

5DV097 - Degree project in Computing Science Engineering,
30 ECTS-credits
Umeå university, Sweden

Performance and
Usability Improvements
for Massive Data Grids
using Silverlight
Report

Adam Holmström
2011-04-04

c06ahm@cs.umu.se

Internal supervisor: Thomas Hellström
External supervisor: Daniel Hellström
Examiner: Fredrik Georgsson

mailto:c06ahm@cs.umu.se

Abstract

TRIMMA Affärsutveckling AB is developing and marketing a business intelligence

solution called INSIGHT. INSIGHT presents tables showing possibly very large data sets

and the performance and user experience is sometimes suffering. The main objective

of this thesis is an evaluation of the pros and cons of replacing the existing

ASP.NET/HTML table component in INSIGHT with a component developed in

Silverlight.

This thesis examines two techniques to speed up a Silverlight application showing a

lot of data: UI- and data virtualization. UI virtualization intends to render only the user

interface elements that appear on the screen and are visible to the user, while data

virtualization intends to fetch (from the data source) only the section of the data that

is visible to the user.

The result of the project is a fully working prototype integrated into a test version of

INSIGHT. Performance testing results indicate that the prototype performs

approximately the same as the ASP.NET/HTML version of INSIGHT for small tables but

significantly better for large data sets.

The prototype also contains a few extra features, not available in INSIGHT,

exemplifying the possibilities to create highly responsive user interfaces in Silverlight.

Contents
1 Background ... 1

2 Introduction .. 3

2.1 Problem Statement ... 3

2.2 Goals .. 4

2.3 Requirement Specification .. 4

2.4 Related Work .. 5

3 Tools and Techniques .. 6

3.1 Silverlight ... 6

3.1.1 History ... 6

3.1.2 Features... 7

3.1.3 Silverlight Toolkit ... 7

3.1.4 Extensible Application Markup Language (XAML) 8

3.1.5 Competitors .. 13

3.2 Windows Communication Foundation (WCF) .. 16

3.3 Tools .. 17

4 Model View ViewModel (MVVM) ... 18

4.1 Evolution ... 18

4.2 The Components of MVVM... 19

4.2.1 Models ... 19

4.2.2 ViewModels... 19

4.2.3 Views ... 20

4.3 Benefits ... 20

4.4 Criticism... 20

5 Techniques for Improving Performance and Usability in Silverlight 21

5.1 UI Virtualization .. 21

5.1.1 Container Recycling ... 21

5.1.2 Deferred Scrolling ... 22

5.1.3 Example of UI Virtualization with Container Recycling 22

5.2 Data Virtualization .. 24

6 Implementation .. 27

6.1 Overview ... 27

6.2 Server Implementation ... 28

6.2.1 Data Transfer Objects ... 28

6.2.2 Server Logic ... 29

6.2.3 Service Interface and Implementation ... 31

6.3 Client Implementation .. 32

6.4 Virtualized List Implementation .. 33

6.5 Performance Testing Implementation .. 35

7 Performance Testing ... 36

7.1 Performance Testing Theory ... 36

7.2 Performance Testing Goals and Targets ... 37

7.3 Performance Test Cases .. 38

7.3.1 UI Virtualization .. 39

7.3.2 Data Virtualization .. 41

7.3.3 INSIGHT Performance ... 41

8 Performance Testing Results .. 43

8.1 List With and Without UI Virtualization .. 43

8.2 Rendering Time vs. Number of Cells Visible ... 45

8.3 Rendering Time vs. Number of Rows .. 47

8.4 Data Virtualization .. 48

8.5 INSIGHT Performance ... 49

9 RIA Advantages ... 53

10 Conclusions ... 56

10.1 Limitations ... 56

10.2 Future Work .. 57

11 Acknowledgements ... 58

12 Appendix A – Performance Test Result Tables ... 59

13 Appendix B – Test Machine Specifications ... 62

14 References... 63

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

1

1 Background
Windows Presentation Foundation (1), WPF, is a new and powerful development

framework from Microsoft for development of rich Windows client applications in

.NET. WPF is intended to complement and perhaps eventually replace the older

Windows Forms technology (2). Silverlight (3), another new technology from

Microsoft, is a subset of WPF designed specifically for development of interactive web

applications in .NET.

Unlike most other types of web applications, a Silverlight application is running in the

user's browser. It gives the developer great potential for creating interactive user

interfaces since the application can respond to user actions without having to

communicate with the web server. Communication with the web server, through web

services, is of course still required to access databases or other types of server

resources.

In ASP.NET (4), Microsoft's older Web development platform, a web application runs

on the web server and is inherently less responsive. Therefore, JavaScript and AJAX

are often used to execute code in the browser and communicate asynchronously with

the web server in order to create interactive user experiences in ASP.NET. In

Silverlight, all communication with the web server is asynchronous via web services

(5), making it easier for developers to create responsive applications.

Unlike WPF, Silverlight runs on both Microsoft Windows and Apple Mac OSX and in

most popular browsers, such as Microsoft Internet Explorer, Mozilla Firefox, Apple

Safari and Google Chrome (6). Moonlight is an open-source implementation of

Silverlight which makes it possible to run Silverlight also on Linux (7). Because

Silverlight is running in the browser and also has to be compatible with multiple

platforms, not all features of WPF are available in Silverlight.

Silverlight is often compared to Adobe Flash (8), since Flash and Silverlight are both

well suited for development of graphically rich web applications. Silverlight includes,

for example, animation and hardware accelerated 3D effects (using the GPU) (9).

WPF, Silverlight's big brother, implements a technique called UI virtualization (10). UI

virtualization intends to render only the user interface elements (UI elements) that

appear on the screen (and are visible to the user), while other elements are created,

initiated and rendered when they are needed, e.g. when the user scrolls down a list.

Since version 3, Silverlight also supports UI virtualization in some built-in controls,

albeit not to the same extent as WPF (11). The purpose of the technology is to

decrease rendering time and hence to increase performance of Silverlight/WPF

applications.

Another useful technique to speed up an application that displays a lot of data is data

virtualization. This technique is similar to UI virtualization but concerns application

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

2

data instead of UI elements. A common example is a simple list bound to a large

collection of items. Whereas UI virtualization only renders the items visible to the

user, data virtualization intends to loads only the sections of the collection (the data)

that are displayed in the user interface (12). More data is loaded from the server

when needed, e.g. when the user scrolls down the list. The intent is to reduce the

initial response time by loading fewer items from the server.

There is a clear correlation between response time of websites/web applications and

end user experience. End users are rarely willing to wait more than a handful of

seconds for a web page to load (13). Reduced load times and improved performance

will lead to better usability and thus increase customer satisfaction.

Silverlight is good at much more than graphics. The latest version, Silverlight 4, offers

in combination with .NET 4 and the development environments Visual Studio 2010

and Expression Blend 4 lots of features for design and development of modern

business applications.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

3

2 Introduction
TRIMMA Affärsutveckling AB (14) is developing and marketing a business intelligence

solution called INSIGHT (or INSIKT in Swedish). INSIGHT is a complete system helping

customer organizations make better and more informed decisions, by providing

support all the way from budgeting and planning to analysis and benchmarking. The

application, which is entirely web-based, is based on the business intelligence

platform provided by Microsoft (Microsoft Analysis Services).

INSIGHT is based on techniques and products from Microsoft, such as .NET, the web

application framework ASP.NET, the database engine Microsoft SQL Server and the

OLAP server Microsoft Analysis Services (which is part of Microsoft SQL Server).

Since INSIGHT in many cases presents tables showing very large data sets,

performance and user experience is sometimes suffering. TRIMMA is constantly

working to improve the user experience in the application and wanted to evaluate the

possibility of using Silverlight to improve the performance of INSIGHT. TRIMMA

therefore requested an evaluation of the pros and cons of replacing the existing parts

of the application that displays large amounts of data with components developed in

Silverlight.

TRIMMA also requested a prototype implementation of a table component whose

performance can be compared to the performance of the current ASP.NET/HTML

solution used by INSIGHT today. Consideration must be given both to the actual

performance, such as the time it takes to retrieve and present a certain number of

rows from the server side, and perceived performance from a user perspective.

Daniel Hellström, software developer at TRIMMA and former computer science

student at Umeå University, has served as external supervisor. The result of the work

has been presented for the management and software development teams at

TRIMMA.

2.1 Problem Statement
The main tasks of this project were to evaluate

 Silverlight as a technique,

 design patterns for building business applications in Silverlight ,

 integration of Silverlight components in existing ASP.NET applications and

 techniques for enhancing performance in a Silverlight application (mainly data

and UI virtualization) and

 to implement a prototype application in Silverlight whose performance can be

compared to the ASP.NET/HTML solution employed by INSIGHT today.

The prototype application was supposed to provide functionality similar to that

provided by the grid component in INSIGHT.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

4

The advantages and disadvantages of techniques such as data and UI virtualization

were also to be documented. The expected result of the work was a fully working and

well documented prototype integrated in a test version of INSIGHT along with

performance benchmarks.

A good performance benchmark requires knowledge in basic performance testing

theory. A short study of performance testing is therefore included as a part of the

work.

2.2 Goals
The goals of the project were to achieve good performance in the resulting prototype,

gain experience in designing and building business applications in Silverlight and to

learn about data and UI virtualization.

TRIMMA’s goals with this project were to evaluate pros and cons of using Silverlight

generally and in the specific case with a table showing large amounts of data. In the

end, there are also plans to replace the existing table component in INSIGHT with a

component based on the prototype (or at least inspired by), provided that the

advantages of the new solution outweigh the disadvantages, and that performance is

noticeably improved.

2.3 Requirement Specification
This section lists functional requirements defined in the beginning of the project that

the prototype should satisfy.

• The data grid must be implemented in Silverlight.

• The data grid must be able to show 2D tabular data.

• The data grid must be able to show hierarchical row and column headers.

• The data grid should feature spanning cells.

• The user should be able to resize columns in the grid.

• The data grid must handle complex cell content (e.g. a text box and a list of

buttons).

• The data grid must feature context menus on data cells and header cells.

• The Silverlight application shall communicate with a web service running on

the web server.

To be able to compare performance with the current version of INSIGHT, the

Silverlight grid must be provided with the same type of data. This means that the

Silverlight application prototype must be integrated in INSIGHT and that the server

implementation supplying the client with data must communicate with an instance of

Microsoft Analysis Services.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

5

2.4 Related Work
Techniques to achieve good performance in Silverlight applications are discussed all

over the Internet. Microsoft defines UI virtualization briefly (10) and says that it is

intended to improve performance but does not present performance benchmarks. A

blog post by Bea Stollnitz (11) is a great article on UI Virtualization and its limitations

in Silverlight compared to WPF, but it does not contain a performance benchmark.

Since data virtualization is not implemented in Silverlight and WPF, Microsoft does

not provide documentation about this feature, although it is discussed in their

forums. (12), another blog post by Bea Stollnitz, summarizes data virtualization and

points out example implementations, one of which is described more thoroughly in

an article by Vincent Van Den Berghe (15). Another simple example implementation

of data virtualization is outlined in an article by Paul McClean (16). None of these

sources presents figures on how data virtualization affects performance.

The only source of Silverlight versus HTML data grid performance comparisons found

during the project is a blog post (17) on MSDN. This post discusses performance

characteristics of the Silverlight Toolkit DataGrid and presents a rendering

performance benchmark. The benchmark compares HTML and Silverlight (with and

without UI virtualization) grid rendering performance as the number of cells in the

grid increases. The result is that the Silverlight Toolkit grid performs worse than the

HTML table without UI virtualization and that the Silverlight Toolkit grid renders faster

than the HTML table for more than 20 rows1. For 100 rows the Silverlight Toolkit grid

renders in about 3-4 seconds while the HTML table requires about 20 seconds. This

benchmark however does only use the Silverlight Toolkit DataGrid supplied by

Microsoft and is limited to one test case.

Silverlight is a relatively new technology, but there are many sources describing

common design patterns and recommended practice. The most common design

pattern on the XAML based platforms, Silverlight and WPF, is Model View ViewModel

(MVVM). Two of the first well known descriptions of MVVM can be found in two

separate articles in MSDN Magazine from February and March 2009 (18) (19). (18)

concerns mainly WPF and a basic framework for building MVVM applications, while

(19) is more targeted towards Silverlight. Another well-known MVVM walkthrough is

the book Advanced MVVM by Josh Smith (20). The author describes the MVVM

design pattern and how MVVM was used to create a simple application.

1
 70 columns are used in the test.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

6

3 Tools and Techniques
The prototype application has been developed in the .NET 4 environment using

Silverlight 4, C#, Visual Studio 2010 and Expression Blend 4. Communication between

the Silverlight client and web server is handled with a web service implemented in

Windows Communication Foundation (WCF).

This section describes the tools and techniques used in the project.

3.1 Silverlight
Silverlight is a RIA (rich Internet application) web application platform from Microsoft.

The applications run in the user’s web browser using a browser plug-in (21).

According to RIAStats.com, a site providing “a publicly accessible and easily readable

set of statics about the proliferation of Rich Internet Application (RIA) players” (22),

the Microsoft Silverlight plug-in has a market penetration of more than 60 %.

Silverlight runs on both Microsoft Windows and Apple Mac OSX and in most popular

browsers, such as Microsoft Internet Explorer, Mozilla Firefox, Apple Safari and

Google Chrome (6). Moonlight is an open-source implementation of Silverlight that

makes it possible to run Silverlight also on Linux (7). Unfortunately the Moonlight

releases lag behind Microsoft’s releases. Currently there is a preview of version 3 of

Moonlight, while Microsoft has released the fourth version.

3.1.1 History

Windows Presentation Foundation (WPF) was released with .NET Framework 3. WPF

is a new and powerful development framework from Microsoft for development of

rich Windows client applications in .NET. WPF is intended to complement and

perhaps eventually replace the older Windows Forms technology (2) and introduced

and demonstrated the power of the XAML language for defining user interfaces (21).

After the release of WPF, Microsoft started a project called WPF Everywhere, aiming

to create a striped down version of WPF running in a browser plug-in (21). This

project was renamed to Silverlight and the first version, Silverlight 1, was released in

September 2007. The first version focused on media (video, animation and vector

graphics) and was not enriched by the power of the CLR and the .NET Framework but

instead required the developers to write code in JavaScript (21).

Silverlight 2 was a big step forward since it now built on a version of .NET Framework

allowing developers to write code in managed .NET languages, e.g. C# (23). Silverlight

2 was released in October 2008.

With Silverlight 3, Microsoft began to focus on business application development by

for example providing richer data binding support, a few more advanced user

interface controls, the capability to run applications as a standard application (outside

the browser, OOB) and a new framework for communication between Silverlight

client and the web server tier (21). Silverlight 3 was released in July 2009.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

7

Silverlight 4 continued in the same direction, by adding for example support for

printing, right mouse button events, even more user interface controls and better

integration with Visual Studio and Expression Blend (24). Silverlight 4 was released in

April 2010.

3.1.2 Features

Silverlight is often compared to Adobe Flash (8), since Flash and Silverlight both are

well suited for development of graphically rich web applications. Silverlight includes,

for example, animation and hardware accelerated 3D effects (9). Silverlight is good at

much more than graphics. The latest version, Silverlight 4, offers in combination with

.NET 4 and the development environments Visual Studio 2010 and Expression Blend 4

lots of features for design and development of modern business applications.

A Silverlight 4 client application can be developed in any .NET language (e.g. C# and

Visual Basic .NET). User interfaces are defined in a language called XAML (described in

section 3.1.4).

The SDK (including the Silverlight Toolkit) features more than 60 customizable user

interface controls (24); from simple controls such as text boxes and labels to more

advanced controls such as data grids and tree views.

A Silverlight project is compiled into a single file, called a XAP file, with the .xap

extension. A XAP file is actually a compressed file using the ZIP file format, containing

compiled assemblies, XAML files and other resources (e.g. images) (21). Silverlight

applications are hosted in HTML pages using an <object> tag referencing the XAP

file. When a user first visits the web page, the XAP file is downloaded and loaded into

the browser plug-in (21).

The Silverlight runtime/plug-in installation file is about 6 MB large (or small) (21) and

is everything required to run Silverlight applications in any of the supported browsers.

3.1.3 Silverlight Toolkit

Silverlight Toolkit is an open source project developed by Microsoft containing

additional user interface controls. Silverlight Toolkit, hosted on CodePlex, adds a set

of more advanced controls (e.g. a data grid/table (DataGrid) and a tree control

(TreeView)) to the basic controls provided in the Silverlight 4 SDK (21).

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

8

3.1.4 Extensible Application Markup Language (XAML)

Extensible Application Markup Language (XAML; pronounced “zammel”) is a

declarative language based on XML allowing developers to structure objects

hierarchically (25). XAML can create, initialize and set properties on objects and

express relationships between objects (25). XAML is not used only in Silverlight and

WPF but also in Windows Workflow Foundation (a Microsoft technique to define

workflows) and XML Paper Specification (a Microsoft electronic document format)

(21).

In Silverlight (and WPF) XAML is the primary way to define user interfaces (21), similar

to HTML for web pages. In XAML, an XML element is an object (an instance of a .NET

class) and XML attributes are used to set properties on objects (21).

Code Snippet 1 shows a very simple XAML user interface. The root element is a

UserControl, which is used to create reusable components encapsulating

Silverlight user interfaces (26). The x:Class attribute is used to specify the name of

the created component (including the namespace). Inside the UserControl is a

Grid. The Grid is a layout component organizing children in rows and columns,

similar to the HTML table. In this case, the Grid has white background, specified with

an XML attribute, and a single cell containing a TextBlock centered vertically and

horizontally. The TextBlock is a user interface control showing text. In this

example the TextBlock displays the text “Hello World!”.

<UserControl
 x:Class="SilverlightApplication.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid Background="White">
 <TextBlock Text="Hello World!"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
</UserControl>

Code Snippet 1. Very simple XAML code defining a user interface containing a text block vertically and
horizontally centered in a layout grid.

Event handlers can be attached directly in the XAML file as is illustrated in Code

Snippet 2. The Click attribute attaches a method called Button_Click (in the

corresponding code-behind) to the Click event of the Button. Code Snippet 3

shows an excerpt of the corresponding code-behind file. The Button_Click event

handler simply changes the Content property of the button. The Content

property of the Button controls is what is displayed inside the button, in this case a

text string.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

9

<Button
 x:Name="Button"
 Content="Click"
 Click="Button_Click" />

Code Snippet 2. A button with attached event handler.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 Button.Content = "Clicked!";
 }
}

Code Snippet 3. An example code-behind file written in C#.

3.1.4.1 Content Element Syntax

Some user interface controls accept content between the start and end tags in the

XAML code. This content is mapped to a property of the control (21). One example is

the Button control whose content is mapped to the Content property. In Code

Snippet 2 the text of the Button is set using the Content property (the XML

attribute called “Content”). In Code Snippet 4 the exact same effect is achieved by

setting the content of the <Button> XML element. In both cases, the Content

property of the Button is set to “Click”.

<Button
 x:Name="Button"
 Click="Button_Click">
 Click
</Button>

Code Snippet 4. A button with attached event handler using the content element syntax.

Two things doing the same thing might seem unnecessary, but the content element

syntax is more powerful than this. In Code Snippet 1 for example, the UserControl

and Grid controls both have complex XAML content that could not have been

specified using XML attributes. The same thing applies to the Button control; it

accepts complex XAML content which makes it very flexible. Code Snippet 5 lists

example code for creating a button containing an image and a text block stacked

horizontally within a StackPanel. Figure 1 shows the resulting button.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

10

<Button
 x:Name="Button"
 Click="Button_Click">
 <StackPanel Orientation="Horizontal">
 <Image Source="image.png" Width="16" Height="16" Margin="3" /> <TextBlock Text="Click" Margin="3" />
 <TextBlock Text="Click" Margin="3" />
 </StackPanel>
</Button>
Code Snippet 5. Code defining a button with an image and a text block stacked horizontally.

Figure 1. A button with an image and a text block stacked horizontally.

3.1.4.2 Attached Properties

Code Snippet 6 shows another powerful XAML feature. First of all the Grid control

defines two rows and two columns. The interesting part however is that the child

controls (a TextBlock, a TextBox and a Button) all set values of properties

called Grid.Row and Grid.Column. These properties do not exist on the classes

themselves, but refers to the parent Grid. This type of properties that are assigned a

value on one control but defined in another, are called attached properties (21). The

Grid.Row and Grid.Column properties set the cell position of an object within

the parent Grid layout container.

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Row="0" Grid.Column="0"
 Text="Enter Name:" />
 <TextBox Grid.Row="0" Grid.Column="1" />
 <Button Grid.Row="1" Grid.Column="0"
 Content="Submit" />
</Grid>

Code Snippet 6. A grid with two rows and two columns exemplifying the use of attached properties.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

11

3.1.4.3 Data binding

Data binding (27) is a technique used to connect properties of data objects to

properties of user interface controls. Once the binding is in place, data flow between

the two bound properties (27). If a bound property of a data object is updated, the UI

elements are updated automatically (27). For two-way data binding data flows in the

opposite direction as well; the data object is updated automatically when bound

properties of UI controls are updated (27).

Data binding is an example of a markup extension. A markup extension, surrounded

by curly brackets, returns a value that will be applied at runtime (21). Another

common markup extension is StaticResource for assigning a pre-defined and

possibly shared resource as the value of a property (21).

A class, whose instances are to be data bound, should implement the

INotifyPropertyChanged interface. This interface exposes an event named

PropertyChanged whose sole purpose is to notify a data binding when a property

of an instance of the class is updated (27), so that the user interface can be updated

automatically.

Code Snippet 7 shows two examples of data binding. The layout grid has two rows.

The first row contains a text block displaying “Name:” and a text box two-way bound

to the Name property of the data object currently in data context. The second row

does the same thing for the Age property.

This example assumes that the DataContext property of the Grid is set, in code-

behind or by a parent to the grid, to an object implementing Name and Age

properties. The DataContext property sets the default source of data bindings of a

control and its children. In this case, it is probably an instance of a class representing

persons. The text in the text boxes are automatically updated when the bound

properties are updated and vice versa.

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <StackPanel Grid.Row="0" Orientation="Horizontal">
 <TextBlock Text="Name:" />
 <TextBox Text="{Binding Name, Mode=TwoWay}" />
 </StackPanel>

 <StackPanel Grid.Row="1" Orientation="Horizontal">
 <TextBlock Text="Age:" />
 <TextBox Text="{Binding Age, Mode=TwoWay}" />
 </StackPanel>
</Grid>

Code Snippet 7. The text of two text boxes are two-way data bound to the Name and Age properties

of the data object currently in data context.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

12

In Silverlight 4, it is also possible to bind to executable actions (28). An action is in this

case a property implementing the Execute and CanExecute methods of the

ICommand interface. For example, it is possible to bind the click event of a button to

a command on the data object in data context. The Execute method of the

command will then be executed when the button is clicked, and the button will be

disabled when CanExecute returns false.

Data binding is particularly important when using the MVVM design pattern.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

13

3.1.5 Competitors

In the four following sections, Silverlight is compared to HTML, ASP.NET, Adobe

Flash/Flex and HTML 5.

The reason to use Silverlight in this project was that it was specified as a part of the

assignment specification provided by TRIMMA. This in turn depends on that Silverlight

is a .NET technology and that the company’s development is largely based on .NET.

3.1.5.1 HTML with JavaScript, AJAX and jQuery

HTML is very mature as a development platform and works on almost all Internet-

connected devices. This is a great advantage of HTML compared to Silverlight that

requires a plug-in that does not even work on all platforms.

Another disadvantage of Silverlight compared to HTML is that the application (the

XAP file) must be downloaded to the client when it is first viewed (or when the cache

has expired).

Plain HTML reloads pages on user interaction and an HTML application is thus

generally not as responsive as a Silverlight application, although client-side JavaScript

code can be used to improve responsibility (21). In Silverlight, the entire application

(written in managed .NET) runs on the client and all service calls are asynchronous (5)

by design. Hence a Silverlight application is responsive by default and remains so

unless the developer forces the application to wait for service communication.

As mentioned, JavaScript can be used to improve responsiveness of HTML pages.

JavaScript is an interpreted scripting language, often embedded in HTML pages, that

is used to add interactivity to web pages (29). Therefore, JavaScript can be used to

mitigate the limitations of HTML when it comes to responsiveness. AJAX

(Asynchronous JavaScript and XML) is another technique (which is based on JavaScript

and XML) used to create dynamic HTML pages. Using AJAX, it is possible to exchange

data asynchronously with the web server without having to reload the entire page,

which in turn makes it possible to refresh only parts of a web page (30).

jQuery is “a fast and concise JavaScript Library that simplifies HTML document

traversing, event handling, animating, and Ajax interactions for rapid web

development” (31). In short, it is a JavaScript library aiming to simplify client-side

JavaScript programming and therefore make it easier to create responsive HTML

based applications.

In summary, there are a couple of techniques for adding interactivity and

responsiveness to HTML applications, but still, writing managed .NET code in a

Silverlight client is probably easier than writing JavaScript.

Another advantage of Silverlight compared to HTML is that a Silverlight application

renders the same regardless of platform (21) (provided that the platform is

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

14

supported). In HTML, this is not always the case because different browsers (and

different versions of the same browser) may interpret the HTML differently (32).

3.1.5.2 ASP.NET

Both ASP.NET and Silverlight are used to develop web applications in .NET. ASP.NET,

like HTML, works on almost all Internet-connected devices (21) since the web server

running the application returns standard HTML for the web browser of the client to

display. Hence, unlike Silverlight, ASP.NET, like HTML, does not require a browser

plug-in (21). As a development platform, ASP.NET is also more mature than Silverlight

(21).

However, because ASP.NET is based on HTML, ASP.NET applications tend to be less

responsive than Silverlight applications (21). As with HTML, JavaScript, AJAX and

jQuery can be used to improve responsiveness. The ASP.NET Ajax Control Toolkit

provides a set of pre-built controls making it easy to use AJAX in ASP.NET applications

(33). Visual Studio 2010 ships with jQuery with support for ASP.NET (34).

It may be worth mentioning that Silverlight applications often are hosted in ASP.NET

web applications (although they could be hosted in plain HTML as well).

3.1.5.3 Adobe Flash and Flex

According to (21), Adobe Flash and Flex is Silverlight’s biggest competitor. Adobe

Flash is like Silverlight a platform for building RIAs that run in a browser plug-in. Flash

is, like Silverlight, good at graphics, animations and media playback. Compared to

Silverlight, Flash has broader reach and is almost ubiquitous (21).

Adobe Flex is an SDK from Adobe based on the Flash platform targeted towards

development of RIAs (35). The Flex SDK includes a set of standard user interface

controls, data binding support, a programming model based on a stateful client as

well as ways to communicate with servers in the background (without having to

reload the user interface) (35).

Flex uses a XML-based language called MXML to define user interface appearance and

behavior, and thus corresponds to XAML in Silverlight. Client-side logic is coded in the

ActionScript language (35).

3.1.5.4 HTML 5

A new HTML standard, HTML 5, is under development. The draft of HTML 5 includes

support for video and audio playback as well as drag and drop features (36), and there

are many voices on the Internet discussing whether or not HTML 5 could be the death

of plug-in based technologies as Flash and Silverlight (37).

In a blog post (38) on Silverlight’s official blog, it is argued that HTML 5 will indeed

include parts of the functionality (e.g. media support) previously requiring a Flash or

Silverlight plug-in, but that Silverlight includes many more features that will not be

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

15

available in HTML 5. It is also argued that the purpose of Silverlight is not to replace

HTML, but to do things HTML cannot do.

In the same blog post, it is claimed that Silverlight has been created and shipped in

four major versions during about half the time the new version of HTML has been

under design and that Silverlight will have evolved even more when the specification

of HTML 5 has stabilized and is fully implemented in all major browsers.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

16

3.2 Windows Communication Foundation (WCF)
This section describes the web service framework, Windows Communication

Foundation, used in the project. The section may be hard to understand without

some web service knowledge and can in that case be skipped.

Windows Communication Foundation (WCF) is “a part of the .NET Framework that

provides a unified programming model for rapidly building service-oriented

applications that communicate across the web and the enterprise” (39).

A WCF web service results in one or many SOAP web services defined by WSDL

interface descriptions. The main approach is to write an annotated interface in C#

which represents the service interface and simple C# classes for custom data types

required in the interface. The annotation attributes provide WCF with additional

information about how to perform the mapping between the object oriented .NET

world and the WSDL interface and SOAP messages (40).

The interface annotations specify for example that the C# interface is a service

interface, the XML namespace of the interface, which methods of the interface that

are to be exposed in the service and the type of each operation (in, in/out, etc.). A

data contract is a simple C# class with annotations specifying how this class is to be

serialized into SOAP/XML messages (41).

To implement a service, a class implementing the service interface is created. This

class can be annotated with instance and concurrency mode attributes, specifying

how the service will be handled by the service container (42). A service is normally

deployed to IIS (Internet Information Services (43), Microsoft’s web server) for service

hosting.

The code first approach described is not the only option in WCF. A contract first

approach is also possible by first developing the WSDL interface description and then

generating code stubs (for both client and service) using command line utility

accompanying the Visual Studio IDE (44) (or a plug-in providing a GUI interface to the

command line utility (45)).

Since the service interface is specified in WSDL, for both approaches, any client that

meets the contract should be able to interact with the service. In this project, the

client (service consumer) has also been developed in Visual Studio which means that

client stubs are automatically generated when adding a service reference to the client

project.

A WCF service can be exposed using different bindings. “Bindings specify the

communication mechanism to use when talking to an endpoint and indicate how to

connect to an endpoint” (46). The most common binding is based on plain SOAP XML

over HTTP and is suitable when interoperability is prioritized. When all involved

parties use WCF (interoperability with other platforms is not required) and

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

17

performance is critical, this binding can be customized to use binary encoding of

message payload. Binary encoding increases performance but sacrifices

interoperability (47). The binary encoder encodes the SOAP XML messages binary (47)

which makes the messages smaller and thus faster to send.

3.3 Tools
Visual Studio 2010 Professional has been used as the main development

environment. Visual Studio 2010 is a full IDE including Silverlight/WPF specific

features such as an editable design surface and drag and drop data-binding (24).

Expression Blend 4 has in some cases been used for design of Silverlight user

interfaces. Expression Blend is specialized in user interface design for WPF and

Silverlight and makes the design process easier than using Visual Studio, especially

when it comes to animation and advanced customization of user interface controls.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

18

4 Model View ViewModel (MVVM)
Model View ViewModel (MVVM) is a design pattern used by many Silverlight and WPF

developers (21). It is an alternative to the code-behind approach common in ASP.NET

and Windows Forms as well as Silverlight and WPF. The main purpose of the MVVM

design pattern is (as in Model View Controller (MVC) and Model View Presenter

(MVP)) separation of concerns between presentation and business logic (21).

MVVM is a widely discussed topic and due to lack of standardization confusion about

how to implement it is not unusual (21). Despite the lack of standardization most

developers agree that designing an application based on MVVM is good practice (21).

Microsoft has also been using MVVM internally on large development projects (such

as Microsoft Expression Blend (18)).

This section intends to introduce MVVM and its components as well as pros and cons.

The client implementation of the prototype (see 6.3 Client Implementation) is based

on MVVM and the principles described in this section.

Note that MVVM is a Silverlight client application design pattern and says nothing

about server-side and web service implementation.

4.1 Evolution
Design patterns for creating user interfaces have been around for a long time. Model

View Presenter (MVP) is one such pattern that emerged as a variation of the older

Model View Controller (MVC) pattern (18). The View is what the user sees on the

monitor, the data displayed by the View is the Model and the Presenter acts as a

bridge between them by populating the View with the Model data and reacting to

user interaction (18).

MVVM can be seen as a version of MVP adapted for the XAML-based platforms

Silverlight and WPF. In MVVM the Presenter has been replaced by a component

called ViewModel. The main difference is that the Presenter has a reference to

and manipulates (and reacts to events in) the View while the ViewModel does not

need a reference to the View (18). Instead, the ViewModel simply exposes data

and actions that the View can bind to via data binding (18).

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

19

4.2 The Components of MVVM
Figure 2 illustrates the three components of the MVVM design pattern.

 The View layer contains the presentation (the user interface).

 The ViewModel layer contains client business logic controlling the Views.

 The Model layer contains business data entities.

Figure 2. An illustration of the three components of the MVVM design pattern.

4.2.1 Models

Models are data entities (objects) that are needed in the client (21). They are usually

fetched from one or more web services by one or more ViewModels. The data

entities are instances of simple classes exposing data (through properties). If a

property of a Model class is not constant, the class may implement

INotifyPropertyChanged so that other objects (and Views) are notified when

the property has changed.

4.2.2 ViewModels

ViewModels contain the business logic controlling what is shown in the user

interface and what happens when the user interacts with the application. They

basically provide the Views with information (based on the Models) that can be

shown in the user interface and commands that can be executed when the user

interacts with the Views. A ViewModel does not know anything about the

View(s) connected to it, but has to notify interested parties when exposed

information changes. (21) describes a ViewModel as “a model of the view”.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

20

A ViewModel exposes information and commands (executable actions) through

properties that can be accessed by the View. To notify Views when one or more

properties have changed, the INotifyPropertyChanged interface is

implemented (18).

4.2.3 Views

A View is a XAML-file defining the elements of the user interface (21) and a code-

behind file containing presentation specific logic. In the perfect case, the code-behind

file is empty or at least almost empty since all logic is placed in the ViewModel of

the View (21).

A View uses data binding to bind properties of elements in the user interface, e.g.

the text of a text box, to properties of a ViewModel. Properties that may be

changed by the user interface are bound two-way, so that the corresponding

properties of the ViewModel are updated when the user interface is updated.

4.3 Benefits
As stated previously, the main purpose of MVVM is separation of concerns. The loose

coupling between presentation and logic makes it possible to easily create several

Views using the same ViewModel but presenting data in different ways (21).

MVVM makes it easier for developers and designers to cooperate. The development

team can work on the ViewModel without interfering with the designer working on

the View (21).

MVVM may enhance testability since the ViewModel is a regular class without UI

elements (18). The ViewModel can be tested using usual unit tests.

A great benefit with MVVM is that it really unleashes the power of data binding.

When a property of the ViewModel is updated the View is automatically updated

as well and vice versa (18).

4.4 Criticism
The most common criticism is lack of standardization (21) and excessive complexity

(48). The lack of standardization may cause confusion around implementation details

but should not affect the understanding of the basic purpose of the design pattern.

MVVM is certainly not a necessity for small applications and in some cases it may

increase complexity, buy as the complexity of the problem and hence the code

complexity increases, a design pattern may help organize the code (18).

MVVM is widely discussed and debated (21) and opinions differ. (49) e.g. considers

that the responsibilities of the ViewModel are too many.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

21

5 Techniques for Improving Performance and Usability in

Silverlight
This chapter introduces two performance improving techniques common in

Silverlight.

5.1 UI Virtualization
WPF, Silverlight's big brother, implements a technique called UI virtualization (10). UI

virtualization intends to render only the user interface elements (UI elements) that

appear on the screen (and are visible to the user), while other elements are created,

initiated and rendered when they are needed (11), e.g. when the user scrolls down a

list. Since version 3, Silverlight also supports UI virtualization in some built-in controls,

albeit not to the same extent as WPF (11). The purpose of the technology is to

decrease rendering time and hence to increase performance of Silverlight/WPF

applications (10).

Lots of controls in a user interface may affect performance, since the default behavior

of the layout system in Silverlight and WPF is to create and initialize them all, even

though most of them may be out of sight. A common example is a list with a large

number of items. The standard layout system will create one layout container for

every item in the list and then calculate the layout size and position for all layout

containers (10). If the number of items in the list is large, typically only a small subset

is visible to the user. With UI virtualization, layout container creation as well as

position and size computations are deferred until the item is visible to the user (10),

which potentially can reduce rendering time dramatically. The layout containers of

the items that are scrolled out of view are destroyed (10).

UI virtualization in Silverlight is implemented in a layout component (class) called

VirtualizingStackPanel (50). The standard Silverlight StackPanel stacks

items (its content/children) horizontally or vertically without UI virtualization.

VirtualizingStackPanel does the same thing with UI virtualization and is

intended to improve performance.

5.1.1 Container Recycling

A further optimization of UI virtualization is to recycle layout containers. When an

item is scrolled out of view, its layout container can be reused for another item

scrolled into view. This means that it is not necessary to create and destroy items as

the user scrolls the list (10). Container recycling results in less garbage collection and

improved performance when scrolling because of decreased time spent initializing

layout containers (11). Container recycling is implemented in the standard Silverlight

list control (10).

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

22

5.1.2 Deferred Scrolling

The default behavior when a user drags the thumb of a scroll bar is to immediately

update the UI (e.g. the list or whatever control it is). Deferred scrolling is a technique

used to improve scrolling performance by not updating the UI when the scroll bar

thumb is moved. When the thumb is released the UI is updated to reflect the scroll

position (10).

The advantage of using deferred scrolling is improved scrolling responsiveness since

the elements scrolled by are not rendered. The disadvantage is that the user cannot

see the items scrolled through (11).

5.1.3 Example of UI Virtualization with Container Recycling

Figure 3 tries to illustrate UI virtualization with container recycling. The figure

illustrates a three step scenario with a list with 30 items. A red dashed border

indicates the section of the list visible to the user (the section that fits on the screen).

Light blue color indicates that a list item is rendered and kept in memory.

In the first step, a, the first ten items are visible to the user and thus only the first ten

items are rendered and kept in memory.

In the second step, b, the user has scrolled one row downwards. This makes the first

list item disappear from the screen (indicated with a light red color) and the eleventh

to appear (indicated with a darker blue color). The layout container of the first item is

reused when rendering the eleventh item (indicated by the arrow).

In the third step, c, the user is assumed to have dragged the thumb of the scroll bar

and released in so that items 13-22 are visible. Items 2-11 are not visible anymore and

the layout containers used to render them will be recycled when rendering items 13-

22. If deferred scrolling was enabled, the list would not have scrolled until the scroll

thumb was released which means that the twelfth item (colored light green) never

would have been rendered. With deferred scrolling disabled, the twelfth item would

have been first rendered and then recycled.

Note that this is a constructed example and that it probably does not work exactly like

this in actual implementations.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

23

Figure 3. Illustration of UI Virtualization of a simple list.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

24

5.2 Data Virtualization
Another useful technique to speed up an application that displays a lot of data is data

virtualization. This technique is similar to UI virtualization but concerns application

data instead of UI elements. A common example is a simple list bound to a large

collection of items. Whereas UI virtualization only renders the items visible to the

user, data virtualization intends to load only the sections of the collection that are

displayed in the user interface (12). More data is loaded from the server when

needed, e.g. when the user scrolls down the list. The intent is to reduce the initial

response time by loading fewer items from the server (12).

There are many ways to implement data virtualization. Data could be fetched

synchronously or asynchronously when more data is needed. One alternative is to

fetch data only when requested. Another alternative is to fetch all data separated in

smaller packages, so that the data in the first package can be displayed once it has

been received by the client. In this way, the user can start interact with the

application while the rest of the data is still being transferred in the background.

There are a couple of example implementations of data virtualization available on the

Internet. Paul McClean outlines (16) a possible implementation of data virtualization

adapted for data binding in WPF. McClean makes use of the fact that an

ItemsControl (e.g. a ListBox) bound to an implementation of IList only

accesses the Count property to find out the size of the collection and the indexer to

retrieve the items to display. Thus, it is possible to create an implementation of

IList that virtualizes data by knowing only the number of items in the collection

and how to fetch and cache items when requested (through the indexer). Items that

have not already been requested will not exist in the cache of the virtual collection,

and must be fetched on demand when requested. The ItemsControl does not

need to know that the collection is virtualized.

McClean’s virtual collection implementation divides the collection in pages

(continuous segment of the collection) that are fetched to a cache (a dictionary/hash

table) when requested and released when no longer required.

When an item from a page already in the cache is requested, it is immediately

returned. If the page of the item is not in the cache, the entire page is fetched to the

cache. When a page is fetched, the previous or next page may also be fetched,

depending on the location of the requested item (in its page). McClean also maintains

“last access” time for every page in the cache in order to know when to release a

page from the cache.

McClean also outlines an asynchronous virtualized collection based on the same

principles. The asynchronous collection also implements

INotifyCollectionChanged (the interface used by

ObservableCollection) so that the user interface control bound to the

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

25

collection is notified when the collection is updated (items are added, updated or

deleted).

Vincent Van Den Berghe has another approach to data virtualization in WPF (15). This

solution is based on a generic wrapper class called DataRefBase<T> that wraps

the items in the collection. A wrapper object holds a reference to the “real” object,

and knows how to fetch it. The generic wrapper also exposes all the properties of the

“real” type using dynamic type information and implements

INotifyPropertyChanged, so that the user interface control bound to the

collection of “fake” objects will not notice any difference2. The wrapper objects are

initially empty and fetch the real objects when requested.

In a second step, the wrappers’ references to the “real” objects are swapped for weak

references3 allowing the garbage collector to free memory when needed. Van Den

Berghe emphasizes that using the garbage collector for caching is not a good solution

and that sorting this collection can be very slow (since objects may be loaded several

times). Van Den Berghe, like McClean, also provides a solution loading items

asynchronously without blocking the user interface.

Van Den Berghe virtualizes the list items as outlined above, but the collection still has

references to all wrappers, even if they are empty. For a collection of 1 million objects

for which 50 items have been loaded there will be 999 950 empty wrapper objects.

Also, the wrappers never release the “real” objects (unless weak references are used)

so they may all be in memory at the same time.

Van Den Berghe also implements list virtualization in a solution similar to McClean’s,

also making use of the behavior of an ItemsControl when bound to an IList

implementation. The solution is a move to front (MTF) list cache of pages which

releases the pages in the end of the list when the maximum cache size has been

exceeded. Van Den Berghe’s solution also adds support for sorting and filtering the

virtualized collection.

In a blog post by Bea Stollnitz (12), McClean’s and Van Den Berghe’s solutions are

compared and evaluated. Stollnitz also explains how the two solutions work with

Silverlight and concludes that Van Den Berghe’s solution requires several features not

available in the Silverlight version of .NET while McClean’s does compile with minor

changes.

Although McClean’s solution is compatible with Silverlight, it doesn’t work as

expected. The data binding behavior of the ItemsControl in Silverlight differs

from its counterpart in WPF. The ItemsControl implementation accesses all items

in the collection at load time which practically knocks out the data virtualization.

2
 Data binding uses only the name of the property; the type does not matter.

3
 A target of a weak reference may be collected by the garbage collector even though weak

references to it still exist.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

26

However, it’s important to realize that McClean’s data virtualization implementation

may work perfectly with other Silverlight controls.

The data virtualization implementations discussed in this section are adapted for data

binding in WPF and Silverlight, but could be used for other scenarios as well.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

27

6 Implementation
This section describes the implementation of the Silverlight grid prototype.

6.1 Overview
The system consists of two parts; a server and a client. The first part, the server, runs

on a web server and provides the second part, the client, with data via a web service.

The server handles business logic as well as fetching data from the associated data

source. The main server business logic can be found in the so called coordinator. The

coordinator is hidden behind a layer of facades with the intent to provide a simple

interface to the server logic. The service logic layer uses a data access layer to access

the data sources.

The client is responsible for user interface presentation and communicates with the

server via the web service. The client is implemented according to the MVVM design

pattern.

Both the client and the server (from the coordinator and up) works with a so called

presentation model consisting of data transfer objects (DTOs). These objects

represent the data processed by the application. Figure 4 is an illustration of the

system architecture.

Figure 4. An architectural overview of the system.

Server Logic

(Coordinator)

Web Service

(WCF)

Server

Client

ViewModel

View

P
resen

tatio
n

 M
o

d
el

(D
ata tran

sfer o
b

jects)

Facade

Data Access

Layer

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

28

6.2 Server Implementation
The server implementation is based on so called data transfer objects (DTOs). A data

transfer object is an instance of a class responsible for holding structured information

(i.e. simple data container) communicated between components on the server and

between the server and the client. The server logic manages these objects and

exposes them to the client via the web service.

6.2.1 Data Transfer Objects

As mentioned, the data transfer objects are simple data containers that hold the data

processed by the system. The main data structures are the ones representing the

grid/table to present in the client. These DTOs are shown in Figure 5. The main class is

the Grid class. The grid has a collection of GridDataRow objects representing the

rows in the grid. A GridDataRow has a collection of GridCell objects

representing the cells of the row (one cell per column in the grid).

Figure 5. Class diagram of the grid DTOs.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

29

A GridCell contains the value of the cell as well as a formatted value. In addition to

the data rows, the Grid has trees of row headers and column headers. The reason of

the tree structured headers is the hierarchical nature of row and column headers in

the data sources used by INSIGHT. The tree nodes representing the header cells are

modeled by the GridCellTreeNode class which inherits from GridCell. The

hierarchical structure of the header cells is modeled with the recursive Children

property. All header cells have unique identifiers (the UniqueName property).

In addition to the most basic properties discussed above, there are properties

concerning for example cell indices and span, styles and conditional styles.

6.2.2 Server Logic

The main server business logic can be found in the coordinator. The coordinator is

hidden behind a layer of facades with the intent to provide a simple interface to the

server logic. For the client to be able to access the facade, the methods of the facade

are exposed in a service interface.

The coordinator and facade layers are implemented in the Coordinator and

Facade classes respectively. The facade simply acts as an entrance to the service

logic layer and contains very little logic. The coordinator on the other hand contains

the main business logic. This includes a cached grid, cached formatting rules as well as

coordination of actions that can be performed on the grid, e.g. drill down and styling

operations.

The grid cache contains the last retrieved grid object (the DTOs) and is invalidated

when a new grid has to be fetched from the analysis server. The formatting rules

cache contains the formatting rules currently applied to the grid.

The coordinator uses a data access layer (DAL) to access the data sources (OLAP cubes

as well as a database). Formatting rules (associated to INSIGHT reports) are stored in

the system database of INSIGHT and accessed through an existing data access layer.

The cache is used to reduce traffic between the web server and the analysis and

database servers as well as to increase response time of the application (by not

having to access the data sources every time).

The main data source is OLAP cubes hosted by Microsoft Analysis Services. The data

access layer whose responsibility is to access cubes is abstracted behind the IData

(for read only data access) and IEditableData (for read and write data access)

interfaces. The IData interface contains a single method called GetData that

returns a Grid object. The IEditableData adds a method to update cell values.

There are three implementations of the IData interface (see Figure 6). The

TestData implementation is mock data provider generating fake data without

having to access an analysis server. This class has been used for testing purposes and

when running outside of INSIGHT.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

30

The CellSetData class is responsible for fetching data from a cube on an analysis

server and parses the cell set (the data structure returned by the analysis server) and

translates it to the DTO data structure. The AnalysisData implementation of

CellSetData uses the current state of the analysis module of INSIGHT

(information about the report currently loaded in INSIGHT) to prepare a query to send

to the analysis server. This class is thus responsible for the integration with the

analysis module of INSIGHT.

Figure 6. Class diagram of data access layer implementation.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

31

6.2.3 Service Interface and Implementation

Figure 7 shows a class diagram of the service interface, called IGridService, and

the facade used as an entrance to the service logic layer. The service interface

contains operations to get data (the grid), to notify the server when the user has

altered the styling of the grid or the content/value of a cell as well as some additional

operations to get translations and to log exceptions. In summary, it contains all the

operations required by the client.

Figure 7. The facade of the service logic and the service interface.

The most important service operations are the ones to get data to the client. The

GetAllData operation retrieves an entire grid (no data virtualization), while the

GetInitialData operation is used for data virtualization by retrieving only the

first part of the grid (a given number of rows). When using data virtualization, the

GetDataSection is used to fetch more data rows when required.

The partitioning of the grid (for data virtualization, i.e. the GetInitialData and

GetDataSection operations) is done in the coordinator by simply including only

the rows requested. The cache in the coordinator contains the entire grid, so when it

has first been fetched from the data access layer, subsequent request to

GetDataSection will hit the cache (and thus avoids the delay of fetching data

from the data access layer).

The service is implemented as a WCF web service according to the principles outlined

in the section named Windows Communication Foundation (WCF). The DTOs exposed

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

32

by the service are annotated by WCF attributes so that the framework knows how to

map the objects to SOAP messages.

The service is currently exposed as an HTTP endpoint using binary encoding of the

SOAP messages, but the endpoint can easily be replaced to match other

requirements.

6.3 Client Implementation
The client has a reference to web service which means that Visual Studio

automatically generates the required proxy class with one method per service

operation. For each DTO class exposed in the service it also generates corresponding

classes on the client.

The client logic is implemented in a number of ViewModels according to the MVVM

design pattern. The ViewModels access the web service to fetch data and to inform

the server when something has changed (e.g. styling or cell values) and prepare the

information to be presented by the Views.

The main ViewModel, the GridViewModel class, is responsible for fetching and

managing the grid DTOs and to expose them for use by the main View, the

SyncfusionGridPage. Selection and styling is managed by another ViewModel

called SelectionViewModel, exposed to the Views in a property on the

GridViewModel.

In addition to the ViewModels mentioned above, there are a couple of smaller

ViewModels responsible for specific tasks concerning formatting and filtering and

each one is used by a View. One example is the CreateFilterViewModel which

is responsible for creating filters and exposes properties bound to by the

FilteringUserControl view.

The final prototype implementation uses a grid component Essential Grid (51) from

Syncfusion as a starting point for the grid presentation. This component can be

described as a Silverlight counterpart of the HTML table. It is basically a component

for presenting tabular data. Several Silverlight grid components have been evaluated

during the project and Syncfusion’s was the one matching the requirements best. The

other grid components evaluated during the project are the one included in the

Silverlight Toolkit from Microsoft (52) as well as components from ViBlend (53),

Telerik (54) and ComponentOne (55).

The grid component from Syncfusion implements UI virtualization out of the box and

thus has the potential to perform well. It does not provide data virtualization though,

but has a nice feature which opens for building data virtualization in the

ViewModel. This feature is called virtual mode, and implies that the grid does not

have to be initially filled with data but instead request data only when required. This

is implemented by events (on the grid component object) that are raised when cell

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

33

values are required and it is up to the code using it to react to those events and

provide the grid with the values (cell content).

This event is handled in the code-behind of SyncfusionGridPage. The event

handler uses properties on the GridViewModel to retrieve cell values. More

specifically, the GridDataRows property (a collection of rows) of the

GridViewModel is used to access the rows of the grid. With data virtualization

enabled, this is a virtualized list. If an element requested by the grid is not in the

collection, it is fetched from the web service by the ViewModel. Hence, all data

virtualization logic is hidden in the ViewModel and the View does not even need to

know about it. The View thinks it is accessing an ordinary collection.

6.4 Virtualized List Implementation
The data virtualization implementation is centered round the

IVirtualizedCollection<T> interface implementing IList<T>. This

interface simply represents a virtualized collection and adds a property of type

IItemsProvider<T> to the interface provided by IList<T>. This property,

called ItemsProvider, is responsible for fetching data when required. The items

provider knows the count of the entire collection as well as how to fetch the items.

The VirtualizedCollection<T> implementation maintains fetched items in a

dictionary. The items are associated with their index in the “real” collection. When an

item not in the dictionary is requested, more data is fetched using the items provider.

Items are fetched in blocks (of consecutive items) with the assumption that the

spatial locality is high in most cases. Also, the previous and next blocks are fetched

with the same assumption. These details and the size of the blocks can easily be

tweaked. The derived class AsynchronousVirtualizedCollection<T> does

the same thing using an asynchronous items provider.

There are two implementations of IItemsProvider<T>, one synchronous and

one asynchronous version, that both take a C# delegate in the constructor. The

delegate is responsible for fetching data from some data source.

A class diagram showing the virtualized list implementation is shown in Figure 8.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

34

Figure 8. Class diagram of the data virtualization implementation.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

35

6.5 Performance Testing Implementation
As performance testing is one of the tasks of the project, the implementation contains

time tracking. Table 1 lists and defines the measures that have been defined and used

for performance testing.

Table 1. The time measures used for performance testing.

Measure Definition

Total Time
The total time from when the user requests a
report until it is displayed in the browser.

Rendering Time
The total time for the user interface to render the
grid.

Service Call Time

The total time from requesting data in the client to
retrieving the results MINUS the total time
processing the operation on the server, i.e. the
time spent on the network and building and
parsing messages.

Total Server Processing Time
The total time spent on the server MINUS the time
it takes to fetch data from the data source.

Time to Fetch Data from Data
Source

The time it takes to fetch data from the data
source.

The listed entities are quite easy to measure in code. The client can easily measure

the total time by starting a stop watch when the user presses a button and stop it

when the rendering is completed (there is an event for this). In the same way it is easy

to measure the rendering time since it is known when rendering starts. The total time

spent on the server is measured by starting a stop watch the first thing when a service

call arrives and stopping it when it returns.

The service call time is the trickiest part. It is calculated as the total time from calling a

service method until it returns minus the total processing time on the server. The

result is the total time WCF spends on sending and receiving messages.

To be able to compare the results, an existing version of INSIGHT has been modified

to measure the same things. The server times are measured the same way, except

that the start of server processing is defined as the entry point in the ASP.NET page

constructor and the end of server processing is defined as the Unload event of the

page. Service call time is also a bit different. It is measured as the time from the

onclick JavaScript of the button (the button used to load/refresh a report) until the

web browser starts to parse the JavaScripts in the response (the new HTML page).

The time when rendering is completed is measured when the

document.onreadystatechange JavaScript event is raised.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

36

7 Performance Testing
This section describes basic theory of performance testing, the performance testing

targets and goals of this project and finally the test cases designed specifically to meet

the performance testing goals and to check if the targets are met.

7.1 Performance Testing Theory
This section briefly summarizes the most important things learned when studying

performance testing theory.

According to Wikipedia (56) there are three common objectives of performance

testing:

 Demonstrate that the system meets performance criteria (or does not meet

performance criteria).

 Compare two or more systems to find which performs better.

 Find out what parts of systems or workload causes the systems to perform

badly.

The performance testing in this project is mainly targeted towards comparing two

systems, but also includes a little from the other two objectives listed above.

Alberto Salovia (57) describes accurate performance testing as a complex task, since

collecting and analyzing irrelevant data is easy. Salovia mentions overestimation and

underestimation of application performance as two common scenarios; in some cases

by an order of magnitude. The main reason to this, Salovia continues, is

oversimplification.

To reduce the risk of underestimation, it is, according to (57) important to plan the

task of performance testing from start to finish. The following seven core

performance testing activities are given:

1. Identify Test Environment

2. Identify Performance Acceptance Criteria

3. Plan and Design Tests

4. Configure Test Environment

5. Implement Test Design

6. Execute Tests

7. Analyze, Report and Retest.

Molyneaux (58) describes last minute performance testing as a reason to bad

performance. According to Molyneaux it is important to include performance

considerations in application design.

In all cases, it is important to arrange a test environment and testing conditions as

similar to the production or intended environment as possible. This includes for

example hardware, network, software and tools. However, this is very hard and exact

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

37

replicas are rare (57). Molyneaux (58) also stresses the importance of setting realistic

and appropriate targets and to define a testing environment that matches the

intended environment as closely as possible. According to Molyneaux it is important

to use automated test tools for larger performance testing activities.

7.2 Performance Testing Goals and Targets
The ultimate goal of the performance testing performed in this project is to

determine if Silverlight can be used to enhance performance of ASP.NET/HTML

applications showing large data grids, and more specifically if the Silverlight grid

application implemented as a part of this project performs better than the older

ASP.NET/HTML solution used by INSIGHT.

Another goal is to find out the importance of UI- and data virtualization when trying

to achieve good performance in a Silverlight application.

The ultimate performance testing target is that the INSIGHT version running the

Silverlight grid prototype performs better than the latest version of INSIGHT. The

following three bullets define the target less ambiguously.

 Small reports (less than 100 rows) are loaded at least as fast as the

ASP.NET/HTML version.

 Medium sized reports (100 – 1000 rows) are loaded faster than the

ASP.NET/HTML version.

 Large reports (more than 1000 rows) are loaded much faster than the

ASP.NET/HTML version.

A report in INSIGHT is a tabular presentation of data from an OLAP cube. The report

contains settings specifying what dimensions to show on rows and columns and what

measure to show in the table. An example is a report showing customer sales with

time as column dimension and region as row dimension. The report is dynamic in the

sense that the user can drill down into the data along the selected dimensions. To

continue the example, the user could for example isolate a few regions and drill down

into the time dimension to analyze customer sales per month and region.

What is meant in the performance testing targets above is the time it takes to load a

predefined report (prepared and saved at an earlier time).

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

38

7.3 Performance Test Cases
This subsection describes the test cases performed. The test cases have been

designed to examine the pros and cons of UI- and data virtualization and to compare

the resulting Silverlight application with the existing ASP.NET/HTML solution

employed by INSIGHT.

The first test case, List With and Without UI Virtualization, uses a custom Silverlight

application created specifically for the test. All other test cases use the final

implementation of the Silverlight grid application prototype integrated in INSIGHT.

The specifications of the computers used throughout the tests are listed in Appendix

B – Test Machine Specifications.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

39

7.3.1 UI Virtualization

Three test cases for examining UI virtualization have been designed. All three tests

use test machine A as client computer.

7.3.1.1 List With and Without UI Virtualization

To further evaluate UI virtualization a simple test case with the standard Silverlight

ListBox (59) has been carried out.

The Silverlight ListBox is a simple user interface control displaying a collection of

items. By default, the items in the list are listed vertically and a vertical scroll bar is

displayed if necessary. In Silverlight 4 the ListBox control has UI virtualization

enabled by default, by utilizing the VirtualizingStackPanel as items

container.

To investigate the significance of UI virtualization for the ListBox control, a very

simple Silverlight application has been created. The application user interface

contains two ListBox controls; one with UI virtualization enabled and the other one

with UI virtualization disabled. The user interface also contains a text box allowing the

user to enter the number of items to generate (and populate into the lists). Below

both lists, there is an update button used to refresh the list and a text field displaying

the rendering time last time it was updated. Figure 9 show a screenshot of the test

application.

Figure 9. A screenshot of the application used to examine ListBox performance.

Using this application, it is simple to obtain average rendering times by updating the

lists multiple times and observing the results. In this case, samples of ten updates

have been used to calculate average rendering times with and without UI

virtualization for 10, 25, 50, 100, 250, 500, 750, 1000, 5000, 10000, 50000 and 100000

rows.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

40

7.3.1.2 Rendering Time vs. Number of Cells Visible

This test case has been designed to examine the relationship between the rendering

time and the number of cells visible in the grid. In a perfect implementation, UI

virtualization would lead to a rendering time that is linearly dependent on the

number of cells visible in the grid.

With a fixed grid size of 100 by 100 cells, the number of cells visible can be varied by

resizing the browser window. In this case, a sample size of three has been used to

calculate average rendering times for 24 different windows sizes with from 9 to 800

cells visible.

This test case has been performed on the final prototype based on Syncfusion’s grid

component.

7.3.1.3 Rendering Time vs. Number of Rows

This test case has been designed to examine the relationship between the rendering

time and the number of rows in the grid (with a constant browser window size). In a

perfect implementation of UI virtualization, the rendering time would increase up to

the point where no more rows fit on the screen and then stay constant as more rows

are added.

This test case has been performed for 10, 20, 30, 40, 70, 100, 500, 1000, 10000 rows

and 10 columns using the final prototype based on Syncfusion’s grid component. The

maximum number of rows visible on the screen was 30. The results are average

rendering times with a sample size of ten.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

41

7.3.2 Data Virtualization

This test case has been designed to show the pros and cons of data virtualization. The

service call time (when first loading a grid) has been measured, by subtracting the

server processing time from the total time from initiation of service call to arrival of

response. Average service call time (sample size of ten) has been measured for 1000,

2000 and 4000 rows and 10 columns with data virtualization enabled and disabled.

The size of the data sections (the smallest number of consecutive items sent between

server and client) was set to 100 rows.

This test case also measures the total delay when the user requests more rows (by

scrolling). This delay depends only on the size of data sections and has been

performed with a data section size of 100 rows (sample size of ten).

The web server (test machine A) and the client computer (test machine B) were

connected to the same 100 Mbit LAN.

7.3.3 INSIGHT Performance

The final performance test compares the performance of the final Silverlight

prototype integrated in INSIGHT with an existing version of INSIGHT (version 5.4). Test

results are presented for five typical INSIGHT analysis reports or varying sizes. Typical

reports are used since the intention is to match the typical use case as closely as

possible. The sizes of the selected reports are listed in Table 2. The reason to the

uneven numbers (compared to previous test cases) is that the selected reports

happened to have these sizes.

Since performance optimizations in communication with the cube (the analysis

server) is not in focus in this project, the “Time to Fetch Data from Data Source”

measure should be approximately the same for the two versions of INSIGHT (the

existing version and the new prototype). This makes the comparison as fair as

possible, without including data source optimizations.

The theory about performance testing stresses the importance of a test environment

matching the intended environment as closely as possible. This test case tries to do

this but to a limited extent. Since it is very hard to simulate several users running at

the same time and other systems competing for server and network resources this

test case does not attempt to do this.

The web server (test machine A) and the client computer (test machine B) were

connected to the same 100 Mbit LAN. Test machine B also acted as analysis server.

For data virtualization, a data section size of 100 rows has been used.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

42

Table 2. The sizes of the reports used for testing.

 Rows Columns

Tiny report 25 7
Small report 100 7
Medium size
report

652 7

Large report 1985 9
Huge report 54787 2

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

43

8 Performance Testing Results
This section presents the results of the performance testing. The data behind the

diagrams presented in this section can be found in tabular form in Appendix A –

Performance Test Result Tables.

8.1 List With and Without UI Virtualization
Figure 10 shows rendering performance for a standard Silverlight ListBox with and

without UI virtualization. During the test, a maximum of 46 list box items were visible

in each ListBox due to monitor real estate. From the figure it can easily be found

that UI virtualization improves performance drastically when the number of rows

exceeds what is shown in the user interface. For 10, 25 and 50 rows UI virtualization

does not improve performance at all since all (or almost all) elements are visible and

have to be rendered. A performance penalty of having UI virtualization enabled (but

not enough rows to make use of its advantages) cannot be spotted either.

Figure 10. ListBox rendering performance with and without UI virtualization for an increasing

number of rows.

Figure 11 clarifies the trend for when the UI virtualization technology is enabled. The

rendering time increases until the user interface cannot hold more rows and then

stabilizes around 70 milliseconds. For 50 to 1000 rows the additional rows not visible

in the user interface amounts to a very small overhead and the rendering time is

more or less constant. What is surprising is the numbers for 10000, 50000 and 100000

rows which indicate a fast increasing rendering time. The rendering time for 100000

rows with UI virtualization enabled is still less than that for 500 rows with UI

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 25 50 100 250 500 750 1000

R
e

n
d

e
ri

n
g

Ti
m

e
 [

m
s]

Number of Rows

Rendering Time

ListBox with UI
Virtualization

ListBox without UI
Virtualization

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

44

virtualization disabled, but the ListBox implementation of UI virtualization is clearly

not perfect. If it had been perfect, the rendering time for 100000 rows would have

been more or less the same as the rendering time for 50 rows, since the same number

of rows are visible in the user interface.

Figure 11. ListBox rendering performance with UI virtualization enabled for an increasing number of

rows.

Figure 12 shows the rendering time per row with and without UI virtualization for an

increasing number of rows. Clearly, the rendering time per row with UI virtualization

disabled does not decrease as the number of rows increase.

Figure 12. ListBox rendering time per row for an increasing number of rows.

0

100

200

300

400

500

600

R
e

d
e

ri
n

g
Ti

m
e

 [
m

s]

Number of Rows

Rendering Time with UI Virtualization

0

1

2

10 25 50 100 250 500 750 1000

R
e

n
d

e
ri

n
g

Ti
m

e
 p

e
r

R
o

w
 [

m
s]

Number of Rows

Time per Row

ListBox with UI
Virtualization

ListBox without UI
Virtualization

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

45

It should also be noted that the user experience when scrolling is still very good for

100 000 rows when UI virtualization is enabled, but very bad for 10 000 rows with UI

virtualization disabled.

8.2 Rendering Time vs. Number of Cells Visible
Figure 13 shows the rendering time for a grid with 100 rows and columns as the

browser window size is increased to fit more and more cells. The rendering time is

clearly related to the number of cells visible, just as expected. From the figure it is

also easy to imagine a linear relationship.

Figure 13. Rendering time for a grid with 100 rows and columns with an increasing number of visible
cells (and increasing size of browser window).

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800

R
e

n
d

e
ri

n
g

Ti
m

e
 [

m
s]

Number of cells visible

UI Virtualization

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

46

The values in the last column in Table 3, rendering time per cell, seem to converge

around 0.40 milliseconds. These results strengthen the suspicions that the

relationship is linear or at least close to linear.

Table 3. Rendering time for a grid with 100 rows and columns with an increasing number of visible cells
(and increasing size of browser window).

Number of Cells Visible Rendering Time [ms] Rendering Time per Cell [ms]

9 12 1,33

16 22 1,38

25 24 0,96

36 28 0,78

49 32 0,65

64 37 0,58

81 44 0,54

100 47 0,47

121 48 0,40

144 60 0,42

169 78 0,46

196 80 0,41

225 85 0,38

256 94 0,37

289 108 0,37

324 118 0,36

361 132 0,37

400 155 0,39

440 166 0,38

480 183 0,38

520 200 0,38

560 230 0,41

640 270 0,42

800 335 0,42

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

47

8.3 Rendering Time vs. Number of Rows
Figure 14 shows the results of the third test case. The average rendering time

increases up to the point where no more rows can fit in the visible portion of the user

interface. The user interface could show a maximum of 30 rows and as expected the

rendering time does not change much when the number of rows are increased

further. The rendering seems to stabilize around 300 milliseconds.

Figure 14. The average rendering time of the grid when the number of rows increases.

0

50

100

150

200

250

300

350

10 20 30 40 70 100 500 1000 10000

R
e

n
d

e
ri

n
g

ti
m

e
 {

m
s]

Number of rows

Average Rendering Time

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

48

8.4 Data Virtualization
Figure 15 presents the result of the data virtualization test case. It is clear that data

virtualization decreases the service call time and hence the time the user has to wait

for a report to load. These results are in line with the expectations since less data is

sent with data virtualization enabled. In this test case, with a data section of 100

rows, only the first 100 rows are sent when loading a report regardless of the size of

the report. That is why the service call time with data virtualization enabled is more or

less constant (as long as the report is larger than the data section).

Although the benefit is clear it is a bit smaller than expected. For a report of 1000

rows, only one tenth of the rows are sent with data virtualization enabled, but the

service call time is reduced with only about 35 %. This is probably due to a pretty

large overhead for sending and receiving SOAP XML messages.

The benefit of data virtualization does of course increase as the report size is

increased. A report with 4000 rows is loaded about 1.4 seconds faster with data

virtualization enabled.

Figure 15. The average service call time with and without data virtualization.

The drawback of data virtualization is the increased complexity in the

implementation, and the additional delay when scrolling the report. Say that the user

views a report with 1000 rows. The report is indeed loaded 200 milliseconds faster,

but when scrolling there is an additional delay of approximately 755 milliseconds

every time a new data section has to be fetched. The significance of this additional

delay depends on the expected behavior of the typical user. If the user always scrolls

through the entire report, the additional delay is probably unacceptable. If the typical

behavior is to view only small parts of reports it may be perfectly acceptable.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1000 2000 4000

Se
rv

ic
e

 C
al

l T
im

e
 [

m
s]

Total Number of Rows

Data Virtualization

Data Virtualization
Enabled

DataVirtualization
Disabled

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

49

8.5 INSIGHT Performance
Figure 16 shows the result of the comparison between the prototype and the latest

version of INSIGHT. For the tiny report, the latest version of INSIGHT is slightly faster.

For the other reports, the prototype is faster; by small margin for the small report but

above that the margin is significant. For the medium report the prototype is more

than twice as fast and for the large report it is more than three times as fast.

The existing version of INSIGHT could not handle the huge report. During the

rendering of the report, Internet Explorer kept alerting the user that something may

be wrong. After rejecting several warnings the report finally rendered, but it is very

hard to measure the load time accurately and that is why no exact figures are

presented. A rough estimate is that the total load time is somewhere between one

and two minutes.

Figure 16 also indicates that the advantage of data virtualization is small up to and

including the medium report. For the medium report there is a small benefit (a few

milliseconds), but it is not significant. For the large report the benefit is almost half a

second and for the huge report the total time is more than halved with data

virtualization enabled.

Figure 16. Total time to load reports of different sizes for the Silverlight prototype (with and without
data virtualization) and the latest version of INSIGHT.

Figure 17 shows the total time loading the tiny report broken down in five measures.

As previously noted, the existing version of INSIGHT performs slightly better in this

case. As expected, the time to fetch data from data source is approximately the same

for all three versions and this is also the case for the four other reports (see below).

0

2

4

6

8

10

12

Tiny Small Medium Large Huge

Ti
m

e
 [

s]

Report Size

Total Report Load Time

Silverlight

Silverlight with Data
Virtualization

ASP.NET/HTML

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

50

What is remarkable in this figure is that the rendering time is about the same for all

three versions, but that the service call time is a bit smaller for the ASP.NET/HTML

version.

Figure 17. Total time, broken down in five measures, to load the tiny report.

Figure 18 shows the same type of chart for the small report. It is now apparent that

the rendering time is smaller in the Silverlight prototype, which is expected since UI

virtualization now is in effect.

Figure 18. Total time, broken down in five measures, to load the small report.

0

200

400

600

800

1000

1200

Silverlight Silverlight with
Data

Virtualization

ASP.NET/HTML

Ti
m

e
 [

m
s]

Tiny Report

Other time

Rendering Time

Service Call Time

Total Server Processing
Time

Time to Fetch Data from
Data Source

0

200

400

600

800

1000

1200

1400

Silverlight Silverlight with
Data

Virtualization

ASP.NET/HTML

Ti
m

e
 [

m
s]

Small Report

Other time

Rendering Time

Service Call Time

Total Server Processing
Time

Time to Fetch Data from
Data Source

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

51

For the medium report, see Figure 19, the rendering time of the ASP.NET/HTML

version continues to increase relative to the rendering time of the Silverlight

prototype. It is also remarkable that the service call time now is much larger in the

existing version of INSIGHT. Since the benefit of data virtualization still is not

significant, this was not expected.

Figure 19. Total time, broken down in five measures, to load the medium report.

Continuing with the corresponding chart for the large report (Figure 20), the

rendering time in the existing version of INSIGHT is almost ten seconds compared to

less than 350 milliseconds for the Silverlight prototype.

Figure 20. Total time, broken down in five measures, to load the large report.

0

500

1000

1500

2000

2500

3000

3500

Silverlight Silverlight with
Data

Virtualization

ASP.NET/HTML

Ti
m

e
 [

m
s]

Medium Report

Other time

Rendering Time

Service Call Time

Total Server Processing
Time

Time to Fetch Data from
Data Source

0
2
4
6
8

10
12
14
16
18
20

Silverlight Silverlight with
Data

Virtualization

ASP.NET/HTML

Ti
m

e
 [

s]

Large Report

Other time

Rendering Time

Service Call Time

Total Server Processing
Time

Time to Fetch Data from
Data Source

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

52

Figure 21 shows the same type of chart for the huge report. Since the ASP.NET/HTML

version could not handle this report the chart only examines the effect of data

virtualization on the service call time. It is clear that data virtualization decreases the

service call time from about six seconds to less than 400 milliseconds. These results

are expected since less data is transferred between the server and the client at load

time. In this case the version with data virtualization enabled is more than twice as

fast as the version without data virtualization.

Note however that an additional delay is present whenever the user requests more

data by scrolling the report (as is presented in section 5.2).

Figure 21. Total time, broken down in five measures, to load the huge report.

To summarize, the Silverlight prototype is faster than the existing version of INSIGHT

except for very small reports for which the existing version has a small advantage. For

medium to large reports, the prototype wins with significant margin.

From an application perspective, the relative benefit of the prototype depends on the

time it takes to fetch data from the data source, in this case from the analysis server.

If this time is large, the benefit of the prototype gets relatively smaller. This is

especially important with data virtualization enabled. In Figure 21 for example, the

load operation is twice as fast with data virtualization enabled. The relative difference

could though have been larger if the time to fetch data from the data source had

been smaller.

0

2

4

6

8

10

12

Silverlight Silverlight with Data
Virtualization

Ti
m

e
 [

s]

Huge Report

Other time

Rendering Time

Service Call Time

Total Server Processing
Time

Time to Fetch Data from
Data Source

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

53

9 RIA Advantages
To exemplify the advantages of rich Internet applications when it comes to creating

responsive web applications, the Silverlight prototype adds some new functionality

that is not available in earlier versions of INSIGHT. The new functionality allows users

to format their INSIGHT reports using a user interface similar to what can be found in

for example Microsoft Excel.

The user can select ranges of cells, rows or columns using the mouse and can then

format selected ranges using the floatable popup window shown in Figure 22. Figure

23, Figure 24 and Figure 25 shows additional formatting features used to create

conditional styles and icon sets.

Figure 22. The formatting window.

Figure 23. The formatting window with the conditional styles panel expanded.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

54

Figure 24. Dialog for creating and editing conditional styles.

Figure 25. Dialog for creating icon series.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

55

Figure 26 shows report formatted using this functionality.

Figure 26. A formatted INSIGHT report.

When a new formatting action is performed, the grid is instantly and automatically

updated. Since the formatting is expected to be persistent, every action has to be sent

to the server as well (so that the server can maintain formatting rules). This is all done

by communicating with the web server in the background and thus it was possible to

keep the user interface responsive.

This could of course have been implemented using HTML, JavaScript and Ajax, but it is

probably easier to do this kind of things in Silverlight (or any other platform for

building RIA). This implementation does not intend to prove that this is the case.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

56

10 Conclusions
UI virtualization is without doubt a critical component for reaching high rendering

performance in Silverlight applications presenting large data sets. The tests presented

in this report indicate that with a good implementation of UI virtualization the

rendering time is more or less constant as the number of items (in the list of grid)

increases (given that the user interface does not fit more items). The strength of UI

virtualization is that only the rows visible in the user interface are rendered. This

means that new items have to be rendered when the user scrolls the list or table

which may result in a somewhat slow scroll experience. This is probably the major

drawback of UI virtualization.

Data virtualization is probably, in most scenarios, not as critical as UI virtualization.

The tests cases show that quite large data sets are required to get a significant

advantage and the additional delay when fetching new items may not be acceptable

in some scenarios. For large data sets the load time is much better with data

virtualization enabled, and if the typical user behavior is to go through small parts of

the data it may be a large win. If the typical user behavior on the other hand is to

scroll through the entire data set the additional “load more data” delay may not be

acceptable. The benefit of data virtualization may be larger in environments with slow

network connections.

The performance testing targets for normal and large reports have been met.

Medium reports are loaded faster in the prototype than in the latest version of

INSIGHT. Large reports are loaded much faster. For small reports, the prototype

performs slightly worse than the latest version of INSIGHT. It is not by much, but the

target saying that small reports should be loaded at least as fast as the ASP.NET/HTML

version has not been met.

Microsoft recently announced next version of Silverlight, Silverlight 5. One of the new

features is “Immediate mode graphics API allows direct rendering to the GPU”. This

could perhaps improve the rendering performance and decrease the problem of bad

scroll performance.

10.1 Limitations
The data virtualization implementation only virtualizes rows and not columns. In a

case where the grid has lots of columns this could be a problem or at least a possible

target for performance optimization.

Also, this work is based on one particular case. More similar projects evaluating

Silverlight as a platform in terms of performance could perhaps strengthen the

conclusions of this work.

The performance testing has limitations. The lack of professional automated testing

tools and simulations of several users running the application at the same time may

have affected the relevance of the results.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

57

10.2 Future Work
The prototype implemented in this project concerns one particular case. It should be

possible to learn from the ideas presented here and adapt it to other scenarios. The

data virtualization should be easy to adapt for other scenarios, but virtualization on

both rows and columns may require a larger retake.

This work does not drill into the details of how to implement UI virtualization in

common controls. An in-depth walkthrough of common techniques to implement UI

Virtualization may be helpful to further analyze the technique.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

58

11 Acknowledgements
I want to thank TRIMMA for giving me the opportunity to do this project and all

employees at TRIMMA for the feedback I have received. A special thanks to my

external supervisor Daniel Hellström for supporting me during the project. I also want

to thank my internal supervisor at Umeå University, Thomas Hellström.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

59

12 Appendix A – Performance Test Result Tables
Table 4. Average rendering time for a ListBox with and without UI Virtualization for an increasing

number of rows. Sample size was ten.

 List with UI Virtualization List without UI Virtualization

Number of rows Average Standard Deviation Average Standard Deviation

10 21.5 4.1 22 6.1
25 36.5 4.8 34.4 4.4
50 63.2 9.2 61.9 5.5

100 66.3 9.6 129.2 13.5
250 66.2 13.0 331.4 33.5
500 72.1 12.9 741.9 72.3
750 70.1 8.6 1195.2 89.0

1000 71.4 9.2 1901.4 147.1
5000 84.4 6.7

10000 111.6 8.2

50000 307.5 7.9

100000 555.5 10.0

Table 5. Average rendering time for an increasing number of visible cells (constant table size). Sample
size was three.

Number of cells visible Rendering Time Rendering Time per Number of
Cells Visible

9 12 1.33

16 22 1.38

25 24 0.96

36 28 0.78

49 32 0.65

64 37 0.58

81 44 0.54

100 47 0.47

121 48 0.40

144 60 0.42

169 78 0.46

196 80 0.41

225 85 0.38

256 94 0.37

289 108 0.37

324 118 0.36

361 132 0,37

400 155 0.39

440 166 0.38

480 183 0.38

520 200 0.38

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

60

560 230 0.41

640 270 0.42

800 335 0.42

Table 6. Average rendering time for the grid with an increasing number of rows. (UI Virtualization
enabled.) Sample size was ten.

Number of rows Average Rendering Time Standard Deviation

10 116.5 12.0

20 196.4 21.7

30 298.1 23.7

40 292.6 24.7

70 286.0 29.8

100 305.1 28.2

500 283.7 21.9

1000 265.0 17.4

10000 300.4 44.6

Table 7. Average service call time with and without data virtualization. Sample size was ten.

 Data Virtualization Enabled Data Virtualization Disabled

Number of rows Average Standard Deviation Average Standard Deviation

1000 379.3 97.4 590.9 147.0

2000 379.4 142.2 988.9 244.6

4000 354.8 18.8 1788.3 282.2

Table 8. Silverlight prototype vs. INSIGHT performance comparison. Sample size was ten.

 Tiny Small Medium Large Huge

Silverlight

Total Time 966.1 1068.5 1176.9 2994.4 10535.4

Rendering Time 252 217.4 286.7 326.6 193.5

Total time on server 368.7 519.9 418.4 1874 4352.3

TimeToFetchDataFromAnalysisServer 18.1 124.1 102.7 1432.7 1253.6

TimeToParseGridStructure 6.9 8.3 22 53.9 617.2

TimeToPrepareAnalysisServerCall 342.7 385.6 289.3 384.2 2029.1

Service Call Time 333.9 325.3 460.9 770.7 5934.5

Total Server Processing Time 7.9 10.2 26.4 57.1 1069.6

Time to Fetch Data from Data Source 360.8 509.7 392 1816.9 3282.7

Other time 11.5 5.9 10.9 23.1 55.1

ASP.NET/HTML

Total Time 831.2 1255.6 2858.5 9945.9

Rendering Time 235.4 390.4 873.6 2675.2

Total time on server 420.4 561.3 653.8 3215

TimeToFetchDataFromAnalysisServer 18.3 57.7 120.7 1547.1

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

61

TimeToParseGridStructure 0 0 0 0

TimeToPrepareAnalysisServerCall 356.8 426.6 214.4 350.3

Service Call Time 175.4 303.9 1331.1 4055.7

Total Server Processing Time 45.3 77 318.7 1317.6

Time to Fetch Data from Data Source 375.1 484.3 335.1 1897.4

Other time 0 0 0 0

Silverlight with
Data
Virtualization

Total Time 913.3 1065.8 1159.1 2543.4 5086.2

Rendering Time 192.5 254.4 400.8 334.9 229.7

Total time on server 407.1 496 313.7 1985.7 4454.5

TimeToFetchDataFromAnalysisServer 17.6 93.3 116.9 1371.2 1330.5

TimeToParseGridStructure 7 9.5 18.8 145.5 728.4

TimeToPrepareAnalysisServerCall 381.6 391.8 173.4 466.3 1948.9

Service Call Time 309.6 309.7 423.6 214.2 388.8

Total Server Processing Time 7.9 10.9 23.4 148.2 1175.1

Time to Fetch Data from Data Source 399.2 485.1 290.3 1837.5 3279.4

Other time 4.1 5.7 21 8.6 13.2

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

62

13 Appendix B – Test Machine Specifications
Table 9. Specifications of test machine A.

Model Lenovo 2241WTW

CPU Intel Core2Duo P8400 @ 2.26 GHz

Memory 4 GB DDR3 RAM 1066 MHz

Network 100 Mbit LAN

OS Windows 7 Enterprise 64-bit

Web Browser Internet Explorer 8

Silverlight Version 4.0.50826.0

Web Server IIS 7.5

Table 10. Specifications of test machine B.

Model VMware Virtual Machine

CPU Intel Xeon E54005 @ 2.00 GHz

Memory 4 GB

Network 100 Mbit LAN

OS Windows Server 2008 Standard SP2 64-bit

Web Browser Internet Explorer 8

Silverlight Version 4.0.50826.0

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

63

14 References
1. Microsoft. Introduction to WPF. Microsoft Developer Network. [Online] Microsoft.

[Cited: Juni 15, 2010.] http://msdn.microsoft.com/en-us/library/aa970268.aspx.

2. —. Windows Forms Overview. Microsoft Developer Network. [Online] Microsoft.

[Cited: Juni 10, 2010.] http://msdn.microsoft.com/en-us/library/8bxxy49h.aspx.

3. —. Silverlight Overview. Microsoft Developer Network. [Online] Microsoft. [Cited: §

15, 2010.] http://msdn.microsoft.com/en-us/library/bb404700(v=VS.95).aspx.

4. —. The Official Microsoft ASP.NET Site. ASP.NET. [Online] Microsoft. [Cited: Juni 15,

2010.] http://www.asp.net/.

5. —. How to: Access a Service from Silverlight. Microsoft Developer Network. [Online]

[Cited: Juni 15, 2010.] http://msdn.microsoft.com/en-

us/library/cc197937(VS.95).aspx.

6. —. Silverlight 4 Beta. The Official Microsoft Silverlight Site. [Online] 2009. [Cited:

Januari 19, 2010.] http://silverlight.net/getstarted/silverlight-4-beta/#whatsnew.

7. Novell. Moonlight. [Online] Novell. [Cited: Juni 15, 2010.] http://www.go-

mono.com/moonlight/.

8. Usama Alam, Muhammad. Flash vs. Silverlight: What Suits Your Needs Best?

Smashing Magazine. [Online] [Cited: Juni 15, 2010.]

http://www.smashingmagazine.com/2009/05/09/flash-vs-silverlight-what-suits-your-

needs-best/.

9. Microsoft. Overview. The Official Microsoft Silverlight Site. [Online] 2010. [Cited:

October 1, 2010.] http://www.silverlight.net/getstarted/overview.aspx.

10. —. Optimizing Performance: Controls. Microsoft Developer Network. [Online]

[Cited: Juni 16, 2010.] http://msdn.microsoft.com/en-us/library/cc716879.aspx.

11. Stollnitz, Bea. UI Virtualization. Bea Stollnitz on Silverlight and WPF. [Online]

[Cited: Juni 16, 2010.] http://bea.stollnitz.com/blog/?p=338.

12. —. Data Virtualization. bea stollnitz on Silverlight and WPF. [Online] July 26, 2009.

[Cited: October 1, 2010.] http://bea.stollnitz.com/blog/?p=344.

13. Web Site Usability, Design and Performance Metrics. Palmer, Jonathan W. 2, s.l. :

Information Systems Research, Juni 2002, Vol. 13.

14. TRIMMA Affärsutveckling. TRIMMA. [Online] [Citat: den 15 Juni 2010.]

www.trimma.se.

15. Van Den Berghe, Vincent. Data Virtualization in WPF and beyond. s.l. : Bea

Stollnitz.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

64

16. McClean, Paul. WPF: Data Virtualization. CodeProject. [Online] Mars 23, 2009.

[Cited: 06 18, 2010.]

http://www.codeproject.com/KB/WPF/WpfDataVirtualization.aspx.

17. Tallet, Paul. Performance characteristics of the Silverlight DataGrid. MSDN Blogs.

[Online] April 13, 2010. [Cited: October 1, 2010.]

http://blogs.msdn.com/b/mcsuksoldev/archive/2010/04/13/performance-

characteristics-of-the-silverlight-datagrid.aspx.

18. WPF Apps With The Model-View-ViewModel Design Pattern. Smith, Josh. February

2009, 2009, Vol. MSDN Magazine.

19. Model-View-ViewModel In Silverlight 2 Apps. Wildermuth, Shawn. March 2009,

2009, Vol. MSDN Magazine.

20. Smith, Josh. Advanced MVVM. s.l. : Josh Smith, 2010.

21. Anderson, Chris. Pro Business Applications with Silverlight 4. u.o. : Apress, 2010.

22. RIAStats.com. Rich Internet Application Statistics. RIAStats.com. [Online] [Cited:

October 4, 2010.] http://riastats.com/.

23. Guthrie, Scott. First Look at Silverlight 2. ScottGu's Blog. [Online] Februari 22,

2008. [Cited: October 4, 2010.]

http://weblogs.asp.net/scottgu/archive/2008/02/22/first-look-at-silverlight-2.aspx.

24. Microsoft. Silverlight 4 Information. The Official Microsoft Silverlight Site. [Online]

2010. [Cited: October 4, 2010.] http://www.silverlight.net/getstarted/silverlight-4/.

25. —. XAML Overview. Microsoft Developer Network (MSDN). [Online] 2010. [Cited:

October 4, 2010.] http://msdn.microsoft.com/en-us/library/cc189036(VS.95).aspx.

26. —. UserControl Class. Microsoft Developer Network (MSDN). [Online] 2010. [Cited:

October 4, 2010.] http://msdn.microsoft.com/en-

us/library/system.windows.controls.usercontrol(VS.95).aspx.

27. —. Data Binding. Microsoft Developer Network (MSDN). [Online] 2010. [Cited:

October 4, 2010.] http://msdn.microsoft.com/en-us/library/cc278072(VS.95).aspx.

28. —. ICommand Interface. Microsoft Developer Network (MSDN). [Online] 2010.

[Cited: October 4, 2010.] http://msdn.microsoft.com/en-

us/library/system.windows.input.icommand(VS.95).aspx.

29. w3schools.com. JavaScript Introduction. w3schools.com. [Online] [Cited: October

7, 2010.] http://www.w3schools.com/JS/js_intro.asp.

30. —. AJAX Introduction. w3schools.com. [Online] [Cited: October 7, 2010.]

http://www.w3schools.com/Ajax/ajax_intro.asp.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

65

31. Project, The jQuery. jQuey: The Write Less, Do More, JavaScript Library.

jQuery.com. [Online] [Cited: October 6, 2010.] http://jquery.com/.

32. Dahm, Tom. Browser Compability Tutorial. NetMechanic. [Online] [Cited: October

7, 2010.] http://www.netmechanic.com/products/Browser-Tutorial.shtml.

33. Walther, Stephen. Ajax Control Toolkit. CodePlex. [Online] May 5, 2010. [Cited:

October 7, 2010.] http://ajaxcontroltoolkit.codeplex.com/.

34. Guthrie, Scott. ScottGu's Blog. ASP.NET Webblogs. [Online] [Cited: October 6,

2010.] http://weblogs.asp.net/scottgu/archive/2008/09/28/jquery-and-

microsoft.aspx.

35. Adobe. Flex framework. Adobe. [Online] [Cited: October 7, 2010.]

http://www.adobe.com/products/flex/flex_framework/.

36. HTML5 differences from HTML4. World Wide Web Consortium (W3C). [Online]

September 19, 2010. [Cited: October 7, 2010.] http://dev.w3.org/html5/html4-

differences/.

37. Clarke, Gavin. HTML5's Flash and Silverlight 'killer' potential chopped. The

Register. [Online] July 8, 2009. [Cited: October 7, 2010.]

http://www.theregister.co.uk/2009/07/08/html_5_media_spec/.

38. Becker, Brad. The Future of Silverlight. The Silverlight Blog. [Online] September 1,

2010. [Cited: October 7, 2010.] http://team.silverlight.net/announcement/the-future-

of-silverlight/.

39. Microsoft. Windows Communication Foundation. Microsoft Developer Network

(MSDN). [Online] 2010. [Cited: October 1, 2010.] http://msdn.microsoft.com/en-

us/netframework/aa663324.aspx.

40. —. Introducing Windows Communication Foundation in .NET Framework 4.

Microsoft Developer Network (MSDN). [Online] 2010. [Cited: October 1, 2010.]

http://msdn.microsoft.com/en-us/library/ee958158.aspx.

41. —. Using Data Contracts. Microsoft Developer Network (MSDN). [Online] 2010.

[Cited: October 1, 2010.] http://msdn.microsoft.com/en-us/library/ms733127.aspx.

42. —. Hosting and Consuming WCF Services. Microsoft Developer Network (MSDN).

[Online] 2010. [Cited: October 1, 2010.] http://msdn.microsoft.com/en-

us/library/bb332338.aspx#msdnwcfhc_topic2.

43. —. Overview. The Official Microsoft IIS Site. [Online] 2010. [Cited: October 1,

2010.] http://www.iis.net/overview.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

66

44. —. ServiceModel Metadata Utility Tool (Svcutil.exe). Microsoft Developer

Network. [Online] 2010. [Cited: October 1, 2010.] http://msdn.microsoft.com/en-

us/library/aa347733.aspx.

45. thinktecture. thinktecture WSCF.blue. Codeplex. [Online] 2010. [Cited: October 1,

2010.] http://wscfblue.codeplex.com/.

46. Microsoft. Configuring System-Provided Bindings. Microsoft Developer Network.

[Online] 2010. [Cited: October 1, 2010.] http://msdn.microsoft.com/en-

us/library/ms731092.aspx.

47. —. Message Encoding. Microsoft Developer Network. [Online] 2010. [Cited:

October 1, 2010.] http://msdn.microsoft.com/en-us/library/ms731802.aspx.

48. Model View ViewModel. Wikipedia. [Online] September 21, 2010. [Cited: 10 1,

2010.] http://en.wikipedia.org/wiki/Model_View_ViewModel.

49. The MVVM Pattern is Highly Overrated. The Inquisitive Coder - Davy Brion's Blog.

[Online] July 21, 2010. [Cited: October 1, 2010.]

http://davybrion.com/blog/2010/07/the-mvvm-pattern-is-highly-overrated/.

50. Microsoft. VirtualizingStackPanel Class. Microsoft Developer Network (MSDN).

[Online] [Cited: October 7, 2010.] http://msdn.microsoft.com/en-

us/library/system.windows.controls.virtualizingstackpanel(v=VS.95).aspx.

51. Syncfusion. Essential Grid: Powerfull Cell-Oriented Silverlight Grid Component.

Syncfusion. [Online] 2010. [Cited: November 3, 2010.]

http://www.syncfusion.com/products/user-interface-edition/silverlight/Grid.

52. Microsoft. Silverlight Tookit. Codeplex. [Online] [Cited: November 3, 2010.]

http://silverlight.codeplex.com/.

53. VIBLend. Silverlight Data Grid Control. viblend.com. [Online] [Cited: November 3,

2010.] http://www.viblend.com/products/net/silverlight/controls/datagrid.aspx.

54. Telerik. Silverlight Grid Control, GridView Component for Silverlight, Data Grid.

telerik.com. [Online] [Cited: November 3, 2010.]

http://www.telerik.com/products/silverlight/gridview.aspx.

55. ComponentOne. Silverlight Grid Control from ComponentOne - DataGrid for

Silverlight. componentone.com. [Online] [Cited: November 3, 2010.]

http://www.componentone.com/SuperProducts/GridSilverlight/.

56. Wikipedia. Software performance testing. Wikipedia - the free encyclopedia.

[Online] [Cited: Noverber 3, 2010.]

http://en.wikipedia.org/wiki/Software_performance_testing.

Performance and Usability Improvements for Massive Data
Grids using Silverlight

Adam Holmström

67

57. Meier, J.D., et al. Performance Testing Guidance for Web Applications. s.l. :

Microsoft, 2007.

58. Molyneaux, Ian. The Art of Application Performance Testing. s.l. : O'Reilly Media,

2009.

59. Microsoft. ListBox Class. Microsoft Developer Network (MSDN). [Online] 2010.

[Cited: September 28, 2010.] http://msdn.microsoft.com/en-

us/library/system.windows.controls.listbox(v=vs.95).aspx.

60. —. Web Services Protocols Supported by System-Provided Interoperability

Bindings. Microsoft Developer Network (MSDN). [Online] 2010. [Cited: October 1,

2010.] http://msdn.microsoft.com/en-us/library/ms730294.aspx.

	1 Background
	2 Introduction
	2.1 Problem Statement
	2.2 Goals
	2.3 Requirement Specification
	2.4 Related Work

	3 Tools and Techniques
	3.1 Silverlight
	3.1.1 History
	3.1.2 Features
	3.1.3 Silverlight Toolkit
	3.1.4 Extensible Application Markup Language (XAML)
	3.1.4.1 Content Element Syntax
	3.1.4.2 Attached Properties
	3.1.4.3 Data binding

	3.1.5 Competitors
	3.1.5.1 HTML with JavaScript, AJAX and jQuery
	3.1.5.2 ASP.NET
	3.1.5.3 Adobe Flash and Flex
	3.1.5.4 HTML 5

	3.2 Windows Communication Foundation (WCF)
	3.3 Tools

	4 Model View ViewModel (MVVM)
	4.1 Evolution
	4.2 The Components of MVVM
	4.2.1 Models
	4.2.2 ViewModels
	4.2.3 Views

	4.3 Benefits
	4.4 Criticism

	5 Techniques for Improving Performance and Usability in Silverlight
	5.1 UI Virtualization
	5.1.1 Container Recycling
	5.1.2 Deferred Scrolling
	5.1.3 Example of UI Virtualization with Container Recycling

	5.2 Data Virtualization

	6 Implementation
	6.1 Overview
	6.2 Server Implementation
	6.2.1 Data Transfer Objects
	6.2.2 Server Logic
	6.2.3 Service Interface and Implementation

	6.3 Client Implementation
	6.4 Virtualized List Implementation
	6.5 Performance Testing Implementation

	7 Performance Testing
	7.1 Performance Testing Theory
	7.2 Performance Testing Goals and Targets
	7.3 Performance Test Cases
	7.3.1 UI Virtualization
	7.3.1.1 List With and Without UI Virtualization
	7.3.1.2 Rendering Time vs. Number of Cells Visible
	7.3.1.3 Rendering Time vs. Number of Rows

	7.3.2 Data Virtualization
	7.3.3 INSIGHT Performance

	8 Performance Testing Results
	8.1 List With and Without UI Virtualization
	8.2 Rendering Time vs. Number of Cells Visible
	8.3 Rendering Time vs. Number of Rows
	8.4 Data Virtualization
	8.5 INSIGHT Performance

	9 RIA Advantages
	10 Conclusions
	10.1 Limitations
	10.2 Future Work

	11 Acknowledgements
	12 Appendix A – Performance Test Result Tables
	13 Appendix B – Test Machine Specifications
	14 References

