings is broad band electrical noise
caused by the equipment, or faint background noise caused by fans, radiators
etc in the vicinity. A common solution is to use a gate that zeros the sound
when the intensity of the sound is under a certain value. A more involved
approach to this is to use a frequency dependent threshold. This is possible
in several ways, either based on a known threshold using the time-frequency
representation at hand, or by using multiple transforms to get the 'best'
coe�cients that maintains the signal but suppresses the noise [1]. Using
just one time-frequency representation is straight forward and required little
extra work, so the experiment was restricted to this approach.

Method

In order to determine a noise threshold a segment of pure noise is needed.
A pro�le of the spectral shape is approximated by �nding the mean and
standard deviations of amplitude for each scale over this segment. Once the
pro�le is found, it is applied to the rest of the data using a soft threshold as
a hard threshold introduces a risk of causing impulsive burst noise. Setting
the threshold low will cause some of the noise coe�cients to be unaltered,
causing an annoying so called musical noise [1].

Let fj(t) be the complex coe�cients at scale j and time t and w(x) be
a weight function. The segment of noise used to construct the threshold
is denoted training region, and t0 and t1 are the start and stopping points,
respectively, in time. Ej,train is the mean value of the absolute value of the
coe�cients for scale j over the training region, and σj,train is the standard
deviation.

The thresholded coe�cients are then given by:

fw,j(t) = fj(t)× w(|fj(t)|),

where,

w(x) =


0 x < w0,

x w1
w1−w0

w0 ≤ x ≤ w1,

1 x > w1,

(4.1)
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and,
w0 = Etrain +A× σtrain,

w1 = Etrain +B × σtrain,

where A and B then controls the lower and upper threshold points.
The weight function is shown in Fig. 4.1.

Intensity

Weight

1

0

w0 w1

Figure 4.1: Smooth thresholding function, expressed as function of intensity.
w0 is the lower limit, and w1 the higher.
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Result and Discussion

A test using a simpler signal with added noise is shown in Fig. 4.2.

Figure 4.2: Noise removal by using a thresh hold on the coe�cients based
on an approximation of the spectral pro�le of noise.

Although the method was not extensively tested, it is believed that it
will work well in an interactive environment. The parameters for controlling
the upper and lower limit, as well as the way user chooses what region
to be used for building the threshold, allows freedom and �exibility that
should enable removal the in�uence of stationary noise processes. First the
user selects a part of scalogram that is perceived as a good representation
of the noise, then the resulting threshold limits are adjusted to produce a
satisfactory result. Additionally for broad band noise processes, altering the
time-frequency resolution towards worse time resolution may be bene�cial as
then slow moving components protrude clearer than fast moving components,
such as the noise. This can be seen in Fig. 2.1.

4.2 Pitch-shift and time stretch

A very useful addition to a creative environment is the possibility to select re-
gions in the time-frequency plane and make them more elongated/compact
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in time and also, perceptually, moved to other frequency ranges. For in-
stance, changing the pacing of speech while maintaining the pitch, or the
other way around - change the pitch while maintaining the timing of the
events. Commercial algorithms exists that does this in many ways using dif-
ferent transforms and techniques. The goal here is to see if the coe�cients
from the Gabor Wavelet transform can be used for this purpose.

Phase vocoder

The phase vocoder is an algorithm usually associated with the STFT. The
idea is to exploit the possibility to separate an estimate of phase and ampli-
tude for all signal components from the coe�cients and modulate the phase.
New coe�cients are constructed that has a new instantaneous frequency cor-
responding to a pitch shift and computing an inverse using these a shifted
signal has been constructed. Time stretch is constructed in a similar way, ei-
ther by re-sampling a pitch shifted signal or by interpolating the arguments.
This method is known to have problems with smearing of transients and 're-
verberation' but the extent of this was not known if instead using the Gabor
Wavelet.

Method

Since the instantaneous phase and energy can be approximated for every
scale and sample in the Gabor Wavelet transform it is not unreasonable
to think that modulating the values in the similar manner should produce,
roughly, the same result. In order to highlight that this method is de�ned
in the discrete case, the time domain is swapped for the sample domain,
measured in n. Using the expressions from Eq. 1.13 a pitch shifted signal
fpitch[n] from phase vocoder operation is calculated as:

fpitch[n] = Re

∑
j

Aj [n]e−ßΦpitch[n]

 . (4.2)

where Φpitch[n] is the modulated phase.

In order to control the amount of pitch shift over time a function p[n] is
introduced. The modulated phase is then given as:

Φpitch[n] =

n∑
0

dΦ

dt
[n]2p[n]. (4.3)

As example, p[n] = 0 is no shift, p[n] = 1 is an octave up, p[n] = -1 is an
octave down.

Eq. 4.3 was derived from the relationship between phase and frequency,
shown in Eq. 1.13.
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Achieving time-stretch and time-compression is done by re-sampling the
arguments of amplitude and phase. The phase also needs to be modulated
to compensate or the signal is simply re-sampled as a whole. Another option
is to perform a pitch shift and then re-sample the result.

Result and Discussion

The method performed well on simple signals, and an arbitrary pitch shift
was possible as shown in Fig. 4.2. The result for more complex signals is
discussed and judged subjectively as no measure of quality was used, or
comparison to other methods were made.

Figure 4.3: Pitch shift of signal consisting of two sinusoids. Top: Scalogram
of original signal, Middle: Pitch function, Bottom: Scalogram of the shifted
signal, using the pitch function.

Judging the performance is di�cult. The best way would have been to
compare with existing methods and use some sort of listening test. However,
the author claims that the method will work well for simple signals, or signals
dominated by musical tones. More complex sounds, especially speech, will
su�er from interference artifacts that cause unwanted 'phasing' e�ects. The
coe�cients can be used for the purpose of pitch-shifting, but the result is far
from state of the art.
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The explanation for why these phasing issues occur is hard to �nd, but
here follows an attempt at one.

For a simple signal like a sinusoid that is periodic over an interval the
phase vocoder work very well. If the sinusoid has a distinct onset, then the
unwrapped phase will not quite work.

A sinusoid will have most of it's energy in the scale whose center fre-
quency is closest to the frequency of the sinusoid, but nearby bins will have
a portion of the energy as well. In a small time segment around the onset
the coe�cients interfere in such a way that the onset is produced. Modu-
lating the phase alters their relationship thus producing smeared transients.
This means that any real world signal these problems arises all over the
time-frequency plane when trying to modulate the phase, thus causing the
mentioned reverberation and smearing issues.

The phase vocoder based on the STFT is used regardless of these is-
sues. Even if no comparison was made between a phase vocoder using the
Gabor Wavelet transform and using the STFT, it is believed that the scale
dependent time support in the Wavelet transform makes these issues worse.

The ridge reassignment discussed in Section 2.2.2 was tested for pitch
shift purposes, as modulating these re-assigned ridges are similar in spirit
to locking the phase, a workaround found in literature for the STFT phase
vocoder [30]. As expected the simple signals that were well separated by
the approach could readily be shifted, the smearing issue was gone. This
approach did not work very well for a more complex signal, like speech,
however as problems with coe�cients being assigned to wrong scales caused
discontinuities in the instantaneous values. The result was induced impulsive
burst noise.

It has been suggested that pitch and time-scale modi�cations can be per-
formed on a ridge representation [1]. Since an approximate reconstruction of
a signal from the ridges of a scalogram can be calculated via frame synthesis,
it is suggested that modulating the phase over the ridges should produce a
shifted signal. This was never tested, as it was believed that even if the ridge
inversion worked, the modulated ridge would not be the same as the 'target'
signals ridge - inter scale interference is likely reduced but the time smearing
would still be present. No evidence in literature was found that showed that
the method did perform well.

Using a ridge based method could maybe produce passable results but
that requires a more work in how the ridges are constructed.

4.3 Conclusion

In this chapter, the applicability of using the coe�cients, from the Gabor
Wavelet transform, were investigated on two common audio manipulation
applications � noise thresholding and pitch-shift.
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Using the Gabor Wavelet scalogram to threshold noise seems readily
applicable. The suggested way of estimating a noise pro�le and using this
as a soft threshold are simple but e�ective.

Pitch-shift and time-stretch using the coe�cients via a phase-vocoder
produces passable, but not impressing, results. Taking into account that
both faster and more pleasing algorithms exists it is not seen as bene�cial
to use the coe�cients for this purpose.
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Chapter 5

Computational aspects

This chapters covers two central questions when calculating the GaborWavelet
coe�cients: reconstruction error and computational speed. The last section
outlines a novel 'compression' algorithm that shrinks the size of the scalo-
gram drastically while maintaining perceptual quality.

Please be reminded that when referring to the Gabor Wavelet, it's the
result of the 'analysis' �lter-bank and 'reconstruction' �lter bank combined,
as explained in Section 1.2.3. Furthermore, we refer to the coe�cients as the
results of Fourier multiplications with the Child wavelets.

The Fourier multiplication approach of calculating the coe�cients is
equivalent to a circular convolution in the time domain. When consider-
ing a longer signal it is not feasible to perform this operation for all samples
due to the high memory requirement - rather the signal has to be split into
computational blocks. Due to how the circular convolution wraps around in
time extra samples, corresponding to the time support of the wavelet, has
to be included before and after the wanted block. (This is mostly a visual
aspect as the coe�cients should still sum correctly in the inverse.) Consider
Eq. 1.2, the equation for a Child Wavelet at scale j. For a scale j the extra
samples needed are a number of σaj . Due to the notation used for the Ga-
bor Wavelet based �lter bank, the standard deviation in time for scale j is
σt,j = σaj/2. A reasonable suggestion is time support of 3 to 4 times σt,j to
minimize this wrap-around e�ect.

5.1 Reconstruction error

In this section the relation between reconstruction error and frequency re-
dundancy is investigated, as well as the construction of the so called residual
�lters.

Theoretically, the equations listed in section 1.2 will allow perfect re-
construction. However, as mentioned in section 1.2.3 the Gabor Wavelet
Transform is not, at least when using a Gaussian, a proper tight frame. The
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remedy is then to have more 'overlap' between the �lters. How much more
that is enough is not clear, so this is investigated in this section. Ideally, this
frequency redundancy should also be unrelated to the choice of parameter v.

Consider this simpli�ed expression for the Child Wavelet:

ψ̂j(ω) = Ae−
(ajσ)2(ω− η

aj
)2

2 ,

where A is a constant and aj = 2
j
v .

We want v to be the design parameter. It controls the number of 'voices
per octave', that is the spacing of the �lters on a logarithmic frequency axis.
This should then naturally control the total number of �lters. Likewise, it
should govern the value of σ so that the �lters overlap enough.

The question then is how σ and v should be related so that the end
result is as close to a tight frame as possible. As a starting point, it was
assumed that σ can be chosen approximately proportional to v - a change in
the number of scales per octave should reasonably also change width of the
Gaussian bells proportionally. If σ is chosen as σn(v) = v/n then a larger n
results in more overlap between the �lters. This leads to the �nal de�nition
of the Child Wavelet:

ψ̂j(ω) = Ae−
(ajσn(v))2(ω− η

aj
)2

2 , (5.1)

where A is a constant,

aj = 2
j
v , and,

σn(v) = v/n, where n is 'large enough'.

A measure of the error is then the magnitude of oscillation in the pass-
band, explained by the total contribution of the �lters not covering the fre-
quency axis evenly, there's a distinct drop between the center frequencies of
adjacent scales. This oscillation was measured with standard deviation as
an indication of the reconstruction error, and is presented in table 5.1, for a
few di�erent choices of n.

Besides the �aw in the passband of the �lters, the �lter bank viewpoint
requires two residual term �lters in order to cover the whole frequency axis
evenly. One is the concatenation of all lower scales mentioned in literature
- the scaling function in Eq.1.15. Another term is needed to take care of
the high frequency scales not summing to a constant close to the Nyquist
frequency. The details of this is depicted in Fig. 5.2 and Fig. 5.1 respectively.
Modifying the reconstruction formula, de�ned in Eq. 1.15, we get:

f(t) = Re

{
J∑
0

f(t)aj + φ?J + φhigh

}
,
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where φ?J is the low frequency residual, and,
φhigh is a high frequency residual.

Figure 5.1: Detail of the crossover to high frequency residual

The formal de�nition of CΨ and the low frequency residual suggests that
they can be derived from the integral in Eq. 1.7. Attempting this proved
fruitless as to the author's knowledge the integral does not converge for the
Gabor Wavelet case. In the end the formal de�nition was skipped. Instead,
all the �lters were scaled so that they would sum to 2. That is, the sum
of all the �lters is an all pass �lter as given by Eq. 1.11. This new scaling
factor is the constant A in Eq. 5.1. The residual �lters were then simply
the di�erence between 2 and the sum of the Gabor Wavelet �lter bank, and
split into two �lters to separate the low and high residuals. Where to split
is fairly arbitrary - any point in the passband should do.

In summary, in order to construct a Gabor Wavelet �lterbank a few
simple steps are taken:

1. Decide upon the parameter v, and the overlap factor n.

2. Compute the Child Wavelets in fourier domain using Eq. 5.1, ignoring
the constant A.
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Figure 5.2: Detail of the crossover to low frequency residual

3. Sum the Child Wavelets and get the maximum, B = max
∑

j ψ̂j .

4. Find A, by A = 2/B. Multiply the child wavelets with A.

5. Get the residuals, by φ̂J + φ̂high = 2 −
∑

j ψ̂j . Optionally split into 2
residuals.

6. Make sure that the sum of all these �lters ful�ll Eq. 1.11.
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5.1.1 Loglet based �lters as an alternative

The reason why the Gabor Wavelet does not allow perfect reconstruction
can be described quite intuitively. A �lter bank, with narrow band pass
�lters of compact support, placed on a logarithmic scale requires the �lters
to be symmetrical on a logarithmic scale. The Gabor Wavelets are not of
this shape. In order to achieve perfect reconstruction some other �lter shape
has to be found. One such �lter is the Loglet [31], originally derived for
image analysis purposes. Only the radial part is relevant when considering
one-dimensional signals, and is given by:

Rs(ρ) = erf(α log
βs+

1
2

ρ0
ρ)− erf(α log

βs−
1
2

ρ0
ρ), (5.2)

where,
s is the scale number, equivalent to j − 1, β 1 is equivalent to a in Wavelet
notation, and α denotes the �lter shape or overlap.

The resulting �lter bank will, for β > 1, constitute a tight frame [31]. Large
choices of α will make the �lters overlap more and choices of α < 1 make
them more square shaped.

Figure 5.3: Loglet with di�erent choices of α = n × v , resulting in di�er-
ently shaped 'bells'. Regardless of this choice, the Loglet based �lters still
constitute a 'tight frame'.
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The analytical time and frequency support for any choice of α is needed,
or at least a good analog to it, in order to be able to make a comparison
of redundancy and error properties of the Gabor Wavelet and Loglet. Since
this was not given by the authors, this was instead approximated by exper-
imenting.

When choosing the parameters as α = 2v/log2(n) and β = 2j/v, the
resulting �lter bank resembles the Gabor Wavelet with σ = v/n. As this
relationship was found through experimentation, it can only be said to hold
for the ranges of design parameters tested. Fig. 5.4 and 5.5 displays the
time and frequency support of these two choices of Gabor Wavelet and a
Loglet �lter using the proposed relationship.

Figure 5.4: Two Loglets compared to two Gabor Wavelets in frequency do-
main, testing the suggested relationship of the Loglet and Gabor Wavelet
parameters.

This shows that the choice of α = 2v/log2(n) lends a time support slightly
wider than a Gabor Wavelet with σ = v/n, and a frequency support slightly
narrower for the main bell.

To compare the reconstruction properties to that of the Gabor Wavelet
transform, the standard deviation over the passband of the sum of the �lters
was computed and is presented in table 5.1.
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Figure 5.5: Two Loglets compared to two Gabor Wavelets in time domain,
testing the suggested relationship of the Loglet and Gabor Wavelet param-
eters.
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Result and Discussion

A simpli�cation of the calculation Gabor Wavelet related de�nitions was pro-
posed that will make sure they sum correctly to achieve good reconstruction,
relying on the de�nition of a perfect �lter bank.

The reconstruction error was investigated by deriving the standard devi-
ation of the passband of the �lters, for a few choices of n, to see the impact
of the overlap amount. A Loglet �lter bank was included for comparison.
This is presented in Table 5.1.

Gabor Wavelet Loglet

σ = v/2 σ = v/2.5 σ = v/4 α = 2v

7.85e-04 1.08e-05 9.00e-08 1.37e-16

Table 5.1: Error in the passband for �lter banks expressed as the standard
deviations, as a measure of the oscillation cause by the �lters not overlapping
to sum to a constant. The numbers should not be taken as a direct measure
of the error, but rather as an illustration of the impact of increasing the
overlap.

The proposed simpli�cation to force the Gabor Wavelet Transform to
sum to 2 will not minimize the error - for that purpose scaling so that the
summation oscillates around 2 would be a better option. However, discarding
the Gabor Wavelet completely in favor of the Loglet based �lters renders the
reconstruction errors virtually negligible.

The proposed relationship is in a way oversimplifying the situation, as
the bell tails are skewed meaning that the Loglet will have a much longer
spread towards higher frequencies as compared to a Gabor Wavelet of similar
shape. That makes the analog to a standard deviation weak, at least in
frequency domain. It can still be used, in fact there is not any choice, but
it is important to point this out if considering the down sampling scheme in
the next section.

5.2 Implicit down sampling

Since the �lters are narrow band pass �lters, they have almost zero energy
at 4 σj,f from their center frequency, where σj,f = 2

σj
. This means that

they can be down sampled without any great risk of aliasing e�ects using a
Nyquist frequency slightly over this frequency. If sticking to down sample
ratios of 2, the scales can be down sampled as depicted as in Fig. 5.6. The
bene�t is a substantial decrease in memory needed to store the resulting
coe�cients, as well as fewer operations to compute them.

If the time blocks are chosen as a power of two, the subsequent down
sample blocks will also be power of two, and thus the FFT computation will
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Figure 5.6: Visualization of the scales frequency support. The Gaussian bells
for the di�erent scales can be seen as the black curve. The boxes show how
these can be implicitly down sampled, thus the area to the lower right is
proportional to the memory and operations saved in the ideal case.

be fast. (Other prime number ratios are possible too.)
In order to get the coe�cients at all sample points the down sampled

block has to be up sampled before summation. All the scales down sampled
with the same factor can be summed and up sampled together. This can,
with some care, be done in Fourier domain as well by padding the DFT of
the down sampled coe�cient signal with zeros.

The problem is the transient that inevitably will occur on the edges of the
summed signals due to them not being periodic of the length of the block
- padding the DFT with zeros will not recreate an up sampled transient.
If taking enough samples before and after the block the in�uence of the
transient is however negligible. Other options are up sampling procedures
such as convolving with reconstructing �lters.
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Result and Discussion

Some preliminary numbers on computational speed-up reported from Sonic
AWE [3] is presented in table 5.2.

With rendering

No downsampling 2.52038×
With downsampling 40.6933×

No rendering

No downsampling 13.837×
With downsampling 50.590×

Table 5.2: The speed gain of using the suggested down-sampling scheme
when calculating the Wavelet transform. The numbers are reported from
implementation in Sonic AWE [3] and expressed as factor faster than real
time. The speci�c test was made using one channel of audio with sample
rate of 44 kHz, 16 bit (CD quality) and with 40 scales per octave and 10
octaves.

The block wise down sample procedure proved very bene�cial to the
real world implementation in Sonic AWE [3]. The numbers in table 5.2 are
illustrative, as the results are implementation and hardware dependent, but
they clearly show that is a very important result.

There are other candidates for fast calculation. Especially the Oblique
Projection [32] seems worth investigating closer as they boast O(N) com-
plexity, however such a comparison is incomplete without also taking into
account the relative reconstruction error as the referenced methods relies on
approximations of the �lters. In other words, compare the aliasing errors in-
troduced with this scheme to their approximation errors as well as the speed
gain in both methods. This was not seen as a priority by the author or the
developers of Sonic AWE [3] and was left as future work.

5.3 Compressing the scalogram

If returning to the issue of the theoretical sparseness of the coe�cients, it is
possible to create a complete representation with a time step proportional
to the octave bandwidth. This is called sub sampling in some literature. A
narrower bandwidth will move the critical time spacing of the coe�cients
further apart, as shown in Fig. 5.7. Such a sparse representation can be
cached for very long segments of audio as the amount of time redundancy is
much lower, thus the number of data points in total is dramatically lower.
In literature how to do this was only found for Wavelet frames with v = 1.
Here v is higher, meaning that the resulting time steps will not be integers
but fractions which makes it impossible to use the fast wavelet scheme [1].
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A method similar in spirit is derived here, developed when dealing with
the re-assign and pitch shift problems (see previous chapters for these prob-
lem statements).

log2ω

t0

(a) Time frequency spread of a Wavelet,

v=n

log2ω

t0

(b) Time frequency spread of a Wavelet,

v=2n

Figure 5.7: Illustrative Heisenbergbox representation of two di�erent Wavelet
Frames. The dots indicate the minimum sample points needed over the time-
frequency plane. Twice as dense in scale direction means twice as sparse in
time.

The proposed method is to only express phase and energy for each scale
at a certain phase cycle, and every n:th cycle. So, it is in a sense signal
dependent sub-sampling as these are signal dependent. The procedure �rst
�nds each point for each scale for a certain phase angle. Numerically π can
be found with ease, as it can be located by �nding the discontinuity in the
phase derivative. Once this point has been found, the timing of the wrap
from −π to π is located more precisely via interpolation. The corresponding
interpolated time and amplitude is then stored. Now each scale is expressed
once per cycle with two values, thus information density is in a sense the
same to a critical down sampling. As the next step, all but every σ(v)/m of
these points for each scale are discarded. The choice of m depends on the
choice of σ(v).

When reconstructing the scales, the values of phase and energy can now
be interpolated from the two neighboring π-phase points. The assumption
being made is that the the amplitude and frequency move slowly between
these points, thus a linear interpolation should work. Since the amplitude
envelope depends on the shape of the wavelet in time domain, in this case
a Gaussian, some higher order interpolation could improve the result. Both
linear and spline interpolations were tested for phase and amplitude. Spline
interpolation for phase introduced interference terms, so this option was
discarded and is not included in the comparison.

Such a scalogram is presented in Fig. 5.8 and an illustration of the
error is presented in Fig. 5.9. Notice how similar the scalograms are. The
error is presented in absolute terms, it's the di�erence between the normal
inverse and the compressed inverse. Even if it seems to be fairly large, the
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perceptual di�erence between the normal inverse and the compressed inverse
was minimal (the author could not tell the di�erence).

(a) Scalogram synthesized from approximate sub sampling, e�ectively us-

ing approximately 3N datapoints

(b) Scalogram, reference, using the full 2× 16× 10×N datapoints.

Figure 5.8: Two scalograms of the same speech signal.
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Figure 5.9: Top: Normal inverse waveform, Bottom: Error of reconstruction
from approximate sub sampling using approximately only 3×N data points.
Even if the error is numerical large, the author could not distinguish between
them. The original inverse was constructed from 2×16×10×N data points.
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Result and Discussion

An compression scheme for the scalogram was developed, reducing the num-
ber of data points needed as far as 3N , where N is the amount of samples
in the transformed signal. Compare this to the usual scalogram that uses
2N × v × O data points, where O is the number of octaves. Here O = 10,
which is a common choice to cover the whole audible frequency range.

The numerical error introduced by the approximation scheme is presented
in table 5.3. To make sure the scheme was una�ected by the choice of v, two
tests were made with v = 16 and v = 32. Additionally, a comparison was
made using linear and spline interpolation for the amplitude argument.

spline amplitude linear amplitude

std max std max ×N
v=16

0.0122 0.0754 0.0166 0.1146 2.9487

0.0050 0.0370 0.0059 0.0373 5.8952

0.0038 0.0315 0.0039 0.0316 11.788

v=32

0.0131 0.0628 0.0192 0.1202 2.9181

0.0075 0.0455 0.0087 0.0456 5.8320

0.0048 0.0441 0.0050 0.0441 11.660

Table 5.3: Reconstruction errors for sub sample approximation scheme and
resulting e�ective redundancy. This test was performed on a speech signal,
using 10 octaves, with two di�erent choices for v. Notice how the e�ective
redundancy (total number of data points needed), ×N , is unrelated to the
choice of v. The error is the di�erence between the normal inverse and
the inverse from the 'compressed' scalogram, and presented in terms of it's
maximum value as well as standard deviation. Using spline interpolation,
the error is somewhat smaller, but not drastically so.

The errors induced by this approximation scheme are mostly related
to the assumptions of phase and amplitude not holding around transients.
Even if the errors are non-negligible numerically informal listening suggests
that they are perceptually negligible, thus using the approximated scalogram
could be a strong candidate for preview purposes as the memory requirement
is drastically lower. The cost is extra initial computation and interpolations
when computing the inverse. For every point in the scalogram linear or
spline interpolation is needed for the energy argument. For inversion, the
phase and the evaluation of the cosine using this multiplied with the energy
argument is needed for every time step and scale.

A proper sub sampled Scalogram could be achieved computing the coef-
�cients from the de�nition in Eq. 1.6 with fractional delays in ψj to achieve
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the non-integer sampling grid. This was never implemented however so no
comparison can be made on the speed and reconstruction properties.

5.4 Conclusion

In this chapter three main topics were covered.
Firstly, it was shown how to design the Gabor Wavelet �lter bank to both

be adjustable in terms of the time-frequency ratio while keeping the recon-
struction error low. Furthermore, it was discovered that better alternatives
exist, such as the Loglet. The superiority of the Loglet for reconstruction
properties was shown numerically.

Secondly, a down sampling scheme was introduced which decreased the
computational time drastically. In a real world implementation this amounts
to around 20 times increase in speed, compared to without using the scheme.

Lastly a 'compressing' scheme was suggested. While not a compression
in the normal sense, it compresses the scalogram to a fraction of it's original
size. Reconstruction is far from perfect, but perceptually identical by the
author's judgment. This scheme will be bene�cial in scenarios where com-
puting the scalogram is expensive, and there are memory constraints. The
'compressed' scalogram can then be cached, and used for audio editing or
analysis purposes, freeing up substantial amounts of <memory.
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