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Abstract

We investigate indirect neutrino signals from annihilations of Kaluza–Klein dark matter in the

Sun. Especially, we examine a five- as well as a six-dimensional model, and allow for the possibility

that boundary localized terms could affect the spectrum to give different lightest Kaluza–Klein

particles, which could constitute the dark matter. The dark matter candidates that are interesting

for the purpose of indirect detection of neutrinos are the first Kaluza–Klein mode of the U(1) gauge

boson and the neutral component of the SU(2) gauge bosons. Using the DarkSUSY and WimpSim

packages, we calculate muon fluxes at an Earth-based neutrino telescope, such as IceCube. For the

five-dimensional model, the results that we obtained agree reasonably well with the results that

have previously been presented in the literature, whereas for the six-dimensional model, we find

that, at tree-level, the results are the same as for the five-dimensional model. Finally, if the first

Kaluza–Klein mode of the U(1) gauge boson constitutes the dark matter, IceCube can constrain

the parameter space. However, in the case that the neutral component of the SU(2) gauge bosons

is the LKP, the signal is too weak to be observed.
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I. INTRODUCTION

Dark matter (DM) is one of the most active research areas in the interdisciplinary context

of particle physics, astroparticle physics, and cosmology today. In recent years, experiments

and observations have resulted in compelling evidence for the existence of non-baryonic

DM. A good fit to experimental data is obtained if it is assumed that the DM is cold, i.e.,

non-relativistic at the epoch of matter-radiation equality, and that there is a cosmological

constant accounting for the observed present expansion of the Universe. An analysis com-

bining the five-year WMAP data, baryon acoustic oscillations, and supernova observations

indicates that the DM has a density of ΩDMh
2 = 0.1131 ± 0.0034 (68 % CL) [1]. To date,

all evidence for DM comes from gravitational interactions, and its particle nature remains

unknown. In particular, none of the particles in the current Standard Model (SM) of par-

ticle physics could constitute the DM1. Hence, the search for a DM candidate is strongly

connected to physics beyond the SM.

An important class of DM candidates constitutes Weakly Interacting Massive Particles

(WIMPs), which are weakly interacting particles with masses in the range O(1−1000)GeV.

The reason for the importance of WIMPs as DM candidates is that if they are assumed to

be thermally produced in the early Universe, the measured present relic DM density can be

easily obtained without any further strong assumptions on their properties.

Several currently operating or planned experiments aim to detect WIMPs. This could be

done either directly by measuring the recoil of atoms from their elastic scattering on WIMPs

[2] or indirectly by detecting products of pair annihilations or decays of WIMPs, such as

gamma rays, neutrinos, and antimatter.

Through their interactions with nuclei, WIMPs in the solar system scatter elastically in

the Sun, thereby losing energy and becoming trapped in the solar gravitational potential.

Therefore, the local DM density in the Sun can exceed the average density by several orders

of magnitude, and hence, the Sun could be an interesting source of WIMP annihilation

products. In this context, only neutrinos are of interest, since they have a sufficiently low

interaction strength to be able to escape the dense medium of the Sun. These neutrinos

can be searched for in neutrino telescopes on Earth, such as the AMANDA/IceCube [3–5],

1 Although neutrinos only interact weakly, they are too light to be able to make up more than a small

fraction of the DM density.
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ANTARES [6], and Super-Kamiokande [7] experiments.

An interesting type of WIMPs is Kaluza–Klein Dark Matter (KKDM) [8, 9], which arises

in certain models of extra dimensions. In particular, Universal Extra Dimensions (UED)

models [10], where all the particles of the SM are allowed to propagate in one or more

extra dimensions, could include several different candidates. In these models, a remnant of

translational invariance in the extra dimensions gives rise to a multiplicatively conserved

quantum number known as Kaluza–Klein parity, forcing the total KK number entering any

vertex to be even. This symmetry is similar to R-parity in supersymmetric models, and it

ensures that the lightest Kaluza–Klein particle (LKP) is stable. If neutral, the LKP could

be a good DM candidate, analogously to the lightest supersymmetric particle (LSP) [11].

In the UED models, the mass spectrum of the KK particles, and in particular, the identity

of the LKP, depends on specific assumptions on the model at the cutoff scale, where the

theory breaks down. In the most widely studied five-dimensional model, known as the

Minimal Universal Extra Dimensions (MUED) model, the LKP has been determined to be

the first KK mode of the U(1) gauge boson by calculating radiative corrections to the tree-

level masses of the KK excitations [12]. However, as has explicitly been shown in Ref. [13],

other assumptions could change this conclusion.

The most stringent constraints to date set on the five-dimensional MUED model of

KKDM are given by the IceCube collaboration [14], using the 22-string configuration. When

completed with in total 80 strings, IceCube will have the ability to set even stronger con-

straints on the model.

In this paper, we calculate muon fluxes induced by neutrinos coming from annihilation

of KKDM in the Sun. We study different LKP candidates in a five- as well as a six-

dimensional model. We use the DarkSUSY [15] and WimpSim [16] packages to properly

treat the capture rates, the interactions of the annihilation products in the Sun, and the

propagation of neutrinos to the Earth, and to simulate the interactions of neutrinos in the

detector medium on Earth.

Neutrinos from KKDM annihilations in the Sun have previously been studied in Ref. [17],

and recently in Ref. [18]. In comparison to those works, we use a more careful treatment,

and we find relatively small differences when comparing the results. To our knowledge, the

only study of neutrinos from KKDM annihilations in the Sun in a six-dimensional model

has been performed in Ref. [19]. In that work, only the MUED model is investigated, and
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it is concluded that no observable neutrino telescope signal is obtained.

The rest of the paper is organized as follows: In Sec. II, we describe the formalism of

WIMP annihilations in the Sun, and how this is implemented in DarkSUSY and WimpSim.

In Sec. III, we introduce the extra-dimensional models that we investigate. In Sec. IV, we

present our results in the form of muon fluxes in a neutrino telescope on Earth and compare

these to the existing results in the literature. Finally, in Sec. V, we summarize and discuss

our results. In addition, technical details are provided in the appendices.

II. NEUTRINOS FROM WIMP ANNIHILATIONS

A. The annihilation rate

The evolution of the total number of WIMPs in the interior of the Sun, N(t), is governed

by the equation
dN

dt
= Cc − CaN

2, (1)

where Cc is the capture rate of WIMPs in the Sun and

Ca = 〈σv〉 V2

V 2
1

. (2)

Here, σ is the total WIMP pair annihilation cross section, v is the relative WIMP velocity,

and Vj ≃ 2.3 · 1017(jmDM/10GeV)−3/2 m3 are effective volumes [20, 21]. The solution to

Eq. (1) is

N(t) =

√

Cc

Ca
tanh

(

t

τ

)

, (3)

where τ ≡ 1/
√
CaCc sets the equilibration time scale for the process of capture and annihi-

lation. The annihilation rate is given by

ΓA =
Ca

2
N2 =

Cc

2
tanh2

(

t

τ

)

, (4)

which is the expression that is used in DarkSUSY. For times t ≫ τ , ΓA ≃ Cc/2, i.e., the

annihilation rate is determined by the capture rate only. In that case, the only important

aspect of the WIMP-WIMP annihilation cross sections are the relative branching ratios into

different channels.
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B. Capture rate

The capture rate of WIMPs in the Sun is governed by the elastic WIMP-proton scattering

cross section. In the non-relativistic limit, which is applicable for scattering of cold DM,

the interactions between WIMPs and atoms can be characterized as either spin-dependent

or spin-independent. Spin-independent cross sections are proportional to the square of the

atomic number A, while spin-dependent cross sections are proportional to the square of the

angular momentum, J(J + 1) [22].

For the WIMPs that we will consider, the spin-dependent cross section is much larger

than the spin-independent one. The capture rate of WIMPs in the Sun is then commonly

approximated by the expression [23]

CSD
c ≃ 3.35 · 1018 s−1

(

ρ

0.3GeV/cm3

)(

270 km/s

v̄

)3
(

σSD
WIMP,p

10−6 pb

)

(

1TeV

mWIMP

)2

, (5)

where ρ is the local DM density, v̄ ≡ 〈v2〉1/2 is the root-mean-square of the DM velocity

dispersion, σSD
WIMP,p is the spin-dependent elastic WIMP-proton scattering cross section, and

mWIMP is the mass of the WIMP.

In DarkSUSY, a more accurate result for the capture rate is obtained by dividing the Sun

into shells and numerically integrating over these shells, as well as the velocity distribution

of the WIMPs. We use the DarkSUSY default values for the WIMP population, which is a

Gaussian velocity distribution with root-mean-square velocity dispersion v̄ = 270 km/s, and

local density ρ = 0.3GeV/cm3. For more details on the calculation of the capture rate, see

Ref. [24].

In Fig. 1, we show the ratio of the result obtained from Eq. (5) to the one obtained from

DarkSUSY. For this figure, we use σSD
WIMP,p = 1.7 · 10−6 pb (1TeV/mWIMP)

4, which is the

spin-dependent cross section for a B(1) WIMP with rqR = 0.1 (see Eq. (21)). The results

from Eq. (5) are larger than the ones from DarkSUSY by about 22%−27%, with the larger

difference at the lowest mass, i.e., at the larger cross section.

Since the capture rate is proportional to the WIMP-nucleon scattering cross section,

which is also the quantity that is measured in direct detection experiments, the results of

neutrino telescope searches and direct detection experiments are expected to be correlated

[25]. In particular, as stronger limits are set on the WIMP-nucleon cross sections by di-

rect detection experiments, the prospects of detecting neutrinos from WIMP annihilations
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FIG. 1: The ratio of the capture rate obtained from Eq. (5) to that obtained from DarkSUSY as

a function of the WIMP mass mWIMP. We have used the spin-dependent elastic scattering cross

section σSD
WIMP,p = 1.7 · 10−6 pb (1TeV/mWIMP)

4.

decrease.

In direct detection experiments, the spin-independent interactions are easier to measure,

since a large scattering cross section can be obtained by using heavy target nuclei [22].

Hence, the limits on the cross sections are stronger for spin-independent interactions than

for spin-dependent ones. The current strongest limits on spin-independent cross sections

are set by the CDMS [26] and XENON10 [27] experiments. The CDMS upper limit on the

scattering cross section for a 60 GeV WIMP is 4.6 · 10−8 pb at 90 % C.L. These constraints

are strong enough to rule out an observation of neutrinos from annihilations of DM in any

running or planned neutrino telescope, if the DM only interacts spin-independently [25].

The most stringent constraints on the spin-dependent cross sections from direct detection

experiments are set by XENON10 [28], COUPP [29], and KIMS [30] for scattering on protons

and by XENON10 [28], CDMS [26], and ZEPLIN III [31] for scattering on neutrons. The

XENON10 results constrain the WIMP-neutron spin-dependent cross section to be less than

5 · 10−3 pb for a 30GeV WIMP, whereas the KIMS results constrain the corresponding cross

section for protons to be less than 2 · 10−1 pb for an 80GeV WIMP. In contrast to the limits
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on the spin-independent cross sections, these constraints are weak enough to allow for a

sufficiently strong signal in neutrino telescopes. It is interesting to note that for the case of

spin-dependent scattering on protons, IceCube [3] and Super-Kamiokande [7] have already

obtained stronger constraints in some regions of parameter space through indirect detection.

In conclusion, it is especially interesting to use neutrino telescopes to search for DM

candidates, which mainly have spin-dependent interactions with nuclei. In particular, scalar

DM cannot have spin-dependent interactions, and hence, that class of DM candidates is not

interesting in this context.

C. Propagation to the detector

Once the annihilation rate and branching ratios of the DM annihilations are known,

we can proceed by computing the resulting neutrino signals in an Earth based detector.

In addition to the geometric scaling of the flux by 1/r2, the neutrino flux is subject to

interactions with the solar medium as well as matter-enhanced flavor oscillations within the

Sun, while the propagation from the solar surface to the Earth is only affected by neutrino

oscillations in vacuum.

The consistent theoretical treatment of simultaneous neutrino interactions and oscilla-

tions is through the introduction of the neutrino density matrix ρ(E, r), where E is the

neutrino energy. This matrix describes the energy-dependent neutrino flavor composition at

a distance r from the center of the Sun and follows the evolution equation

dρ

dr
= [H, ρ]− i

2
{Γ, ρ}+ dρ

dr

∣

∣

∣

∣

NC

+
dρ

dr

∣

∣

∣

∣

CC

, (6)

where H is the neutrino oscillation Hamiltonian, Γ is a diagonal matrix containing the

interaction rates of the different flavors with the medium, and the two last terms are regen-

eration terms due to neutral- and charged-current interactions, respectively. In general, the

neutral-current regeneration term is simply a decrease of the neutrino energy E, since the

neutral current is flavor blind, while the charged-current regeneration term projects out the

tau-neutrino component of the scattering, since only taus decay before stopping in the Sun.

For the specific form of the regeneration terms, see Ref. [32].

In our analysis, we use the results of the WimpSim package [16], which provides an event-

based Monte Carlo simulation that allows us to compute the neutrino signal in a detector,
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including all of the effects mentioned above. The oscillations and interactions in the Sun are

treated in a consistent framework which can be easily shown to have the same properties as

the density matrix evolution described above. Furthermore, the results from WimpSim have

been tabulated and are included in DarkSUSY, thus greatly simplifying our implementation.

Finally, we compute the resulting muon-antimuon flux at the detector through the standard

DarkSUSY routines. This flux can then be compared to the experimental limits in order

to rule out models or to see what kind of sensitivity that would be needed to discover the

indirect neutrino signal [33].

III. THE MODELS

We investigate the signals of a five- as well as a six-dimensional UED model. For both

cases, we choose the models most commonly studied in the literature, though we allow for

a more general mass spectrum than that of the MUED models. Each model is based on the

SM gauge group SU(3)×SU(2)×U(1) and includes the minimal particle content necessary

to reproduce the SM in the low-energy limit.

For simplicity, we follow the usual practice of ignoring electroweak symmetry breaking

(EWSB) effects. In particular, we treat all the SM particles as massless. We also neglect

the Yukawa couplings, which are small compared to the gauge couplings. Since we ignore

EWSB effects, we use a gauge where all four components of the Higgs field appear as physical

states. Finally, none of the processes that we study involve the self-coupling of the Higgs

boson, and hence, we ignore this interaction.

It should be noted that any extra-dimensional field theory is non-renormalizable, and

hence, it can only be viewed as an effective theory. Thus, the models that we study are

only valid up to some cutoff scale Λ, at which some more fundamental ultraviolet (UV)

completion of the model is needed. The possible effects from physics at the cutoff scale are

discussed below.

A. Five dimensions

In five dimensions, spinors are four-component objects, as in four dimensions. However,

there is no chirality operator [34], and hence, the Dirac representation is irreducible, i.e.,
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all fermions are four-component Dirac fermions. This implies that the simplest choice of

geometry for the fifth dimension, the circle S1, does not reproduce the SM in the low-energy

limit. This problem can be solved by replacing the circle by the orbifold S1/Z2, which is

obtained from S1 by identifying the points y and −y, where y is the coordinate along the

circle. For the action to be invariant under this transformation, the five-dimensional fields

have to be either even or odd in y. The KK expansion for an even field is

A(even)(xµ, y) =
1√
πR

[

A(0)(xµ) +
√
2

∞
∑

n=1

cos
(ny

R

)

A(n)(xµ)

]

, (7)

and for an odd field

A(odd)(xµ, y) =

√

2

πR

∞
∑

n=1

sin
(ny

R

)

A(n)(xµ). (8)

In particular, an odd field does not have a zero mode, and hence, the field is not present

in the low-energy theory, which only contains the zero modes. The left- and right-handed

parts of a five-dimensional Dirac field can be given opposite transformation properties, in

which case it will have a definite chirality in the low-energy limit. The model can then be

made compatible with the SM by introducing such a Dirac field for each chiral fermion in

the SM. For a SM fermion f , we denote the Dirac fermion corresponding to the left-handed

part by fD and that corresponding to the right-handed part by fS. In general, the weak

eigenstates fS and fD mix to form massive eigenstates, but the mixing is proportional to

the mass of the corresponding SM fermion, and hence, we neglect it.

The orbifolding procedure introduces additional complications to the model. The orbifold

S1/Z2 has two fixed points, y = 0 and y = πR, where R is the radius of the circle. In general,

terms localized to these points, so-called boundary localized terms (BLTs), can be included

in the Lagrangian. These terms affect the spectrum and the coupling constants of the model

already at tree level. It has been shown that BLTs are generated by radiative corrections

[12, 35], and hence, it is inconsistent not to include them.

The BLTs break translational invariance in the fifth dimension, and hence, the fifth com-

ponent of the momentum vector is not conserved. However, if the BLTs appear symmetri-

cally between the fixed points, there is a remaining mirror symmetry, and correspondingly,

a multiplicatively conserved quantum number, called KK parity [10]. It is defined as (−1)n,

where n is the KK number, and it is analogous to R-parity in supersymmetric theories [11].
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In particular, it ensures that the LKP is stable. In this work, we always assume that KK

parity is conserved.

In contrast to the bulk terms, the BLTs are not determined by the SM parameters. In

principle, all such terms that are allowed by the SM gauge symmetry should be included, and

a priori, nothing can be said about these terms, except what constraints can be put on them

from experiments [13]. Hence, their existence decreases the predictivity of the model. The

common solution to this problem is to assume that the BLTs vanish at the cut-off scale Λ of

the theory. In the resulting model, usually referred to as the MUED model, there are only

two free parameters in addition to the SM parameters, namely the compactification radius

R and the cut-off scale Λ. The procedure is similar to the fixing of supersymmetry breaking

parameters by making an ansatz at the scale of grand unification, such as mSUGRA [11].

However, as long as nothing is known regarding the UV completion of the UED model, the

MUED ansatz is arbitrary and only made for simplicity.

Our approach to the BLTs is similar to that given in Ref. [36]. We do not investigate

the effects of individual terms, but assume that the spectrum is affected in such a way as to

give different LKPs. For simplicity, the possible effects on the couplings are not taken into

account.

Gauge fields in higher-dimensional theories have an extra component for each additional

dimension. Thus, in the five-dimensional case, each gauge field has a single extra component,

A5. From the four-dimensional point of view, the zero mode of this field would appear as a

massless scalar, which would be in conflict with experimental results, since no such scalar

has been found. Hence, the only phenomenologically viable option is to take A5 to be odd

in y, so that it does not have a zero mode. On the other hand, the four components Aµ have

to be even in order to reproduce the SM at low energies.

For the Higgs doublet, we use the convention

Φ =





ih+

1√
2
(h1 + ih2)



 , (9)

and the conjugate of h+ is denoted by h−. As in the SM, the zero modes h2(0) and h±(0) are

eaten by the Z and W± bosons, respectively. For n > 0, on the other hand, h2(n) and h±(n)

mix with Z
(n)
5 and W

±(n)
5 , and for each pair, one linear combination is eaten to give mass to

the corresponding KK mode of a gauge boson, while the orthogonal combination survives as
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a physical scalar. However, the mixing is proportional to v2R2, where v is the Higgs vacuum

expectation value, and since we ignore EWSB effects, there is no mixing. This means that

the scalar that is eaten is the fifth component of the gauge boson, while all four components

of the Higgs boson appear as physical scalars at each non-zero KK level.

At each KK level, the electroweak gauge bosons B(n) and W 3(n) mix to form two massive

eigenstates, γ(n) and Z(n), in the same way as in the SM. However, in the UED model, the

mass matrix in flavor basis at the nth level is given by [12]





n2

R2 + δm2
B(n) +

1
4
g21v

2 1
4
g1g2v

2

1
4
g1g2v

2 n2

R2 + δm2
W 3(n) +

1
4
g22v

2



 , (10)

where δm2
B(n) and δm2

W 3(n) are corrections to the tree-level masses. For n > 0, there are

large contributions to the diagonal entries, and the mass matrix is almost diagonal. For

R−1 ≥ 300GeV, the first-level Weinberg angle is bounded as sin θ
(1)
W . 0.05, and we can

make the approximation B(1) ≃ γ(1) and W 3(1) ≃ Z(1). We use the basis (B(1),W 3(1)),

although the (γ(1), Z(1)) basis is sometimes used in the literature.

We also ignore the effects of the KK modes above the first level. The relevant parts of

the five-dimensional Lagrangian, written in terms of the KK modes, are then [37, 38]

Lgauge = −g

2
fabcF (0),a

µν A(1),bµA(1),cν

−g

2
fabc(∂µA

(1),a
ν − ∂νA

(1),a
µ )(A(0),bµA(1),cν + A(0),cνA(1),bµ)

−g2

4

[

fabc(A(0),b
µ A(1),c

ν + A(0),c
ν A(1),b

µ )
]2
, (11)

Lfermion = ig
(

f (0)γµA(1)
µ PLf

(1)
D + PLf

(1)
D γµA(1)

µ f (0)
)

+ig
(

PLf
(1)
D γµA(0)

µ PLf
(1)
D + PRf

(1)
S γµA(0)

µ PRf
(1)
S

)

, (12)

Lscalar = ig
[

A(0)
µ

(

Φ(1)∂µΦ(1)† − Φ(1)†∂µΦ(1)
)

+A(1)
µ

(

Φ(0)∂µΦ(1)† − Φ(1)†∂µΦ(0) + Φ(0)†∂µΦ(1) − Φ(1)∂µΦ(0)†)]

+g2
[

A(1)
µ A(0)µ

(

Φ(1)Φ(0)† + Φ(1)†Φ(0)
)

+A(1)
µ A(1)µ|Φ(0)|2 + A(0)

µ A(0)µ|Φ(1)|2
]

. (13)

The symbols fabc are the structure constants for the gauge group, and in Eqs. (12) and

(13), A ≡ AaT a, where T a are the generators of the gauge group. For completeness, the

corresponding Feynman rules are presented in Appendix A1.
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1. Dark matter candidates

Once the boundary terms are known, the spectrum of the model can be worked out, and

the identity of the LKP can be resolved. In general, the LKP could be the first KK mode of

any particle in the SM, or of the graviton. The particle content of the first KK level is equal

to that of the SM, except that the left- and right-handed Weyl fermions are replaced by

two Dirac fermions with the corresponding quantum numbers and that all the components

of the Higgs doublet are physical. Since the LKP has to be neutral with respect to the

electromagnetic as well as the color interactions in order to be a good DM candidate, the

list of interesting possibilities reduces to the neutrinos, the two neutral components of the

Higgs doublet, and the B and W 3 bosons. As mentioned above, scalar DM is not interesting

for the purpose of neutrino telescope detection, and hence, we will not consider the Higgs

bosons as DM candidates. In the context of the MUED model, the spin-independent cross

section for KK neutrinos scattering on protons [39] is larger than the limits set by direct

detection experiments, and hence, this particle is ruled out as a DM candidate. The same

conclusion holds in our model, provided that we do not modify the couplings. We also note

that although the first KK mode of the graviton could be the LKP, this particle interacts

very weakly, and its phenomenology is very different from that of WIMPs [40]. Thus, we

are left with the first KK modes of the B and W 3 gauge bosons.

In the five-dimensional MUED model, the B(1) is the LKP [12]. Detailed calculations of

the relic density, including the effects of coannihilations, have shown that the B(1) could give

rise to the relic density measured by WMAP if its mass is roughly in the range 500GeV−
1600GeV [38, 41]. For the five-dimensional model, neutrino signals from the B(1) were

considered in Ref. [17] and signals from B(1) and W 3(1) were considered in Ref. [18]. We will

compare the results of these works to our results in Sec. IV.

B. Six dimensions

In six dimensions, spinors are eight component objects, and as in four dimensions, there

is a chirality operator, i.e., an 8 × 8 matrix Γ7 fulfilling Γ2
7 = 1 and {Γ7,ΓM} = 0, where

ΓM are the six gamma matrices in six dimensions [34]. This operator, which is analogous to

γ5 in four dimensions, makes it possible to define a six-dimensional chirality. The operators
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projecting onto the states of definite chirality (which are usually referred to as states of +/−
chirality) are P± = (1 ± Γ7)/2. The states of definite chirality are four-component Dirac

spinors. Thus, the fermions can be defined as Dirac spinors, and the situation is then the

same as in five dimensions.

The condition of anomaly cancellation in the six-dimensional model places constraints

on the chirality assignments for the fermions [42]. Most notably, this condition forces the

number of generations to be an integer multiple of three, motivating the existence of three

generations in the SM. It also has implications for the six-dimensional chirality structure of

the SU(2) doublets and singlets. The fermion content of the model is [43] Q+ = (U+, D+),

U−, D−, L+ = (N+, E+), and E−, where the SU(2) doublets have left-handed zero-modes,

and the singlets have right-handed zero-modes.

In this work, we study a six-dimensional UED model, where the extra dimensions are

compactified on the so-called chiral square, T 2/Z4 [44–46]. This orbifold can be obtained by

starting from a square with side length L and identifying the points (y, 0) and (0, y) as well

as the points (y, L) and (L, y) for 0 ≤ y ≤ L. In this model, there are four possible choices

for the boundary conditions of a field [44]. The KK decomposition is given by

A(xµ, x4, x5) =
1

L

[

δn,0A
(0,0)(xµ) +

∑

j≥1

∑

k≥0

f (j,k)
n (x4, x5)A(j,k)(xµ)

]

, (14)

where

f (j,k)
n (x4, x5) =

1

1 + δj,0

[

e−inπ/2 cos

(

jx4 + kx5

R
+

nπ

2

)

± cos

(

kx4 − jx5

R
+

nπ

2

)]

. (15)

Here, the index n = 0, 1, 2, 3 indicates which boundary conditions are imposed on the field,

and we have defined R = L/π. The squared mass for a KK mode with indices (j, k) is

m2
j,k = (j2 + k2)/R2. Note that only the n = 0 functions have a zero mode and that there is

no (0, 1) mode. Hence, for each field, there is a single lightest KK mode, with indices (1, 0)

and mass 1/R. We call this mode the first KK mode.

As the S1/Z2 orbifold in five dimensions, the chiral square T 2/Z4 has fixed points, (0, 0),

(L, L), and (0, L). These fixed points induce BLTs, and break momentum conservation in

the extra dimensions to the conservation of KK parity, which in this model is defined as

(−1)j+k. In the same way as in the five-dimensional model, the conservation of KK parity

ensures the stability of the LKP.
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In six dimensions, the gauge fields have two additional components. Similar to the five-

dimensional case, one linear combination of these fields is eaten at each KK level to give

mass to the corresponding KK mode of the four-dimensional components. However, the

other linear combination appears as a physical scalar, known as an adjoint scalar, at each

non-zero KK level. The adjoint scalar corresponding to the gauge field A is denoted AH .

Note that the index H is not a running index.

The KK-decomposed Lagrangian density has been derived in Ref. [46]. We are only

interested in interactions involving zero modes and the first KK modes. Neglecting all other

modes simplifies the Lagrangian dramatically. Since k = 0 in all the modes that are left, we

suppress this index. We use a gauge in which the linear combination of the extra components

of the gauge fields that are eaten vanishes, and the four-dimensional part is massive. Hence,

the fields that are denoted AG in Ref. [46] vanish. As in the five-dimensional model, we

ignore EWSB effects and Yukawa couplings.

The modifications to the couplings from the integration over the extra dimensions are

encoded in the δ symbols, which are defined as

δj1,...,jrn1,...,nr
≡ 1

L2

∫ L

0

dx4

∫ L

0

dx5f j1
n1
· · · f jr

nr
. (16)

The order of the indices does not matter, as long as the upper and lower indices are shifted in

the same way. Only the n = 0 functions have zero modes, and as we only consider jr ∈ {0, 1},
this means that nr > 0 implies that jr = 1. Finally, it holds that δj1,j2,j3,0n1,n2,0,0

= δj1,j2,j3n1,n2,0
.

Using the properties summarized above, we obtain the interaction Lagrangian

Lgauge = −gfabcδj1,j2,j30,0,0 A(j1),a
µ A(j2),b

ν ∂µA(j3),cν +
(g

2
fabcA

(1),a
H (∂µA

(1),b
H )A(0),c

µ + h.c.
)

−g2

4
fabcfadeδj1,j2,j3,j40,0,0,0 A(j1),b

µ A(j2),c
ν A(j3),dµA(j4),eν

−g2

2
fabcfadeA

(1),c
H A

(1),e
H A(0),b

µ A(0),dµ, (17)

Lfermion,+ = gδj1,j2,j30,0,0 f
(j1)
D A(j2)

µ γµf
(j3)
D + gf

(1)
S A(0)

µ γµf
(1)
S +

(

igf
(0)
D A

(1)
H f

(1)
S + h.c.

)

, (18)

Lfermion,− = gδj1,j2,j30,0,0 f
(j1)
S A(j2)

µ γµf
(j3)
S + gf

(1)
D A(0)

µ γµf
(1)
D +

(

igf
(0)
S A

(1)
H f

(1)
D + h.c.

)

, (19)

Lscalar =
(

igδj1,j2,j30,0,0 Φ(j1)†A(j2)
µ ∂µΦ(j3) + h.c.

)

+ g2δj1,j2,j3,j40,0,0,0 Φ(j1)†A(j2)
µ A(j3),µΦ(j4)

− g2Φ(0)†A
(1)
H A

(1)
H Φ(0), (20)

where ji ∈ {0, 1}, i = 1, 2, 3, 4, and in Eqs. (18), (19), and (20), A ≡ AaT a, where T a are

the generators of the gauge group. The Feynman rules for this model are the same as in the
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five-dimensional case, with the addition of new interactions involving the adjoint scalars.

These new rules are listed in Appendix A2.

1. Dark matter candidates

In comparison to the five-dimensional model, each KK level in the six-dimensional model

also includes an adjoint scalar for each gauge boson. In particular, the first-level adjoint

scalars B
(1)
H andW

3(1)
H are neutral, and therefore, they are possible DM candidates. However,

being scalars, these candidates are not interesting for our purposes. It has been shown that

in the MUED version of the model, the adjoint scalar B
(1)
H is the LKP [45]. Thus, it is

necessary to go beyond the MUED scenario in order to possibly obtain a neutrino telescope

signal. We conclude that the interesting LKP candidates in the six-dimensional model are

the same as in five dimensions, i.e., the B(1) and the W 3(1).

IV. RESULTS

The elastic WIMP-proton scattering cross sections for B(1) and W 3(1) LKPs in the five-

dimensional model have been calculated in Refs. [9] and [36], respectively. The results are

σSD
B(1) ,p ≃ 1.69 · 10−6 pb

(

0.1

rqR

)2(
1TeV

mB(1)

)4

, (21)

σSD
W 3(1),p ≃ 0.35 · 10−6 pb

(

0.1

rqL

)2(
1TeV

mW 3(1)

)4

, (22)

where rqL/R
≡ (m

q
(1)
R/L

−mLKP)/mLKP. In Eq. (21), the contributions from s- and t-channel

exchange of left-handed KK quarks has been neglected. These contributions would increase

the cross section by about 3 %, while introducing an additional free parameter, rqL. On the

other hand, in Eq. (22), there is no contribution from the right-handed KK quarks, since the

W 3 boson couples only to left-handed chiral fermions. In the six-dimensional model, there

are no tree-level contributions to these cross sections from the adjoint scalars, and hence,

Eqs. (21) and (22) are valid also for that model.

The relic DM density was calculated in Ref. [36] for both B(1) and W 3(1) in the five-

dimensional model. These calculations include coannihilations in all channels, and were

performed for a relative mass splitting rqR/L
between the LKP and the KK quarks in the
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Final state B(1) W 3(1)

rq 1.0 1.3 1.0 1.3

ūu 0.125 0.084 0.017 0.010

d̄d 0.008 0.006 0.017 0.010

ν̄ν 0.011 0.013 0.005 0.005

l+l− 0.183 0.223 0.005 0.005

hh 0.004 0.005 0.002 0.002

ZZ 0.004 0.005 0.002 0.002

W+W− 0.010 0.012 0.866 0.908

TABLE I: The branching ratios for pair annihilation of B(1) and W 3(1) LKPs. Except for the LKP

and the KK quarks, the masses of the KK particles are assumed to be larger than the LKP mass

by 10 %, except for the W±(1), which are assumed to be degenerate with W 3(1).

region from 0.01 to 0.5. For the B(1) calculations, the MUED spectrum was used for the

rest of the first-level KK particles, and for the W 3(1), it was assumed that the W±(1) are

degenerate with W 3(1), that the KK gluons are heavier by 20 %, and that all other first-level

KK particles are heavier by 10 %. The conclusion is, that in order to obtain the measured

relic density, the mass of the B(1) should be roughly in the range 500GeV − 1600GeV,

depending on the relative mass splitting rqR, and the mass of the W 3(1) should be roughly in

the range 1800GeV− 2700GeV. For the B(1), the preferred mass decreases with increasing

mass splitting, while for the W 3(1), the opposite is true. Since the interactions in the six-

dimensional model are the same as those in the five-dimensional one, the only possible

difference in the relic density would come from coannihilations involving adjoint scalars. In

this work, we ignore that contribution, and assume that the relevant mass intervals for the

respective candidates are approximately the same as for the five-dimensional model.

Using the annihilation cross sections presented in Appendix B, we calculate the branching

ratios into different final states, which are presented in Tab. I. The branching ratios into

a pair of Higgs bosons are small, and give only a small contribution to the muon-antimuon

fluxes. Since this channel would introduce additional model dependence, we choose to neglect

it in our calculations.

We present our final results as fluxes of muons and anti-muons through an imaginary
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plane in an Earth-based detector. The detector medium is assumed to be water, with the

density 1.0 g/cm3. The IceCube collaboration has placed limits on this flux [3] for the

two annihilation channels W+W− and b̄b. The W+W− channel, which has been chosen to

represent models resulting in hard neutrino energy spectra, can be used to constrain our

models. The reason for this is, that in the case that the W 3(1) is the LKP, the branching

ratio into W+W− is around 90 %, whereas for the B(1), the majority of the annihilations

result in pairs of charged leptons, which also give a hard spectrum. In addition, the limits

for the B(1) have been investigated by the IceCube collaboration [14], and it has been found

that they differ from the W+W− limits by at most 10 %.

In Figs. 2 and 3, we present the muon-antimuon fluxes for the case that the LKP is the

B(1) and the W 3(1), respectively. We also include the IceCube limits, and we use the same

muon energy threshold as in Ref. [3], i.e., Eth
µ = 1GeV. We give the fluxes as functions

of the LKP mass, and present results for a number of different values for the relative mass

splitting rq between the LKP and the first-level KK quarks. For all plots, we indicate the

mass range for the LKP giving the correct relic density. The masses of the rest of the

first-level KK particles only affect the results through the branching ratios, and are less

important than the masses of the LKP and the first-level KK quarks. We assume that the

W±(1) are degenerate with the LKP and that all other particles are heavier than the LKP

by 10 %.

The fluxes for the five- and the six-dimensional models are equal for both LKP candidates.

The reason for this is that, for our purposes, the contributions from the adjoint scalars

constitute the only difference between the models, and at tree-level, these do not enter the

annihilation processes or the scattering of LKPs on nucleons. Hence, each set of fluxes is

valid for both of our models.

The fluxes decrease rapidly with increasing LKP mass, an effect which is partly due to

the behavior of the scattering cross sections, Eqs. (21) and (22), which fall off as m−4
LKP, and

partly due to the kinematics of the capture of WIMPs in the Sun, which can be seen from

Eq. (5) to be approximately proportional to m−2
LKPσ

sd
WIMP,p. Taken together, this means that

the capture rate falls off approximately asm−6
LKP. The relative mass splitting rq mainly affects

the fluxes through the scattering cross sections, Eqs. (21) and (22), which both behave as

r−2
q . Except for this effect, the mass splitting also affects the branching ratios into different

final states, though this is a less important effect.
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FIG. 2: The muon-antimuon flux in a detector at Earth as a function of the WIMP massmWIMP for

the case of a B(1) LKP and muon energy threshold Eth
µ = 1GeV. The dashed (blue), dash-dotted

(red), double dash-dotted (green), and dotted (brown) curves represent the relative mass splittings

rq = 0.01, 0.05, 0.1, and 0.5, respectively. Also plotted as the solid (black) curve is the IceCube

limit for the hard channel in Ref. [3]. For each curve, the LKP mass range giving the correct relic

abundance is indicated by a thicker segment.

Comparing the flux from B(1) to that from W 3(1), we find that the respective behaviors

with mass and KK quark mass splitting are similar, but that the absolute scale of the latter

flux is always lower by a factor varying between 1 − 5. One of the reasons for this is the

lower scattering cross section for the W 3(1), which is smaller than that for B(1) by a factor

of approximately 5. In addition, the fluxes are affected by the different distribution of final

states, which can be seen in Tab. I. While pairs of B(1) particles annihilate mainly into

charged leptons, with only a negligible fraction into gauge bosons, the W 3(1) annihilates to

W± pairs with a very large fraction, and only a small fraction goes to charged leptons. Direct

neutrino production has a small but non-zero branching ratio for both LKP candidates. The

different annihilation channels will result in two effects. First, the shape of the neutrino

spectrum can be very different depending on the channel and a channel with a hard energy

spectrum will be easier to distinguish from the background in a neutrino telescope. Thus,

for hard spectra, a more stringent bound on the spin-dependent cross section can be put

18



500 1000 1500 2000 2500 3000
m

LKP
 [GeV]

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

M
uo

n-
an

tim
uo

n 
fl

ux
 [

km
-2

 y
r-1

]

r
q
 = 0.01

r
q
 = 0.05

r
q
 = 0.1

r
q
 = 0.5

IceCube

FIG. 3: The muon-antimuon flux in a detector at Earth as a function of the WIMP mass mWIMP

for the case of a W 3(1) LKP and muon energy threshold Eth
µ = 1GeV. The dashed (blue), dash-

dotted (red), double dash-dotted (green), and dotted (brown) curves represent the relative mass

splittings rq = 0.01, 0.05, 0.1, and 0.5, respectively. Also plotted as the solid (black) curve is the

IceCube limit for the hard channel in Ref. [3]. For each curve, the LKP mass range giving the

correct relic abundance is indicated by a thicker segment.

given the same resulting muon flux. The second effect is that of neutrino oscillations,

which can increase or decrease the muon flux depending on the annihilation channel. Since

oscillations mix the fluxes of different neutrino flavors, a channel giving rise to a muon

neutrino dominated spectrum will have its signal decreased by oscillations, and vice versa

[16, 32].

Our results should be compared to the results for the five-dimensional model that have

previously been presented in the literature. In Ref. [17], the muon-antimuon flux was calcu-

lated for the case that the B(1) is the LKP, and in Ref. [18], these results were updated to

include the effects of neutrino oscillations, and the corresponding results for the case that

the W 3(1) is the LKP were also calculated. In Ref. [18], the results are presented as rates of

muon events per effective detector area for a large volume detector such as IceCube, using a

detector depth of 1 km. Due to this depth, the event rate per area is expected to be larger

than the flux through a plane in the detector, and therefore, those results are not directly
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comparable to the results presented in Figs. 2 and 3. In order to enable such a comparison,

we also calculate the event rates per area using DarkSUSY, and the event rates that we

obtained are smaller by a factor of approximately 20 % - 30 %. This difference between the

results is expected, since we use DarkSUSY to calculate the capture rate, while in Ref. [18],

the approximation given in Eq. (5) is used. As the event rate is proportional to the cap-

ture rate, the difference between the event rates is explained by the difference between the

capture rates plotted in Fig. 1. It should also be noted that the branching ratios that we

obtain for the W 3(1) differ from those given in Ref. [18]. We obtain a larger branching ratio

into W+W− pairs, while the branching ratios into fermions are smaller. However, we have

calculated the muon flux using the branching ratios of Ref. [18], and have found that the dif-

ference compared to our results due to this is not larger than about 10 %. Finally, the fluxes

have been calculated for the five-dimensional MUED model by the IceCube collaboration

[14], and their results are also similar to our results.

V. SUMMARY AND CONCLUSIONS

In this work, we have studied neutrinos from annihilations of KKDM in the Sun. Using

the DarkSUSY and WimpSim packages, we have calculated the flux of neutrino-induced

muons and antimuons in an Earth-based neutrino telescope, such as IceCube. We have

investigated KKDM in a five-dimensional model, based on the orbifold S1/Z2, and in a

six-dimensional model, based on the chiral square T 2/Z4. Rather than restricting ourselves

to the MUED models, where the LKP is uniquely determined, we have allowed for the

possibility that BLTs might affect the spectrum in such a way as to change the identity of

the LKP. The possible DM candidates are then the first KK modes of the neutrinos, the

neutral components of the Higgs field, and the B and W 3 gauge bosons. In addition, in the

six-dimensional model, the adjoint scalars B
(1)
H and W

3(1)
H are possible candidates. Among

these particles, neutrinos are already ruled out by direct detection experiments, while the

interactions of scalars with nucleons are too strongly constrained to allow for an observable

signature in neutrino telescopes. In five as well as six dimensions, only the B(1) and the

W 3(1) are left as interesting DM candidates.

For a given LKP mass, the flux is somewhat lower for the case of the W 3(1) as the LKP

than for the case of the B(1). However, it is important to note that a B(1) LKP is not expected
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to have the same mass as a W 3(1) LKP. Relic density calculations show that the mass of the

B(1) should lie in the range from about 500GeV − 1600GeV, whereas the W 3(1) should be

far more massive, in the range from about 1800GeV−2700GeV. Since the capture rate falls

off approximately as m−6
LKP, this implies that the fluxes from the W 3(1) are expected to be

much smaller. In the relevant range, the flux is predicted to be smaller than 0.2 km−2 yr−1.

This means that, even assuming a perfect 1 km2 detector, no observable muon fluxes will

be generated in IceCube. We wish to emphasize this fact, which has previously not been

discussed in the literature. In contrast, in the case that the B(1) is the LKP, IceCube will

be able to put constraints on the relevant parts of the parameter space.

Another novel conclusion is that, since the fluxes are equal for the five- and the six-

dimensional model for each LKP, it is not possible to distinguish these two models using

this indirect detection method.

In conclusion, in the case that the B(1) is the LKP, neutrino telescopes such as IceCube

have the ability to set constraints on both the five- and the six-dimensional model that we

have studied. On the other hand, if W 3(1) is the LKP, the prospects for indirect detection

through neutrinos are much worse. Note also, that in this case, the scattering cross section

is far below the sensitivity of any currently running or planned direct detection experiments.
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Appendix A: Feynman rules

In this appendix, we present the relevant Feynman rules for our models. We do not include

QCD interactions or Higgs boson self-interactions, since these do not enter our calculations.
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The conventions for the components of the Higgs multiplet are given in Eq. (9). We use

the hypercharge normalization Q = T 3 + Y . The U(1) and SU(2) coupling constants are

denoted g1 and g2, respectively. All momenta are defined to point inwards. Double lines

are used to represent non-zero KK modes, or KK modes with a general index n. We only

include interactions between zero modes and first level KK modes.

1. Five dimensions

Gauge boson self-interactions

�p1 p3

p2

A(0)
µ

W
−(1)
λ

W+(1)
ν

= e [gµν(p2 − p1)
σ + gνσ(p3 − p2)

µ + gσµ(p1 − p3)
ν ]

�p1 p3

p2

Z(0)
µ

W
−(1)
λ

W+(1)
ν

= cwg2 [g
µν(p2 − p1)

σ + gνσ(p3 − p2)
µ + gσµ(p1 − p3)

ν ]

�p1 p3

p2

W 3(1)
µ

W
−(1)
λ

W+(0)
ν

= g2 [g
µν(p2 − p1)

σ + gνσ(p3 − p2)
µ + gσµ(p1 − p3)

ν ]

A(n1)
ν

A(n2)
µ

A
(n3)
λ

A(n4)
ρ

= −iC1
(

2gµνgλρ − gµλgνρ − gµρgνλ
)

(A1)
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Vertex C1 Vertex C1

A
(0)
µ A

(0)
ν W

+(1)
λ W

−(1)
ρ e2 W

+(0)
µ W

−(0)
ν W

3(1)
λ W

3(1)
ρ g22

Z
(0)
µ Z

(0)
ν W

+(1)
λ W

−(1)
ρ c2wg

2
2 A

(0)
µ W

3(1)
ν W

±(0)
λ W

∓(1)
ρ swg

2
2

A
(0)
µ Z

(0)
ν W

+(1)
λ W

−(1)
ρ cwswg

2
2 W

±(0)
µ W

±(0)
ν W

∓(1)
λ W

∓(1)
ρ g22

Z
(0)
µ W

3(1)
ν W

±(0)
λ W

∓(1)
ρ cwg

2
2 W

+(0)
µ W

+(1)
ν W

−(0)
λ W

−(1)
ρ g22

TABLE II: The expressions for the coefficient C1 defined in Eq. (A1) for all possible interactions

of four gauge bosons.

This diagram represents all possible interactions of four gauge bosons, and A stands for any

gauge boson. The expressions for the coefficient C1 for the different vertices are given in

Tab. II.

Gauge boson-scalar interactions

These interactions are independent of the KK indices of the interacting modes, except

that the vertices have to obey conservation of KK parity. Also, the basis (A,Z) is used for

n = 0, while the basis (B,W 3) is used for n = 1.

A(n1)
µ

h(n3)

h(n2)

= iC2P µ (A2)

This diagram represents all interactions of one gauge boson and two scalars. For all possible

interactions of this kind, the expressions for the coefficient C2 and the momentum P are

given in Tab. III.
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Vertex C2 P Vertex C2 P

Aµh
+h− e p+ − p− W 3

µh
1h2 i

2g2 p2 − p1

Bµh
+h− 1

2g1 p+ − p− W−
µ h+h1 i

2g2 p+ − p−

Bµh
1h2 i

2g1 p1 − p2 W−
µ h+h2 1

2g2 p2 − p+

Zµh
+h− 1−2s2w

2cw
g2 p+ − p− W+

µ h−h1 i
2g2 p− − p1

W 3
µh

+h− 1
2g2 p+ − p− W+

µ h−h2 1
2g2 p− − p2

Zµh
1h2 1

2cw
g2 p2 − p1

TABLE III: The expressions for the coefficient C2 and the momentum P defined in Eq. (A2) for

all possible interactions of one gauge boson and two scalars. The interactions are independent of

the KK indices of the interacting modes, except that the vertices have to obey conservation of KK

parity. The basis (A,Z) is used for n = 0, while the basis (B,W 3) is used for n = 1, i.e., A = A(0)

and Z = Z(0), while B = B(1) and W 3 = W 3(1).

A(n1)
ν

A(n2)
µ

h(n3)

h(n4)

= iC3gµν (A3)

This diagram represents all interactions involving KK modes of two gauge bosons and two

scalars. For all possible interactions of this kind, the expressions for the coefficient C3 are

given in Tab. IV.

Gauge boson-fermion interactions

A(0)
µ

f (1)

f (1)

= iQfeγ
µ Z(0)

µ

f (1)

f (1)

= i
g2
cw

(

c2wT
3
f − s2wYf

)

γµ
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Vertex C3 Vertex C3 Vertex C3

AµAνh
+h− 2e2 W 3

µW
3
ν h

2h2 1
2g

2
2 AµW

−
ν h+h1 i

2eg2

AµBνh
+h− eg1 AµZνh

+h− 1−2s2w
cw

eg2 BµW
−
ν h+h1 i

2g1g2

BµBνh
+h− 1

2g
2
1 AµW

3
ν h

+h− eg2 AµW
−
ν h+h2 −1

2eg2

BµBνh
1h1 1

2g
2
1 BµZνh

+h− sw
1−2s2w
c2w

g22 BµW
−
ν h+h2 −1

2g1g2

BµBνh
2h2 1

2g
2
1 BµW

3
ν h

+h− 1
2g1g2 ZµW

+
ν h−h1 i

2eg1

ZµZνh
+h− (1−2s2w)2

2c2w
g22 BµZνh

1h1 − 1
2cw

g1g2 ZµW
+
ν h−h2 1

2eg1

ZµW
3
ν h

+h− 1−2s2w
2cw

g22 BµW
3
ν h

1h1 −1
2g1g2 ZµW

−
ν h+h1 − i

2eg1

W 3
µW

3
ν h

+h− 1
2g

2
2 BµZνh

2h2 − 1
2cw

g1g2 ZµW
−
ν h+h2 1

2eg1

ZµZνh
1h1 1

2c2w
g22 BµW

3
ν h

2h2 −1
2g1g2 W+

µ W−
ν h+h− 1

2g
2
2

ZµW
3
ν h

1h1 1
2cw

g22 AµW
+
ν h−h1 − i

2eg2 W+
µ W−

ν h1h1 1
2g

2
2

W 3
µW

3
ν h

1h1 1
2g

2
2 BµW

+
ν h−h1 − i

2g1g2 W+
µ W−

ν h2h2 1
2g

2
2

ZµZνh
2h2 1

2c2w
g22 AµW

+
ν h−h2 −1

2eg2

ZµW
3
ν h

2h2 1
2cw

g22 BµW
+
ν h−h2 −1

2g1g2

TABLE IV: The expressions for the coefficient C3 defined in Eq. (A3) for all possible interactions

of two gauge bosons and two scalars. The interactions are independent of the KK indices of the

interacting modes, except that the vertices have to obey conservation of KK parity. The basis

(A,Z) is used for n = 0, while the basis (B,W 3) is used for n = 1, i.e., A = A(0) and Z = Z(0),

while B = B(1) and W 3 = W 3(1).

W±(0)
µ

f
(1)
D

f
′(1)
D

= i
g2√
2
γµ B(1)

µ

f
(1)
D

f (0)

= ig1Yfγ
µPL
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B(1)
µ

f
(1)
S

f (0)

= ig1Yfγ
µPR

W 3(1)
µ

f
(1)
D

f (0)

= ig2T
3
f γ

µPL

W±(1)
µ

f
′(1)
D

f (0)

= i
g2√
2
γµPL

2. Six dimensions

The only difference between the interactions in the five- and the six-dimensional model

is that the six-dimensional model includes additional interactions due to adjoint scalars.

Hence, we only present the Feynman rules for these additional interactions in this section.

Gauge boson-adjoint scalar interactions

A(0)
µ

W
−(1)
H

W
+(1)
H

= e(p+ − p−)
µ Z(0)

µ

W
−(1)
H

W
+(1)
H

= cwe(p+ − p−)
µ

W±(0)
µ

W
∓(1)
H

W
3(1)
H

= ±g2(p∓ − p3)
µ
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Vertex C4 Vertex C4

AµAνW
+
HW−

H 2e2 AµW
±
ν W∓

HW 3
H −cwg

2
2

AµZνW
+
HW−

H 2cweg2 W+
µ W−

µ W 3
HW 3

H 2g22

AµW
±
ν W∓

HW 3
H −eg2 W±

µ W±
ν W∓

HW∓
H −2g22

ZµZνW
+
HW−

H 2c2wg
2
2 W+

µ W−
ν W+

HW−
H g22

TABLE V: The expressions for the coefficient C4 defined in Eq. (A4) for all possible interactions

of two gauge bosons with two adjoint scalars.

A(0)
µ

A(0)
ν

A
(1)
H

A
(1)
H

= C4gµν (A4)

This diagram represents all possible interactions of two gauge bosons with two adjoint

scalars, and A stands for any gauge boson. The expressions for the coefficient C4 for the

different vertices are given in Tab. V.

Scalar-adjoint scalar interactions

A
(1)
H

A
(1)
H

h(0)

h(0)

= iC5 (A5)

This diagram represents all possible interactions of two adjoint scalars with two scalars, and

here AH stands for any adjoint scalar and h stands for any component of the Higgs field.

The expressions for the coefficient C5 for the different vertices are given in Tab. VI.
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Vertex C5 Vertex C5

BHBHh+h− −1
2g

2
1 BHW 3

Hh1h1 1
2g1g2

BHBHh1h1 −1
2g

2
1 BHW 3

Hh2h2 1
2g1g2

BHBHh2h2 −1
2g

2
1 W+

HW−
Hh+h− −1

2g
2
2

BHW+
Hh−h1 i

2g1g2 W+
HW−

Hh1h1 −1
2g

2
2

BHW+
Hh−h2 1

2g1g2 W+
HW−

Hh2h2 −1
2g

2
2

BHW−
Hh+h1 − i

2g1g2 W 3
HW 3

Hh+h− −1
2g

2
2

BHW−
Hh+h2 1

2g1g2 W 3
HW 3

Hh1h1 −1
2g

2
2

BHW 3
Hh+h− −1

2g1g2 W 3
HW 3

Hh2h2 −1
2g

2
2

TABLE VI: The expressions for the coefficient C5 defined in Eq. (A5) for all possible interactions

of two adjoint scalars with two scalars.

Adjoint scalar-fermion interactions

B
(1)
H

f
(1)
D/S

f (0)

= −ig1YfPL/R W
3(1)
H

f
(1)
D

f (0)

= − ig2
2
PL

W
+(1)
H

f
(1)
D

f ′(0)

= − ig2√
2
PL

Appendix B: Annihilation cross sections

In this appendix, we present the relevant WIMP-WIMP annihilation cross sections for

the models that we consider. The relevant quantity for our calculations is the cross section

times relative velocity, σv, in the static limit s → 4m2
WIMP. We refer to this quantity as the
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cross section. We let the masses of all first-level KK particles be free parameters. Since we

ignore EWSB effects, all the Higgs components appear as physical particles and the symbols

W± and Z refer only to the transversal components of those gauge bosons. To calculate the

scattering rate into a pair of physical (massive) gauge bosons, the two contributions should

be added. For example, the cross section for the annihilation of two W 3(1) bosons into a

W+W− pair is given by the sum σ(W 3(1)W 3(1) → h+h−) + σ(W 3(1)W 3(1) → W+W−).

Since we ignore all SM masses, we simplify the notation by suppressing the KK-indices,

i.e., mB(1) ≡ mB, etc. In order to further simplify the notation, we also introduce the

functions

f1(x) =
1

(1 + x)2
, (B1)

f2(x) =
11− 2x+ 3x2

(1 + x)2
, (B2)

and

f3(x) =
1 + 30x+ 35x2 + 4x3 + 6x4

x2(1 + x)2
. (B3)

The annihilation cross sections for the B(1) are

σv(B(1)B(1) → f̄ f) =
2NcY

4
f g

4
1

9πm2
B

f1
(

m2
f/m

2
B

)

, (B4)

where Nc is the number of colors of the fermion f ,

σv(B(1)B(1) → h1h1) = σv(B(1)B(1) → h2h2)

=
1

2
σv(B(1)B(1) → h+h−) =

g41
2304πm2

B

f2
(

m2
h/m

2
B

)

.

In the case of degenerate first-level KK masses, the total annihilation cross section is

σv(B(1)B(1))tot =
g41

πm2
B

(

1

18

∑

f

Nf
c Y

4
f +

1

576

)

≃ 0.60 pb

(

1TeV

mB

)2

. (B5)

For the W 3(1), the corresponding results are

σv(W 3(1)W 3(1) → f̄ f) =
Ncg

4
2

72πm2
W 3

f1
(

m2
f/m

2
W 3

)

, (B6)

σv(W 3(1)W 3(1) → h1h1) = σv(W 3(1)W 3(1) → h2h2)

=
1

2
σv(W 3(1)W 3(1) → h+h−) =

g42
2304πm2

W 3

f2
(

m2
h/m

2
W 3

)

, (B7)
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σv(W 3(1)W 3(1) → W+W−) =
g42

36πm2
W 3

f3
(

m2
W±/m2

W 3

)

. (B8)

In the case of degenerate first-level KK masses, the total annihilation cross section is

σv(W 3(1)W 3(1))tot =
355

576

g42
πm2

W 3

≃ 14 pb

(

1TeV

mB

)2

. (B9)
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