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A stable and conservative method for locally adapting

the design order of finite difference schemes

Sofia Eriksson,a,1, Qaisar Abbasa, Jan Nordström,b

aDepartment of Information Technology, Scientific Computing,
Uppsala University, SE-751 05 Uppsala, Sweden.

bDepartment of Mathematics, Linköping University, SE-581 83 Linköping, Sweden.

Abstract

A procedure to locally change the order of accuracy of finite difference

schemes is developed. The development is based on existing Summation-

By-Parts operators and a weak interface treatment. The resulting scheme is

proven to be accurate and stable.

Numerical experiments verify the theoretical accuracy for smooth solu-

tions. In addition, shock calculations are performed, using a scheme where

the developed switching procedure is combined with the MUSCL technique.

Key words: Finite difference methods, high order accuracy, shock

calculations, conservation, stability, summation-by-parts

1. Introduction

The most common and perhaps most intuitive way of imposing bound-

ary condition is to use strong implementation, also called injection. Then

the numerical solution has exactly the same value at the boundary as the

continuous solution, by construction.
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Weakly implemented boundary conditions mean that the numerical so-

lution does not necessarily equal the data at the boundary but is allowed

to deviate somewhat. The deviation from the boundary data decreases with

increased resolution, so that the design order of the scheme is preserved. The

deviation should not be interpreted as a drawback, on the contrary it can

serve as an error estimate for the solution in the interior. However, the most

important advantage of weak boundary treatment is that combined with the

Summation-By-Parts (SBP) operators, it yields stability [1, 2, 3, 4, 5, 6].

The technique of using penalty terms to make the solution fulfill the

boundary conditions can be generalized to also hold for block interfaces,

although instead of data the solution in the other block is used, see [7, 8, 9,

10, 11, 12, 13]. Block interfaces are useful when generating grids for complex

geometries, or as in our case, to change the properties of the scheme from

one computational domain to another.

The problem with changing schemes has been studied by others. In [14]

coupled schemes were analyzed using the Kreiss theory [15, 16]. Other ef-

forts to couple different schemes (e.g. shock capturing schemes and linear

difference schemes) have been done [17, 18, 19]. It proves to be unexpectedly

difficult to show stability and conservation for a coupled scheme, even though

both ingoing schemes have these properties separately.

Coupled schemes can be used when the order of a numerical scheme has

to be lowered in a small region, e.g. at a discontinuity. Another possible

application is to increase the order of the scheme in regions of interest, for

example when following a propagating wave.

When using the penalty technique, the grid points come in pairs of two
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at a block interface. This has the benefit of producing two solution values

at the same position (the difference between the two solutions can be used

to estimate the error of the solution). However, if one needs to move the

interface, e.g. to keep track of a moving shock, one can use the multi-valued

interface treatment as a basic procedure, merge the double points into single

ones, and obtain a sliding interface treatment. This will be the procedure

used in this paper.

2. Interface treatment for a hyperbolic problem

2.1. The continuous formulation

To explain our technique we consider the scalar advection equation

ut + aux = 0, −1 ≤ x ≤ 1. (1)

We introduce an interface at x = 0, such that uL
t + auL

x = 0 holds in the

left domain (−1 ≤ x ≤ 0) and uR
t + auR

x = 0 holds in the right domain

(0 ≤ x ≤ 1). The interface condition is uL(0, t) = uR(0, t).

Since we have the same equation in both domains the interface is just an

imaginary barrier. When the equation is multiplied by a smooth function

Φ(x, t) and integrated over each domain we obtain∫ 0

−1

ΦuL
t dx+

∫ 1

0

ΦuR
t dx = a

∫ 0

−1

Φxu
Ldx− aΦuL|0−1 + a

∫ 1

0

Φxu
Rdx− aΦuR|10

= a

∫ 0

−1

Φxu
Ldx+ a

∫ 1

0

Φxu
Rdx+BT (2)

which is exactly what we would get if there was no interface. We want

this conservation property to hold also for our numerical scheme. Here BT

stands for boundary terms, these terms are dealt with using outer boundary

conditions and are neglected in this paper.
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2.2. Numerical interface treatment using penalty terms

We want to mimic the continuous case above numerically, and start by

describing the original multi-valued interface treatment. Let vL,R denote the

semi-discrete vector representations of uL,R, such that vL,R
i (t) corresponds

to uL,R(xi, t). The grid points have indices i = 0, 1, . . . , NL − 1, NL in the

left domain and i = 0, 1, . . . , NR − 1, NR in the right domain. For simplicity

we use vL
N as notation for the NLth element of vL, and in the same way vR

0

denotes the 0th element of vR.

The interface condition uL(0, t) = uR(0, t) will be imposed weakly, such

that vL
N − vR

0 is small (goes to zero with decreased grid spacing). The dif-

ferential operator d/dx is represented by the difference operator on matrix

form DL = P−1
L QL in the left domain and DR = P−1

R QR in the right domain.

The operators DL,R are on Summation-By-Parts form, given that PL,R and

QL,R fulfill

P = P T > 0 Q+QT = eNe
T
N − e0e

T
0 =


−1

0
. . .

0

1

 (3)

where eN = [0, · · · , 0, 1]T and e0 = [1, 0, · · · , 0]T are (NL,R + 1) × 1 vectors.

The operators DL and DR can be designed to have the order of accuracy 2,

4, 6 or 8 in the interior and 1, 2, 3 or 4 at the boundary. This will lead to a

global order of accuracy of 2, 3, 4 or 5, see [1, 2, 20, 21]. Examples of PL,R

ad QL,R can be found in A.
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The resulting numerical approximation of (1) is

vL
t + aDLv

L = τLP
−1
L eN(vL

N − vR
0 )

vR
t + aDRv

R = τRP
−1
R e0(vR

0 − vL
N)

(4)

in the left and right domain, respectively. As usual we ignore the outer

boundary conditions. The right-hand-sides of (4) enforce the interface con-

dition weakly, where the vectors eN and e0 ensure that the penalty terms

including the penalty parameters τL,R correct the scheme where they should.

First we make sure that the formulation is conservative, in the sense

that it mimics (2). We multiply the two rows in (4) by ΦT
LPL and ΦT

RPR,

respectively, where ΦL,R is a smooth function represented by a vector in each

domain. This is the discrete equivalence of multiplying (1) by Φ(x, t) and

integrating. This leads to

ΦT
LPLv

L
t + aΦT

LQLv
L = τLΦN

L (vL
N − vR

0 )

ΦT
RPRv

R
t + aΦT

RQRv
R = τRΦ0

R(vR
0 − vL

N) .
(5)

Next, we use that ΦN
L = Φ0

R = ΦI and add the two rows in (5). Through the

SBP property Q+QT = eNe
T
N − e0e

T
0 we obtain

ΦT
LPLv

L
t + ΦT

RPRv
R
t = a(DLΦL)TPLv

L + a(DRΦR)TPRv
R

+ ΦI(vL
N − vR

0 )(τL − τR − a). (6)

We see that if we choose τL, τR such that τL− τR−a = 0, the interface terms

in (6) vanish and (4) will be conservative. This requirement is fulfilled by

letting τL = (a− θ)/2 and τR = (−a− θ)/2, where θ is a free parameter.

After assuring conservation we check the stability properties. The energy

estimate is formed by replacing ΦL by vL and ΦR by vR in (6) and adding
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the transpose. Defining ‖v‖2
P ≡ vTPv and using the SBP properties yields

(
‖vL‖2

PL
+ ‖vR‖2

PR

)
t

= −θ

 vL
N

vR
0

T  1 −1

−1 1

 vL
N

vR
0


which is stable if θ ≥ 0. The choice θ = |a| will give a fully up-wind imple-

mentation of the interface condition. Note again that we have omitted the

outer boundaries, only taking the terms at the interface into consideration.

2.3. Transformation to a scheme with single-valued interface

We can rewrite the equations in (4) as

Vt + aP̄−1Q̄V = P̄−1T̄ V (7)

where we have defined

V =

vL

vR

 P̄=

PL 0

0 PR

 Q̄=

QL 0

0 QR

 T̄=

 τLeNe
T
N −τLeNe

T
0

−τRe0e
T
N τRe0e

T
0

. (8)

The matrices P̄ , Q̄ and T̄ have dimensions (NL +NR + 2)× (NL +NR + 2).

Note that vL
N and vR

0 are both approximations of the same continuous

solution value, i.e. u(x = 0, t). Now our ambition is to be able to move

the interface, and hence we need to modify the scheme such that it operates

without double grid points at the interface.

The new scheme will be based on the scheme in (7). The transformation

to a scheme with single-valued interface will require the introduction of a

new discrete solution vector. We denote this vector W , and it will be one

element shorter than the vector V , i.e. W is an (NL +NR +1)×1 vector. The

merged solution value right at the interface is denoted WI and is a mixture
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between the values at the two old points, such that WI = αvL
N + (1− α)vR

0 .

Thus W = K̃V , where

W=



vL
0

...

vL
N−1

WI

vR
1

...

vR
N


K̃=



1
. . .

1 0 0 0

0 α (1− α) 0

0 0 0 1
. . .

1


V =



vL
0

...

vL
N−1

vL
N

vR
0

vR
1

...

vR
N



.

Next, we make the (bold) assumption that vL
N ≡ vR

0 . Then the relation

V = ĨT K̃V will hold, where Ĩ and ĨT K̃ are given below.

Ĩ =



1
. . .

1 0 0 0

0 1 1 0

0 0 0 1
. . .

1


ĨT K̃ =



1
. . .

1 0 0 0

0 α 1−α 0

0 α 1−α 0

0 0 0 1
. . .

1


. (9)

K̃ and Ĩ are similar to the identity matrix, except they have dimensions

(NL +NR + 1)× (NL +NR + 2) and are slightly modified in the interior.

Remark: As discussed earlier, it is in general not true that vL
N = vR

0 for

weakly imposed interfaces. However, this assumption is merely a step in the

derivation and will not lead to restrictions on the final scheme.

7



If vL
N = vR

0 holds, the right-hand-side of (7) is zero (as can be seen from

(4)). With this in mind, we multiply equation (7) by K̃, and since V = ĨT K̃V

we can insert ĨT K̃ in front of V . We get

K̃Vt + aK̃P̄−1Q̄ĨT K̃V = 0.

Next, we choose α = PN
L /β and (1 − α) = P 0

R/β. This specific choice of α

and 1− α gives the relation K̃P̄−1 = P̃−1Ĩ, where

K̃P̄−1 =



1/P 0
L

. . .

1/PN−1
L 0 0 0

0 1/β 1/β 0

0 0 0 1/P 1
R

. . .

1/PN
R


= P̃−1Ĩ

and P̃ = diag(P 0
L, . . . , P

N−1
L , β, P 1

R, . . . , P
N
R ). From α + (1− α) = 1 we see

that β = PN
L + P 0

R. Using these particular values of α and β, and recalling

that K̃V = W , we obtain

Wt + aP̃−1ĨQ̄ĨTW = 0.

Finally we define the new difference matrix Q̃ as

Q̃ ≡ ĨQ̄ĨT =



. . .
...

...

. . . QN−1,N−1
L QN−1,N

L

. . . QN,N−1
L QN,N

L +Q0,0
R Q0,1

R . . .

Q1,0
R Q1,1

R . . .
...

...
. . .


.
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This concludes the derivation and at this point we can ignore our first as-

sumption (vL
N ≡ vR

0 ), since we now have a new scheme, independent of the

original one. The derived scheme is

Wt + aP̃−1Q̃W = 0. (10)

where P̃ = P̃ T > 0. Moreover, we see that Q̃ is skew-symmetric in the

interior just as QL and QR, since QN,N
L + Q0,0

R = 1/2 − 1/2 = 0. Hence the

new scheme possesses the SBP properties, given in (3), which automatically

leads to a conservative and stable scheme. It is also consistent since

(WI)t = −a
eTNQLWL + eT0 QRWR

β
= −a

(
α(P−1

L QLWL)N + (1− α)(P−1
R QRWR)0

)
,

where WL,R refer to the left part of W (including WI) and the right part of

W (including WI), respectively. Hence the scheme in the point WI is nothing

but two one-sided operators added together. If we denote the inner order of

accuracy L in the left domain and R in the right domain, the accuracy right

at the interface will be min (L/2, R/2). In total this will give an accuracy of

at least min (L/2, R/2) + 1.

We summarize our results in the following proposition:

Proposition 2.1. Consider equation (1). The scheme (10) with the differ-

ential operator D̃ = P̃−1Q̃ has design order L in the left part of the compu-

tational domain and design order R in the right part of the computational

domain and order min (L/2, R/2) at the interface. The scheme is on SBP

form, and hence it is conservative and stable.

Remark: The scheme in (10) is based on the scheme in (7). To be precise

Q̃ ≡ ĨQ̄ĨT and P̃ ≡ ĨP̄ ĨT , where Q̄ and P̄ are given in (8) and Ĩ is defined

in (9).
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Remark: Note that in the procedure presented above the orders of accuracy

L and R are arbitrary (L,R can be 2, 4, 6 or 8). In addition, by modifying

Q̄, P̄ and Ĩ the scheme can be designed to switch order several times instead

of just once.

Examples of the new operators, when having second order in one domain

and fourth or sixth order in the other domain, are given in A.

2.4. A time-dependent norm

The stability analysis above is based on the energy method, where the

norm P̃ is assumed to be constant. This is suitable for problems with an

interface fixed in space. However, for a problem with a moving interface the

norm will in fact not be constant over time. It will be

P̃ = P̃0 +
∑n

i=1H(ti)(P̃i − P̃i−1)

P̃t =
∑n

i=1 δ(ti)(P̃i − P̃i−1)
(11)

where H(t) is the unit step function and δ(t) the Dirac function. At the

times ti we instantly change the scheme, and thereby also the norm, from

P̃i−1 to P̃i. Multiplying (10) by W T P̃ from the left and adding the transpose

yields W T P̃Wt +W T
t P̃W = aW 2

0 − aW 2
N , and hence we can write

d

dt

(
W T P̃W

)
= aW 2

0 − aW 2
N +W T P̃tW. (12)

By integrating (12) in time and ignoring the outer boundary terms we get

W T P̃W −W (t0)T P̃0W (t0) ≤
∫ T

0

W T P̃tWdt. (13)

In (13), W (t0) is the initial data and 0 = t0 < t1 < t2 < . . . < tn < T .

From (11) we have that P̃t =
∑n

i=1 δ(ti)(P̃i − P̃i−1). Using the general rule
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∫
δ(a)F (t)dt = F (a) we rewrite (13) and find that

W T P̃W +
n∑

i=1

W (ti)
T P̃i−1W (ti) ≤

n∑
i=0

W (ti)
T P̃iW (ti). (14)

Assume t0 ≤ t < t1. Then P̃ = P̃0, n = 0 and (14) reduces to

W T P̃0W ≤ W (t0)T P̃0W (t0). (15)

Now assume t = t1. Then P̃ = P̃1, n = 1 and (14) reduces to

W (t)T P̃1W (t) +W (t1)T P̃0W (t1) ≤ W (t0)T P̃0W (t0) +W (t1)T P̃1W (t1)

W (t1)T P̃0W (t1) ≤ W (t0)T P̃0W (t0)

and hence (15) also holds for the closed domain t0 ≤ t ≤ t1. Now we imagine

that every time the scheme is changed one starts over with a new initial

condition and a new norm. The procedure can be repeated, and consequently

W (ti)
T P̃i−1W (ti) ≤ W (ti−1)T P̃i−1W (ti−1), i = 1, 2, . . . , n.

Hence the growth of the solution is bounded locally in time. We summarize

the result in the following proposition:

Proposition 2.2. Consider the scheme (10) with a time-dependent norm

P̃ (t). Assume that for the time interval ti−1 ≤ t < ti the norm will be P̃i−1.

Then the solution W (t) for ti−1 ≤ t ≤ ti will be bounded by the solution at

time t = ti−1.

Remark: Proposition 2.2 bounds the solution growth locally in every time

interval. A strict bound of W (t) in terms of W (t0) will be non-sharp. The cal-

culations shown below indicate that the local bound is indeed good enough.
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3. Verification of the steady adaptive scheme

After having derived the adaptive scheme, we need to validate it. First

we will present simulations verifying the theory, and thereafter show results

from shock calculations to demonstrate applicability. Consider the domain

0 ≤ x ≤ 1, and let N + 1 be the total amount of grid points, indexed from

i = 0 to i = N . At the locations i = iL and i = iR we switch the order of

the scheme, from fourth order to second order, and back again.

Consider the time-independent problem ux = S(x) with boundary condi-

tion u(0) = g0, having u(x) = sin(7x)−cos(4x) as the manufactured solution.

We solve this equation using the adjustable scheme

P̃−1Q̃v = S + τ P̃−1e0(v0 − g0) (16)

where e0 = [1, 0, · · · , 0]T and S is the discrete representation of S(x) such

that Si ≡ S(xi). As penalty parameter we use τ = −1 (the time-dependent

problem is stable for τ ≤ −1/2). The scheme in (16) changes order at

iL = N/4 and iR = 3N/4. Hence it will be second order for 0.25 < x < 0.75

and fourth order outside this interval. The resulting solution and error (using

N = 32 and N = 64) are shown in Figure 1. From Figure 1(b) it is clear

that the scheme changes at x ≈ 0.25 and x ≈ 0.75.
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(b) Error

Figure 1: For 0.25 . x . 0.75 the scheme is 2nd order accurate, while it is 4th order

accurate outside.

Remark: In Figure 1 we see that the solution is second order accurate in

the whole domain. To understand this, we rewrite (16) as Dv = S, where

D = P̃−1
(
Q̃− τe0e

T
0

)
and S = S − τ P̃−1e0g0. The truncation error Te

is obtained by inserting the exact solution u into the numerical scheme, as

Du = S + Te. Now the solution error becomes e = v − u = −D−1Te. By

construction Te has different order of accuracy in different regions, but when

Te is multiplied by D−1 the errors will in most cases not stay localized. For a

purely second order accurate scheme D−1 can be found analytically, see [22].

The simulations in Figure 1 were done for various number of grid points

N . First we used iL = N/4 and iR = 3N/4 (as in Figure 1) and then

iL = N/2− 8 and iR = N/2 + 8, such that the number of lower order points

in the scheme remains constant as the mesh is refined. Two cases were

considered, 2nd order in the interior and 4th order outside, and in addition

2nd order in the interior and 6th order outside.
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In Figure 2 the errors from these simulations are visualized. If the pro-

portions of lower (2nd) and higher (4th or 6th) order points in the scheme

do not change, the overall order of accuracy will be the lower (2nd) one. If

the number of 2nd order points in the scheme remains constant as the mesh

is refined we obtain third order accuracy, for both the 4th and 6th order

schemes. Both these results coincide with theory, see [2]. The errors in the

6th order case are just slightly smaller than the error in the 4th order case.

This is due to the fact that for such a smooth solution most of the errors

come from the second order part in the interior.

102 10310−8

10−6

10−4

10−2

Number of grid points, N

Er
ro

r, 
L 2(v

−u
)

 

 

P424, iL=N/4, iR=3N/4

P424, iL=N/2−8, iR=N/2+8

P626, iL=N/4, iR=3N/4

P626, iL=N/2−8, iR=N/2+8

Slope=−2
Slope=−3

Figure 2: The L2 norm of the error as a function of the number of grid points, N . The

amount of lower order points in the scheme is either increasing with N or held constant.

4. Verification of the time-dependent adaptive scheme

As discussed earlier the solution obtained by the adaptive scheme is

bounded piecewise in time. That is, as long as we do not change the scheme
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the solution does not grow. For a better understanding of the stability of the

time-dependent scheme we compare the solution obtained using a varying P̃

and Q̃ to the solution obtained by a stationary scheme.

Consider the advection equation

ut + aux = 0 0 ≤ x ≤ 1

where a = 2, and with initial data u(x, 0) = sin(2πx) and boundary condition

u(0, t) = sin(2π(x−at)). For the fixed scheme we switch the order of accuracy

from 4th order to 2nd order at iL = N/8 and back again at iR = N/4. We

let the simulation run to time t = 100 and measure the error in the P̃ -norm.

The results, using N = 80, N = 160 and N = 320, are shown in Figure 3.

We see that the errors are kept on constant levels as predicted. Moreover,

as expected, the error decreases approximately by a factor of four each time

the number of mesh points is doubled.

0 2 4 6 8 10
0

0.5

1

1.5 x 10!3

t

||u
!u

e|| P

 

 

N=80
N=160
N=320

(a) Error, up to t = 10

0 20 40 60 80 100
0

0.5

1

1.5 x 10!3

t

||u
!u

e|| P

 

 

N=80
N=160
N=320

(b) Error, up to t = 100

Figure 3: Error from the adaptive scheme, keeping the norm fixed. Top line: N = 80,

middle line: N = 160 and bottom line: N = 320..

For the time-dependent scheme we start by having iL(t0) = N/8 and
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iR(t0) = N/4, just as in the previous simulations. Then we let the second

order region slide with a speed of 0.005 such that at time t = 100 it has moved

to iL(tend) = 5N/8 and iR(tend) = 3N/4. Again we do simulations using

N = 80, N = 160 and N = 320. This means that the scheme will change 40,

80 and 160 times, respectively, during the simulations. The resulting errors

are shown in Figure 4. From Figure 4(a) it is apparent that the error makes

a small jump every time the scheme and hence the norm change. However,

we see that the error growth is limited. As for the case when the norm is

fixed the error decreases approximately by a factor of four every time the

number of mesh points is doubled.

0 2 4 6 8 10
0

0.5

1

1.5 x 10!3

t

||u
!u

e|| P

 

 

N=80
N=160
N=320

(a) Error, up to t = 10

0 20 40 60 80 100
0

0.5

1

1.5 x 10!3

t

||u
!u

e|| P

 

 

N=80
N=160
N=320

(b) Error, up to t = 100

Figure 4: Error from the adaptive scheme, when the norm is time-dependent. Top line:

N = 80, middle line: N = 160 and bottom line: N = 320.

5. The adaptive scheme applied to a system of equations

Consider the coupled system of equations

Ut + AUx = 0, 0 ≤ x ≤ 1 (17)
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where A and U are specified below.

U =

 u1

u2

 , A = a

 0 1

1 0

 , a = 1/2 > 0.

The characteristic variables of the system are c+ = 1√
2
(u1 +u2) (right-going)

and c− = 1√
2
(u1 − u2) (left-going). If boundary data is given as c+ = r0c−

at x = 0, and as c− = rNc+ at x = 1, then the energy estimate becomes

‖U‖2
t = a

[
c2
−(0, t)(r2

0 − 1) + c2
+(1, t)(r2

N − 1)
]
. This gives well-posedness as

long as |r0,N | ≤ 1. In our case we use r0 = 1 and rN = −1 which yields the

boundary conditions u2(0, t) = 0 and u1(1, t) = 0. Note that this is a very

sensitive problem since it, using these boundary conditions, is completely

undamped (the energy estimate is ‖U‖2
t = 0).

Let V be the semi-discrete version of U , sorted as V = [V T
0 V T

1 . . . V T
N ]T

where Vi = [(v1)i (v2)i]
T , such that Vi(t) ≈ U(xi, t). The discrete correspon-

dence to (17) can now be written

Vt + (D̃ ⊗ A)V = (P̃−1e0 ⊗ τ0)(v2)0 + (P̃−1eN ⊗ τN)(v1)N .

where D̃ = P̃−1Q̃ is the operator of mixed order of accuracy mimicking d/dx.

By choosing the penalty parameters as τ0 = −a[1, 1]T and τN = −a[1, −1]T ,

we obtain the energy estimate

d

dt
‖V ‖2

P̄ = −2a(v2)2
0 − 2a(v1)2

N ≤ 0,

where (v2)0 ≈ u2(0, t) = 0 and (v1)N ≈ u1(1, t) = 0. That is, the discrete

energy estimate is slightly damped, but the damping goes to zero as the mesh

is refined.

As initial condition in our numerical simulations we use a narrow Gaus-

sian shaped function u1(x, 0) = e−625(x−0.5)2 , u2(x, 0) = 0. As time passes,

17



this will result in two wave pulses, one traveling left and one right. At the

pulses the scheme will have high order (4th or 6th), whereas it will be second

order accurate elsewhere. The higher order regions follow the waves as they

propagate through the domain.
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(a) Start, t=0. The scheme is 2-6-2.
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(b) Waves split up, still 2-6-2.
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(c) Waves separated, still 2-6-2
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(d) End, t=0.5. The scheme is 2-6-2-6-2.

Figure 5: The solutions u1,2, v1,2 starts centered in x = 0.5 and ends at time t = 0.5

centered in x = 0.5± 0.25. This example is done using N = 64 and dt = 1/80.

In Figure 5 we show the exact solutions u1,2 versus the numerical ones

v1,2 at different times. The number of grid points is N = 64 and the time

step used is ∆t = 1/80. In addition the time-dependent norm P̃ is indicated.
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The rates of convergence are shown in Figure 6. Note that the rates of

convergence for the schemes of mixed order at first appears to be the same as

for the schemes of pure higher order. The accuracy does not become second

order until the errors become so small that the contribution from outside the

waves comes into play.
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(a) 2-4-2, dt=1/4096
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(b) 2-6-2, dt=1/40960

Figure 6: L2-errors of e1 = v1 − u1 at time t = 0.5 using mixed order scheme ((2-4-2) and

(2-6-2)), respectively. Compared with pure 4th and 6th order scheme.

We have changed the scheme and followed the pulses in the following way.

If xS is the analytical center of the pulse, then the center of the higher order

region will have index iS = nSRound(NxS/nS), where nS = N/64 and where

the function Round(x) rounds a number x to the nearest integer. The actual

switching take place in iL = iS − w and iR = iS + w. The parameter w

specifies the width of the higher order region. For the simulations showed in

Figure 6 we have used w = 4N/32 for the 2-4-2 scheme and w = 5N/32 for

the 2-6-2 scheme.
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6. The adaptive scheme applied to problems with discontinuities

The most obvious application for this methodology is simulations on prob-

lems with discontinuous solutions. When differentiating over discontinuities

special shock-capturing techniques can be used, for example the MUSCL

scheme [23]. For scalar one-dimensional conservation laws (ut + Fx = 0), we

have the MUSCL scheme converted into SBP-form, see [19],

vt + P−1QF = −P−1DT
1 BMD1v. (18)

D1 is a first order undivided difference operator andBM = diag(b0, b1, . . . , bN)

is a diagonal matrix constructed such that (18) is equivalent to the stan-

dard MUSCL formulation. The terms involving BM will be referred to as

the MUSCL dissipation. The MUSCL scheme is second order accurate in

smooth regions and goes to first order near a discontinuity or shock to avoid

non-physical oscillations.

Since the MUSCL scheme in equation (18) is on SBP-form, it can be cou-

pled to the adaptive scheme derived above. In the vicinity of a discontinuity,

the scheme is first turned from 4th to 2nd order in the way described above.

Next, we add the MUSCL treatment in form of a dissipative term close to

the discontinuity. This yields

vt + P̃−1Q̃F = −P̃−1DT
1 B̃MD1v

which we will refer to as the Hybrid scheme. Here B̃M = ΦBM . We have

constructed a matrix Φ which limits the MUSCL dissipation, so that it is

applied only in the 2nd order regions. In this paper we have used that we

have a priori knowledge of the shock position to determine Φ.
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Recall that the norm P̃ differs from the standard norm P , and for the

(4-2-4)th-order switching it is visualized in Figure 7. The limiter Φ is also

shown.
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Matrix ~P  (4−2−4)
!  (MUSCL on/off)

Figure 7: P̃ (normalized with grid size) for a (4-2-4)th-order switching with N = 40,

iL = 20 and iR = 30. The role of the discrete function Φ is also depicted.

First, we locate the discontinuity/shock at grid index iS, and switch

scheme from 4th order to 2nd order at index iL = iS − w and back at

iR = iS + w. This leads to a scheme with 2w + 1 grid points with first

to second order accuracy around the shock (at iL and iR it is first order).

Thereafter we activate the MUSCL dissipation in the domain from iS − wM

up to iS + wM , where wM < w. In this way we make sure that the MUSCL

dissipation is always disabled outside the second order region. The variables

w and wM can be varied, and in Figure 7 we have used w = 5 and wM = 2.

In addition to Φ, which we use in the Hybrid scheme to turn the MUSCL

dissipation on/off, the MUSCL scheme has a standard limiter φ. This limiter

determines where the MUSCL scheme should be 2nd order and where it

should be 1st order. Here the MUSCL scheme is based on a minmod limiter,
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see [19].

In summary: In the Hybrid scheme the MUSCL dissipation is turned on

in regions with discontinuities leading to a standard MUSCL scheme, and it

is turned off in the smooth region leading to a higher order scheme.

To demonstrate the benefits of the new methodology we compare the

Hybrid scheme to the MUSCL scheme and the third order WENO scheme,

see [24]. For all computations we use the classical 4th-order Runge-Kutta

method for time integration.

6.1. The linear problem

We study the advection equation

ut + ux = 0, 0 ≤ x ≤ 1

u(0, t) = g0(t), u(x, 0) = u0(x)

with boundary condition g0(t) and initial condition u0(x). We consider a

combination of a Gaussian pulse and a step function as the initial solution,

i.e.

u0(x) =

 e−100(x−0.2)2 + 1, 0 ≤ x ≤ 0.6

0.5, 0.6 < x ≤ 1.

This means that the solution has both smooth and discontinuous parts. In

Figure 8 the solutions and errors from the Hybrid scheme are compared to

the ones from the WENO and MUSCL schemes. We observe that both the

MUSCL scheme and the WENO scheme cut the top of the Gaussian pulse.

The Hybrid scheme does not. Close to the discontinuity, the solutions for all

three schemes are similar. Note that the Hybrid and MUSCL schemes are

identical in that region.
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Figure 8: Solution and error. Comparison between the WENO scheme, the MUSCL

scheme and the Hybrid scheme. N = 80 and t = 0.15.
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The L2-norm of the errors in Figure 8 are 0.0350 for the WENO scheme,

0.0367 for the MUSCL scheme and 0.0350 for the Hybrid scheme. However,

the dominating error contribution comes from the discontinuity, and if we

instead just consider the domain 0 ≤ x ≤ 0.5 the L2-errors will be 0.0147

for the WENO scheme, 0.0157 for the MUSCL scheme and 0.0002 for the

Hybrid scheme.

6.2. The non-linear problem

Next we consider the Burgers’ equation, i.e.

ut +
(
u2/2

)
x

= 0, 0 ≤ x ≤ 1,

with a sine wave as initial condition, u0(x) = sin(2πx). An analytical so-

lution is computed using a Newton iteration method [25]. Numerically, we

start by computing the solutions until time t = 0.1, which is just before a

shock has formed. Since no shock has yet formed, the Hybrid scheme will

be identical to the 4th order scheme. It can be seen in Figure 9 that the so-

lution obtained using the Hybrid scheme is significantly more accurate than

the ones from the MUSCL scheme and the WENO scheme.

As soon as the slope of the solution at x = 0.5 is too steep to be resolved

by the 4th order scheme, we activate the MUSCL dissipation in the Hybrid

scheme. We turn the MUSCL dissipation on at time t = 0.16. In Figure 10

the simulations at time t = 0.2 are shown. This is after a shock has formed.

Again the Hybrid scheme produces a solution that is more accurate than the

ones from the MUSCL scheme and the WENO scheme.
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Figure 9: Solution and error from the WENO scheme, the MUSCL scheme and the Hybrid

scheme. At this point the Hybrid scheme is identical with the 4th order scheme. Time

t = 0.1 and N = 80.
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Figure 10: Solution and error from the WENO scheme, the MUSCL scheme and the

Hybrid scheme. After time t = 0.16 the MUSCL dissipation is turned on in the Hybrid

scheme, with w = 10, wM = 8. Time t = 0.2 and N = 80.
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Figure 11: Solution and error from the WENO scheme, the MUSCL scheme and the

Hybrid scheme. Time t = 0.5 and N = 80.
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In Figure 11 the simulations at time t = 0.5 are shown. By this time the

solution is composed by almost straight lines and thus the errors away from

the shock are small. The benefits from the Hybrid scheme compared to the

MUSCL and WENO schemes are therefore less distinct than before.

The L2-norm of the errors in Figure 9 are 0.0022 for the WENO scheme,

0.0027 for the MUSCL scheme and 0.0001 for the Hybrid scheme. In Figure

10, at time t = 0.2, the L2-errors are 0.0164 for the WENO scheme, 0.0057 for

the MUSCL scheme and 0.0022 for the Hybrid scheme, and at time t = 0.5 the

L2-errors are 0.0093 for the WENO scheme, 0.0014 for the MUSCL scheme

and 0.0014 for the Hybrid scheme.

As mentioned above the parameters w,wM can be varied as long as wM <

w. In all simulations using the Hybrid scheme we have used w = 10, wM = 8.

We have not investigated which is the optimal parameter choice, as long as

the MUSCL domain is wide enough to avoid oscillations the choice is not

essential.

7. Summary and conclusions

We have developed a stable and conservative way of locally changing the

order of a finite difference scheme. The resulting scheme has at least the

same overall accuracy as the lowest included scheme.

This procedure serves as a very efficient way of doing accurate calculations

even in the presence of shocks. We combine our adaptive accuracy scheme

with the MUSCL shock capturing technique and compare the results with the

ones obtained using only the MUSCL scheme. We also make a comparison

with the results obtained using the third order WENO scheme.
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The procedure described in this paper is completely general and can be

used on all SBP schemes that have a diagonal norm. The extension to multi-

dimensional problems is trivial since the equations are discretized separately

in each dimension. By the use of kronecker products, the stability and im-

plementation of the schemes are easily handled. The extension to parabolic

equations such as the heat equation can be done, and will be presented in a

future paper.

A. The new operators expressed explicitly

The stability requirements on general Summation-By-Parts operators P

and Q are given in (3). Pp and Qp can be designed such that the differential

operator Dp = P−1
p Qp gives pth order of accuracy in the interior and (p/2)th

order of accuracy at the boundaries.

Below we present the 2nd, 4th and 6th order Summation-By-Parts oper-

ators. First the upper left corner of the norms Pp is shown

P2 = ∆x


1
2

1

1
. . .

 , P4 = ∆x



17
48

59
48

43
48

49
48

1
. . .


,

P6 = ∆x diag
(

13649
43200

12013
8640

2711
4320

5359
4320

7877
8640

43801
43200

1 . . .
)
.

The interior of Pp consists of ∆x’s and the lower right corner is just a mirror

image of the upper left corner.
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The upper left corner of the difference operators Qp is presented below.

The interior of the second order scheme is [−1/2, 0, 1/2] in each row on the

diagonal and for the fourth order scheme it is [1/12, −2/3, 0, 2/3, −1/12].

For the sixth order scheme it is [−1/60, 3/20, −3/4, 0, 3/4, −3/20, 1/60].

Q2 =


−1

2
1
2

−1
2

0 1
2

−1
2

0
. . .

. . . . . .

 , Q4 =



−1
2

59
96

− 1
12
− 1

32

−59
96

0 59
96

0

1
12

−59
96

0 59
96

− 1
12

1
32

0 −59
96

0 2
3

. . .

1
12

−2
3

0
. . .

. . . . . . . . .


,

Q6 =



−1
2

104009
172800

30443
259200

−33311
86400

16863
86400

− 15025
518400

−104009
172800

0 − 311
51840

20229
17280

−24337
34560

36661
259200

− 30443
259200

311
51840

0 −11155
25920

41287
51840

−21999
86400

33311
86400

−20229
17280

11155
25920

0 4147
17280

25427
259200

1
60

−16863
86400

24337
34560

−41287
51840

− 4147
17280

0 342523
518400

− 3
20

. . .

15025
518400

− 36661
259200

21999
86400

− 25427
259200

−342523
518400

0 3
4

. . .

− 1
60

3
20

−3
4

0
. . .

. . . . . . . . . . . .



.

The lower right corner of Qp is a mirror image of the upper left corner but

with reversed sign. When applying the procedure developed in this paper we

get the adaptive scheme, where the interior of the norm P̃24 looks like

P̃24 = ∆x diag
([
· · · 1 1 41

48
59
48

43
48

49
48

1 · · ·
])

where β = 41/48 = 1/2 + 17/48 = PN
2 + P 0

4 . The interior of the difference
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matrix Q̃24 is

Q̃24 =



. . . . . .

. . . 0 1
2

−1
2

0 1
2

−1
2

0 59
96

− 1
12
− 1

32

−59
96

0 59
96

0

1
12

−59
96

0 59
96

− 1
12

1
32

0 −59
96

0 2
3

. . .

1
12

−2
3

0
. . .

. . . . . . . . .


and the final differential operator becomes

D̃24 =
1

∆x



. . . . . .

. . . 0 1
2

−1
2

0 1
2

−24
41

0 59
82

− 4
41
− 3

82

−1
2

0 1
2

0

4
43
−59

86
0 59

86
− 4

43

3
98

0 −59
98

0 32
49

− 4
49

1
12

−2
3

0 2
3

. . .

. . . . . . . . . . . .



.

As a second example we show the operators when switching from 6th order

to 2nd order. Then the interior of the norm P̃62 looks like

P̃62 =∆x diag
([
· · · 1 43801

43200
7877
8640

5359
4320

2711
4320

12013
8640

35249
43200

1 · · ·
])

where β = 35249/43200 = 13649/43200 + 1/2 = PN
6 + P 0

2 . The interior of
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the difference matrix Q̃62 is

Q̃62 =



. . . . . . . . . . . .

. . . 0 3
4 − 3

20
1
60

. . . −3
4 0 342523

518400
25427
259200 −21999

86400
36661
259200 − 15025

518400

. . . 3
20 −342523

518400 0 4147
17280

41287
51840 −24337

34560
16863
86400

− 1
60 − 25427

259200 − 4147
17280 0 −11155

25920
20229
17280 −33311

86400

21999
86400 −41287

51840
11155
25920 0 − 311

51840
30443
259200

− 36661
259200

24337
34560 −20229

17280
311

51840 0 104009
172800

15025
518400 −16863

86400
33311
86400 − 30443

259200 −104009
172800 0 1

2

−1
2 0

. . .
. . . . . .



.

The final operator D̃62 is easily obtained by D̃62 = P̃−1
62 Q̃62.
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