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ABSTRACT

Within the course of this master thesis project, subcooled nucleate boiling in a vertical pipe has been modeled
using CFD. The modeling has been carried out within the OpenFOAM framework and a two-phase Eulerian
approach has been chosen. The code can be used to predict the distribution of the local flow parameters, i.e.
the void fraction, the bubble diameter, the velocity of both liquid and gas, the turbulent intensity as well as
the liquid temperature. Special attention has been devoted to the phenomena which govern the void fraction
distribution in the radial direction. Two different solvers have been implemented and the simulations have
been performed in two dimensions.

Firstly, isothermal turbulent bubbly flow is mechanistically modeled in a solver named myTwoPhaseEulerFoa-
mAdiabatic. The conservation equations of mass and momentum are solved for the two phases, taking special
care in the modeling of the interfacial forces. The turbulence phenomena are described by a classical k-ε
model in combination with standard wall functions for the near-wall treatment. Furthermore, an interfacial
area concentration equation is solved and two different models for its sink- and source terms (corresponding
to bubble coalesence and bubble breakup) have been investigated.

Secondly, a solver named myTwoPhaseEulerFoamBoiling has been developed based on the first solver in order
to model a heated wall leading to subcooled nucleate boiling and subsequent condensation in the subcooled
liquid. Additional terms accounting for the phase change have been included in the mass and momentum
conservation equations as well as in the interfacial area equation. Assuming the gas phase being at saturation
conditions, only one energy equation for the liquid phase needs to be solved.

The adiabatic solver has been validated against the DEDALE experiment and the simulation results showed
satisfactory agreement with the measured data. The predictions obtained from myTwoPhaseEulerFoam-
Boiling have been compared to the DEBORA experimental data base. They are qualitatively similar but
rather high quantitative discrepancies exist. Grid dependence tests revealed that the latter solver depends
on the near-wall grid resolution, a yet unresolved issue related to the application of the wall heat flux as
the boundary condition. However, the results were shown to be insensitive to small variations in the applied
inlet conditions.
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NOMENCLATURE

Symbol Dimensions Description

Latin Symbols

ai m−1 Interfacial area concentration
Aq - Quenching wall area ratio

A
′′′

w m−1 Contact area with the wall per unit volume
CD - Drag coefficient
Cf - Fanning friction factor Cf = τ

1
2ρlU

2
l

Ch - Stanton number Ch = Nu
RePr

CL - Lift coefficient
Ct - Turbulence response coefficient
cp J/kg/K = m2/s2/K Specific heat capacity
CWL - Wall lubrication coefficient
D m Pipe diameter
DS m Bubble Sauter mean diameter
dw m Bubble departure diameter

Eo - Eötvös number Eo =
g(ρl−ρg)D2

s

σ
f Hz = s−1 Detachment frequency
~g m/s2 Gravity
G kg/m/s3 Buoyant production of turbulent kinetic energy per

unit volume
hc W/m2/K = kg/s3/K Heat transfer coefficient for single-phase convection
hli W/m2/K = kg/s3/K Heat transfer coefficient for condensation
i J/kg Specific enthalpy
¯̄I - Identity tensor
ifg J/kg = m2/s2 Latent heat
k m2/s2 Turbulent kinetic energy
~M N/m3 = kg/m2/s2 Interfacial forces per unit volume
~nr - Wall normal vector

N
′′

m−2 Nucleation site density
p Pa Pressure
Pr - Prandtl number Pr =

cpµ
λ

~q W/m2 = kg/s3 Conductive heat flux density

q
′′

w W/m2 = kg/s3 Wall heat flux density
¯̄R N/m2 = kg/m/s2 Stress tensor

Reb - Bubble Reynolds number Reb =
‖~Ug−~Ul‖DS

νl
t s Time
T K or ◦C Temperature
~U m/s Velocity
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i Interface

l Liquid
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CHAPTER 1

INTRODUCTION

1.1 Background

The increasing world population requires to augment the global energy production. That has become one
of the biggest challenges in today’s society. In the context of fossil fuel shortage and global warming, the
need of sustainable, economical and safe technology has arisen. Renewable technologies such as wind power,
photovoltaic cells or geothermal energy for example are of interest but some of them have to be further
developed. Nuclear power appears to be one of the most mature solutions in order to fulfill the above
criteria.

Even though nuclear power sometimes still faces the public opinion’s reluctancy, most countries have admitted
that it will represent an important share also in tomorrow’s energy supply and they want to take part to what
is by some experts called “the nuclear renaissance ”. For instance, Sweden revised a previous law forbidding
new build and a planned complete phase-out by 2010 and authorized the replacement of current reactors
with new reactors.

Among the existing types of reactors, Light Water Reactors (LWR) are the most commonly used, particularly
Boiling Water Reactors (BWR) and Pressurized Water Reactors (PWR). A basic knowledge concerning these
designs is a pre-requisite for this work but out of purpose in this report.

1.2 Subcooled nucleate boiling

Convective boiling in vertical heated channels has many industrial applications, including the core of LWR
where heat is supplied by the nuclear reactions in the fuel. This is a very complex phenomenon which can
be divided into several regimes, depending on the local flow conditions, as shown in Figure 1.1. In the case
of a LWR, where water is subcooled at the inlet,the first stage in the boiling process is called subcooled
nucleate boiling. Before subcooled nucleate boiling occurs, the heat transfer is governed by single-phase
forced convection. Subcooled nucleate boiling designates the evaporation of liquid in micro-cavities adjacent
to the heated wall, also called nucleation sites, while the bulk liquid remains subcooled. When the wall
temperature exceeds sufficiently the local saturation temperature, liquid evaporates and bubbles are formed
at the nucleation sites. They grow until they reach a critical size and then detach from the heated wall.
The bubbles migrate to the bulk of the fluid, which is subcooled, and condensate, heating the liquid phase.
Subcooled boiling is said to be partial if the nucleation sites cover only a part of the heated wall. As the
wall temperature increases, the area where single-phase convection occurs decreases and the area covered
by nucleation sites increases. When nucleation sites cover the whole surface, the regime is said to be fully-
developed.

Modeling of subcooled nucleate boiling is a first attempt towards handling simulations of the boiling crisis,
also known as Critical Heat Flux (CHF). At a heat flux equal to the CHF, there is a very sudden deterioration
of the heat transfer coefficient, leading to a sharp increase of the wall temperature since the heat flux imposed
by fission reactions in the fuel remains unchanged. Therefore, the fuel rods structure may be damaged and
radioactive material may be released to the primary system, which constitutes a serious infringement to the
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2 Introduction

Figure 1.1: Flow patterns and heat transfer regimes in a heated channel, from Anglart [1]

defense-in-depth principle. At low thermodynamic equilibrium qualities, which is the in a PWR core or the
lower part of a BWR core, the CHF occurs when the boiling mechanism evolves from nucleate boiling to film
boiling which is referred to as Departure from Nucleate Boiling (DNB), and represented by the point C in
Figure 1.2. DNB sets an upper limit to the power that can be generated by the fuel.

In the case of PWR, even if this limit seems of no concern during normal operation, it is essential to ensure
that safety margins will also be respected in case of transients, incidents or accidents. Indeed, subcooled
boiling can even occur in the higher part of a PWR core, and it would generate a lithium borate deposition
which affects significantly the power distribution. This phenomenon is called axial offset anomaly (AOA). The
nuclear safety analysis of BWR is also influenced by the system reactivity. Subcooled nucleate boiling causes
a highly inhomogeneous void fraction distribution in the axial direction (along the flow) since the channel
is heated, but also in the cross-sectional direction due to the migration of steam bubbles. The presence of
bubbles and their distribution induces a non-negligible reactivity feedback. Consequently, it is crucial to be
able to predict the void fraction distribution if one wants to couple thermal-hydraulics and neutronics. The
codes used today for this purpose are still old system level codes with a quasi one-dimensional representation
of the flow and heat transfer in the core. Clearly there is a need for advanced models of the complex physics.

1.3 Computational fluid dynamics (CFD)

Reproducing the flow conditions of a power plant in an experimental facility is very difficult and expensive.
The development of Computational Fluid Dynamics (CFD) together with the evolution of modern powerful
computers the last decades has been a huge breakthrough within the industrial community. One can nowadays
simulate many (but not all!) non-trivial fluid dynamics problems through the modeling of heat transfer,
turbulence or chemical reactions at a varying degree of accuracy. Still, such models always need to be
validated against experimental data. Any CFD software consists of three parts :
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Figure 1.2: Boiling curve, influence of the wall heat flux on the wall superheat, from Anglart [1]

• Pre-processing: the geometry is defined and divided into discrete cells (the mesh), the initial and
boundary conditions as well as physical properties of the fluid are set up

• Solver: the governing equations are discretized (both in time and space) and solved applying an
iterative process

• Post-processing: the results are displayed thanks to various user-friendly visual tools

OpenFOAM R© (OF) is one of many existing CFD software packages available on the market. Its creation
was initiated at the Imperial College in London in the late 1980’s and the first version was released in 2004.
OF is provided with many discretization schemes and a certain number of predefined solvers that can be
applied for various fluid dynamics problems. OF has many advantages:

• object-oriented: one can select solvers, reflecting the physics one wants to model, independantly
from discretization schemes or cases on which to apply the solvers. This feature gives OF en enhanced
flexibility.

• open-source: the code is transparent and one can easily add or modify equations to create or improve
solvers. This characteritic makes OF very interesting from an academic and research point of view.

• free of charge: there is no license restriction and companies can use OF without paying any fee.

1.4 Objectives of the work

The present study aims to develop a new solver for subcooled nucleate boiling within the OpenFOAM
framework. A multi-dimensional modeling using a two-fluid Eulerian approach has been chosen. This work
comports two main development stages. The first one is dedicated to the development of an adiabatic solver
without phase change myTwoPhaseEulerFoamAdiabatic, and after validation of the latter, it has been further
developed to account for boiling and subsequent condensation. This last version constitutes a new solver
called myTwoPhaseEulerFoamBoiling. In addition to standard conservation equations, a one-group interfacial
area concentration transport equation has been implemented and for myTwoPhaseEulerFoamBoiling boiling
has been modeled according to Kurul and Podowski [19]. The solvers will be respectively tested and validated
against adiabatic and diabatic experiments of vertical upward flows in cylindrical pipes.

These solvers should be taken as a basis for further implementation. They constitutes a skeleton for subcooled
nucleate boiling modeling in OpenFOAM but do not intend to be complete and sophisticated. The solvers
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are based on several assumptions, notably of incompressible phases, saturated gas phase, spherical
bubbles and no bubble-sliding. The closure relations present here, even if widely used in many software
packages, remain perfectible. But since OF is an open-source code, more complex and accurate models could
be easily implemented at a later stage.

Regarding the structure of this report, Chapter 2 describes the mathematical model. Chapter 3 presents
briefly how OF works and describes its structure and then finally the code is described as well as the details
of the tested cases. Chapter 4 deals with the results and the validation of the solvers. In Chapter 5, a
discussion about possible future improvements is conducted. Last, in Chapter 5, the conclusions of this work
are presented.



CHAPTER 2

MATHEMATICAL MODEL DESCRIPTION

This chapter is dedicated to a thorough description of the equations used in the solver. It begins with general
conservation equations valid for a two-phase Eulerian modeling, and continues with the successive additional
equations neccesary for the closure of the mathematical system of equations.

2.1 Governing flow equations

The code solves successively the different conservation equations (mass, momentum, energy), assuming in-
compressibility of each of the phases. In this study, the continuous phase is liquid and the dispersed phase
is gaseous. The continuity equation can be written as:

∂αk
∂t

+∇ ·
(
αk ~Uk

)
=

Γki − Γik
ρk

(2.1)

where k denotes the phase and can be either l or g (liquid or gas) and i is the non-k phase. α, ρ and ~U
represent the phase volume fraction, density and velocity respectively. The notation Γgl corresponds to the
evaporation rate per unit volume, which within the scope of this study is due to nucleation at the wall, whereas
Γlg is the condensation rate per unit volume, which is the only possible phase change at a phase interface
since water remains subcooled and gas is saturated. This equation may be surprising because physically,
condensation and evaporation can not occur at the exact same location. But in numerical calculations, it is
possible to have a near-wall cell which contains the two phases and in which could occur both condensation
of the gas and evaporation of a part of the liquid phase.

One can also observe that it is not required to solve the continuity equation for both phases. It is sufficient
to solve one of them, for example for the gas phase, and calculate the liquid fraction according to:

αl = 1− α (2.2)

where α = αg.

The momentum equation for phase k is given by:

∂αk ~Uk
∂t

+∇ ·
(
αk ~Uk ~Uk

)
= −∇ ·

(
αk

(
¯̄Rk + ¯̄R

t

k

))
− αk
ρk

~∇p+ αk~g +
~Mk

ρk
+

Γki~Ui − Γik ~Uk
ρk

(2.3)

In Eq.2.3, the first term of the right hand side (RHS) is the combined (or effective) viscous and Reynolds
(or so-called turbulent) stress. The second term of the RHS corresponds to the pressure drop in the channel.
The third term of the RHS is gravity. The fourth term is the interfacial force per unit volume and will be the
object of a specific modeling. Finally, the last term represents the gain or loss of momentum due to phase
change. Incidentally, the latter has been seen too many times wrongly derived in the litterature in the form
of various extravagant combinations of phase change rates and velocities.

5
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According to Boussinesq [6], the turbulent stress tensor is analogous to that of Newtonian fluids and the
resulting effective stress appears as a function of fluid properties and velocity:

¯̄Reffk = ¯̄Rk + ¯̄R
t

k = −
(
νk + νtk

)(
∇~Uk +

(
∇~Uk

)T
− 2

3
¯̄I∇ · ~Uk

)
+

2

3
¯̄Ikk (2.4)

where the identity tensor is identified as ¯̄I. kk designates the turbulent kinetic energy of phase k and νt its
turbulent kinematic viscosity. The calculation of turbulent parameters will be explained later.

The last conservation equation concerns energy. As mentioned previously, one of the assumptions is that
the gas is always at saturated conditions. It would be irrelevant to solve an energy equation for the gaseous
phase. Only one energy equation is required for the liquid phase. In comparison with heat flux densities
considered, potential and kinetic energies of the interface can be neglected. Also, for bubbly two-phase flows,
the only possible heat transfer from the gas to the liquid is by condensation. These assumptions are justified
by Kurul and Podowski [19]. Then, the energy conservation equation written in terms of specific enthalpy
takes the following form:

∂ ((1− α) il)

∂t
+∇·

(
(1− α) il ~Ul

)
= − 1

ρl
∇·
[
(1− α)

(
~ql + ~qtl

)]
+

(1− α)

ρl

Dp

Dt
+

Γlgig,sat − Γglil
ρl

+
q
′′

wA
′′′

w

ρl
(2.5)

where ~ql and ~qtl denote respectively the molecular and turbulent heat fluxes inside phase l. Here, the notation
D
Dt represents the total derivative. The third term is due to phase change and the last one represents the

heat from the wall where q
′′

w is the wall heat flux density and A
′′′

w refers to the contact area with the wall per
unit volume.

Now, if one uses Fourier’s law of conduction inside phase l, the molecular heat flux can be tramsformed to:

~ql = − λl
cpl

~∇il (2.6)

where λ and cp are the thermal conductivity and the specific heat respectively.

A similar expression can be written for the turbulent energy exchange if one uses a mixing length model :

~qtl = − λ
t
l

cpl
~∇il (2.7)

where λt is the turbulent thermal conductivity obtained as:

λtl =
cplν

t
l

ρlPrtl
(2.8)

where Prtl is the turbulent Prandtl number of phase l. There are several empirical correlations and analytical
relations to determine it [19], [17], but it is always in the same range in the frame of this work, slightly below
1. A constant value of 0.9 has been chosen for Prtl .

2.2 Interfacial forces

The interfacial forces acting on a bubble are caused by the liquid which surrounds it. So, in agreement with
the third of Newton’s law of motion, it can be written:

~Mg = − ~Ml (2.9)

It is very important to select adequate models describing this force. Very often, this force is assumed to be
the sum of different contributions, each one of them corresponding to a separate physical phenomenon:

~Mg = ~MD
g + ~ML

g + ~MWL
g + ~MTD

g + ~MVM
g (2.10)

2.2.1 Drag force

The first term ~MD
g is the drag force. This force represents the resistance opposed to the motion of a bubble

in the fluid. Its direction is therefore the opposite of the bubble’s relative velocity. The drag depends, as one
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could expect, on the bubble’s shape and size. Several formulations exist but the Ishii-Zuber correlation [2]
has been chosen here, since it is valid for densely distributed fluid particles, such as bubbles:

~MD
g = −3

4

CD
DS

ρlα‖~Ug − ~Ul‖
(
~Ug − ~Ul

)
(2.11)

where DS is the Sauter diameter, equal to the actual bubble diameter since bubbles are assumed to be
sphericle within this work, and CD defined as:

CD = max

(
24

1 + 0.15Re0.687bm

Rebm
, 0.44

)
(2.12)

Rebm =
ρl‖~Ug − ~Ul‖DS

µm
(2.13)

µm = µl

(
1− α

αmax

)−2.5αmaxµ∗
(2.14)

Here, αmax is the void fraction at maximum packing equal to 0.52 and µ∗ is the dimensionless dynamical
viscosity:

µ∗ =
µg + 0.4µl
µg + µl

(2.15)

The Ishii-Zuber drag model presented above is valid for densely distributed sphericle fluid particles, with a
void fraction α < 0.52 and at the condition that 0.2 < Reb < 100000

2.2.2 Lift force

The second term ~ML
g is the lift force which must be treated carefully since it plays an important role and

has a large effect on the radial distribution of bubbles. The following general formulation was proposed by
Drew and Lahey ([10]):

~ML
g = CLρlα

(
~Ug − ~Ul

)
∧
(
∇∧ ~Ul

)
(2.16)

where CL is the lift coefficient which has been investigated by many authors. Here the Tomiyama model was
chosen:

CL =

 min [0.288 tanh (0.121Reb) , f (Eod)] if Eod < 4
f (Eod) if 4 ≤ Eod ≤ 10
−0.27 if Eod > 10

(2.17)

f (Eod) = 0.001509Eo3d − 0.0159Eo2d − 0.0204Eod + 0.474 (2.18)

The involved quantities are the bubble Reynolds number Reb and a modified Eötvös number (describing the
ratio between buoyancy forces and those from surface tension ) Eod for the maximum horizontal dimension
of the bubble dh, that is calculated using a correlation developed by Wellek et al. [36]:

Reb =
‖~Ug − ~Ul‖DS

νl
(2.19)

dh = Ds

(
1 + 0.163Eo0.757

)1/3
(2.20)

Eo =
g (ρl − ρg)D2

s

σ
(2.21)

Eod =
g (ρl − ρg) d2h

σ
(2.22)

This model is widely used and accepted, particularly because it captures the sign change of the lift force
for big bubbles, as shown in Figure 2.1. Indeed small bubbles are pushed towards the wall, but above a
critical bubble diameter, they are pushed in the other direction, towards the centerline of the channel. For
an air/water system at normal conditions, this critical diameter is around 5.8 mm.
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Figure 2.1: Influence of the bubble diameter on the Tomiyama lift coefficient for water at atmospheric pressure

2.2.3 Wall lubrication force

Furthermore, experiments on adiabatic two-phase flow showed evidence of the existence of a repulsive force
pushing bubbles away from the wall. If bubbles were concentrated close to the wall, they were never adjacent
to it. The force which is responsible for this wall peaking phenomenon is the so-called wall lubrication force,
denoted by ~MW

g in Eq. 2.10. Antal [3] was the first to derive an analytical expression of the wall lubrication
force. Tomiyama improved this model for pipe geometries [33], using a correlation whose constants are based
on glycerol/air flow experiments. However the model turned out to be valid for other two-phase systems such
as air/water:

~MWL
g =

1

2
CWLρlαDS

(
1

x2
− 1

(D − x)2

)
‖(~Ug − ~Ul) · ~y‖2~nr (2.23)

CWL =


0.47 if Eo < 1
e−0.933Eo+0.179 if 1 ≤ Eo ≤ 5
0.00599Eo− 0.0187 if 5 < Eo < 33
0.179 if 33 < Eo

(2.24)

where CW is the wall lubrication force coefficient, D the pipe diameter, x the distance to the wall, ~y the
axial direction and ~nr the normal to the wall pointing towards the fluid. This model is however geometry-
dependent and limited to pipes. Frank [11] developed a more general formulation based on Tomiyama wall
lubrication force coefficient and a damping function independent of the geometry, but this improved model
is not considered in the solver.

2.2.4 Turbulent dispersion force

The fourth component in in Eq. 2.10 is the turbulent dispersion force, referred to as ~MTD
g . The turbulent

dispersion force accounts for the turbulent fluctuations of liquid velocity and the effect that has on the gas
bubbles. Gosman et al. [12] proposed the following relation:

~MTD
g = −3

4

CD
DS

νtl
Prtl

ρl‖(~Ug − ~Ul)‖ ~∇α (2.25)

The turbulent dispersion plays a major role in the radial void fraction distribution. For small bubbles in
adiabatic flow, one can observe the so-called wall-peaking phenomenon where most of the bubbles agglomerate
close to the wall but not in contact with it. The turbulent dispersion force strongly influences the sharpness
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of this void wall peak, meaning its extent in the x-direction. For big bubbles whose lift force push them
towards the centerline, the turbulent dispersion is the only force to limit the so-called core voiding which
designates the agglomeration of bubbles around the centerline of the channel.

2.2.5 Virtual mass force

Finally the last force component in Eq. 2.10 is the virtual mass force, or added mass force, ~MVM
g . The

virtual mass force takes its origin from the relative acceleration of one phase to the other. Therefore, this
force is often neglected when running steady state calculations. It is considered in this study even though its
contribution vanishes fast. According to Zuber ([40]), the virtual mass force for spherical bubbles is equal
to:

~MVM
g = −1

2
ρl

1 + 2α

1− α
α

(
D~Ug
Dt
− D~Ul

Dt

)
(2.26)

This force has been implemented in our solver so that the user can possibly use it. However, it has been
found to be the origin of many instabilities and has therefore been neglected in Eq.2.10.

2.3 Boiling model

2.3.1 Wall heat flux partitioning

Over the past 50 years, different subcooled nucleate boiling models have been developed. On the one hand,
one-dimensional empirical correlations, based on experiments, connect the wall heat flux and the wall super-
heat as a function of global parameters like pressure. One can for example refer to Jens-Lottes [16] or Thom
et al. [31] correlations. Yet, these approaches do not lend themselves to CFD applications since they do not
allow the calculation local parameters such as the evaporation rate and the bubble departure diameter.

On the other hand, mechanistic models based on local parameters (temperature, void fraction or for example
turbulence intensity) could be used without any difficulty in CFD. One of them was presented by Kurul and
Podowki [19] and it is the model applied in this solver. The basic idea in the model is that the heat transfer
originates from three different mechanisms between the heated wall and the liquid phase:

q
′′

w = qc
′′

w + qe
′′

w + qq
′′

w (2.27)

where qc
′′

w , qe
′′

w and qq
′′

w denote respectively single-phase convective heat flux density, evaporation heat flux
density and quenching heat flux density. A schematic view of the boiling process is shown in Figure 2.2. At
the heated wall, bubbles are formed at the nucleation sites due to evaporation of liquid at the wall and one
therefore assumes that part of the wall heat flux density is directly used to transform the liquid into vapor.
Bubbles grow and reach a critical size at which they detach from the wall. Once a bubble leaves the wall,
the volume previously occupied by it is filled with cooler liquid, which will receive heat from the wall. The
heat transfer to this cooler liquid is called quenching. The ratio of the wall influenced by quenching Aq is
thus closely depending on the evaporation and the bubble lift-off size. Finally, the rest of the wall 1−Aq is
governed by single-phase convection.

The evaporation heat flux can easily be calculated as a function of other key parameters: the nucleation site
density N

′′
, the detachment frequency f and the bubble detachment (or departure or lift-off) diameter dw.

It is given by:

qe
′′

w =
π

6
d3wρvfN

′′
(ig,sat − il) (2.28)

DelValle and Kenning [9] derived an analytical solution for the quenching heat flux, assuming a transient
heat transfer in a liquid cylinder with a diameter equal to dw. They showed, if one makes the hypothesis
that the growth time is much shorter than the time between two subsequent nucleations, that:

Aq = πN ′′d2w (2.29)

qq
′′

w = Aq
2λl(Tw − Tl)√

π
f

λl
ρlcpl

(2.30)



10 Mathematical model description

Figure 2.2: Heat flux partitioning according to Kurul and Podowski [34]

Concerning the single-phase convective heat flux, it is simply formulated by the following formula:

qc
′′

w = (1−Aq)hc(Tw − Tl) (2.31)

where hc is the heat transfer coefficient for single-phase convection heat transfer. Kurul and Podowski [19]
do not recommend a specific closure law for this coefficient, so it will be calculated as it has been done by
KTH-NRT in the CFD-software CFX, using a approach based on the liquid Stanton number Chl:

hc = Chlρlcpl‖~Ul‖ (2.32)

where Chl is linked to the Fanning friction factor Cf through the following mono-dimensional correlation:

Chl =
C2
f

1− 1.783Cf
(2.33)

and the friction factor is implicitly suggested as:

Cf =
1

ln(R̃eCf )
0.435 + 5.05

(2.34)

R̃e =
3.2586 · 10−4[m]‖~U bulkl ‖

νl
(2.35)

2.3.2 Nucleation site density

The nucleation site density depends mostly on the material properties of the wall and the wall superheat,
which is the temperature difference between the wall temperature and the saturation temperature of the
liquid. The data published by Lemmert and Chawla [20] leads to the following correlation:

N ′′ = [210 (Tw − Tsat)]1.805 (2.36)

where Tsat is the saturation temperature. The temperatures must be expressed in K or ◦C and the result
obtained is given in m−2.

2.3.3 Detachment frequency

During subcooled nucleate boiling, when approaching DNB, the growth of the bubbles is controlled by inertia
effects and it can be analytically proven that f2dw is constant at constant heat flux. In particular, Ceumern-
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Lindenstjerna [7] came to the result:

f =

√
3

4

(ρl − ρg)g
ρldw

(2.37)

2.3.4 Bubble detachment diameter

The determination of the bubble detachment diameter is doubtlessly a key characteristic in modeling of
subcooled nucleate boiling. Performing an energy balance for a bubble growing at a heated surface, and
fitting some constants to experimental water data, Unal [35] expressed the bubble detachment diameter as:

dw =
2.42 · 10−5p0.705a√

bΦ
(2.38)

where:

a =
(Tw − Tl)λlγ

2ρgifg
√
π λl
ρlcpl

(2.39)

where ifg is the latent heat and:

γ =

√
λwρwcpw
λlρlcpl

(2.40)

b =
Tsat − Tl

2
(

1− ρg
ρl

) (2.41)

Φ =

{ (
vbulkl

0.61

)0.47
if vbulkl > 0.61

1 if vbulkl < 0.61
(2.42)

and vbulkl represents the axial component of the liquid phase in the bulk. In the Unal correlation, all
parameters must be given in the S.I, meaning that the pressure must be given in Pa, the velocity in m/s
and the returned result for the bubble diameter is expressed in m.

But specific care must be taken while using this correlation since its range of validity is the following:
0.1 < p < 17.7Mpa
0.47 < qw < 10.64MW/m2

0.08 < vbulkl < 9.15m/s
3.0 < Tsat − Tl < 86K
0.08 < dw < 1.24mm

(2.43)

For low subcooling, other correlations must be used. At very low subcooling, below 2K, one must switch
to the Tolubinsky and Kostanchuk expression [32] which predicts an exponential decrease of the detachment
diameter with the subcooling:

dw = 1.4 · 10−3 exp

(
−Tsat − Tl

45

)
(2.44)

Here again, all units are those from the S.I.

If the subcooling is between 2 K and 3 K, then the detachment diamater is calculated using a linear inter-
polation. In order to be able to use the same correlation for the whole range of subcooling, Borée et al.
[5] modified the parameter b of the Unal correlation and defined it as a function of the Stanton number.
However this improvement has not been taken into account in the present solver. It must also be recalled
that the Unal correlation was established for water/vapor system only, but Manon [24] demonstrated that
the results given by this correlation were in agreement with the experiments even when Freon 12 (R12) is
used as coolant.
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2.3.5 Wall superheat

Having a look a the boiling model that has been explained in the previous subsections, all variables only
depend on physical properties and local parameters (velocity, temperature for both phases, pressure) which
can be retrieved from the CFD software and the wall superheat, which is so far the only unknown in this
boiling model.

The wall superheat is solved using a Newton-type iterative method. An initial guess is made for the wall
superheat Tw − Tsat and the different heat flux contributions are calculated, then the wall superheat is
adjusted if Eq.2.27 is not fulfilled.

2.4 Interfacial mass transfer

2.4.1 Evaporation rate

Evaporation occurs at the heated wall only and can be deduced easily since the evaporation heat flux
contribution is known from the previous section. The evaporation rate per unit volume is expressed as:

Γgl =
qe
′′

w

ig,sat − il
A
′′′

w =
π

6
d3wρvfN

′′
A
′′′

w (2.45)

2.4.2 Condensation rate

Once bubbles are created and moves towards the centerline, they are surrounded by subcooled water and
condense. In the case of subcooled nucleate boiling, condensation is indeed the only possible physical phase
change at the interface for cells which are not in contact with the wall. The interfacial mass transfer related
to condensation of vapor bubbles in the bulk coolant is found as:

Γlg =
hli(Tsat − Tl)ai

ifg
(2.46)

where ai represents the interfacial area concentration and hli the heat transfer coefficient for condensation
at the interface described by Wolfert et al. [37], assuming that bubbles are at saturated conditions as:

hli = ρlcpl

√
π

4

‖~Ug − ~Ul‖
DS

λl
ρlcpl

1

1 + λtl/λl
(2.47)

2.5 Interfacial area concentration transport equation

The interfacial area concentration (IAC) corresponds to the area of the gas bubbles per unit volume. For
spherical bubbles, due to geometrical reasons, it is directly proportional to the void fraction and inversely
proportional to the bubble diameter:

ai = 6
α

DS
(2.48)

The IAC is influenced by many different phenomena. It can increase or decrease due to sudden phase change
(condensation in the bulk or nucleation at the wall). Coalescence and breakup mechanisms also affect the
IAC. Coalescence consists of several bubbles joining together to form a larger bubble, decreasing the area
for the same volume of void so that the IAC decreases. This is provoked by collisions driven by turbulence.
The opposite phenomenon is breakup of bubbles which results from the interaction between bubbles and
turbulent eddies. In the case of breakup, one bubble splits into two or several smaller bubbles and the IAC
increases as the consequence.

There is a spatial and temporal evolution of the IAC, which has to be described by an additional equation.
Since most of the interfacial forces are functions of the bubble diameter, and indirectly of the IAC, this extra
equation must be modeled accordingly. Yao and Morel ([39]) derived an analytical form:

∂ai
∂t

+∇ ·
(
ai~Ug

)
= −2

3

ai
α

Γlg +
36π

3

(
α

ai

)2 (
φCOn + φBKn

)
+ πd2wφ

NUC
n (2.49)
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where φCOn and φBKn are a bubble sink term by coalescence and a bubble source term by breakup respectively
and φNUCn is the source term by nucleation at the wall, equal to:

φNUCn = fN
′′
A
′′′

w (2.50)

Many people have investigated these parameters. Wu et al. [38] and Ishii and Kim [14] derived expressions
for these two terms and also introduced another term in Eq.2.49 reflecting the wake entrainment, meaning
the acceleration of the following bubble in the wake of the preceding bubble. The Yao and Morel model [39]
was chosen in the NEPTUNE code which has been implemented in the frame of a collaboration between the
main french nuclear authorities and companies (CEA, Areva, EDF, IRSN). For a good description of the
differences between the different models referred to here, see Delhaye [8]. In the present work, the Hibiki and
Ishii model [13] is considered as the standard model in the present solvers. According to Hibiki and Ishii,
the coalescence and breakup terms are found to be:

φCOn = −ΓC
α2ε

1/3
l

D
11/3
S (αmax − α)

exp

(
−KC

D
11/3
S ρ

1/2
l ε

1/3
l

σ1/2

)
(2.51)

where: {
ΓC = 0.005
KC = 1.29

(2.52)

and,

φBKn = ΓB
α(1− α)ε

1/3
l

D
11/3
S (αmax − α)

exp

(
−KB

σ

D
5/3
S ρlε

2/3
l

)
(2.53)

where: {
ΓB = 0.007
KB = 1.37

(2.54)

However, the Yao and Morel model has also been created and can be selected if required by the user instead of
the standard Hibiki and Ishii formulation. Yao and Morel derived the following expressions for the coalescence
and breakup terms:

φCOn = −KC1
α2ε

1/3
l

D
11/3
S

1

α
1/3
max−α1/3

α
1/3
max

+KC2α
√

We
Wecr

exp

(
−KC3

We

Wecr

)
(2.55)

where: 
KC1 = 2.86
KC2 = 1.922
KC3 = 1.017
Wecr = 1.24

(2.56)

and,

φBKn = KB1
α (1− α) ε

1/3
l

D
11/3
S

1

1 +KB2 (1− α)
√

We
Wecr

exp

(
−Wecr
We

)
(2.57)

where: {
KB1 = 1.6
KB2 = 0.42

(2.58)

2.6 Turbulence modeling

2.6.1 Turbulence of the liquid phase

The effective viscosity of the liquid phase is the sum of a molecular and a turbulent viscosity.

νeffl = νl + νtl (2.59)

The turbulent behavior of the liquid phase is in turn decomposed in two different contributions:
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• an inherent shear-induced turbulence modeled as a classical single-phase k − ε expression:

νt,k−εl = Cµ
k2l
εl

(2.60)

where the typical value of the constant Cµ is 0.09

• a bubble-induced turbulence described by Sato et al. [27]:

νt,bl =
1

2
CµbDSα‖~Ug − ~Ul‖ (2.61)

where the value of the constant Cµb is 1.2.

To summarize, the turbulent viscosity of the liquid phase is given by:

νtl = Cµ
k2l
εl

+
1

2
CµbDSα‖~Ug − ~Ul‖ (2.62)

2.6.2 Turbulence of the gas phase

The turbulence of the gas phase is assumed to be dependant on the liquid phase turbulence and a turbulence
responce coefficient Ct, defined as the ratio of the root mean square values of dispersed phase velocity
fluctuations to those of the continuous phase, given by:

Ct =
U
′

g

U
′
l

(2.63)

This approach described by Rusche [26] presents the advantage not to introduce any extra differential equa-
tion. The effective viscosity of the gas phase is simply expressed as:

νeffg = νg + C2
t ν

t
l (2.64)

Various authors have derived expressions to calculate Ct as a function of local parameters such as the void
fraction, but in the present solvers, a constant value is set by the user. By default, the value used for the
simulations is set to zero, and no turbulence is affected to the gas phase.

2.6.3 Near-wall treatment: wall functions

It is well known that even for turbulent flows, there is very close to the wall a viscous sub-layer where the
flow is quasi-laminar. Further away from the wall, in the outer parts of the near-wall region, the flow is
turbulent. Between these two zones, there is a transition called the buffer region. The velocity profile and
the extent of the different regions is shown in Figure 2.3. It has to be pointed out that within the frame of
this work, ~x and ~y denote respectively the wall normal direction and the axial direction.

Thus, if one wants to capture the behaviour of the velocity in CFD, the near-wall region needs a specific
attention and must be treated carefully. One option is to refine the mesh in the vicinity of the wall so that the
near-wall region is resolved. But for flows at high Reynolds number, this solution can be very computationally
expensive. Therefore, another approach is to model the flow based on wall functions as described below.

The k-equation is solved in the whole domain, even for near-wall cells, which is not the case for the ε-equation.
Instead ε is found close to the wall from:

εl =
C

3/4
µ k

3/2
l

κx
(2.65)

where κ is the von Karman constant equal to 0.42.

Once k is known, it is possible to derive the dimensionless distance to the wall x+ from the relation:

x+ =
C

1/4
µ k

1/2
l

νl
· x (2.66)
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Figure 2.3: Different behaviors occuring in the near-wall region [29]

Depending on the value which is obtained, one will know in which layer the near-wall cells are and how to
handle them. For x+ > 11.6, it is assumed that the flow is in the turbulent region. Then the shear-induced
turbulent viscosity of the liquid phase and the buoyant production term appearing in the k-ε equation are:

νt,k−εl = νl

(
yκ

ln(Ex+)
− 1

)
(2.67)

Gt,k−εl =
νt,k−εl ‖∂~Ul∂x ‖C

1/4
µ k

1/2
l

κx
(2.68)

where E is a constant equal to 9.793.

On the opposite, if x+ < 11.6, viscous effects dominate (viscous sub-layer) and it is assumed that there is no
shear-induced turbulence:

νt,k−εl = Gt,k−εl = 0 (2.69)

Updating the fields for near-wall cells as detailed previously will implicitly apply the standard law of the wall
for the velocity field of the liquid phase:{

U+ = x+ if x+ < 11.6
U+ = 1

κ ln(Ex+) if x+ > 11.6
(2.70)

2.7 Summary

The presented mathematical models contains 8 independent equations :

• 2 mass conservation equations for the liquid and gas phases

• 2 momentum conservation equations for the liquid and gas phases

• 1 energy conservation equation for the liquid phase

• 1 interfacial area concentration transport equation

• 2 additional partial derivative equations for the turbulence of the liquid phase

Using various closures laws, all the parameters appearing in these equations have been expressed as a function
of 8 independent variables:

• the void fraction α

• the gas velocity ~Ug
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• the liquid velocity ~Ul

• the specific enthalpy of the liquid phase il

• the interfacial are concentration ai

• the turbulent kinetic energy of the liquid phase kl

• the turbulent dissipation rate of the liquid phase εl

• the pressure p

The mathematical system of equations is properly defined and can be solved numerically.



CHAPTER 3

METHOD

In this chapter, the structure of the CFD software OpenFOAM 1.7.x is described and it is briefly explained
how to use it. However, it is not intended to give a complete description of the software, this can be found
in the User Guide [22] and the Programmer’s Documentation [21]. Then this chapter focus on the code used
in the solver, which will be analysed step-by-step. Lastly, the different validation cases, on which the solver
will be applied, are presented.

3.1 Brief presentation of OpenFOAM

3.1.1 Overview

OpenFOAM is an object-oriented open-source CFD software package built on the C++ programing language.
As a result, a basic knowledge of C++ is a pre-requisite and if needed the reader may refer to Stroustrup
[28] on the C++ language. OpenFOAM is a complete tool using different libraries to solve complex fluid
dynamics problems. The overall structure of OF is displayed in Figure 3.1. As it can be seen, the user has
at his disposal many tools which are included in OF for pre-processing and solving, but OF does not include
any specific post-processing software. The user must therefore install a post-processing software in order to
analyse the data retrieved from OpenFOAM. ParaView R© is however the most commonly used too for this
task and is adopted in this work.

Figure 3.1: Overview of OpenFOAM structure [22]

Basically, there are two types of entities in OF. The first one is applications, which are executables, and
can be either solvers or utilities. Solvers, as one can imagine, solve given continuum mechanics equations.
Utilities are dedicated to data manipulation. Utilities are not essential in this study since they do not deal
with the physics and will not be discussed futher in this report. The other type of entity is called cases. Both
solvers and cases will be described more in depth in the following sections.

17
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3.1.2 Solvers

Each solver represents a specific continuum mechanics problem to solve in which the governing equations are
implemented. The source file of the solver must have the .C -extension and be placed, by convention, in a
folder wearing the same name as the source file. This folder can also contain other files with the .H -extension
which are ”used” or referred to by the main source code. It is for example quite useful when the code is
large, since it allows to separate the main code into several parts, which is of huge interest while debugging
the code. Files with the .H -extension can also designate an already existing class used in the main source
code. The last type of file included in the solver folder is another folder named Make which is essential for
the compilation. Make is composed of two files: files and options which incorporate paths to the different
files that must be compiled and the paths to the necessary libraries. For example, a solver called newApp
could have the following structure:

Figure 3.2: Directory structure for a solver [22]

As explained earlier, a solver contains the different equations to be solved. One of OpenFOAM’s strengths is
its equation representation, whose syntax is realy similar to the mathematical one. Considering for example
the following transport equation for a field T :

∂T

∂t
+∇ ·

(
T ~U
)
−∇ ·

(
ν ~∇T

)
= 0 (3.1)

would be written:

solve
(

fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(nu, T)

);

After the physical problem is properly put into equations in the solver, the latter must be compiled. This
process is done very easily. In the Linux environment, one has only to open a terminal, go to the solver’s
directory and type in the command wmake. This will create the executable file that can be applied on cases.

3.1.3 Cases

If a solver contains the universal aspects of a physical problem, meaning the equations, a case on the contrary
refers to the specificities of a problem (geometry, physical properties, computational schemes, etc). A case is
a folder that is based on three main directories : system, constant and 0.

The system directory usually contains three different files. The first file is controlDict and is used to set up
for example the starting time of the simulation, the write interval, the end time, the time step as well as
calculating the output data. The second file fvSchemes is for setting up the numerical discretisation schemes
which are used for time and spatial derivatives. The third and last file is called fvSolution, it contains
information associated with the solution procedure i.e. solvers to be used for the given equations, solution
algorithm structure, relaxation and tolerances.

The constant directory is composed of one folder called polyMesh and several other files. The polyMesh
folder includes the definition of the geometry. How to create a geometry will not be described in details
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here but the user may refer to [22]. Among the other files located in the constant, one finds for example the
transportProperties file (which contains mostly physical properties of the two phases, pressure and constants),
the environmentalProperties (including the wall heat flux and wall material properties), the g file (in which
the gravity field is defined), the interfacialProperties file (for setting up the models chosen for the interfacial
forces) and the turbulenceProperties (where the turbulence model and the associated constants are defined).
Of course, the number of files and their nature depends on the case since the required information varies
from one application to another, but the files described here are those normally used in the two-phase flow
simulations considered here.

The 0 directory contains the initial and boundary conditions of all fields that have to be solved. There are
few pre-defined initial or boundary conditions in OF that are quite often sufficient in common applications.
They are described in the OpenFOAM User Guide [22].

Then, in order to run an specific solver (which must have been compiled before) on a case in the Linux
environment, one has to open a terminal, go into the case folder and type the name of the compiled solver.
This will run the code and additional directories containing the calculated fields will be created in the case
directory. Their names are the time at which the results are written.

3.2 The solvers code explained

In this work, two different solvers have been implemented: one for adiabatic flows, myTwoPhaseEulerFoa-
mAdiabatic, and one for heated flows, myTwoPhaseEulerFoamBoiling.

The solvers are improved versions of the twoPhaseEulerFoam solver which is already included in OF. Certain
files have been removed because they were unnecessary for subcooled boiling, such as the kinetic theory model,
but many others have been created or modified. For instance, the phaseModel class has been modified and
many other interfacial forces have been implemented in the interfacialModels class (not only drag models as it
was done so far). An energy equation written in terms of enthalpy has been introduced as well. The algorithm
procedure is the so-called Pressure-Implicit with Splitting of Operatos (PISO) which is adapted for transient
calculations. A graphical representation of the solution procedure used in myTwoPhaseEulerFoamBoiling
can be seen in Figure 3.3.

These two solvers that have been created have a similar structure. myTwoPhaseEulerFoamAdiabatic differs
from myTwoPhaseEulerFoamBoiling only through the headers condensationModel.H, evaporationModel.H
and HEqn.H which are not present. The other headers are absolutely identical, except the fact that in
myTwoPhaseEulerFoamAdiabatic, the phase change terms have been removed from the equations.

As can be noticed from Figure 3.3, all equations are set up in different header files with the .H -extension.
The code of each of these files constituting myTwoPhaseEulerFoamBoiling will be described shortly within
the following subsections. The line numbers appearing to the left side correspond to the number of the lines
in the source code files, as they appear in the appendices.

3.2.1 condensationModel.H

First the magnitude of the relative velocity between the gas and the liquid phases is calculated. A field
representing a very small bubble diameter is also created, which is added to the actual calculated bubble
diameter. This feature aims to avoid a division by zero which would lead to numerical issues and make the
program crash. The turbulent thermal conductivity is also defined and initiated, according to Eq.2.8.

01: Ur = Ua - Ub;
02: magUr = mag(Ur);
03:
04: dimensionedScalar plusDS
05: (
06: ”plusDS”,
07: dimensionSet(0, 1, 0, 0, 0, 0, 0),
08: scalar (1.0e-6)
09: );
10:
11: volScalarField lambdatb = Cpb*rhob*nutb/PrandtlbT;
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Figure 3.3: Graphical representation of the solution procedure adopted for myTwoPhaseEulerFoamBoiling (inspired
from Thiele [30])

Then, the heat transfer coefficient is calculated using Wolfert’s correlation, according to Eq.2.47. Another
correlation for condensation in the subcooled bulk, which is used in the NEPTUNE code instead of the
Wolfert’s correlation, has also been implemented but has not been used here. Then the condensation rate
field is created from the heat transfer coefficient, cutting off potential unphysical negative values.

13: // Wolfert correlation: heat transfer coefficient for bubbles condensation in
14: // the subcooled bulk
15: volScalarField h = rhob*Cpb*sqrt(4.0/3.14159*magUr/(DS+plusDS)*lambdab
16: /(rhob*Cpb)*1.0/(1.0+lambdatb/lambdab));
17:
18: volScalarField GammaLG
19: (
20: IOobject
21: (
22: ”GammaLG”,
23: runTime.timeName(),
24: mesh,
25: IOobject::NO READ,
26: IOobject::AUTO WRITE
27: ),
28: max(6.0*alpha/(DS+plusDS)*h*(Hbsat-Hb)/Cpb/hfg,
29: 0.0*alpha/(DS+plusDS)*h*(Hbsat-Hb)/Cpb/hfg)
30: );
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3.2.2 evaporationModel.H

The evaporationModel.H leads to the determination of the wall heat flux partition and the evaporation rate
can be calculated.

Even though all quantities are defined as volScalarField in the whole geometry, it is obvious that evaporation
only occurs in near-wall cells. Therefore, a first step is to localize them and also the cell located at the same
axial position in the bulk. For simplicity’s sake, the bulk is assumed to be at the centerline. This is done in
the following lines:

348: forAll(thePatchItselfWall,iFace)
349: {
350:
351: label iCell = thePatchItselfWall.faceCells()[iFace];
352: vector iCellCentre = mesh.cellCentres()[iCell];
353:
354: //Point located at the center line but on the same axial position
355: vector bulkPoint(0,iCellCentre.y(),iCellCentre.z());
356: label bulkCell = mesh.findCell(bulkPoint);

Once the near-wall cells are localized, it is useful to calculate their dimensions. It is done in the following
lines:

358: // Needed to take the cell dimensions in order to check that the bubble are
359: // are not too large for the mesh at the wall
360: const cell & cc = mesh.cells()[iCell];
361: labelList pLabels(cc.labels(ff));
362: pointField pLocal(pLabels.size(), vector::zero);
363:
364: forAll (pLabels, pointi)
365: {
366: pLocal[pointi] = pp[pLabels[pointi]];
367: }
368:
369: scalar xDim = Foam::max(pLocal & vector(1,0,0)) - Foam::min(pLocal & vector(1,0,0));
370: scalar yDim = Foam::max(pLocal & vector(0,1,0)) - Foam::min(pLocal & vector(0,1,0));
371: scalar zDim = Foam::max(pLocal & vector(0,0,1)) - Foam::min(pLocal & vector(0,0,1));
372:

After that, an initial guess must be made for the wall superheat. This is done by assuming that the total heat
flux density will be dedicated to single phase convection. However, the real heat transfer coefficient for single
phase convection is not know yet since it is calculated from the Kurul and Podowski partitioning. Therefore,
the first step is to calculate the Fanning friction factor according to a given correlation, and from factor
to derive the Stanton number according to another correlation. These correlations are those implemented
in the Fortan code developed by KTH-NRT in CFX R©. The original Fortran code can be found in the
appendix. Using the definition of the Stanton number, one can finally calculate the heat transfer coefficient.
This procedure to calculate an initial guess of the wall superheat is implemented as:

376: for (int i=0; i<10; i++)
377: {
378: Cf[iCell] = 1.0/(Foam::log(Reyno.value()*Cf[iCell])/0.435+5.05);
379: }
380:
381: // Stanton number
382: Ch[iCell] = Cf[iCell]*Cf[iCell]/(1.0-1.783*Cf[iCell]);
383:
384: // Single-phase heat transfer coefficient
385: H1F[iCell] = Ch[iCell]*rhob.value()*Cpb.value()*mag(Ub[bulkCell]);
386:
387: // Guess wall superheat
388: Tsup[iCell] = qw.value()/H1F[iCell] - Tsub[iCell];
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Then, an Newton-type iterative procedure is applied on the near-wall cells. The wall superheat is initially
guessed assuming that the total heat flux is dedicated to single-phase convection. Depending on its value,
several paths can be followed in the code. If it is below a very small value, meaning that there is no superheat,
heat transfer is purely convective and all boiling parameters are set to zero and the evaporationModel.H is
exited:

392: if (Tsup[iCell] <= 0.05)
393: {
394: NSD[iCell] = 0.0;
395: freq[iCell] = 0.0;
396: Hq[iCell] = 0.0;
397: A1F[iCell] = 1.0;
398: goto label1;
399: }

Otherwise, several options are possible depending on the subcooling, as explained in the theory part. One
will either use the Unal correlation at high subcooling, the Tolubinsky correlation at very low subcooling
or a linear interpolation at low subcooling. The parameters described in the Kurul and Podowski model
are calculated in an included header file named nucleateBoilingModel.H. After that, the wall superheat is
updated if the total wall superheat is not equal to the sum of the three contributions (convection, queching,
evaporation) as shown below:

468: Hh[iCell] = A1F[iCell]*H1F[iCell] + Aq[iCell]*Hq[iCell];
469:
470: qtot[iCell] = evaporationSfRate[iCell]*Hlv[iCell] + Hh[iCell]*(Tsub[iCell]+Tsup[iCell]);
471:
472: if (Hh[iCell] == 0.0)
473: {
474: TsupCorr[iCell] = -Tsub[iCell];
475: }
476: else
477: {
478: TsupCorr[iCell] = Tsup[iCell] + relax*(qw.value()-qtot[iCell])/Hh[iCell];
479:
480: if (TsupCorr[iCell] <= -Tsub[iCell])
481: {
482: TsupCorr[iCell] = -Tsub[iCell];
483: }
484: }
485:
486: error = abs(qtot[iCell]-qw.value())/qw.value();
487:
488: if (TsupCorr[iCell] <= 0.0)
489: {
490: TsupCorr[iCell] = 0.8*Tsup[iCell];
491: }
492:
493: if (error > 0.00001)
494: {
495: Tsup[iCell] = TsupCorr[iCell];
496: goto label3;
497: }

Furthermore, within the included nucleateBoilingModel.H file, the solver checks that the bubble diameter
at detachment is not larger than any of the near-wall cells dimensions. Otherwise, error messages will be
displayed in the terminal for the user and the solver will be exited interrupting the calculations, as seen
below:

32: //Check that the mesh is not too refined close to the wall in comparison with
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33: //bubbles size at departure
34: if ( (dm.value()>xDim) || (dm.value()>yDim) || (dm.value()>zDim) )
35: {
36: Info<< ”ERROR : The mesh is too refined in comparison with the bubble size at departure”<< nl
<< endl;
37: Info<< ”IMPOSSIBLE to put all the energy of the created bubble in the near-wall cell ”<< nl <<
endl;
38:
39: return 1;
40: }

3.2.3 alphaEqn.H

Once the phase change rates are known, one can solve conservation equations, starting with the continuity
equation for the gas phase. For numerical reasons, the form implemented is slightly different from what is
shown in Eq.2.1 but the equation remains the same. Here, the conservation equation was divided by the void
fraction and a mixture flux phic as well as a relative flux are present in the equation. The continuous phase
fraction is last deduced from the dispersed one by substracting the former to one.

10: fvScalarMatrix alphaEqn
11: (
12: fvm::ddt(alpha)
13: + fvm::div(phic, alpha, scheme)
14: + fvm::div(-fvc::flux(-phir, beta, schemer), alpha, schemer)
15: ==
16: (GammaGL-GammaLG)/rhoa
17: );
18:
19: alphaEqn.relax();
20: alphaEqn.solve();
21:
22: alpha = max(1.0e-8,alpha);
23:
24: beta = scalar(1) - alpha;

This loop can be repeated a predefined number of correction iterations, set in the fvSolution directory of the
case by the user.

3.2.4 IACEqn.H

The next step treats the interfacial area concentration (IAC) transport equation, which is essential in order
to determine the bubble diameter and the resulting interfacial forces. It begins with retrieving the sources
terms by coalescence and breakup, respectively coalescenceSource and breakupSource, within the included
header file breakupAndCoalescence.H. Then a field is created with a minimum value for the IAC to bound it
to positive values:

01: # include ”breakupAndCoalescence.H”
02:
03: surfaceScalarField phiMix = phi;
04: surfaceScalarField phiRel = phia - phib;
05:
06: dimensionedScalar smallIAC
07: (
08: ”smallIAC”,
09: dimensionSet(0, -1, 0, 0, 0, 0, 0),
10: scalar (1.0)
11: );
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Afterwards, the IAC transport equation is set up and solved, and since the void fraction is also known, the
bubble diameter can be derived:

13: fvScalarMatrix IACEqn(IAC, IAC.dimensions()*dimVol/dimTime);
14:
15: {
16: IACEqn =
17: (
18: (
19: fvm::ddt(IAC)
20: + fvm::div(phiMix, IAC, ”div(phiMix,IAC)”)
21: + fvm::div(-fvc::flux(-phiRel, beta, ”div(phiRel,IAC)”), IAC, ”div(phiRel,IAC)”)
22: )
23: ==
24: 2.0/3.0*IAC/(alpha+scalar(1.0e-8))/rhoa*(-GammaLG)
25: + 36.0*3.14/3.0*pow(alpha/IAC,2.0)*(coalescenceSource+breakupSource)
26: + nucleationSource
27:
28: );
29:
30: IACEqn.relax();
31: IACEqn.solve();
32: }
33:
34: IAC = max(IAC,smallIAC);
35:
36: DS = 6.0*alpha/IAC;

3.2.5 interMomentumForces.H

Before setting up the momentum equations, the different interfacial forces are defined in a separate file called
interMomentumForces.H. The models used for each type of interfacial forces are previously specified by the
user in the constant folder of the case, and read within createFields.H.The implementation of these models
is not shown here but can be found in the appendix. interMomentumForces.H is pretty clear and does not
require much explanation.

Recall simply that the implementation of the Tomiyama wall lubrication is highly dependant on the geometry.
In this code, for example, the normal vector to the wall is defined as:

139: //definition of the normal vector for 2D mesh
140: volVectorField normal
141: (
142: IOobject
143: (
144: ”normal”,
145: runTime.timeName(),
146: mesh,
147: IOobject::NO READ,
148: IOobject::AUTO WRITE
149: ),
150: mesh,
151: vector(-1,0,0)
152: );

which is valid for a pipe whose axis is given by ~y so this part of the code should be modified for other
geometries.
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3.2.6 UEqns.H

The momentum equations are solved in their phase-intensive forms, meaning they have been divided by the
phase volume fraction. There are other discrepancies with the form developed in the theory part in Eq.2.3
that are described in details and justified numerically in Rusche’s thesis [26], pp 108-111. For example,
the effective stress tensor is decomposed in two terms, one diffusive part and one correction part. Once
again, even if the formulation differs, the physics of the equations remains intact. Looking at the momentum
equation for the liquid phase:

50: {
51: volTensorField gradUbT = fvc::grad(Ub)().T();
52:
53: nuEffb = nutb + nub + 1.2*DS/2.0*alpha*magUr;
54:
55: volTensorField Rcb
56: (
57: ”Rcb”,
58: ((2.0/3.0)*I)*(k + nuEffb*tr(gradUbT)) - nuEffb*gradUbT
59: );
60:
61: surfaceScalarField phiRb =
62: -fvc::interpolate(nuEffb)*mesh.magSf()*fvc::snGrad(beta)
63: /fvc::interpolate(beta);
64:
65: UbEqn =
66: (
67: //(scalar(1) + alpha/beta/rhob*AVirtualMass)* // Virtual mass force neglected
68: (
69: fvm::ddt(Ub)
70: + fvm::div(phib, Ub, ”div(phib,Ub)”)
71: - fvm::Sp(fvc::div(phib), Ub)
72: )
73:
74: - fvm::laplacian(nuEffb, Ub)
75: + fvc::div(Rcb)
76:
77: + fvm::div(phiRb, Ub, ”div(phib,Ub)”)
78: - fvm::Sp(fvc::div(phiRb), Ub)
79:
80: + (fvc::grad(beta)/(fvc::average(beta)) & Rcb)
81: ==
82: // g // Buoyancy term transfered to p-equation
83: - fvm::Sp(alpha/beta/rhob*K, Ub)
84: // + alpha/beta/rhob*K*Ua // Explicit drag transfered to p-equation
85: - alpha/beta/rhob*liftForce
86: // + alpha/beta/rhob*virtualMassForceb // Virtual mass force neglected
87: - alpha/beta/rhob*turbulentDispersionForce
88: - alpha/beta/rhob*wallLubricationForce
89: + GammaLG/(beta)/rhob*Ua
90: - fvm::Sp(GammaGL/(beta)/rhob, Ub)
91: );
92:
93: UbEqn.relax();
94: }

where Rcb and phiRb are well described by Rusche [26]. The velocity equations are set up but not solved
yet. As announced earlier, the virtual force has not been activated. It is also important to notice that the
gravity and pressure gradient terms are actually not included in the momentum equations. They are treated
at a later stage while coupling velocity and pressure in a so-called pressure equation. Transfering these terms
to the pressure equation stabilizes the procedure.
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3.2.7 pEqn.H

As explained before, the velocity equations are set up but the velocity fields not calculated yet when the code
enters the pressure equation. The first step consists of predicting velocity fields from the matrices defined in
UEqns.H. These predictions are not very accurate yet since they do not take pressure gradient nor gravity
into account. This is achieved in the following lines:

02: surfaceScalarField alphaf = fvc::interpolate(alpha);
03: surfaceScalarField betaf = scalar(1) - alphaf;
04:
05: volScalarField rUaA = 1.0/UaEqn.A();
06: volScalarField rUbA = 1.0/UbEqn.A();
07:
08: phia == (fvc::interpolate(Ua) & mesh.Sf());
09: phib == (fvc::interpolate(Ub) & mesh.Sf());
10:
11: surfaceScalarField rUaAf = fvc::interpolate(rUaA);
12: surfaceScalarField rUbAf = fvc::interpolate(rUbA);
13:
14: Ua = rUaA*UaEqn.H();
15: Ub = rUbA*UbEqn.H();

Lines 5 and 6 retrieve and invert the central coefficients of the matrices defining the momentum equations.
Multiplying these terms by the operation source from the same matrices in lines 14 and 15 yields to approx-
imated velocity fields.

Interpolating these velocities at the cell face would yield to approximate fluxes. Then, corrections are applied
to the mass fluxes:

38: phia = (fvc::interpolate(Ua) & mesh.Sf()) + fvc::ddtPhiCorr(rUaA, Ua, phia)
39: + phiDraga;
40:
41: phib = (fvc::interpolate(Ub) & mesh.Sf()) + fvc::ddtPhiCorr(rUbA, Ub, phib)
42: + phiDragb;
43:
44: phi = alphaf*phia + betaf*phib;

where fvc::ddtPhiCorr introduces a correction due to the difference between the flux due to the interpolated
velocities at the cell face and the real flux due to velocity, while phiDraga and phiDragb bring corrections
resulting from gravity. The latter are defined as:

38: phia = (fvc::interpolate(Ua) & mesh.Sf()) + fvc::ddtPhiCorr(rUaA, Ua, phia)
39: + phiDraga;
40:
41: phib = (fvc::interpolate(Ub) & mesh.Sf()) + fvc::ddtPhiCorr(rUbA, Ub, phib)
42: + phiDragb;
43:
44: phi = alphaf*phia + betaf*phib;

Then, the pressure equation is set-up and solved. This equation corresponds to a recasted version of the
continuity equation expressed at cell faces, as explained by Rusche [26], pp. 112-113. This is done within a
for-loop and several iterations may be necessary, if the mesh is non-orthogonal. Finally, the flux is completed
by adding the pressure term. The obtained flux contains all physical contributions that occur in reality.
Then, the phase fluxes are updated, as well as the velocities.

46: surfaceScalarField Dp(”(rho*(1|A(U)))”, alphaf*rUaAf/rhoa + betaf*rUbAf/rhob);
47:
48: for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
49: {
50: fvScalarMatrix pEqn
51: (
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52: fvm::laplacian(Dp, p) == fvc::div(phi)
53: );
54:
55: pEqn.setReference(pRefCell, pRefValue);
56: pEqn.solve();
57:
58: if (nonOrth == nNonOrthCorr)
59: {
60: surfaceScalarField SfGradp = pEqn.flux()/Dp;
61:
62: phia -= rUaAf*SfGradp/rhoa;
63: phib -= rUbAf*SfGradp/rhob;
64: phi = alphaf*phia + betaf*phib;
65:
66: p.relax();
67: SfGradp = pEqn.flux()/Dp;
68:
69: Ua += fvc::reconstruct(phiDraga - rUaAf*SfGradp/rhoa);
70: Ua.correctBoundaryConditions();
71:
72: Ub += fvc::reconstruct(phiDragb - rUbAf*SfGradp/rhob);
73: Ub.correctBoundaryConditions();
74:
75: U = alpha*Ua + beta*Ub;
76: }
77: }

3.2.8 HEqn.H

At this stage, the energy equation can be implemented according to Eq.2.5 in analogy with the liquid velocity
equation. Once again, a phase intensive formulation has been chosen.

04: {
05: volVectorField gradHb = fvc::grad(Hb);
06:
07: volScalarField AlphaEffb = nutb/PrandtlbT + lambdab/(rhob*Cpb);
08:
09: volVectorField Qcb
10: (
11: ”Qcb”,
12: - AlphaEffb*gradHb
13: );
14:
15: HbEqn =
16: (
17: (
18: fvm::ddt(Hb)
19: + fvm::div(phib, Hb, ”div(phib,Hb)”)
20: - fvm::Sp(fvc::div(phib), Hb)
21: )
22:
23: - fvm::laplacian(AlphaEffb, Hb)
24: + (fvc::grad(beta)/(fvc::average(beta)) & Qcb)
25:
26: ==
27:
28: DpDt/rhob
29: + GammaLG/(scalar(1.0)-alpha)/rhob*(Ha)
30: - fvm::Sp(GammaGL/(beta)/rhob, Hb)
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31: + qw*SfPerVol/beta/rhob
32: );
33:
34: HbEqn.relax();
35: HbEqn.solve();
36: }

where AlphaEffb and Qcb denote respectively the effective thermal diffusivity and the effective heat transfer
within the liquid phase. Lines 60 to 63 are the material derivative of the enthalpy. The first term on the RHS
of the enthalpy equation is the energy gain by condensation, the second term is the energy loss by evaporation
and the last one is the heat received from the heated wall. Recall that thanks to the field SfPerVol, this last
term is non-zero only for near-wall cells.

3.2.9 kEpsilon.H

Lastly, the turbulent parameters are calculated as explained in the theory part. A classical k − ε model in
combination with wall functions are used for the turbulence of the liquid phase if the turbulence is switched on
by the user in the turbulenceProperties of the case. It starts with accumulating the wall contributions to the
turbulent energy dissipation ε and to the buoyant production term G in the included header wallFunctions.H.
Then the ε-equation is set. Before solving it, the terms of the ε-equation matrix that correspond to near-wall
cells are removed because, as explained in the theory part, the ε-equation is not used in this region. This is
performed within wallDissipation.H. After this step, the ε-equation is solved.

12: #include ”wallFunctions.H”
13:
14: // Dissipation equation
15: fvScalarMatrix epsEqn
16: (
17: fvm::ddt(beta, epsilon)
18: + fvm::div(phib, epsilon)
19: - fvm::laplacian
20: (
21: alphaEps*nuEffb, epsilon,
22: ”laplacian(DepsilonEff,epsilon)”
23: )
24: ==
25: C1*beta*G*epsilon/k
26: - fvm::Sp(C2*beta*epsilon/k, epsilon)
27: );
28:
29: #include ”wallDissipation.H”
30:
31: epsEqn.relax();
32: epsEqn.solve();

Next, the k-equation is set and solved. Further on, the turbulent viscosity is calculating either directly or in
wallViscosity.H for the near-wall cells.

37: // Turbulent kinetic energy equation
38: fvScalarMatrix kEqn
39: (
40: fvm::ddt(beta, k)
41: + fvm::div(phib, k)
42: - fvm::laplacian
43: (
44: alphak*nuEffb, k,
45: ”laplacian(DkEff,k)”
46: )
47: ==
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48: beta*G
49: - fvm::Sp(beta*epsilon/k, k)
50: );
51: kEqn.relax();
52: kEqn.solve();
53:
54: k.max(dimensionedScalar(”zero”, k.dimensions(), 1.0e-8));
55:
56: //- Re-calculate turbulence viscosity
57: nutb = Cmu*sqr(k)/epsilon ;
58:
59: #include ”wallViscosity.H”

At the end, the effective viscosities of both phases are also updated.

62: nuEffb = nutb + nub + 1.2*DS/2.0*alpha*magUr;
63: nuEffa = rhob/rhoa*nuEffb;

3.3 Test cases

3.3.1 The DEDALE experiment

The DEDALE experiment was carried out at EDF in 1995. One of its aims was to build up an important
database for the validation of the NEPTUNE code, especially regarding the models used for interfacial forces,
coalescence and breakup source terms and turbulence. It consists of an adiabatic vertical pipe of upwards
bubbly flows with an air/water system at atmospheric pressure (at the outlet) and a temperature of 30◦C
(at the inlet). The transport properties of air and water under these conditions are shown in Table 3.1. The
methacrylate pipe is 6 m long and has an inner diameter of 0.0381 m. Air is injected at the periphery of the
water flow in 80 identical holes with an inner diameter of 0.6 mm.

Table 3.1: Transport properties of water and air in the DEDALE experiment

Property Value

p 1.0 bar
ρl 995.65 kg/m3

ρg 1.165 kg/m3

λl 0.616 W/m/K
λg 0.026 W/m/K
cpl 4179.8 J/kg/K
cpg 1006.5 J/kg/K
νl 8.00·10−7 m2/s
νg 1.60·10−5 m2/s
σ 0.071 N/m

Measurements are realised at three different axial locations: y/D = 8, 55 and 155. At y/D = 8, the flow
conditions are assumed to be the inlet ones. Void fraction, interfacial area concentration, bubble size and
mean axial velocity, as well as mean and root mean square values of the liquid axial velocity are measured
locally along the diameter at the three axial locations. A thorough description of the measurement devices
will not be done here but one can refer to Bestion and Péturaud [4].

Of course, several tests were simulated with various combinations of inlet mass flux of air and water and
we have kept two of them to validate our code. These tests are DEDALE1101 and DEDALE1103 and the
parameters measured at the inlet are presented in Table 3.2.

In OpenFOAM, an equivalent 2D-channel has been modeled, instead of a real 3D-pipe, in order to limit the
computational needs and the time of the simulations. For the same reasons and using the axial symmetry of
the channel, only one half of the channel is considered. The mesh is homogeneous and composed respectively
of 20 cells and 200 cells in the radial and axial directions, what sets the first cell node at a distance of
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Table 3.2: DEDALE1101 and DEDALE1103 measured inlet conditions

Property DEDALE1101 DEDALE1103

Liquid superficial velocity Jl 0.877 m/s 0.877 m/s
Gas superficial velocity Jg 0.0588 m/s 0.1851 m/s

α 0.048 0.152
kl 4.23·10−3 m2/s2 1.78·10−2 m2/s2

ai 97 m−1 269 m−1

x+ ∼ 20. A view of the mesh and its radial decomposition is shown in Figure 3.4.

Figure 3.4: Zoom on the grid used for the DEDALE simulations

Initial and boundary conditions that have been applied are resumed in Table 3.3 and 3.4. The solver
deals with real phase velocities and not superficial phase velocities which are the parameters given from the
measurements. The former are thus calculated from the latter using a drift-flux model, whose distribution
factor has been fixed so that the void fraction derived from the drift-flux model fits the void fraction measured
at the inlet in the experiment. Another remark is that the boundary conditions at the inlet are taken uniform,
what is of course not exact, since the inlet of the simulation refers in reality to the axial position y/D = 8
where the flow is developed. This choice for the simulations origins from the lack of data regarding the radial
profile at y/D = 8 where only mean values are given. It must also be noted that the pressure p is set to 0.
The real value of the pressure is used through an additional field pReal read from the transportProperties
file, and it is added to the calculated pressure field p, which indeed only refers to the deviation from the
reference value pReal.

Table 3.3: Initial and boundary conditions applied in OpenFOAM for DEDALE1101

Field Initial Inlet Outlet Wall Centerline

Ul [m/s] 0.916 0.916 zeroGradient 0 symmetryPlane
Ug [m/s] 1.365 1.365 zeroGradient 0 symmetryPlane

α 0.048 0.048 zeroGradient zeroGradient symmetryPlane
p 0 zeroGradient 0 zeroGradient symmetryPlane

ai [m−1] 97 97 zeroGradient zeroGradient symmetryPlane
k [m2/s2] 4.23·10−3 4.23·10−3 zeroGradient zeroGradient symmetryPlane
ε [m2/s3] 1.695·10−2 1.695·10−2 zeroGradient zeroGradient symmetryPlane

3.3.2 The DEBORA experiment

The DEBORA experiment was carried out in 2000 by the CEA. This experiment differs from DEDALE since
it aims to analyse upwards bubbly two-phase flows with phase change (both nucleation at the wall and
condensation in the bulk). Its main goal was to provide a large data set covering for boiling in PWR up to
DNB. However, it is both complex and costly to set up experimental facility at high pressure. Therefore,
the choice has been made to use R12 which behaves at low pressure in a same manner as water under PWR
conditions. The liquid-vapor density ratio in these experiments corresponds to that of water-steam at 95-150
bar.
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Table 3.4: Initial and boundary conditions applied in OpenFOAM for DEDALE1103

Field Initial Inlet Outlet Wall Centerline

Ul [m/s] 1.0157 1.0157 zeroGradient 0 symmetryPlane
Ug [m/s] 1.355 1.355 zeroGradient 0 symmetryPlane

α 0.152 0.152 zeroGradient zeroGradient symmetryPlane
p 0 zeroGradient 0 zeroGradient symmetryPlane

ai [m−1] 269 269 zeroGradient zeroGradient symmetryPlane
k [m2/s2] 1.78·10−2 1.78·10−2 zeroGradient zeroGradient symmetryPlane
ε [m2/s3] 1.695·10−2 1.695·10−2 zeroGradient zeroGradient symmetryPlane

DEBORA consists of a vertical pipe made of Inconel 600, whose physical properties can be seen in Table
3.5, with an inner diameter equal to 19.2 mm. Axially, it is divided into three parts: the adiabatic inlet
section (1 m length), the heated section (3.5 m length) and the adiabatic outlet section (0.5 m). The
intermediate section is heated with an electric heating system imposing a unifrom or non-uniform heat flux
density. Subcooled R12 is fed at the bottom of the pipe, vapor bubbles are formed at the heated wall and
migrate to the bulk where they condensate.

Table 3.5: Properties of Inconel 600 used as pipe material in the DEBORA experiment

Property Value

ρw 8430 kg/m3

λw 15.0 W/m/K
cpw 444 J/kg/K

The measurements of radial distributions are performed at one axial location only, at the end of the heated
section, but for 20 different radial positions. The radial profiles of void fraction and bubble diameters are
measured by means of an optical probe. Besides, the liquid temperature radial profile is obtained by means
of thermocouples.

Here as well, various experiments have been performed, combining different input parameters. The cases
which are used for the validation of the present solver were all uniformly heated, and their experimental
conditions are presented in Table 3.6 and the transport properties of R12 under these conditions are shown
in Table 3.7.

Table 3.6: DEBORA selected cases and their experimental conditions

Case Pressure Mass flow rate Wall heat flux density Inlet temperature
[bar] [kg/m2/s] [kW/m2] [◦C]

DEB5 26.15 1986 73.89 68.52
DEB6 26.15 1984.9 73.89 70.53
DEB10 14.59 2027.8 76.24 34.91
DEB13 26.17 2980.9 109.42 69.20

In OpenFOAM, the geometry created is again a simplified version: half of a 2D-pipe is created to model
this experiment. Furthermore, one will only simulate the 3.5 m long heated part, neglecting the adiabatic
inlet section. Once again, the grid is homogeneous with 20 cells in the radial direction and 250 cells in the
axial direction, as it has been done by Lopez De Bertodano and Prabhudharwadkar [23]. Near-wall cells are
thus located at a distance x+ ∼ 60. Finally, the initial and boundary conditions used in OpenFOAM are
summarised in Table 3.8, 3.9, 3.10 and 3.11. The same comment on the field p can be made: it represents
indeed the deviation from a reference pressure. It must be observed that the initial and inlet values taken
for Ug and ai, while α is null, will not affect the final results after convergence of the code, but it might be
necessary to chose them rather close to their final values for stability’s sake.



32 Method

Table 3.7: Transport properties of R12 in the selected DEBORA cases

Property DEB5,DEB6 DEB10 DEB13

ρl [kg/m3] 1017.1 1177.2 1016.8
ρg [kg/m3] 172.06 84.91 172.24
λl [W/m/K] 4.57·10−2 5.58·10−2 4.57·10−2

λg [W/m/K] 1.76·10−2 4.65·10−2 1.76·10−2

cpl [J/kg/K] 1419.8 1111.50 1420.7
cpg [J/kg/K] 1290.8 861.71 1292.0
νl [m2/s] 8.80·10−8 1.12·10−7 8.80·10−8

νg [m2/s] 9.13·10−8 1.55·10−7 9.13·10−8

σ [N/m] 1.77·10−3 4.65·10−3 1.77·10−3

Tsat [◦C] 86.64 58.15 86.64
il,sat [J/kg/K] 292530.0 258450.0 292590.0
ilg [J/kg/K] 86070.0 116100.0 86010.0

Table 3.8: Initial and boundary conditions used in OpenFOAM for DEB5

Field Initial Inlet Outlet Wall Centerline

Ul [m/s] 1.744 1.744 zeroGradient 0 symmetryPlane
Ug [m/s] 1.9 1.9 zeroGradient 0 symmetryPlane

α 0 0 zeroGradient zeroGradient symmetryPlane
p 0 zeroGradient 0 zeroGradient symmetryPlane

ai [m−1] 5000 5000 zeroGradient zeroGradient symmetryPlane
k [m2/s2] 1.14·10−2 1.14·10−2 zeroGradient zeroGradient symmetryPlane
ε [m2/s3] 1.49·10−1 1.49·10−1 zeroGradient zeroGradient symmetryPlane
il [J/kg] 269740.0 269740.0 zeroGradient zeroGradient symmetryPlane

Table 3.9: Initial and boundary conditions used in OpenFOAM for DEB6

Field Initial Inlet Outlet Wall Centerline

Ul [m/s] 1.76 1.76 zeroGradient 0 symmetryPlane
Ug [m/s] 1.9 1.9 zeroGradient 0 symmetryPlane

α 0 0 zeroGradient zeroGradient symmetryPlane
p 0 zeroGradient 0 zeroGradient symmetryPlane

ai [m−1] 2000 2000 zeroGradient zeroGradient symmetryPlane
k [m2/s2] 1.16·10−2 1.16·10−2 zeroGradient zeroGradient symmetryPlane
ε [m2/s3] 1.53·10−1 1.53·10−1 zeroGradient zeroGradient symmetryPlane
il [J/kg] 272060.0 272060.0 zeroGradient zeroGradient symmetryPlane

Table 3.10: Initial and boundary conditions used in OpenFOAM for DEB10

Field Initial Inlet Outlet Wall Centerline

Ul [m/s] 1.586 1.586 zeroGradient 0 symmetryPlane
Ug [m/s] 1.8 1.8 zeroGradient 0 symmetryPlane

α 0 0 zeroGradient zeroGradient symmetryPlane
p 0 zeroGradient 0 zeroGradient symmetryPlane

ai [m−1] 2000 2000 zeroGradient zeroGradient symmetryPlane
k [m2/s2] 9.43·10−3 9.43·10−3 zeroGradient zeroGradient symmetryPlane
ε [m2/s3] 1.12·10−1 1.12·10−1 zeroGradient zeroGradient symmetryPlane
il [J/kg] 234030.0 234030.0 zeroGradient zeroGradient symmetryPlane
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Table 3.11: Initial and boundary conditions used in OpenFOAM for DEB13

Field Initial Inlet Outlet Wall Centerline

Ul [m/s] 2.626 2.626 zeroGradient 0 symmetryPlane
Ug [m/s] 2.9 2.9 zeroGradient 0 symmetryPlane

α 0 0 zeroGradient zeroGradient symmetryPlane
p 0 zeroGradient 0 zeroGradient symmetryPlane

ai [m−1] 2000 2000 zeroGradient zeroGradient symmetryPlane
k [m2/s2] 2.59·10−2 2.59·10−2 zeroGradient zeroGradient symmetryPlane
ε [m2/s3] 5.08·10−1 5.08·10−1 zeroGradient zeroGradient symmetryPlane
il [J/kg] 270520.0 270520.0 zeroGradient zeroGradient symmetryPlane
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CHAPTER 4

RESULTS

This chapter treats the results of the validation of the solvers developed. First the adiabatic solver myT-
woPhaseEulerFoamAdiabatic is validated against the DEDALE cases. Then the results obtained using myT-
woPhaseEulerFoamBoiling on the DEBORA cases are presented.

4.1 Results from myTwoPhaseEulerFoamAdiabatic on the DEDALE
cases

DEDALE1101 and DEDALE1103 are the two tested configurations and they have been described in detail
in the previous section. As it has been explained, the measurements in the first measuring section (y/D = 8)
are then used as inlet boundary conditions for the simulations.

4.1.1 Validation on DEDALE1101

For DEDALE1101, simulations were initially run using the Hibiki and Ishii models for coalescence and break-
up, which constitute the standard models for the adiabatic solver. However, for DEDALE1101, it has then
been decided to launch new simulations using this time the Yao and Morel models for coalescence and break-
up. The results calculated from OpenFOAM in the two other measuring sections (y/D = 55 and 155) are
compared to the experimental data as well as the results obtained by Yao and Morel after implementation
of their own coalescence and break-up models in the three-dimensional module of the CATHARE code
(outcome of a joint effort between Areva NP, CEA, EDF and IRSN) in Figure 4.1. Unfortunately, there is
no direct information about uncertainties for the local measurements. Nevertheless, using coherency tests
on the mean liquid and gas volumetric fluxes, Yao and Morel [39] evaluated the uncertainties on the gas and
liquid velocities by making the assumptions that the local quantities do not vary in the cross-section. These
uncertainties are represented in Figure 4.1 by blue vertical error bars.

The experiments show that at the first elevation (y/D = 55), the void fraction forms a so called wall peak,
where bubbles concentrate in a region close to the wall. This is the result of the equilibrium between the
radial components of the lift force, the turbulent dispersion force and the wall lubrication force. At the
second measuring cross-section (y/D = 155), the void profile is different: it is intermediate between wall
peaking and core voiding. Actually, the coalescence effects increase along the pipe, which results in bigger
bubbles, modifying this force equilibrium (acting notably on the lift force coefficient as shown in Figure 2.1)
which changes the void fraction profile.

When the Hibiki and Ishii models are selected, the solver shows globally good agreement with the experi-
mental data at y/D = 55. The void fraction profile is satisfying: the wall peaking phenomenon is captured,
whereas Yao and Morel could not capture the negative gradient of the void fraction close to the wall, and
the values are reasonably accurate both at the peak and in the center (where it is actually better than what
Yao and Morel got). Nevertheless, Yao and Morel’s results are better to calculate the position of the wall
peak: the wall peak obtained using the present solver is slightly too far from the wall. Concerning the bubble
diameter, the results obtained are very good in the bulk of the liquid but the increase of the bubble diameter
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Figure 4.1: Comparison for DEDALE1101 between the results obtained in OpenFOAM with myTwoPhaseEuler-
FoamAdiabatic, the experimental data and the results obtained by Yao and Morel with CATHARE

around the wall peak region is not detected. The predictions for the gas velocity are excellent. The biggest
discrepancy between the present simulations and the experiments concern the liquid velocity, which is un-
derestimated in the whole cross-section. This might seem surprising because one could think that the mass
flow used in the simulations is then not equal to the one really applied in the experiments. However, two
different aspects must be pointed out. First, the predictions obtained by Yao and Morel with CATHARE
are underestimated in the whole cross-section too, which proves that this problem in not inherent to my
simulations but probably due to inconsistencies between the measured values and the input parameters that
are supposedly used for this experiment. Then, while evaluating the uncertainties on the measurements of
phase velocities, Yao and Morel assumed that the radial profiles of local parameters are uniform, which is
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Figure 4.1: (continued)

a very crude approximation. Therefore, the real uncertainties should be significantly higher and the radial
profiles of the liquid velocity obtained from myTwoPhaseEulerFoamAdiabatic could indeed be in agreement
with that coming from the measurements. But the comparisons performed at y/D = 155 reveal that the
Hibiki and Ishii models fail to reproduce the axial evolution of the radial distribution. This can also be seen
on from Figure 4.2.

Figure 4.2: 3D view of DEDALE1101 when the Hibiki and Ishii models are selected

If instead of the Hibiki and Ishii models, the Yao and Morel models for coalescence and break-up phenomena
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are used in the present solver, the wall peaking phenomenon at y/D = 55 is still qualitatively captured but
the numerical results are worse. However at y/D = 155, the solver succeeds in capturing qualitatively the
axial evolution of the radial profiles and the progressive core voiding phenomenon as observed in Figure 4.3,
which is not possible with CATHARE even if the same models for coalescence and break-up are used. The
fact that the results obtained with OpenFOAM depends on the models which are selected can be justified.
On the one hand, the Hibiki and Ishii models involve constants which have been fitted on air/water adiabatic
experiments to capture the wall peak at intermediate height. On the other hand, all the terms presented in
the Yao and Morel models have been derived analytically.

Figure 4.3: 3D view of DEDALE1101 when the Yao and Morel models are selected

4.1.2 Validation on DEDALE1103

For this test, a transition in the flow regime has been observed during the experiment. At y/D = 55, the flow
is bubbly, but at y/D = 155, the flow is governed by the slug regime. Therefore, it would not be coherent to
use the Yao and Morel models with the present solver because this association captures the axial evolution,
as shown in the previous sub-section and would try to resolve the flow in the slug region, what is off the frame
of this work, and out of the validity range of this solver. Since the Hibiki and Ishii models do not capture the
axial evolution of the radial profiles, they can be chosen in order to compare the results at y/D = 55 with
the experimental results as well as what Yao and Morel obtained with CATHARE, what is show in Figure
4.4.
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Figure 4.4: Comparison for DEDALE1103 between the results obtained in OpenFOAM with myTwoPhaseEuler-
FoamAdiabatic, the experimental data and the results obtained by Yao and Morel with CATHARE

Once again, the solver reflects rather well the reality and its results are close to that obtained by Yao and
Morel with CATHARE. The wall peak of the void fraction profile is capture here again and the values in the
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Figure 4.4: (continued)

bulk of the coolant and at the peak are even better than that of CATHARE, but it is slightly too far from the
wall once again. The bubble diameter profile is well reproduced, except its increase in the wall peak region.
The gas velocity is also well predicted.The liquid velocity is underestimated, as it was already the case for
DEDALE1101, but the lack of data regarding the uncertaintities make any conclusion complicated. One could
nevertheless expect higher uncertaintities on the liquid velocities for DEDALE1103 than for DEDALE1101
since the mass flow rate is higher.

4.2 Results from myTwoPhaseEulerFoamBoiling on the DEB-
ORA cases

4.2.1 Validation on the selected DEBORA cases

Calculations of the four selected DEBORA cases indicated in Table 3.6 have been made with myTwoPhaseEuler-
FoamBoiling, using either the Hibiki and Ishi, or the Yao and Morel model. In Figures 4.5-4.9 the results
are compared to the experimental data and those obtained by Yao and Morel with CATHARE. Each figure
presents four graphs corresponding to the radial profiles of a local parameter at the outlet of the heated
section for DEB5, DEB6, DEB10 and DEB13. The void fraction and temperature profiles are presented in
Figures 4.5 and 4.7 respectively whereas the geometric local parameters, meaning the bubble diameter and
the interfacial area concentration are presented in Figures 4.8 and 4.9 respectively.

Figure 4.5 shows that the void fraction predictions are globally not good. The void fraction is strongly
underestimated by our model. Indeed, void is almost only present for a few layers of cells close to the
wall and the core of the duct in our simulations is almost entirely occupied by pure liquid. However, the
experimental results show evidence of significant amount of void (few percents) even in the bulk of the liquid.
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It seems that there is not enough vapor generated at the wall. Another remark that can be done is that
using the Hibiki and Ishii model gives higher void fraction at the wall than the Yao and Morel model.
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Figure 4.5: Comparison of the void fraction profiles at the end of the heated section between the results obtained in
OpenFOAM with myTwoPhaseEulerFoamBoiling, the experimental data and the results obtained by Yao and Morel
with CATHARE for the selected DEBORA cases

This underestimated void fraction has to be analysed in light of the liquid temperature profiles. The trend of
the temperature profiles is consistent: the mean liquid subcooling is much lower at the end of the test section
than at the inlet, and it also decreases along the radius of the pipe, as shown in Figure 4.6. Nevertheless Figure
4.7 reveals strong discrepancies between the measured value and the simulations for the liquid subcooling:
the liquid is not as warm as it should be, probably implying that the problem in the present solver lies in
the treatment of the wall heat flux.

Figure 4.8 shows the limit of our present solver too. The bubble diameter is highly understimated in the core
of the pipe, but the value at the wall are in good agreement with the experimental data. Since the bubble
departure diameter is the key parameter of the Kurul and Podowski boiling sub-model, the evaporation
intermediate parameters are reasonable and therefore not the origin of the problem. If the liquid subcooling
was lower, more bubbles would be generated and migrate towards the centerline of the pipe, increasing the
void fraction in the bulk of the coolant and the bubble diameter too, according to Eq.2.48.

4.2.2 Sensitivity tests: influence of the grid resolution

When developing a solver, a programmer wants to implement a numerical procedure which is as grid indepen-
dent as possible. It would not be physically acceptable to have a solver whose final results are very sensitive
to the grid adopted for the simulations. For the myTwoPhaseEulerFoamBoiling solver in combination with
the Yao and Morel model, several grid dependency tests have been performed on the DEB5 case. The same
simulation has be run using 10, 14, 16 or 20 radial cells and the predictions on the local parameters are
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Figure 4.6: 3D view of the liquid subcooling for the DEB5 case when the Yao and Morel model is used

compared in Figure 4.10.

Figure 4.10 shows essentially that a small variation of the radial refinement affects considerably the void
fraction in the near wall region, influencing the liquid temperature. The higher the void fraction at the wall,
the higher the subsequent condensation, the higher the liquid temperature. Once again, this defect in the
code is due to the treatment of the wall heat flux and evaporation rate and it will be explained here. At the
wall, it is possible to know the wall heat flux density q

′′

w (which is an input parameter) and the evaporation
mass flux per unit wall area. These two terms are given per unit wall area, but they have to be taken into
account for the conservation equations of near-wall cells. The difficulty is: how to convert the known terms
per unit wall area into volumetric terms used in the conservations equations? The strategy employed here
has been to multiply by A

′′′

w representing the contact area between the wall and the cell per unit volume, as
shown in Eqs. 2.5 and 2.45. This term is null for non wall-adjacent cells, and for wall-adjacent cells, it is
equal to:

A
′′′

w =
ycellzcell

xcellycellzcell
=

1

xcell
(4.1)

where (xcell, ycell, zcell) are the cell dimensions, as described in Figure 4.11. This shows that the source terms
due to the evaporation or the wall heat flux appearing in the conservation equations are highly sensitive to
the mesh refinement, and so are the solutions to these equations.

4.2.3 Sensitivity tests: influence of the inlet gas velocity and interfacial area
concentration

At the inlet, water is subcooled and therefore a proper definition of certain gas parameters is not possible. If
the void fraction α is obviously null, how to define at the inlet the interfacial area concentration, the bubble
diameter and the gas velocity when there are no gas bubbles?

Since ~Ug and ai are two fields calculated through partial derivative equations, it has been decided to set
them uniformly at the inlet, giving them realistic values read from the experimental results obtained once
the steady state is reached. However, a modification of these inlet values, as long as they are realistic, should
not alter the results at steady state.

In order to verify that the results of the solver myTwoPhaseEulerFoamBoiling are not affected by the inlet
gas velocity nor the inlet interfacial void fraction, a series of dependency tests have been carried out on the
DEB5 cases, modifying from one simulation to the other only one of these parameters and keeping all the
others identical. The influence of the inlet gas velocity can be seen in Figure 4.12 and that of the inlet
interfacial area concentration is depicted in Figure 4.13. Modifying these parameters do not affect the final
results of the solver, as expected from a purely physical point of view. This is a good sign of the solver’s
robustness.
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Figure 4.7: Comparison of the liquid temperature profiles at the end of the heated section between the results
obtained in OpenFOAM with myTwoPhaseEulerFoamBoiling, the experimental data and the results obtained by Yao
and Morel with CATHARE for the selected DEBORA cases
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Figure 4.8: Comparison of the bubble diameter profiles at the end of the heated section between the results obtained
in OpenFOAM with myTwoPhaseEulerFoamBoiling, the experimental data and the results obtained by Yao and Morel
with CATHARE for the selected DEBORA cases
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Figure 4.9: Comparison of the interfacial area concentration profiles at the end of the heated section between the
results obtained in OpenFOAM with myTwoPhaseEulerFoamBoiling, the experimental data and the results obtained
by Yao and Morel with CATHARE for the selected DEBORA cases
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Figure 4.10: Comparison of the results obtained from myTwoPhaseEulerFoamBoiling at the end of the heated
section for DEB5 with variying number of radial cells for the grid

Figure 4.11: Map of the field A
′′′
w introducing a grid-dependency in the solvers
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Figure 4.12: Comparison of the results obtained from myTwoPhaseEulerFoamBoiling at the end of the heated
section for DEB5 with varying inlet gas velocity
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Figure 4.13: Comparison of the results obtained from myTwoPhaseEulerFoamBoiling at the end of the heated
section for DEB5 with varying inlet interfacial area concentration
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CHAPTER 5

DISCUSSION

5.1 On the myTwoPhaseEulerFoamAdiabatic solver

Even if the results given by this solver are satisfactory, it should be validated on a much wider range of
experimental data with various flow conditions and using various geometries such as annulus, which would
first require a new modeling of the wall lubrication force since the Tomiyama model only applies to pipe.
In addition, one should also make sure that the results remain consistant when the solver is applied to
three-dimensional simulations.

The models used for the interfacial forces could be improved. The wall lubrication force model according
to Tomiyama has two main inconveniencies: it is only applicable to pipes and it depends on their diameter.
An option would be to implement the Frank model [11] in order to have a formulation with a wider range
of applicability which would in the same time only depend on the distance to the wall. The virtual mass
force has been implemented in this work but not activated in the momentum equation because it turned out
to unstabilise the solver. This issue should be investigated too. However, it is acceptable not to consider
the virtual mass force since it reflects the influence of the accelerating fluid around a bubble and therefore
vanishes when the steady-state is reached.

In order to better reproduce the intermediate void fraction profile, as the one observed at the higher measuring
section in DEDALE1101 (y/D = 155), one shoud probably adopt another approach for the interfacial area
concentration. The present model is based on the assumption that there is only one possible size for bubbles at
a given location in the pipe. Further research has been conducted on so called Multiple-Size-Group (MUSIG)
approaches that allow to have different bubble sizes and therefore having as many transport equations as
considered bubble sizes. With only two groups, Ishii and Kim [15] obtained encouraging results compared to
the present approach.

Other possible improvements concern the turbulence modeling. Instead of combining the Sato model with a
classic single phase k-ε turbulence model, one could follow the method described by Morel [25] and implement
a modified k-ε model taking into account the turbulence caused by the bubbles on the liquid phase through
additional source terms.

5.2 On the myTwoPhaseEulerFoamBoiling solver

As explained earlier, a great challenge and an issue which still remain to be resolved in this solver is how
to properly model the heat flux density received by the liquid from the wall and implement it in a grid-
independent manner. Imposing a uniform heat flux density may seem like a very simple problem in CFD
because in most of the CFD software packages, the user just has to select the corresponding feature without
having to think about the way it is solved numerically.

A way to overcome this problem related to the treatment of the wall heat flux density could be to implement
a dimensionless temperature wall function. Instead of adding a source term accounting for the wall heat in
the energy equation for near-wall cells, one may calculate the temperature in the node of the near-wall cells
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through a dimensionless temperature wall function, which would depend on the wall heat flux density. A
possible formulation is given by Kader [18]. This would at least solve the very high sensitivity of the solver
to the grid resolution.

A related issue is how the boundary condition for the liquid enthalpy at the wall should be applied properly.
The choice of a zeroGradient used in the simulations is questionable. In OpenFOAM, it might be common
to impose a uniform enthalpy gradient at the wall, according to the Fourier law, implying that conduction is
the main heat transfer mechanism between the wall and the liquid. But this in not valid in our case since the
heat transfer phenomenon is governed by other mechanisms, as can be seen from the heat flux partitioning.
However, tests have been performed imposing a non-zero uniform gradient at the wall and the results were
almost identical.



CHAPTER 6

CONCLUSIONS

According to many experts, nuclear power will play an important role in tomorrow’s energy supply. This
opinion is essentially motivated by global warming and the depletion of fossil resources. However, this
technology still faces sometimes the public opinion’s reluctancy based mostly on safety issues and storage of
nuclear waste. A few safety issues in the nuclear industry are related to subcooled nucleate boiling. This
phenomenon designates the first boiling regime: liquid evaporates at a heated wall, generating bubbles which
then migrate to the subcooled liquid and condensate, heating the latter up. This regime normally occurs
in the lower part of BWR fuel bundles and could also occur at the highest part of a PWR core. For a
heat flux equal to the Critical Heat Flux (CHF), one leaves the nucleate boing regime. This transition is
called Departure From Nucleate boiling and marks a very sudden increase in the fuel clad temperature that
may lead to structural damage and consequently to infringement to the defence-in-depth principle. Another
reason why one would like to be able to predict this phenomenon more accurately is that the void generated
in a BWR core will affect the reactivity of the reactor, and in a PWR it leads to a so-called axial offset
anomaly due to the deposition of lithium borate. Therefore, accurate models of subcooled nucleate boiling
are of major interest. So far, the codes used for this purpose are old system level codes and there is a crucial
need of improved three-dimensional models in CFD.

In this study, subcooled nucleate boiling in vertical pipes has been modeled within the OpenFOAM frame-
work. OpenFOAM is a relatively new CFD software package, quite different from the most common com-
mercial codes. Its user-friendliness is limited since it does not contain any graphical interface. Besides, the
number of existing models that comes with it is limited. However, this code has a huge potential. The
implementation of equations is transparent and the source code is rather easily understandable, and as it
open source, the code is modifiable, allowing the user to implement customised models. Therefore, this code
can continuously be improved by the users community and does not rely on any release by a company.

The modelling of subcooled nucleate boiling has been carried out in two steps. In the first step, a solver
named myTwoPhaseEulerFoamAdiabatic has been implemented to simulate adiabatic bubbly flow using a
Eulerian-Eulerian approach. In this solver, the mass and momentum conservation equations are solved for
both phases and an interfacial area transport equation has been implemented. Additionally, the turbulence
has been neglected in the gas phase, and modeled for the liquid phase using a classic k-ε model in combination
with standard wall functions. A bubble induced turbulent viscosity has been implemented according to the
proposed model by Sato. Special care has been taken for the interfacial forces and the following models
have been chosen: the Ishii-Zuber drag, the Tomiyama lift, the Tomiyama wall lubrication and the Gosman
turbulent dispersion forces. The Zuber virtual mass force has been implemented but it was not activated
while solving the momentum equations in the present studies. Furthermore, two different models, namely
the Hibiki and Ishii model as well as the Yao and Morel model, have been implemented for the coalescence
and breakup source terms appearing in the interfacial area concentration transport equation. Either one or
the other can be selected by the user.

Then, a solver called myTwoPhaseEulerFoamBoiling has been developed based on the previous one. In order
to take into account nucleation at the heated pipe wall and condensation in the subcooled liquid, while
assuming that the gas remains at the saturated conditions, only one energy conservation equation has been
included - the one for the liquid phase. Furthermore phase change terms have been introduced in the mass-
and momentum conservation equations, as well as in the interfacial area concentration transport equation.
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The turbulence modeling has not been modified.

The solver myTwoPhaseEulerFoamAdiabatic has been tested and validated again two data sets extracted
from the DEDALE experimental database. The results are satisfactory since the void fraction wall peak
observed experimentally is captured and the predicted values both at the peak and in the core of the pipe are
reasonably accurate. The calculated position of the peak could however be improved. It is currently slightly
too far from the wall but this might be related to the profiles applied at the inlet. In the simulations, they
have been chosen uniform because there is a lack of information concerning the radial profiles at the inlet
and only cross-section average values could be found in the literature. However in reality, the flow will be
partially developed. The results also show that the Hibiki and Ishii model for the coalescence and breakup
terms appearing in the interfacial area equation leads to more accurate results than the Yao and Morel model
at intermediate channel heights but it cannot capture the axial evolution of the radial profiles. It is believed
that this is related to the fact that the numerical constants used by Yao and Morel were derived analitycally,
whereas those used by Hibiki and Ishii were fitted on experimental data.

With regards to the comparison between the results obtained from the myTwoPhaseEulerFoamBoiling solver
and those from the experiment, one must admit that some further improvements have to be done. The trends
of the distributions of many parameters are physically reasonable, as for example, the temperature increases
axially and decreases radially away fromm the wall, but the results are too inaccurate. The boiling sub-
model is believed to be properly implemented because the key parameter, the bubble detachment diameter,
is predicted with a relatively good precision. It has also been tested (but not shown in this report) to remove
the condensation rate but the void fraction predictions were still far too low. Therefore, it is quite plausible
that the reason for these discrepancies lies in the energy equation. This hypothesis is strengthened by looking
at the void fraction and liquid temperature predictions, which are highly underestimated. Since the rise in
kinetic energy of the fluid between the inlet and the outlet is not so important, this implies that part of the
energy flux from the wall is lost. This issue regarding the proper treatment of the wall heat flux density for
near-wall cells is the origin of the grid sensitivity which has been noticed. However, the work which has been
done on myTwoPhaseEulerFoamBoiling remains valuable. The solvers code is stable, the solution procedure
is well defined and its architecture properly constructed with different classes for different physical entities
such as interfacial forces or coalescence and breakup mechanisms. Besides, its robustness has been proven
by investigating its insensitivity to the inlet gas velocity and the inlet interfacial area concentration, which
do not have any physical significance when water is subcooled.

There are several aspects that need to be addressed in future work on this topic. In order to improve the
myTwoPhaseEulerFoamAdiabatic solver, one could first focus on the interfacial forces. Using the Frank
[11] wall lubrication model would make this force valid for other geometries than pipes and make this
force geometry-independent. Then considering a Multi-Size-Group (MUSIG), as was done by Ishii and
Kim [15] for the modeling of the bubble transport phenomena instead of the one-group interfacial area
concentration equation would perhaps capture the axial evolution of the parameters radial profiles and give
better predictions of the bubbly-to-slug transition. Finally, modified k-ε equations dedicated to two-phase
flows could be implemented, as for instance the one described by Morel [25].

Regarding myTwoPhaseEulerFoamBoiling, whose results are not as satisfactory, the challenge is most cer-
tainly how to properly implement the heat flux applied to the near-wall cells in a grid-independent manner.
The approach described by Kader [18] based on using a temperature wall function for near wall cells could
be a solution. Therefore the heat flux should probably be removed from the enthalpy equation and this tem-
perature wall function used for the calculation of the liquid enthalpy in the near-wall cells instead. Besides
one should investigate the boundary condition to apply to the enthalpy at the wall.
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à grandes sections (Gauthier-Villars, Paris, 1897).

[7] W.C. Ceumern-Lindenstjerna. Bubble departure diameter and release frequencies during nucleate pool
boiling of water and aqueous nacl solutions. Heat Transfer in boiling, 1977.

[8] J.M. Delhaye. Some issues related to the modelling of interfacial areas in gas–liquid flows, part ii:
modelling the source terms for dispersed flows. C. R. Acad. Sci. Paris, t. 329(Série II b):pp. p. 473–486,
2001.

[9] M. DelValle and D.B.R Kenning. Subcooled flow boiling at high heat flux. International Journal of Heat
and Mass Transfer, 28:pp. 1907–1920, 1985.

[10] D.A. Drew and R.T. Lahey. The virtual mass and lift force on a sphere in rotating and straining inviscid
flow. International Journal of Multiphase Flow, 13:pp. 113–121, 1987.

[11] Th. Frank. Advances in computational fluid dynamics (cfd) of 3-dimensional gas–liquid multiphase flows.
In NAFEMS Seminar ”Simulation of Complex Flows (CFD)”, pp. 1–18 (Wiesbaden, Germany, 2005).

[12] A.D. Gosman et al. Multidimensional modeling of turbulent two-phase flow in stirred vessels. AIChE
Journal, 38:pp. 1946–1956, 1992.

[13] T. Hibiki and M. Ishii. Development of one-group interfacial area transport equation in bubbly flow
systems. International Journal of Heat and Mass Transfer, 45:pp. 2351–2372, 2002.

[14] M. Ishii and S. Kim. Micro four-sensor probe measurement of interfacial area transport for bubbly flow
in round pipes. Nuclear Engineering and Design, 205:pp. 2711–2726, 2001.

[15] M. Ishii and S. Kim. Development of one-group and two- group interfacial area transport equation.
Nuclear Science and Engineering, 3:pp. 257–273, 2004.

[16] W.H. Jens and P.A. Lottes. Analysis of heat transfer burnout, pressure drop, and density data for
high-pressure water. Tech. rep., Argonne National Laboratories, 1951.

53



54 Bibliography

[17] M. Jischa and H.B. Rieke. About the prediction of turbulent prandtl and schmidt numbers from modeled
transport equations. International Journal of Heat and Mass Transfer, 22(11):pp. 1547–1555, 1979. ISSN
0017-9310. doi:DOI:10.1016/0017-9310(79)90134-0.

[18] B.A. Kader. Temperature and concentration profiles in fully turbulent boundary layers. International
Journal of Heat and Mass Transfer, 24:pp. 1541–1544, 1981.

[19] N. Kurul and M.Z. Podowski. On the modeling of multidimensional effects in boiling channels. Proceed-
ings of the 27th National Heat Transfer Conference, June 1991.

[20] M. Lemmert and J.M Chawla. Influence of flow velocity on surface boiling heat transfer coefficient. Heat
Transfer in Boiling, pp. 237–247, 1977.

[21] OpenCFD Limited. OpenFOAM Programmer’s C++ Documentation.
http://foam.sourceforge.net/doc/Doxygen/html/, 2011.

[22] OpenCFD Limited. OpenFOAM User Guide. http://www.openfoam.com/docs/user/, 2011.

[23] M. Lopez De Bertodano and D. Prabhudharwadkar. Computational fluid dynamics, pp. 420–444. CFD
Two Fluid Model for Adiabatic and Boiling Bubbly Flows in Ducts (InTech, 2010).
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APPENDIX A

INSTALLATION GUIDELINES

Here are a few guidelines which will help you to install the new solvers myTwoPhaseEulerFoamAdiabatic
and myTwoPhaseEulerFoamBoiling and use them on the provided cases. These guidelines are given for
myTwoPhaseEulerFoamAdiabatic but the procedure is identical for myTwoPhaseEulerFoamBoiling

1) Copying the cases

• Enter the folder run included on the attached DVD

• Copy the folder myTwoPhaseEulerFoamAdiabatic (which contains the different cases on which the
solver can be tested) and paste it in the run directory of your local workspace (in my case for instance:
/home/michta/OpenFOAM/michta-1.7.x/run). If this run directory does not exist yet, create it.

2) Copying the solver

• Enter the folder solvers included on the attached DVD

• Copy the folder myTwoPhaseEulerFoamAdiabatic (which contains the solver) and paste it in the
solvers directory of your local workspace (in my case for instance: /home/michta/OpenFOAM/michta-
1.7.x/applications/solvers). If this solvers directory does not exist yet, create it.

3) Libraries linking and compiling

• Open a terminal that you will use from now on

• Go into the myTwoPhaseEulerFoamAdiabatic solver folder of your local workspace (in my case :
/home/michta/OpenFOAM/michta-1.7.x/applications/myTwoPhaseEulerFoamAdiabatic) and perform
successively the following steps:

– Go into the phaseModel folder and compile it using the command wmake libso (it is essential to
compile this submodel first!)

– Go into the breakupAndCoalescenceModels folder and compile it using the command wmake libso

– Go into the interfacialModels folder and compile it using the command wmake libso

• Being located in your myTwoPhaseEulerFoamAdiabatic solver folder, compile it by using the command
wmake.

4) Running a case

• Still using the terminal, locate the folder of the case you want to run

• Then simply type the name of the solver you want to use for this case in the terminal. Here we will
just use the command myTwoPhaseEulerFoamAdiabatic.
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5) Postprocessing

• In order to postprocess your simulation, using ParaView, you must first be located (still using the
terminal) in the folder of the case you want to postprocess

• Then simply use the command paraFoam.



APPENDIX B

SOURCE CODE: MAIN PROGRAM

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software: you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by
013: the Free Software Foundation, either version 3 of the License, or
014: (at your option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
023:
024: Application
025: myTwoPhaseEulerFoamBoiling
026:
027: Author
028: Edouard Michta
029: michta@kth.se
030:
031: Description
032: Solver for modeling of subcooled nucleate boiling
033:
034: Solver based on twoPhaseEulerFoam, accounting for phase change due to
035: nucleation at a heated wall and subsequent condensation in the bulk liquid
036:
037: Equations solved:
038: - mass and momentum conservation equation for both phases
039: - energy equation for the liquid phase
040: - one-group interfacial area concentration transport equation
041: - if ””turbulence”” is switched on: RANS classic k-epsilon model + standard
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042: wall functions
043:
044: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
045:
046: #include ”fvCFD.H”
047: #include ”nearWallDist.H”
048: #include ”wallFvPatch.H”
049: #include ”Switch.H”
050:
051: #include ”IFstream.H”
052: #include ”OFstream.H”
053:
054: #include ”phaseModel.H”
055: #include ”dragModel.H”
056: #include ”liftModel.H”
057: #include ”virtualMassModel.H”
058: #include ”turbulentDispersionModel.H”
059: #include ”wallLubricationModel.H”
060: #include ”breakupModel.H”
061: #include ”coalescenceModel.H”
062:
063: // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
064:
065: int main(int argc, char *argv[])
066: {
067: #include ”setRootCase.H”
068:
069: #include ”createTime.H”
070: #include ”createMesh.H”
071: #include ”readGravitationalAcceleration.H”
072: #include ”readEnvironmentalProperties.H”
073: #include ”createFields.H”
074: #include ”initContinuityErrs.H”
075: #include ”readTimeControls.H”
076: #include ”CourantNo.H”
077: #include ”setInitialDeltaT.H”
078:
079: // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
080:
081: Info<< ”\nStarting time loop\n” << endl;
082:
083: while (runTime.run())
084: {
085: #include ”readTwoPhaseEulerFoamControls.H”
086: #include ”CourantNos.H”
087: #include ”setDeltaT.H”
088:
089: runTime++;
090: Info<< ”Time = ” << runTime.timeName() << nl << endl;
091:
092: #include ”condensationModel.H”
093: #include ”evaporationModel.H”
094: #include ”alphaEqn.H”
095: #include ”IACEqn.H”
096:
097: // --- Outer-corrector loop
098: for (int oCorr=0; oCorr<nCorr; oCorr++)
099: {
100:
101: #include ”interMomentumForces.H”



61

102: #include ”UEqns.H”
103:
104: // --- PISO loop
105: for (int corr=0; corr<nCorr; corr++)
106: {
107: #include ”pEqn.H”
108: if (correctAlpha && corr<nCorr-1)
109: {
110: #include ”alphaEqn.H”
111: #include ”IACEqn.H”
112: }
113: }
114:
115: #include ”DDtU.H”
116: #include ”kEpsilon.H”
117: #include ”HEqns.H”
118: }
119:
120: #include ”write.H”
121:
122: Info<< ”ExecutionTime = ” << runTime.elapsedCpuTime() << ” s”
123: << ” ClockTime = ” << runTime.elapsedClockTime() << ” s”
124: << nl << endl;
125: }
126:
127: Info<< ”End\n” << endl;
128:
129: return 0;
130: }
131:
132:
133: // ************************************************************************* //
134:
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SOURCE CODE: ISHII-ZUBER DRAG

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software; you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by the
013: Free Software Foundation; either version 2 of the License, or (at your
014: option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM; if not, write to the Free Software Foundation,
023: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:
025: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
026:
027: #include ”Ishii.H”
028: #include ”addToRunTimeSelectionTable.H”
029:
030: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
031:
032: namespace Foam
033: {
034: defineTypeNameAndDebug(Ishii, 0);
035:
036: addToRunTimeSelectionTable
037: (
038: dragModel,
039: Ishii,
040: dictionary
041: );
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042: }
043:
044:
045: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
046:
047: Foam::Ishii::Ishii
048: (
049: const dictionary& interfaceDict,
050: const volScalarField& alpha,
051: const phaseModel& phasea,
052: const phaseModel& phaseb
053: )
054: :
055: dragModel(interfaceDict, alpha, phasea, phaseb)
056: {}
057:
058:
059: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
060:
061: Foam::Ishii::˜Ishii()
062: {}
063:
064:
065: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
066:
067: Foam::tmp<Foam::volScalarField> Foam::Ishii::AD
068: (
069: const volScalarField& Ur,
070: const volScalarField& DS
071:
072: ) const
073: {
074:
075: dimensionedScalar plusDS
076: (
077: ”plusDS”,
078: dimensionSet(0, 1, 0, 0, 0, 0, 0),
079: scalar (1.0e-6)
080: );
081:
082: scalar alphaMax = 0.52;
083:
084: dimensionedScalar muStar = (phasea .rho()*phasea .nu()+0.4*phaseb .rho()
085: *phaseb .nu())/(phasea .rho()*phasea .nu()+phaseb .rho()*phaseb .nu());
086: volScalarField nuMix = phaseb .nu()*pow((scalar(1.0)-alpha /alphaMax),
087: -2.5*alphaMax*muStar);
088: volScalarField ReMix = max(Ur*DS/nuMix, scalar(1.0e-3));
089: volScalarField Cd = 24.0*(scalar(1) + 0.15*pow(ReMix, 0.687))/(ReMix+0.001);
090:
091: forAll(ReMix, celli)
092: {
093: if(ReMix[celli] > 1000.0)
094: {
095: Cd[celli] = 0.44;
096: }
097: }
098:
099: return 0.75*Cd*phaseb .rho()*Ur/(DS+plusDS);
100: }
101:
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102:
103: // ************************************************************************* //
104:
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SOURCE CODE: TOMIYAMA LIFT

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software; you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by the
013: Free Software Foundation; either version 2 of the License, or (at your
014: option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM; if not, write to the Free Software Foundation,
023: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:
025: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
026:
027: #include ”liftTomiyama.H”
028: #include ”addToRunTimeSelectionTable.H”
029:
030: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
031:
032: namespace Foam
033: {
034: defineTypeNameAndDebug(liftTomiyama, 0);
035:
036: addToRunTimeSelectionTable
037: (
038: liftModel,
039: liftTomiyama,
040: dictionary
041: );
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68 Source code: Tomiyama lift

042: }
043:
044:
045: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
046:
047: Foam::liftTomiyama::liftTomiyama
048: (
049: const dictionary& interfaceDict,
050: const phaseModel& phasea,
051: const phaseModel& phaseb
052: )
053: :
054: liftModel(interfaceDict, phasea, phaseb)
055: {}
056:
057:
058: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
059:
060: Foam::liftTomiyama::˜liftTomiyama()
061: {}
062:
063:
064: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
065:
066: Foam::tmp<Foam::volScalarField> Foam::liftTomiyama::AL
067: (
068: const volScalarField& Ur,
069: const volScalarField& alpha,
070: const volScalarField& DS
071:
072: ) const
073: {
074:
075: //--–-–-– gravity vector --–-–-–-–
076:
077: dimensionedScalar g
078: (
079: ”g”,
080: dimensionSet(0, 1, -2, 0, 0, 0, 0),
081: scalar (9.81)
082: );
083:
084: //--–-–-–-–-–-–-–-–-–-–-–-–
085: volScalarField Red = (Ur*DS)/phaseb .nu();
086: volScalarField Eo = mag(g)*(phaseb .rho()-phasea .rho())*pow(DS,2.0)/phaseb .sig();
087: volScalarField dH = DS*pow((scalar(1.0)+scalar(0.163)*pow(Eo,0.757)),0.333);
088: volScalarField EodH = mag(g)*(phaseb .rho()-phasea .rho())*pow(dH,2.0)/phaseb .sig();
089: volScalarField fEodH = scalar(0.00105)*pow(EodH,3.0)-scalar(0.0159)*pow(EodH,2.0)
090: -scalar(0.0204)*EodH+scalar(0.474);
091: volScalarField Cl = fEodH;
092: //--–-–-–-–-–-–-–-–-–-–-–-–
093: forAll(EodH, celli)
094: {
095: if (EodH[celli] >= 10.0)
096: {
097: Cl[celli] = -0.27;
098: }
099:
100: else if (EodH[celli] < 4.0)
101: {



69

102: Cl[celli] = min(scalar(0.288)*tanh((scalar(0.121)*Red[celli])),fEodH[celli]);
103: }
104: }
105:
106: return Cl*phaseb .rho();
107:
108: }
109:
110: // ************************************************************************* //
111:
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APPENDIX E

SOURCE CODE: TOMIYAMA WALL LUBRICATION

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software; you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by the
013: Free Software Foundation; either version 2 of the License, or (at your
014: option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM; if not, write to the Free Software Foundation,
023: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:
025: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
026:
027: #include ”wallLubricationTomiyama.H”
028: #include ”addToRunTimeSelectionTable.H”
029:
030: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
031:
032: namespace Foam
033: {
034: defineTypeNameAndDebug(wallLubricationTomiyama, 0);
035:
036: addToRunTimeSelectionTable
037: (
038: wallLubricationModel,
039: wallLubricationTomiyama,
040: dictionary
041: );
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72 Source code: Tomiyama wall lubrication

042: }
043:
044:
045: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
046:
047: Foam::wallLubricationTomiyama::wallLubricationTomiyama
048: (
049: const dictionary& interfaceDict,
050: const phaseModel& phasea,
051: const phaseModel& phaseb
052: )
053: :
054: wallLubricationModel(interfaceDict, phasea, phaseb)
055: {}
056:
057:
058: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
059:
060: Foam::wallLubricationTomiyama::˜wallLubricationTomiyama()
061: {}
062:
063:
064: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
065:
066: Foam::tmp<Foam::volScalarField> Foam::wallLubricationTomiyama::AWL
067: (
068: const volScalarField& alpha,
069: const volScalarField& DS,
070: const volScalarField& Ur
071:
072: ) const
073: {
074:
075: dimensionedScalar g
076: (
077: ”g”,
078: dimensionSet(0, 1, -2, 0, 0, 0, 0),
079: scalar (9.81)
080: );
081:
082: volScalarField Eo = mag(g)*(phaseb .rho()-phasea .rho())*pow(DS,2.0)/phaseb .sig();
083: volScalarField CwlEo = exp(-0.933*Eo+0.179);
084:
085: forAll(Eo, celli)
086: {
087: if (Eo[celli] < 1.0)
088: {
089: CwlEo[celli] = 0.47;
090: }
091: else if (Eo[celli] >= 1.0 && Eo[celli] <= 5.0)
092: {
093: CwlEo[celli] = exp(-0.933*Eo[celli]+0.179);
094: }
095: else if (Eo[celli] > 5.0 && Eo[celli] <= 33.0)
096: {
097: CwlEo[celli] = 0.00599*Eo[celli]-0.0187;
098: }
099: else if (Eo[celli] > 33.0)
100: {
101: CwlEo[celli] = 0.179;
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102: }
103:
104: }
105:
106: return 0.5*CwlEo*phaseb .rho()*pow(Ur,2.0)*DS;
107: //*pos(alpha-scalar(0.0001));
108: }
109:
110:
111: // ************************************************************************* //
112:
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APPENDIX F

SOURCE CODE: GOSMAN TURBULENT DISPERSION

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software; you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by the
013: Free Software Foundation; either version 2 of the License, or (at your
014: option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM; if not, write to the Free Software Foundation,
023: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:
025: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
026:
027: #include ”Gosman.H”
028: #include ”addToRunTimeSelectionTable.H”
029:
030: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
031:
032: namespace Foam
033: {
034: defineTypeNameAndDebug(Gosman, 0);
035:
036: addToRunTimeSelectionTable
037: (
038: turbulentDispersionModel,
039: Gosman,
040: dictionary
041: );
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042: }
043:
044:
045: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
046:
047: Foam::Gosman::Gosman
048: (
049: const dictionary& interfaceDict,
050: const phaseModel& phasea,
051: const phaseModel& phaseb
052: )
053: :
054: turbulentDispersionModel(interfaceDict, phasea, phaseb)
055: {}
056:
057:
058: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
059:
060: Foam::Gosman::˜Gosman()
061: {}
062:
063:
064: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
065:
066: Foam::tmp<Foam::volScalarField> Foam::Gosman::ATD
067: (
068: const volScalarField& Ur,
069: const volScalarField& nutb,
070: const volScalarField& DS,
071: const volScalarField& alpha
072:
073: ) const
074: {
075:
076: scalar sigmat = 0.9;
077:
078: dimensionedScalar plusDS
079: (
080: ”plusDS”,
081: dimensionSet(0, 1, 0, 0, 0, 0, 0),
082: scalar (1.0e-6)
083: );
084:
085: scalar alphaMax = 0.52;
086:
087: //If calculated from Ishii drag
088:
089: dimensionedScalar muStar = (phasea .rho()*phasea .nu()+0.4*phaseb .rho()*phaseb .nu())
090: /(phasea .rho()*phasea .nu()+phaseb .rho()*phaseb .nu());
091: volScalarField nuMix = phaseb .nu()*pow((scalar(1.0)-alpha/alphaMax),
092: -2.5*alphaMax*muStar);
093: volScalarField ReMix = max(Ur*DS/nuMix, scalar(1.0e-3));
094: volScalarField Cd = 24.0*(scalar(1) + 0.15*pow(ReMix, 0.687))/(ReMix+0.001);
095:
096: forAll(ReMix, celli)
097: {
098: if(ReMix[celli] > 1000.0)
099: {
100: Cd[celli] = 0.44;
101: }
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102: }
103:
104:
105: return scalar(0.75)*Cd/(DS+plusDS)*phaseb .rho()*nutb/sigmat*Ur;
106:
107: }
108:
109:
110:
111: // ************************************************************************* //
112:
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APPENDIX G

SOURCE CODE: ZUBER VIRTUAL MASS

01: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
02: ========= |
03: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
04: \\ / O peration |
05: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
06: \\/ M anipulation |
07: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
08: License
09: This file is part of OpenFOAM.
10:
11: OpenFOAM is free software; you can redistribute it and/or modify it
12: under the terms of the GNU General Public License as published by the
13: Free Software Foundation; either version 2 of the License, or (at your
14: option) any later version.
15:
16: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19: for more details.
20:
21: You should have received a copy of the GNU General Public License
22: along with OpenFOAM; if not, write to the Free Software Foundation,
23: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24:
25: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
26:
27: #include ”Zuber.H”
28: #include ”addToRunTimeSelectionTable.H”
29:
30: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
31:
32: namespace Foam
33: {
34: defineTypeNameAndDebug(Zuber, 0);
35:
36: addToRunTimeSelectionTable
37: (
38: virtualMassModel,
39: Zuber,
40: dictionary
41: );
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42: }
43:
44:
45: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
46:
47: Foam::Zuber::Zuber
48: (
49: const dictionary& interfaceDict,
50: const phaseModel& phasea,
51: const phaseModel& phaseb
52: )
53: :
54: virtualMassModel(interfaceDict, phasea, phaseb)
55: {}
56:
57:
58: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
59:
60: Foam::Zuber::˜Zuber()
61: {}
62:
63:
64: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
65:
66: Foam::tmp<Foam::volScalarField> Foam::Zuber::AVM
67: (
68: const dimensionedScalar& Cvm,
69: const volScalarField& alpha
70:
71: ) const
72: {
73:
74: return Cvm*(scalar(1.0)+2*alpha)/(scalar(1.0)-alpha)*phaseb .rho();
75:
76: }
77:
78:
79:
80: // ************************************************************************* //
81:



APPENDIXH

SOURCE CODE: HIBIKI-ISHII COALESCENCE MODEL

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software; you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by the
013: Free Software Foundation; either version 2 of the License, or (at your
014: option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM; if not, write to the Free Software Foundation,
023: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:
025: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
026:
027: #include ”HibikiIshiiC.H”
028: #include ”addToRunTimeSelectionTable.H”
029:
030: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
031:
032: namespace Foam
033: {
034: defineTypeNameAndDebug(HibikiIshiiC, 0);
035:
036: addToRunTimeSelectionTable
037: (
038: coalescenceModel,
039: HibikiIshiiC,
040: dictionary
041: );
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82 Source code: Hibiki-Ishii coalescence model

042: }
043:
044:
045: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
046:
047: Foam::HibikiIshiiC::HibikiIshiiC
048: (
049: const dictionary& interfaceDict,
050: const phaseModel& phasea,
051: const phaseModel& phaseb
052: )
053: :
054: coalescenceModel(interfaceDict, phasea, phaseb)
055: {}
056:
057:
058: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
059:
060: Foam::HibikiIshiiC::˜HibikiIshiiC()
061: {}
062:
063:
064: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
065:
066: Foam::tmp<Foam::volScalarField> Foam::HibikiIshiiC::C
067: (
068: const volScalarField& alpha,
069: const volScalarField& IAC,
070: const volScalarField& epsilon,
071: const volScalarField& Ur
072:
073: ) const
074: {
075:
076: scalar GammaC = 0.005;
077: scalar Kc = 1.29;
078: scalar alphaMax = 0.52;
079:
080: volScalarField dBuff = 6.0*alpha/IAC;
081:
082: dimensionedScalar plusDS
083: (
084: ”plusDS”,
085: dimensionSet(0, 1, 0, 0, 0, 0, 0),
086: scalar (1.0e-6)
087: );
088:
089: volScalarField sourceRCa = - GammaC*pow(alpha,2.0)*pow(epsilon,1.0/3.0);
090: volScalarField sourceRCb = pow(dBuff+plusDS,11.0/3.0)*(alphaMax-alpha);
091: volScalarField sourceRCc = exp(-Kc*pow(phaseb .rho(),1.0/2.0)
092: *pow(dBuff+plusDS,5.0/6.0)*pow(epsilon,1.0/3.0)/pow(phaseb .sig(),1.0/2.0));
093: volScalarField sourceRC = sourceRCa/sourceRCb*sourceRCc;
094:
095: return sourceRC*scalar(1.0);
096: }
097:
098:
099: // ************************************************************************* //
100:



APPENDIX I

SOURCE CODE: HIBIKI-ISHII BREAKUP MODEL

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software; you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by the
013: Free Software Foundation; either version 2 of the License, or (at your
014: option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM; if not, write to the Free Software Foundation,
023: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:
025: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
026:
027: #include ”HibikiIshii.H”
028: #include ”addToRunTimeSelectionTable.H”
029:
030: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
031:
032: namespace Foam
033: {
034: defineTypeNameAndDebug(HibikiIshii, 0);
035:
036: addToRunTimeSelectionTable
037: (
038: breakupModel,
039: HibikiIshii,
040: dictionary
041: );
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84 Source code: Hibiki-Ishii breakup model

042: }
043:
044:
045: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
046:
047: Foam::HibikiIshii::HibikiIshii
048: (
049: const dictionary& interfaceDict,
050: const phaseModel& phasea,
051: const phaseModel& phaseb
052: )
053: :
054: breakupModel(interfaceDict, phasea, phaseb)
055: {}
056:
057:
058: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
059:
060: Foam::HibikiIshii::˜HibikiIshii()
061: {}
062:
063:
064: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
065:
066: Foam::tmp<Foam::volScalarField> Foam::HibikiIshii::B
067: (
068: const volScalarField& alpha,
069: const volScalarField& IAC,
070: const volScalarField& epsilon,
071: const volScalarField& Ur
072:
073: ) const
074: {
075:
076: scalar GammaB = 0.005;
077: scalar Kb = 1.37;
078: scalar alphaMax = 0.52;
079:
080: volScalarField dBuff = 6.0*alpha/IAC;
081:
082: dimensionedScalar plusDS
083: (
084: ”plusDS”,
085: dimensionSet(0, 1, 0, 0, 0, 0, 0),
086: scalar (1.0e-6)
087: );
088:
089: volScalarField sourceTIa = GammaB*alpha*(1.0-alpha)*pow(epsilon,1.0/3.0);
090: volScalarField sourceTIb = pow(dBuff+plusDS,11.0/3.0)*(alphaMax-alpha);
091: volScalarField sourceTIc = exp(-Kb*phaseb .sig()/phaseb .rho()
092: /pow(dBuff+plusDS,5.0/3.0)/pow(epsilon,2.0/3.0));
093: volScalarField sourceTI = sourceTIa/sourceTIb*sourceTIc;
094:
095:
096: return sourceTI*scalar(1.0);
097: }
098:
099:
100: // ************************************************************************* //
101:



APPENDIX J

SOURCE CODE: YAO-MOREL COALESCENCE MODEL

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software; you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by the
013: Free Software Foundation; either version 2 of the License, or (at your
014: option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM; if not, write to the Free Software Foundation,
023: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:
025: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
026:
027: #include ”YaoMorelC.H”
028: #include ”addToRunTimeSelectionTable.H”
029:
030: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
031:
032: namespace Foam
033: {
034: defineTypeNameAndDebug(YaoMorelC, 0);
035:
036: addToRunTimeSelectionTable
037: (
038: coalescenceModel,
039: YaoMorelC,
040: dictionary
041: );
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86 Source code: Yao-Morel coalescence model

042: }
043:
044:
045: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
046:
047: Foam::YaoMorelC::YaoMorelC
048: (
049: const dictionary& interfaceDict,
050: const phaseModel& phasea,
051: const phaseModel& phaseb
052: )
053: :
054: coalescenceModel(interfaceDict, phasea, phaseb)
055: {}
056:
057:
058: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
059:
060: Foam::YaoMorelC::˜YaoMorelC()
061: {}
062:
063:
064: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
065:
066: Foam::tmp<Foam::volScalarField> Foam::YaoMorelC::C
067: (
068: const volScalarField& alpha,
069: const volScalarField& IAC,
070: const volScalarField& epsilon,
071: const volScalarField& Ur
072:
073: ) const
074: {
075:
076: scalar Kc1 = 2.86;
077: scalar Kc2 = 1.922;
078: scalar Kc3 = 1.017;
079: scalar alphaMax = 0.52;
080:
081: dimensionedScalar plusDS
082: (
083: ”plusDS”,
084: dimensionSet(0, 1, 0, 0, 0, 0, 0),
085: scalar (0.000001)
086: );
087:
088: volScalarField dBuff = 6.0*alpha/IAC;
089:
090: volScalarField We = 2.0*phaseb .rho()*pow(epsilon*(dBuff+plusDS),2.0/3.0)
091: *(dBuff+plusDS)/phaseb .sig();
092: scalar WeCr = 1.24;
093: volScalarField gAlpha = (pow(alphaMax,1.0/3.0)-pow(alpha,1.0/3.0))
094: /pow(alphaMax,1.0/3.0);
095:
096: volScalarField sourceRCa = -Kc1*pow(epsilon,1.0/3.0)*pow(alpha,2.0);
097: volScalarField sourceRCb = pow((dBuff+plusDS),(11.0/3.0))
098: *(gAlpha + Kc2*alpha*sqrt(We/WeCr));
099: volScalarField sourceRCc = exp(-Kc3*sqrt(We/WeCr));
100: volScalarField sourceRC = sourceRCa/sourceRCb*sourceRCc;
101:
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102: return sourceRC*scalar(1.0);
103: }
104:
105:
106: // ************************************************************************* //
107:
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APPENDIXK

SOURCE CODE: YAO-MOREL COALESCENCE MODEL

001: /*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*\
002: ========= |
003: \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
004: \\ / O peration |
005: \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
006: \\/ M anipulation |
007: --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–
008: License
009: This file is part of OpenFOAM.
010:
011: OpenFOAM is free software; you can redistribute it and/or modify it
012: under the terms of the GNU General Public License as published by the
013: Free Software Foundation; either version 2 of the License, or (at your
014: option) any later version.
015:
016: OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
017: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
018: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
019: for more details.
020:
021: You should have received a copy of the GNU General Public License
022: along with OpenFOAM; if not, write to the Free Software Foundation,
023: Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:
025: \*--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--*/
026:
027: #include ”YaoMorel.H”
028: #include ”addToRunTimeSelectionTable.H”
029:
030: // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
031:
032: namespace Foam
033: {
034: defineTypeNameAndDebug(YaoMorel, 0);
035:
036: addToRunTimeSelectionTable
037: (
038: breakupModel,
039: YaoMorel,
040: dictionary
041: );
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042: }
043:
044:
045: // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
046:
047: Foam::YaoMorel::YaoMorel
048: (
049: const dictionary& interfaceDict,
050: const phaseModel& phasea,
051: const phaseModel& phaseb
052: )
053: :
054: breakupModel(interfaceDict, phasea, phaseb)
055: {}
056:
057:
058: // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
059:
060: Foam::YaoMorel::˜YaoMorel()
061: {}
062:
063:
064: // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
065:
066: Foam::tmp<Foam::volScalarField> Foam::YaoMorel::B
067: (
068: const volScalarField& alpha,
069: const volScalarField& IAC,
070: const volScalarField& epsilon,
071: const volScalarField& Ur
072:
073: ) const
074: {
075:
076: scalar Kb1 = 1.6;
077: scalar Kb2 = 0.42;
078: scalar alphaMax = 0.52;
079:
080: dimensionedScalar plusDS
081: (
082: ”plusDS”,
083: dimensionSet(0, 1, 0, 0, 0, 0, 0),
084: scalar (0.000001)
085: );
086:
087: volScalarField dBuff = 6.0*alpha/IAC;
088:
089: volScalarField We = 2.0*phaseb .rho()*pow(epsilon*(dBuff+plusDS),2.0/3.0)
090: *(dBuff+plusDS)/phaseb .sig();
091: scalar WeCr = 1.24;
092:
093: volScalarField gAlpha = (pow(alphaMax,1.0/3.0)-pow(alpha,1.0/3.0))
094: /pow(alphaMax,1.0/3.0);
095:
096: volScalarField sourceTIa = Kb1*pow(epsilon,1.0/3.0)*alpha*(1.0-alpha);
097: volScalarField sourceTIb = pow((dBuff+plusDS),(11.0/3.0))*(1.0+Kb2*(1.0-alpha)
098: *sqrt(We/WeCr));
099: volScalarField sourceTIc = exp(-WeCr/We);
100: volScalarField sourceTI = sourceTIa/sourceTIb*sourceTIc;
101:
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102: return sourceTI*scalar(1.0);
103: }
104:
105:
106: // ************************************************************************* //
107:
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APPENDIX L

SOURCE CODE: FORTRAN CODE IMPLEMENTED BY KTH-NRT IN
CFX

001: PROGRAM SBCOOL
002: DIMENSION TSUPV(50)
003: DIMENSION TSUBV(50), Q1FV(50), QQV(50), QEV(50)
004: DIMENSION FREQV(50), ASDV(50), DMV(50), ERATEV(50)
005: DIMENSION A1FV(50), A2FV(50), H1FV(50), HQV(50), H2FV(50)
006: C
007: COMMON /HEAT1/RHOV,HLV,CONL,ALFA,ACONS,B,DMCON,H1F,QW
008: COMMON /HEAT2/A1,A2,DM,DMI,FREQ,ASD,HQ,H2F,A2F,A1F,ERATE
009: COMMON /ASDD/ASD1,ASD2,FLAGD
010: LOGICAL FLAGD
011: C
012: C DRIVER PROGRAM FOR THE SUBCOOLED BOILING MODEL
013: C
014: Q2PR = 570.E3 ! Wall heat flux
015: TSUB = 20. ! Liquid subcooling
016: VEL = 900./787.61 ! Liquid velocity
017: C
018: C Below the subcooled boiling model is called
019: C for various values of subcoolings
020: C
021: TSUB = -1.0
022: DO I=1,50
023: TSUBV(I) = TSUB + 1.0
024: TSUB = TSUBV(I)
025: CALL SBCMOD (TSUP,VEL,TSUB,Q1F,QQ,QE,Q2PR)
026: C
027: C Parameters returned by subcooled boiling
028: C model (through list of parameters and common
029: C blocks)
030: C
031: TSUPV(I) = TSUP ! wall superheat
032: Q1FV(I) = Q1F ! convective heat
033: QQV(I) = QQ ! quenching heat
034: QEV(I) = QE ! evaporation heat
035: FREQV(I) = FREQ ! frequency of detachment
036: ASDV(I) = ASD ! nucleation site density
037: DMV(I) = DM ! diameter of bubble
038: ERATEV(I) = ERATE ! evaporation rate
039: A1FV(I) = A1F ! area fraction
040: A2FV(I) = A2F ! area fraction
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041: H1FV(I) = H1F
042: HQV(I) = HQ
043: H2FV(I) = H2F
044: ENDDO
045: C
046: C
047: open(1134,file=’original.dat’)
048: DO I=1,50
049: WRITE(1134,’(1X,14(E12.5,1X))’) TSUBV(I), TSUPV(I),
050: : Q1FV(I), QQV(I), QEV(I), FREQV(I), ASDV(I), DMV(I),
051: : ERATEV(I), A1FV(I), A2FV(I), H1FV(I), HQV(I),
052: : H2FV(I)
053: ENDDO
054: close(1134)
055: C
056: END
057: C +++++++++++++++++++++++++++++++++++++++++++++++++
058: SUBROUTINE SBCMOD (TSUP,VEL,TSUB,Q1F,QQ,QE,Q2PR)
059: C +++++++++++++++++++++++++++++++++++++++++++++++++
060: C
061: C Arguments
062: C --–-–--
063: C Type Name ! Mode : Definition
064: C
065: REAL TSUP ! Water subcooling
066: REAL VEL ! Velocity of water
067: REAL TSUB ! Water subcooling
068: REAL Q1F ! Heat to water
069: REAL QQ ! Quench heat
070: REAL QE ! Heat to evaporation
071: REAL Q2PR ! heat flux on heater surface
072: C
073: C Include files
074: C --–-–-–-–
075: C
076: C Variables passed to subroutine via include files
077: C --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--
078: C
079: C PRESSU - system pressure
080: C RHOSAT - density at saturation line
081: C IPHLIQ - cuntinuous liquid phase index
082: C IPHBUB - bubble phase index
083: C CPSAT - specific heat at saturation
084: C CONSAT - thermal conductivity at saturation
085: C VISLAM - molecular dynamic viscosity at saturation
086: C CONWAL - wall conductivity
087: C RHOWAL - wall material density
088: C CPWALL - wall heat capacity
089: C
090: C COMMON blocks
091: C --–-–-–-–
092: C
093: COMMON /HEAT1/RHOV,HLV,CONL,ALFA,ACONS,B,DMCON,H1F,QW
094: COMMON /HEAT2/A1,A2,DM,DMI,FREQ,ASD,HQ,H2F,A2F,A1F,ERATE
095: COMMON /ASDD/ASD1,ASD2,FLAGD
096: LOGICAL FLAGD
097: C
098: C Variables passed to subroutine via common blocks
099: C --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--
100: C
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101: C
102: C Locals
103: C --–--
104: C Type Name ! Definition
105: C
106: C Set initial values for locals
107: C --–-–-–-–-–-–-–-–-–-
108: C
109: C Save locals
110: C --–-–-–-–
111: C SBCMOD--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-END-OF-HEADING
112: C
113: C INITIALIZE
114: C
115: A1 = 0.E0
116: A2 = 0.E0
117: DM = 0.E0
118: DMI = 0.E0
119: FREQ = 0.E0
120: ASD = 0.E0
121: HQ = 0.E0
122: H2F = 0.E0
123: A2F = 0.E0
124: A1F = 0.E0
125: ERATE= 0.E0
126: TW = 0.E0
127: Q1F = 0.E0
128: QQ = 0.E0
129: QE = 0.E0
130: QW = Q2PR
131: C
132: C ==========================================================
133: C PROPERTIES AT P=45 BAR
134: PRES = 45.e5
135: RHOL = 787.61
136: RHOV = 22.70
137: CPL = 4949.18
138: CONL = 0.6088
139: VISK = 1.305127e-7
140: CONW = 19.0
141: RHOW = 7865.0
142: CPW = 400.0
143: SIGMA = 0.02429
144: HFG = 1675854.0
145: C CALCULATED PROPERTIES
146: VISD = VISK*RHOL
147: PRL = VISD*CPL/CONL
148: ALFA = CONL/RHOL/CPL
149: C
150: HLV = HFG + CPL*TSUB
151: C
152: C ==========================================================
153: C
154: GAMA = SQRT(CONW*RHOW*CPW/CONL/RHOL/CPL)
155: A1 = SQRT((RHOL-RHOV)*9.81E0/SIGMA)/(HFG*VISD)
156: A2 = 0.5E0*SQRT(ALFA/3.14159E0)*0.013E0*PRL**1.7E0*GAMA
157: C
158: BCONS = 1.E0/2.E0/(1.E0-RHOV/RHOL)
159: DMCON = 2.42E-5*PRES**0.709E0
160: C
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161: C ==========================================================
162: C
163: C delta = 0.0001925
164: C
165: REYNO = VEL*3.2586E-4/VISK
166: C
167: CF = 0.062E0
168: DO I = 1,10
169: CF = 1.E0/( ALOG(REYNO*CF)/0.435E0 + 5.05E0 )
170: END DO
171: C
172: C CF = sqrt (actual Cf/2)
173: C Ch = s/(1+12.8(Prˆ0.68 - 1) sqrt(s))
174: C
175: H1F = CF*CF/(1.E0- 1.783E0*CF)
176: H1F = H1F*RHOL*CPL*VEL
177: C
178: C ==============================================================
179: C GUESS TSUP
180: TSUP = QW/H1F-TSUB
181: C IS IT ALREADY IN SINGLE PHASE ?
182: FLAGD = .FALSE.
183: IF (TSUP.LE.0.05E0) THEN
184: DM = 0.E0
185: ASD = 0.E0
186: FREQ = 0.E0
187: HQ = 0.E0
188: A1F = 1.E0
189: GO TO 130
190: END IF
191: C
192: IF (TSUB.GT.2.E0) THEN
193: B = TSUB*BCONS
194: ELSE
195: TMAX = QW/H1F-0.001E0
196: IF (TMAX.GT.3) TMAX = 3.E0
197: IF (TMAX.LT.2) THEN
198: FLAGD = .TRUE.
199: WRITE (*,*) ’ SWITCHED TO TOLUBINSKY DIAM.’
200: GO TO 25
201: END IF
202: C
203: B2 = 2.E0*BCONS
204: B3 = TMAX*BCONS
205: C
206: AA2 = (A1*(QW - H1F*2.E0))**0.33333E0*A2
207: AA3 = (A1*(QW - H1F*TMAX))**0.33333E0*A2
208: IF (VEL.LT.0.61E0) FI=1.E0
209: IF (VEL.GE.0.61E0) FI=(VEL/0.61E0)**0.47E0
210: DM2 = DMCON*AA2/SQRT(B2*FI)
211: DM3 = DMCON*AA3/SQRT(B3*FI)
212: DMI = DM2 + (DM3-DM2)*(TSUB-2.E0)/(TMAX-2.E0)
213: C
214: END IF
215: 25 CONTINUE
216: C --–-–-–-–-–-–-–-–-–-–-–-–-–-–-– START ITERATION
217: C
218: ITLIM=100
219: RELAX =0.5E0
220: 110 ITER =0
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221: 120 ITER = ITER+1
222: IF (ITER.GT.ITLIM) THEN
223: ITLIM=ITLIM+50
224: RELAX=0.6E0*RELAX
225: IF (RELAX.LT.0.005E0) THEN
226: WRITE (*,*) ’TSUB = ’,TSUB,’ VEL = ’,VEL
227: WRITE (*,*) ’COULD NOT FIND WALL TEMP.’
228: TSUP = -TSUB
229: RETURN
230: END IF
231: GO TO 120
232: END IF
233: C
234: CALL SBHEAT(TSUP,TSUB,VEL)
235: HH = A1F*H1F + A2F*HQ
236: QTOT = ERATE*HLV + HH*(TSUB+TSUP)
237: IF (HH.EQ.0.E0) THEN
238: TSUP1 = -TSUB
239: ELSE
240: TSUP1 = TSUP + RELAX*(QW-QTOT)/HH
241: IF (TSUP1.LE.-TSUB) TSUP1=-TSUB
242: END IF
243: C
244: ERR = ABS((QTOT-QW)/QW)
245: IF (TSUP1.LE.0.E0) TSUP1 = 0.8E0*TSUP
246: TSUP = TSUP1
247: IF (ERR.GT.1.E-5) GO TO 120
248: C
249: 130 CONTINUE
250: C
251: Q1F = A1F*H1F*(TSUP+TSUB)
252: QQ = A2F*HQ*(TSUP+TSUB)
253: QE = ERATE*HLV
254: C
255: RETURN
256: END
257: C ++++++++++++++++++++++++++++++++++++
258: SUBROUTINE SBHEAT (TSUP, TSUB, VEL)
259: C ++++++++++++++++++++++++++++++++++++
260: C
261: C Arguments
262: C --–-–--
263: C Type Name ! Mode : Definition
264: C
265: REAL TSUP ! Wall superheat (Twall-Tsat)
266: REAL TSUB ! Water subcooling (Tsat-Tliq)
267: REAL VEL ! Water velocity
268: C
269: C Include files
270: C --–-–-–-–
271: C
272: C COMMON blocks
273: C --–-–-–-–
274: C
275: COMMON /HEAT1/RHOV,HLV,CONL,ALFA,ACONS,B,DMCON,H1F,QW
276: COMMON /HEAT2/A1,A2,DM,DMI,FREQ,ASD,HQ,H2F,A2F,A1F,ERATE
277: COMMON /ASDD/ASD1,ASD2,FLAGD
278: LOGICAL FLAGD
279: C
280: C Variables passed to subroutine via common blocks
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281: C --–-–-–-–-–-–-–-–-–-–-–-–-–-–-–--
282: C
283: C SBHEAT--–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-–-END-OF-HEADING
284: C
285: ASD = 0.0
286: C
287: IF (TSUB.GT.2.E0) THEN
288: A = (A1*(QW - H1F*TSUB))**0.33333E0*A2
289: IF (VEL.LT.0.61E0) FI=1.E0
290: IF (VEL.GE.0.61E0) FI=(VEL/0.61E0)**0.47E0
291: DM = DMCON*A/SQRT(B*FI)
292: ELSE
293: IF (FLAGD) THEN
294: DM = 0.0014E0*EXP(-TSUB/45.E0)
295: ELSE
296: DM = DMI
297: END IF
298: END IF
299: FREQ = 3.546E0/SQRT(DM)
300: IF (TSUP.LE.0.0001E0) TSUP=0.0001E0
301: ASD = (210.E0*TSUP)**1.805E0
302: C write(*,*) ’DM,FREQ,ASD=’,DM,FREQ,ASD
303: C
304: C
305: ATOT = 1.E0
306: A2F = 3.1415E0*DM*DM*ASD
307: A1F = ATOT - A2F
308: C
309: IF (A1F.LE.1.E-4) THEN
310: A2F = ATOT
311: A1F = 1.E-4
312: ASD = 1.E0/3.1415E0/DM/DM
313: END IF
314: C
315: ERATE = 3.14159E0*DM*DM*DM/6.E0*ASD*FREQ*RHOV
316: EMAX = QW/HLV
317: IF (ERATE.GT.EMAX) ERATE = EMAX
318: C
319: HQ = 2.E0*CONL/SQRT(3.14159E0*ALFA/FREQ)
320: C
321: RETURN
322: END
323:
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