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Abstract—The problem of transmit beamforming to multiple
cochannel multicast groups is considered, when the channel state
is known at the transmitter and from two viewpoints: mini-
mizing total transmission power while guaranteeing a prescribed
minimum signal-to-interference-plus-noise ratio (SINR) at each
receiver; and a “fair” approach maximizing the overall minimum
SINR under a total power budget. The core problem is a multicast
generalization of the multiuser downlink beamforming problem;
the difference is that each transmitted stream is directed to
multiple receivers, each with its own channel. Such generaliza-
tion is relevant and timely, e.g., in the context of the emerging
WiMAX and UMTS-LTE wireless networks. The joint problem
also contains single-group multicast beamforming as a special
case. The latter (and therefore also the former) is NP-hard. This
motivates the pursuit of computationally efficient quasi-optimal
solutions. It is shown that Lagrangian relaxation coupled with
suitable randomization/cochannel multicast power control yield
computationally efficient high-quality approximate solutions. For
a significant fraction of problem instances, the solutions generated
this way are exactly optimal. Extensive numerical results using
both simulated and measured wireless channels are presented to
corroborate our main findings.

Index Terms—Broadcasting, convex optimization, downlink
beamforming, multicasting, semidefinite relaxation.

I. INTRODUCTION

HE proliferation of streaming media (digital audio, video,
IP radio), peer-to-peer services, large-scale software
updates, and profiled newscasts over the wireline Internet has

Manuscript received March 17, 2007; revised July 31, 2007. Original version
submitted to the IEEE TRANSACTIONS ON SIGNAL PROCESSING on July 4, 2006.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Erik G. Larsson. The work of E. Karipidis was sup-
ported in part by the E.U. under FP6 506790 project U-BROAD and by National
and Community Funds (75% from E.U.-European Social Fund and 25% from
the Greek Ministry of Development - General Secretariat of Research and Tech-
nology) under 03ED918 research project, implemented within the framework of
the Reinforcement Programme of Human Research Manpower (PENED). The
work of N. D. Sidiropoulos was supported in part by the U.S. ARO under ERO
Contract N62558-03-C-0012 and by the E.U. under FP6 project NEWCOM.
The work of Z.-Q. Luo was supported in part by the National Science Founda-
tion by Grant DMS-0312416. An earlier version of part of this work appears
in conference form in the Proceedings of the 1st IEEE International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
Puerto Vallarta, Mexico, December 13-15, 2005, pp. 109-112.

E. Karipidis and N. D. Sidiropoulos are with the Department of Electronic
and Computer Engineering, Technical University of Crete, 73100 Chania-Crete,
Greece (e-mail: karipidis @telecom.tuc.gr; nikos @telecom.tuc.gr).

Z.-Q. Luo is with the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN 55455 USA (e-mail: luozq@ece.
umn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2007.909010

brought renewed interest in multicast routing protocols. These
protocols were originally conceived and have since evolved
under the “wireline premise:” the physical network is a graph
comprising point-to-point links that do not interfere with each
other at the physical layer. Today, multicast routing protocols
operate at the network or application layer, using either con-
trolled flooding or minimum spanning tree access.

As wireless networks become ever more ubiquitous, and
wireless becomes the choice for not only the “last hop” but
also suburban- and metropolitan-area backbones, wireless
multicasting solutions are needed to account for and exploit the
idiosyncracies of the wireless medium. Wireless is inherently
a broadcast medium, where it is possible to reach multiple
destinations with a single transmission; different cochannel
transmissions are interfering with one another at the intended
destination(s); and links are subject to fading and shadowing,
in addition to cochannel interference.

The broadcast advantage of wireless has of course been ex-
ploited since the early days of radio. The interference problem
was dealt with by allocating different frequency bands to the
different stations, and transmission was mostly isotropic or fo-
cused towards a specific service area.

Today, the situation with wireless networks is much different.
First, transmissions need not be “blind.” Many wireless network
standards provision the use of transmit antenna arrays. Using
baseband beamforming, it is possible to steer energy in the di-
rection(s) of the intended users, whose locations (or, more gen-
erally, channels) can often be accurately estimated. Second, the
push towards higher capacity and end-user rates necessitates
cochannel transmission which exploits the spatial diversity in
the user population (spatial multiplexing). Third, quality of ser-
vice (QoS) is an important consideration, especially in wireless
backhaul solutions like 802.16e. Finally, due to cochannel inter-
ference, wireless multicasting cannot be dealt with in isolation,
one group at a time; a joint solution is needed.

The problem of transmit beamforming towards a (single)
group of users was first considered in the Ph.D. dissertation
of Lopez [2], using the averaged (over all users in the group)
received signal-to-noise ratio (SNR) as the design criterion.
The solution boils down to a relatively simple eigenvalue
problem, but no SNR guarantee is provided this way: some
users may get really poor SNR [3]. This is not acceptable in
multicasting applications, because it is the worst SNR that
determines the common information rate. QoS (providing a
guaranteed minimum received SNR to every user) and max-min
fair (MMF) (maximizing the smallest received SNR) designs
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were first proposed in [4] and [3], where it was shown that
the core problem is NP-hard, yet high-quality approximate
solutions can be obtained using relaxation techniques based on
semidefinite programming (SDP). The latter is a class of convex
optimization problems which can be solved in polynomial time
by powerful interior point methods.

This paper formulates a new and interesting problem:
transmit beamforming for multicasting to multiple cochannel
groups under QoS and MMF criteria. The joint design problem
is considered, since designing a transmit beamformer sepa-
rately for each multicast group can be far from optimal, due
to intergroup interference. By simultaneously serving several
cochannel groups, the spectral efficiency is much higher than
in the single-group case. The extension to multiple groups is
nontrivial in the following ways:

* the multigroup QoS problem can be infeasible;

* the QoS and MMF versions are different, unlike the single-

group case;

* the approximation step is much more involved: randomiza-
tion is coupled with multigroup multicast power control,
which is of interest in its own right.

‘We propose two solid and well-motivated (Lagrange dual) al-
gorithms. In addition to semidefinite relaxation ideas, our so-
lutions entail a cochannel multigroup multicast power control
component, which can be viewed as a generalization of mul-
tiuser power control ideas for the cellular downlink (see, e.g., [5]
and references therein). It is important to note that the problem
formulation considered here contains as special cases the single-
group multicasting (broadcasting) problem [3], as well as the
multiuser downlink beamforming problem (see, e.g., [6] and
references therein), where each multicast group consists of a
single receiver. Our extensive numerical results, including ex-
periments with measured channels, show that in the multigroup
case as well, the proposed semidefinite relaxation (SDR)-based
algorithms work remarkably well.

Notation: Boldface uppercase letters denote matrices,
whereas boldface lowercase letters denote column vectors. The
superscripts (+)*, (-)T, and (-)# denote complex conjugate,
transpose, and Hermitian (conjugate) transpose matrix opera-
tors, respectively. tr(-), rank(+), | - |, and || - ||2 denote the trace,
the rank, the absolute value, and the Euclidean norm operators,
respectively. By X > 0 we denote that X is a Hermitian
positive-semidefinite matrix. Finally, I, and 14 denote the
N x N identity matrix and the G x 1 all ones vector.

II. DATA MODEL AND PROBLEM STATEMENT

Consider a wireless scenario comprising a single transmitter
with N antenna elements and M receivers, each with a single
antenna. Let h; denote the N X 1 complex vector that models
the propagation loss and phase shift of the frequency-flat quasi-
static channel from each transmit antenna to the receive antenna
ofuseri € {1,..., M}.Lettherebeatotal of 1 < G < M mul-
ticast groups, {G1, . .., G }, where Gy, is the index set of the re-
ceivers participating in multicast group k, and k € {1,...,G}.
Each receiver listens to a single multicast; thus, G, N G, = 0,
L # k, UG, = {1,...,M}, and, denoting G := |G|,
Yl G = M.
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Fig. 1. Cochannel multicast beamforming concept (note that groups need not
be spatially clustered).

Letwj; € CV denote the beamforming weight vector applied
to the NV transmitting antenna elements to generate the spatial
channel for transmission to group k (see Fig. 1). Then the signal
transmitted by the antenna array is equal to Zle wisk(t),
where si(t) is the temporal information-bearing signal di-
rected to receivers in multicast group k. If each sg(t) is
Zero-mean, temc?orally white with unit variance, and the wave-
forms {sj(t)},_, are mutually uncorrelated, then the total
power radiated by the transmitting antenna array is equal to
> Iwells.

The joint design of transmit beamformers can then be posed
as the problem of minimizing the total radiated power subject
to meeting prescribed signal-to-interference-plus-noise ratio
(SINR) constraints -y; at each of the M receivers

Q:
G
min ||wk||§
{WkECN}Ezl ;
|Wth1 2

.t o 5 2

Dotk (wihy|” + o}

Vi€ G, Vk,Le{l,... G}.

The problem formulation above assumes that the channel vec-
tors { hL}f\il of all intended users and the corresponding noise
variances {o? }f\il are known at the transmitter. Contrary to the
single-group case, problem Q can be infeasible due to inter-
ference, if the SINR requirements are too stringent and/or the
channels of users listening to different multicasts are highly cor-
related. Then, in order to render the problem feasible it is nec-
essary to loosen some of the QoS thresholds or deny service to
some users in the specific frequency tone/time slot, by means of
proper admission control. Beyond feasibility concerns, it is im-
portant to note that each beamformer must serve multiple users
listening to the same information. When a feasible solution ex-
ists, at least one SINR constraint per group will be satisfied with
equality at the optimum, whereas the others may be inactive
(i.e., oversatisfied); this is contrary to the case of independent
information transmission, where all SINR constraints are tight
at the optimum.
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Problem Q is a quadratically constrained quadratic program-
ming (QCQP) problem and it can be easily seen that the con-
straints are nonconvex. Furthermore, it contains as a special
case the associated broadcasting problem (G = 1), which was
proven to be NP-hard in [3], thereby implying the following re-
sult.

Claim 1: Problem Q is NP-hard.

This reveals the fundamental difference of the multigroup
multicast QoS problem to its other special case: the multiuser
downlink beamforming problem (G = M), which admits an
equivalent convex (specifically, second-order cone program-
ming) reformulation [6].! Claim 1 motivates (cf. [7]) the pursuit
of sensible approximate solutions to the QoS problem Q.

III. RELAXATION

Towards this end, let us change the optimization variables
to {Xy := wkwf}le. Note that X;, = wxwil for some
wr € C¥ if and only if X;, = 0 and rank(X;) = 1.
Defining {Q; := hzhf{}g1 and using that tr(AB) = tr(BA)
for matrices A, B of compatible dimensions, the signal
power received at user ¢+ by multicast k£ can be expressed

2
as |wlh;]| = hfw,wlh, = tr(hfw,w/h;)=
tr(hihinkwkH) = tr(Q;X}y). Likewise, the power of each
beamforming vector can be written as ||[wy||; = wlw; =

tr(wHwy) = tr(wpw!) = tr(Xy). It follows that problem
Q can be equivalently reformulated as

Q:
G
min tr(Xg)
{X,eCNxN}E ;
st tr(QiXk) >y Ztr(Q,;Xp) + ’77‘,0'1?

£k
Vie G, Ve, Le{l,...,G}
X, =0 Vke{l,...,G}
rank(Xy) =1 Vk e {1,...,G}

where we have used that the denominator is positive. Note that
if the instantaneous channel vectors {h;}"" are unknown, the
channel correlation matrices can be used instead as input pa-
rameters { Qt}f\il However, in this case the resulting design
can only guarantee average received SINRs.

INote that there exist other special cases of problem Q that are not NP-hard:

e.g., arestriction to Vandermonde channel vectors enables convex reformulation
and thereby efficient solution of the problem [8], [9].
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Dropping the last G rank-one constraints, which are non-
convex, we arrive at the following relaxation of problem Q:

Q,:
G
min tr(X
{X,eCNxN}E | ; )
stor oy tr(QiXe) — tr(QiXy) +yiof <0

£k
Vie gy Vi, Le{l,...,G}
X =0 Vk’E{l,...,G}.

Problem Q, consists of a linear objective function, M linear
inequality constraints and G positive-semidefinite constraints;
hence, it is a standard SDP problem. Modern SDP solvers, such
as SeDuMi [10], use interior point methods to efficiently find
an optimum solution to the problem, if it is feasible; otherwise,
they return a certificate of infeasibility. The SDP problem Q,
has GG matrix variables of size N x N, and M linear constraints.
Interior point methods will take O(v/GN log(1/¢)) iterations,
with each iteration requiring at most O(G® N6+ M G N?) arith-
metic operations [11], where the parameter € represents the so-
lution accuracy at the algorithm’s termination. Actual runtime
complexity will usually scale far slower with G, N, M than this
worst-case bound.

IV. APPROXIMATION

Problem Q may not admit a feasible solution, but if it does,
the aforementioned approach will yield a solution to problem
Q.. However, due to the relaxation, this solution will not, in gen-
eral, consist of rank-one matrices. This is because the (convex)
feasible set of problem Q, is a superset of the (nonconvex) fea-
sible set of problem Q. In addition, the optimum objective value
of problem Q, is merely a lower bound on the transmitted power
required by the rank-one transmit beamforming scheme. An ap-
proximate solution to the original QoS problem Q can be found
using a randomization technique (see, e.g., [13], [14]). The idea
is to generate candidate sets of beamforming vectors {wy},_,

from the optimum solution matrices { szt}le of problem O,
and choose the one that can be scaled to satisfy the SINR con-
straints of problem Q at the minimum total power cost.

We propose the use of the Gaussian randomization method
(see, e.g., [13], [14]) for the generation of the candidate beam-
formers, motivated by its successful application in related
QCQP problems and especially in the single-group multicas-
ting problem [3], [15]. Initially, the eigen-decomposition of
each optimal matrix is calculated as szt = U, U, Then,
the /th candidate beamformer for multicast k£ is generated
as wi = UkE,lc/Zw, where v, € CY ~ CN(0,1), so that
Ew! (w)"] = X 7P, The main difference relative to the
simpler broadcasting case (G = 1) considered in [3], is that
here we cannot simply “scale up” the candidate beamforming
vectors generated during randomization to satisfy the SINR
constraints of problem Q. The reason is that, in contrast to
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[3], we herein deal with an interference scenario, and boosting
one group’s beamforming vector also increases interference
to nodes in other groups. Whether it is feasible to satisfy the
constraints for a given set of candidate beamforming vectors is
also an issue here.

Let ar; = |wkH hi|2 denote the signal power received at
receiver ¢ from the stream directed towards users in multicast
group k. Let B := ||wk||§, and py, denote the sought power
boost (or reduction) factor for multicast group k. Then the fol-
lowing multigroup multicast power control (MMPC) problem
emerges in converting candidate beamforming vectors to a can-
didate solution of problem Q.

Se -
G
min Brpr
{pkeR}l?zl ;
Ak, iPk
s.t.: 2 = Vi

Vie gy Vi, Le{l,...,G}
pe>0Vke{l,. .. G}

As in Section III, taking advantage of the fact that the denom-
inator is positive, problem S can be equivalently reformulated
as

S9:

G
min Z Brpr

{rreR}, k=1

st.r v Zaz,im — ak,ipe + 707 <0
£k
Vie g Vk,Le{l,...,G}

>0 Vke{l,...,G}.

Problem S€ is a linear program (LP) with G' nonnegative
variables and M linear inequality constraints. For a feasible in-
stance of the MMPC problem S<, interior point methods can
generate an e-optimal solution in O(v/G log(1/¢)) iterations,
each requiring at most O(G?®+ M () arithmetic operations [11].
Otherwise, they yield an infeasibility certificate. This is a useful
property in determining the feasibility of a candidate beam-
forming configuration. The simplex method could also be used
and it will typically be more efficient for small problem sizes.

As noted already, for G = M (independent information
transmission to each receiver), problem Q, is in fact equivalent
to (not a relaxation of) problem Q, see [6]. Likewise, problem
S€ reduces to the well-known multiuser downlink power con-
trol problem, which can be solved using simpler means (see,
e.g., [5]): matrix inversion and iterative descent algorithms.
In this special case, (in)feasibility can be determined from
the spectral radius of a certain “connectivity” matrix. Similar
simplifications for the general instance of MMPC are perhaps
possible, but nontrivial. In fact, an iterative MMPC algorithm
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based on the concept of interference functions was proposed in
[12]. However, the power iterations advocated therein are only
guaranteed to converge when the problem is feasible. Keeping
in mind that the MMPC problem emerges in the context of
randomization, it is clear that effective detection of infeasibility
is an important issue. Furthermore, even when the problem
is feasible, it is not clear whether the power iterations in [12]
require smaller overall complexity to find an optimum solution
than the available LP routines, which are highly efficient.

The overall algorithm for generating an approximate solution
to the original QoS problem Q can be summarized as follows:

1) Relaxation: Solve problem Q, using a SDP solver. Denote
the solution {X;pt}le.

2) Randomization/Scaling Loop: For each k, generate a
vector using the Gaussian randomization technique. If,
for some k, rank(X{P") = 1, then use the principal com-
ponent instead. Next, feed the resulting set of candidate
beamforming vectors {wk.}f:1 into the MMPC problem
S€< and solve it using a LP solver. If the particular instance
of problem S€ is infeasible or yields a larger objective
value than previously checked candidates, discard the
proposed set of candidate beamforming vectors; else,
record the set of beamforming vectors, the associated
scaling factors {pk}gzl and the objective value. Repeat
for a predetermined number V,,,q4 of randomizations.

Assuming that the randomization/scaling loop yields at least
one feasible solution, let {Wk,pk}le denote the recorded
beamvectors and scaling factors. Then, the approximate solu-
tion of problem Q is given by { \/p_kwk}gzl.

The overall complexity of this solution is that of solving the
SDP problem Q, once and the LP problem S N, ,,,4 times. The
choice of Ny,nq is a tradeoff between the extent of sub-opti-
mality of the final solution and the overall complexity of the al-
gorithm. The quality of the approximate solution to problem Q
can be measured by the ratio of the minimum objective value of
problem S€<, attained in the randomization/scaling loop, to the
lower bound on transmitted power, obtained by the solution of
problem Q,. The numerical results reported in Section VI show
that a few hundred randomizations are adequate, in most sce-
narios considered, to yield a solution which is at most 3—4 dB
away from this lower bound; hence, even less from the (NP-hard
to find) optimum. The lower bound obtained by solving problem
Q. can be further motivated from a duality perspective, as in
[3]; that is, the aforementioned relaxation lower bound is in fact
the tightest lower bound on the optimum value of problem Q
attainable via Lagrangian duality [16]. This follows from argu-
ments in [17] (see also the single-group case in [3]), due to the
fact that Q is a QCQP problem. For theoretical a priori bounds
on the extent of the suboptimality of the solution in [3] for the
single-group case see [15].

V. JOINT MAX-MIN FAIR BEAMFORMING

In this section, we consider the related problem of maxi-
mizing the minimum SINR, received by any of the M intended
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users irrespective of the multicast group they belong to, sub-
ject to an upper bound P on the total transmission power. Ac-
tually, a more general problem is considered, in which each re-
ceived SINR is scaled by a predetermined (positive real) con-
stant weight factor 1/+;, to account for possibly different grades
of service. Let g := [y1,- - -, var]T. The joint (weighted) MMF
transmit multicast beamformer design is formulated as

F

H 2
) 1 |Wk hi|
max min min — H 3 2
N1G ke{l,..., G} i€GL Y; E .
{wreCN}y_, €{1,...G} k Vi 04k |WZ hz| + g;

G
st.or Y [well3 < P.
k=1

This problem formulation is important for systems required
to comply with a strict upper bound on the total transmitted
power, e.g., due to regulation. It is straightforward to see that
the inequality power constraint will be met with equality at the
optimum. Otherwise, if there is power budget left, one could
distribute it evenly, i.e., multiply all beamformers by a constant
¢ > 1, thereby increasing the minimum SINR (note that o7 >
0), thus contradicting optimality. We may therefore focus on the
equality constrained problem and denote this as F from now on.
Introducing an auxiliary (positive real) variable ¢ to lower bound
the worst-case scaled SINR, the equality constrained version of
problem F can be equivalently rewritten as

F
max t
{wreCN}C_ |, teR
2
1 wih;
s.t.: | k Z| >t

Vi Yo |WeHhi|2 +o7
Vie g, Vi, Le{l,...,G}

G
> llwill3 = P, and t > 0.
k=1

The design criterion seeks to maximize the worst-case scaled
SINR, so as to ensure weighted fairness among the received mul-
ticasts. Obviously, equal fairness is a special case that corre-
sponds to the choice of g = 1,,. Contrary to the QoS approach,
discussed in Section II, problem F always admits a feasible so-
lution, apart from the trivial case of zero channel vectors. De-
noting as t,, the optimum value of F, the optimum beamformers
guarantee SINR levels equal to ¢,g. Interpreting the weight fac-
tors g as target SINRs, these are achieved, with total transmitted
power P, if and only if ¢, > 1. In this sense, the MMF problem
is more flexible than the QoS one and can be used to determine
whether, in a power-constrained system, a specified set of SINR
targets g can be satisfied or not. Moreover, it determines the
exact level of under- or over-satisfaction ¢,.
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The formulation of problem F is a generalization of the re-
spective MMF multiuser downlink beamforming problem (see,
e.g., [18] and references therein). As for the QoS case, not all
SINR inequalities will be tight in general at the optimum. Re-
garding complexity, problem F contains as a special case the
associated broadcasting problem (G = 1), which was proved to
be NP-hard in [3]. This immediately implies the following re-
sult.

Claim 2: Problem F is NP-hard.

Claim 2 motivates the pursuit of sensible approximate solu-
tions to the MMF problem F.2

Before proceeding in proposing an algorithm to find such an
approximate solution, let us have a closer look at the connection
between problem F and problem Q. For a given set of chan-
nels and noise powers, F is parameterized by g and P. We will
use the notation F(g, P) to capture this dependence, and, with
slight abuse of notation,3 ¢ = F(g, P) to denote the associated
optimum value (maximum worst-case scaled SINR). Likewise,
Q is parameterized by the vector g of QoS constraints; we will
use the notation Q(g) to account for this, and P = Q(g) to de-
note the associated optimum value (minimum power).

Generalizing the respective results for the two extreme cases
of the multigroup multicast beamforming problem (namely,
G = M [18] and G =1 [3]), we have the following result:

Claim 3: The QoS problem Q and the MMF problem F are
related as follows:

t=7F (g, Qtg)) 1)
P=Q(F(g,Pg). )

Proof: Contradiction can be used to prove (1). Let
{Wg}le and P% denote an optimal solution and the asso-
ciated optimal value to a feasible instance of problem Q(tg),
where tg are the required SINR targets. Consider the problem
instance F(g, P¥). The set {wk(‘)}f=1 is a feasible solution
with objective value . Assume the existence of another feasible
solution {w{’ }le with associated optimal value ¥ > ¢. Then,
it is possible to find a constant ¢ < 1 to scale down this solution
set, while still fulfilling the SINR constraints of problem Q(tg).
The resulting set {cwl’ }le has smaller objective value (total
transmétted power) than P®, which contradicts optimality of
{Wg} k=1"

A similar procedure can be used to prove (2). Specifically,
let {w] }le and t denote an optimal solution and the asso-
ciated optimal value to a problem instance F(g, P). Consider
the problem instance Q(t"'g). The set {wf },_, is a feasible
solution with objective value P. Assume the existence of an-
other feasible solution { wg}le with associated optimal value

P® < P.This contradicts optimality of {w’ }le for F(g, P),

2As for problem Q, there exist special cases of problem JF that are not
NP-hard: e.g., for Vandermonde channel vectors it admits a SDP reformulation
[8], [9] and for independent data transmission a generalized eigenvalue problem
reformulation [18].

3The meaning will be clear from context.
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since the power budget P— P% can be distributed evenly to yield
an objective value larger than ¢ [ |

Another useful property of both formulations is shown in the
following claim.

Claim 4: The optimum objective values of the QoS problem
Q(tg) and the MMF problem F (g, P) are monotonically non-
decreasing in ¢ and P, respectively, for a given g.

Proof: The feasible set of Q(tg) is decreasing in ¢. For
F(g, P), any additional power can be evenly distributed,
thereby increasing all SINRs, provided that all the {o?}fvil are
nonzero. [ |

Corollary 1: A solution to F(g, P) can be found by itera-
tively solving Q(tg) for varying values of ¢. Claim 3 guaran-
tees optimality of the solution for P = Q(t¢g) and Claim 4 en-
ables the use of a simple one-dimensional bisection search for
the sought ¢ (see [18] for the special case of multiuser downlink
beamforming). Similarly, bisection of ¢ = F(g, P) over P can
be used to solve Q(tg).

Corollary 1 suggests a solution to the MMF problem, pro-
vided that the QoS problem can be solved optimally. However,
Q is NP-hard and we can only find an approximate solution,
as proposed in Sections III and IV. Due to this, and keeping in
mind that F is NP-hard (Claim 2), we again pursue a respective
sensible approximate solution.

Using the notation introduced in Section III and following
similar steps as in the relaxation @ — Q,, the following re-
laxation of the original MMF problem F is obtained by drop-
ping the nonconvex rank-one constraints, associated with the
matrices {X;}_,.

max t
{X,eCNXN}CE  teR

st.: ty Ztr(Qng) +o?
(#k
Vi€ G, Vk, 0L e{l,...,G}

EG: tI‘(Xk) =P

X, >0 Vke{l,....G}, and t > 0.

— tI‘(QiXk> <0

At first glance, problem F, may seem to be of the same form
as Q, of Section III, except for the extra linear equality con-
straint on the total transmission power, the extra nonnegativity
constraint, and the different (yet still linear) objective function.
However, contrary to Q,, F, does not admit an equivalent SDP
reformulation, because the M inequality constraints on the re-
ceived SINRs are nonlinear (note that ¢ is a variable).4

“In the single-group multicast beamforming case, F, is a SDP problem [3].
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Claim 5: The relaxed QoS problem Q, and the relaxed MMF
problem F, are related as follows:

Proof: Verbatim to the proof of Claim 3, denoting the
problem solutions as {Xk}le instead of {wk}gzl. ]
Claim 6: The optimum objective values of the relaxed QoS
problem Q,(tg) and the relaxed MMF problem F,(g, P) are
monotonically nondecreasing in ¢ and P, respectively, for a
given g.
Proof: Verbatim to the proof of Claim 4. ]

Corollary 2: Due to Claims 5 and 6, the relaxed problem
F.(g, P) can be solved by a one-dimensional bisection search
over t, to attain P = Q,(tg).

Specifically, let ¢ = F.(g,P). A feasible solution of
F:(g, P) that is at most ¢ > 0 away from ¢ can be generated
as follows. Let [L, U] be an interval containing #. Due to the
nonnegativity of Z, the lower bound is initialized as L = 0.
Assuming that the total available power is directed towards a
single group and using the Cauchy-Schwartz inequality, the
upper bound is initialized as U = . M}(P||h,;||§/7,;J,L-2).

Given [L, U], the SDP problem Q, (tg) is solved at the midpoint
t = (L + U)/2 of the interval. If it is feasible for the given
choice of ¢ and its objective value is lower than P, the solution
is stored and L := ¢; otherwise U := t. The use of interior point
SDP solvers, such as SeDuMi [10], is useful in this context,
because they do not only yield an efficient solution to problem
Q. (tg) when the latter is feasible, but they also provide a cer-
tificate of infeasibility otherwise. The aforementioned steps are
repeated until U — L < €. Since in each iteration the interval is
halved, the algorithm requires only Niser = [log,((U — L)/¢€)]
iterations. In practice, 10—12 iterations are usually enough for
typical problem setups. Building on [18], a similar bisection
search algorithm was also proposed in [12].

When the algorithm terminates, the resulting matrices
{ szt}le are an e-optimal solution of F.(g, P). The associ-
ated optimal value, which is approximately equal to #, is merely
an upper bound on the scaled SINR that can be guaranteed
to every user, for the specific power budget P. This bound

min
1

can only be met when all matrices {szt}gzl are rank one,
so that their principal components can be chosen as optimum
beamforming vectors. However, due to the relaxation, this is
generally not the case. As in the QoS approach, postprocessing
of the relaxed solution is needed, when the solution matrices
{ Xim}f:l are not all rank one, to yield an approximate solu-
tion to the original MMF problem F. This can be accomplished
by a combined randomization/scaling procedure, similar to
the one described in Section IV. Specifically, the Gaussian
randomization, described in Section IV, may be used in a first
step to create candidate sets of beamforming vectors {Wk}f:1
in the span of the respective transmit covariance matrices
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(the optimum solution matrices {szt}le of problem F,).
In a second step, the total available transmission power P
is optimally allocated to the candidate beamforming vectors,
by means of an appropriate MMPC problem, as explained in
the rest of this section. The set {wy,, pk}le of beamforming
vectors and respective power boost (or back-off) factors, that
yields the highest objective value is chosen among all solutions
generated this way. The approximate solution to the original
MMEF problem F is then equal to {,/px wi} & Py

Given a candidate set of beamforming vectors {wk}k 1> the
power budget P can be optimally allocated among them by
solving the following MMPC problem:

s
max t
{preR},, teR
1 (07X
st.: — PrOk, > ¢

Vi Do ppr Peui + 07
Vie G, Ve, Le{l,...,G}

Z Brpr = P
=1

pr >0 VEe{l,...,G}, and t > 0.

where the coefficients ay; and (; are as introduced in
Section IV.

Unlike S2, S7 does not admit an equivalent LP reformu-
lation, because of the M nonlinear inequality constraints (note
that ¢ is a variable).

Claim 7: The QoS MMPC problem S€ and the MMF
MMPC problem S7 are related as follows:
t=5" (g,5%(tg)) 5)

P=52(58"(g,P)g). (6)

Proof: Verbatim to the proof of Claim 3, denoting the
problem solutions as {pk}le instead of {wk}gzl. ]
Claim 8: The optimum objective values of the QoS MMPC
problem S€(tg) and the MMF MMPC problem S” (g, P) are
monotonically nondecreasing in ¢ and P, respectively, for a
given g.
Proof: Verbatim to the proof of Claim 4. ]

Corollary 3: Due to Claims 7 and 8, the MMF MMPC
problem S7 (g, P) can be solved by a one-dimensional bisec-
tion search over t, to attain P = S9(tg).

The bisection algorithm, described earlier in this section, can
be used again to obtain a solution to problem S” (g, P). The
search interval is bounded below by L = 0, as before. However,
the upper bound may now be further restricted to U = £ (the
optimal objective value of F,(g, P)). The difference is that for
each iteration (value of t), the LP problem S<(tg) is solved
instead of the SDP problem O, (t¢g).

The overall complexity of finding an approximate solution
to the original MMF problem F is that of solving Njte, times
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the SDP problem Q, and Ny,,q NV}, times the LP problem S<,
where Njter and N/, ., denote the number of bisection iterations
required for the solution of F, and S7, respectively, and Nyang
is the number of Gaussian randomization trials. The quality of
the final approximate solution to problem F can be measured
by the ratio of the upper bound obtained by the solution of the
relaxed problem , to the maximum value of problem S7 at-
tained in the randomization/scaling loop.

We remark that S7 also admits an equivalent reformulation

as geometric problem (GP)

S

min ¢!

{preR};_,, teR

s.t.: Z (’y,a“ak Z) tp{pk + (%J ay, Z) tpk <1
t£k

Vi€ Gy VE,Le{l,...,G}

which can be efficiently solved using modern interior point
methods, bypassing the need for bisection. We note, however,
that the number of bisection steps is rather small in general (at
most 12 in all cases that we considered in the reported results
of Section VI), so this does not appear to be a big issue.

VI. NUMERICAL RESULTS

A. Monte Carlo Simulation Results

In Sections IIT and IV, we have derived a two-step polyno-
mial-time algorithm to generate an approximate solution to the
joint QoS downlink multicast beamforming problem Q. The
first step of the proposed algorithm consists of a relaxation of
the original problem Q to problem Q,. Problem Q may or may
not be feasible; if it is, then so is problem Q,. If Q, is infea-
sible, then so is Q. The converse is generally not true; i.e., if O,
is feasible, Q need not be feasible. In order to establish feasi-
bility of Q in this case, the randomization/scaling loop should
yield at least one feasible solution. This is most often the case, as
will be verified in the sequel. If the randomization/scaling loop
fails to return at least one feasible solution, then the (in)feasi-
bility of Q cannot be determined. There is, therefore, a rela-
tively small proportion of problem instances for which (in)fea-
sibility of Q cannot be decided using the proposed approach. It
is evident from the above discussion that feasibility is a key as-
pect of problem Q and its proposed solution via problem Q,
and the randomization/scaling loop. Feasibility depends on a
number of factors; namely, the number of transmit antenna ele-
ments, the number and the populations of the multicast groups,
the channel characteristics, the noise variances, and finally the
received SINR constraints.

Beyond feasibility, there are two key issues of interest. The
first has to do with cases for which the solution to the relaxed
problem Q, yields an exact optimum of the original problem
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TABLE 1
MC SIMULATION RESULTS (RAYLEIGH); 4 Tx ANTENNAS
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TABLE II
MC SIMULATION RESULTS (RAYLEIGH); 8 Tx ANTENNAS

feas. | opt. | feas. | all solutions | appr. solutions feas. | opt. | feas. | all solutions | appr. solutions
M | G| SINR || Q | Q| appr. | mean | std | mean | std M | G| SINR | Qr | Qr | appr. | mean | std | mean | std
6 3 6 90 100 - 1 0 - - 12 | 2 6 100 37 95 1.18 | 0.25 | 1.30 0.27
6 3 8 70 100 - 1 0 - - 12 | 2 8 100 36 96 1.17 | 0.24 | 1.28 0.25
6 3 10 45 100 - 1 0 - - 12 | 2 10 100 35 95 1.17 | 0.23 1.27 0.24
6 3 12 27 100 - 1 0 - - 12 | 2 12 100 41 96 1.15 | 0.21 1.26 0.22
6 | 3| 1a 14 | 100 | - 1 0 . . 2] 14 100 | 43 | 95 | 1.15 | 022 | 127 | 023
6 3 16 7 100 - 1 0 - - 12 | 2 16 100 45 94 1.13 | 0.20 | 1.25 0.21
8 2 6 98 80 98 1.06 | 017 | 1.29 0.30 12| 2 18 100 48 96 1.12 | 0.23 | 1.25 0.28
8 2 8 91 84 99 1.08 | 038 | 1.54 0.83 12 | 2 20 100 53 95 1.10 | 0.18 | 1.23 0.21
8 2 10 73 83 98 1.19 | 1.81 | 2.27 4.54 12 13 6 100 79 98 1.04 | 0.11 1.19 0.17
8 2 12 52 86 99 1.20 | 2.12 | 2.55 5.84 12 |3 8 100 79 98 1.04 | 0.11 1.19 0.18
8 2 14 32 89 100 1.01 | 0.06 | 1.11 0.15 12 | 3 10 99 81 99 1.05 | 0.14 | 1.25 0.24
8 2 16 16 90 96 1.04 | 0.19 | 1.67 0.44 12 | 3 12 95 85 98 1.04 | 0.15 | L.31 0.29
8 2 18 9 93 100 1.02 | 0.07 | 1.22 0.19 12 |3 14 79 88 99 1.06 | 0.29 | 1.52 0.74
8 2 20 3 89 100 1.05 | 0.16 | 1.49 0 12 | 3 16 52 93 99 1.02 | 0.11 1.38 0.26
1202 6 42 | 49 | 79 | 169 | 1.89 | 282 | 273 1213 ] 18 ] 31 | 94] 9 | 103)014) 15 | 037
22| 8 10 | 81 | 94 | 1.19 | 051 | 239 | 047 12]3] 20 18 | 98 | 100 | 1.01 j 004 ] 129 | ©
12 | 2 10 1 100 - 1 0 - - 12 | 4 6 100 93 100 1.01 | 0.03 | I.11 0.08
12 | 4 8 87 98 100 1.00 | 0.04 1.24 0.17
Q. This happens when the solution matrices {XOPt}G turn S B o8 | 0| MO0 0% ) L2 ] 0
ou‘t all being rank one. Then, the associated prin(fipalkc:émpo- 2] 4 12 12 | 57 | 100 | 101 | 006 136 0
nents solve optimally the original problem Q, i.e., in such a case 214 14 3 100 ] - ! 0 - i}
Q, is not a relaxation after all. It is interesting to find the fre- 16 | 2 6 100 | 10 | 93 | 1.88 | 1.63 | 1.99 | 1.69
quency of occurrence of such an event, whose benefit is twofold: 16 | 2 3 100 | 12| 91 | 200 | 227 | 214 | 240
tbe problem is sqlveq optimally and at a smaller cgmplexity, 61 2 10 100 | 15 P 188 | 132 | 2.06 38
since the randomization step and the repeated solution of the
ensuing MMPC problem S€ is avoided. The second issue of in- 16 ] 2 12 S 88 170 | 157 ] 194 | 176
terest is the quality of the final approximate solution to problem | 16| 2 | 14 95 |32 | 8 | 180 | 230 ) 224 | 278
Q. A practical figure of merit is the power ratio discussed in 16 | 2 16 73 | 46 | 92 | 1.71 | 3.86 | 242 | 5.40
Section IV. 16 2| 18 || s4 | 59| 93 | 133 | 1.04 | 191 | 1.56
We first consider the standard i.i.d. Rayleigh fading model, 6l 21 20 3 1 65 | 92 | 127 | o2 | 186 | 131
i.e., the elements of each channel vector are i.i.d. circularly
symmetric zero-mean complex Gaussian random variables 24| 2 6 » 0 4 | 679 | 874 684 | 876
of variance 1. The results presented in this subsection are 24| 2 8 61 4 30 | 487 | 623 | 553 | 6.52
obtained by averaging over 300 different channel snapshots, 24 | 2 10 12 | 14| 34 | 364 | 520 553 | 630

using 300 Gaussian randomization samples in each Monte
Carlo run. Tables I and II summarize these results, for number
N of transmit antenna elements set to 4 and 8, respectively.
The proposed two-step algorithm is tested for a variety of
choices for the total number M of single-antenna receivers
and the number G of multicast groups, which index the rows
in the tables (columns 1 and 2, respectively). The users are
considered to be evenly distributed among the multicast groups,
ie., {Gy = M/G}le. For each such configuration, the same
SINR targets are requested for all users (in the 6-20 dB range,
see column 3). The noise variance is set to 02 = 1 for all
channels.

The percentage of the 300 Monte Carlo runs for which Q, is
feasible is shown in column 4. Column 5 reports the percentage

of feasible solutions to problem Q,, for which the solution ma-
trices turn out all being (essentially) rank one; defined by the
second largest eigenvalue being smaller than 10~2 of the sum
of all eigenvalues. Column 6 reports the percentage of problem
instances for which, once a feasible solution to problem Q, is
found, the proposed randomization/scaling loop yields at least
one feasible solution to the original problem Q. Columns 7 and
8 hold the mean and the standard deviation of the ratio of the
total transmitted power corresponding to the final approximate
solution over the lower bound obtained from the SDR solution.
This ratio equals 1 when the relaxation is tight, and the reported
statistics depend on the frequency (see column 5) of this event.
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Qr feasibility; 300 MC runs, 4 Tx antennas

percentage

6 8 10 12 14 16 18 20
SINR [dB]

Fig. 2. Q, feasibility; 300 MC runs, 4 Tx antennas.

In order to obtain additional insight on the quality of the approx-
imation step, conditional statistics are also reported in columns
9 and 10 after excluding exact optimum solutions from the cal-
culation.

The Q, feasibility percentages, stored in column 4 of Tables I
and II, are also plotted in Figs. 2 and 3, respectively. In all con-
figurations considered, the higher the target SINR, the less likely
it is that Q, is feasible, which is intuitive. Furthermore, O, is
getting more difficult to solve as the number G of multicast
groups increases and/or as more users are added in each group,
since in either case interference is higher. Finally, it is seen that,
as expected, increasing the number of transmit antenna elements
improves service: higher received SINR can be attained by more
users in more multicast groups.

The Q. optimality percentages are also plotted in Figs. 4 and
5, for the case of 4 and 8 transmit antennas, respectively. The
most interesting observation is that the optimality percentage
increases as the number of users per multicast group decreases;
percentages are significant especially when the number of users
per group is smaller or equal to the number of transmit antennas.
This can be seen in two ways: either by holding the number
of groups fixed while decreasing their populations, or by fixing
the total number of users and distributing them in more multi-
cast groups. Trying to interpret this fact, note that in both cases
the problem is pushed towards the multiuser (independent infor-
mation) downlink problem, where each user forms a multicast
group. The latter is known to be convex, and the associated SDP
relaxation has been shown to be tight [6]. In addition, the Q, op-
timality percentage also increases with target SINR. It seems as
if rank-one solutions are more likely when operating close to the
infeasibility boundary.

Regarding the approximation step of the proposed algorithm,
we can distinguish two cases. In most of the scenarios consid-
ered, the number of users per multicast group was kept smaller
or equal to the number of transmit antenna elements, so that a
realistic value of the received SINR could be guaranteed, for
a significant fraction of the different channel instances. There,
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Qr feasibility; 300 MC runs, 8 Tx antennas

percentage

6 8 10 12 14 16 18 20
SINR [dB]

Fig. 3. Q, feasibility; 300 MC runs, 8 Tx antennas.

the randomization/scaling loop yields a feasible solution with a
probability higher than 90% in most cases where Q, is feasible,
as shown in Fig. 6 which illustrates the contents of column 6 of
Table II. The approximate solution entails transmission power
that is under two times (3 dB from) the possibly unattainable
lower bound, on average. The actual numbers for each config-
uration depend on the number of the Gaussian randomization
samples; 300 have proved adequate for most configurations.
However, when a relatively low target SINR is to be guaran-
teed to a number of users per group larger than the number of
antennas, the feasibility of the approximation decreases and the
power penalty increases. This can be appreciated by looking at
the lowest sub-matrices of Tables I and II. Using 1000, instead
of 300, Gaussian random samples for these configurations, we
have observed a small improvement in the quality of the approx-
imation.

We have repeated the Monte Carlo simulations, under the
same setup, in order to validate the performance of the MMF
algorithm presented in Section V. The results are very similar
to the ones presented so far for the QoS case, and we therefore
skip them for brevity. The sole difference is that feasibility is not
an issue in the MMF case. Specifically, there is a considerable
percentage of problem instances for which the proposed relax-
ation is tight, so that the optimum solution is found. For all other
instances, the proposed algorithm finds a high-quality approx-
imate solution at manageable complexity cost. An interesting
observation is that the quality of the approximation for the multi-
group case is consistently better than the respective single-group
case [3] and that it becomes better as a given number of users is
distributed among a larger number of multicast groups; again,
moving closer to the multiuser downlink problem.

B. Experiments With Measured Channel Data

The performance of the proposed multicast beamforming
algorithms was also tested on measured channel data courtesy
of iCORE HCDC Lab, University of Alberta in Edmonton,
Canada. Measurements were carried out using a portable 4 x
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Qr optimality; 300 MC runs, 4 Tx antennas
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Fig. 4. Q, optimality; 300 MC runs, 4 Tx antennas.

Qr optimality; 300 MC runs, 8 Tx antennas
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Fig. 5. Q, optimality; 300 MC runs, 8 Tx antennas.

4 multiple-input multiple-output (MIMO) testbed that operates
in the 902-928 MHz (ISM) band. The transmitter (Tx) and
the receiver (Rx) were equipped with antenna arrays, each
comprising four vertically polarized dipole antennas spaced
A/2 (=16 cm) apart. The chip rate used for sounding was
low enough to safely assume that the channel is not frequency
selective. More details on the testbed configuration and the
procedure used to estimate the channel gains of the MIMO
channel matrix can be found in [19]. Datasets and a detailed
description of many measurement campaigns in typical prop-
agation environments are available at the iCORE HCDC Lab
website (http://www.ece.ualberta.ca/~mimo/). The most per-
tinent scenario for our purposes is the stationary outdoor one,
called Quad and illustrated in Fig. 7. Quad is a 150 by 60 meters
lawn surrounded by buildings with heights from approximately
15 to 30 meters. The Tx location was fixed, whereas the Rx was
placed in 6 different locations (no measurements are actually
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Approximation feasibility; 300 MC runs, 300 randomizations, 8 Tx antennas
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Fig. 6. Approximation feasibility; 300 MC runs, 300 randomizations, 8 Tx an-
tennas.
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Fig. 7. Sample wireless channel measurement scenario from http://www.ece.
ualberta.ca/~mimo/.

1

provided for location 4) as indicated in Fig. 7. For every Rx
location, 9 different measurements were taken by shifting the
Rx antenna array on a 3 x 3 square grid with A/4 spacing. Each
measurement contains about 100 4 X 4 channel snapshots,
recorded 3 per second; thus for each location there are about
900 MIMO channel gain matrices available. We form multicast
groups by considering each receive antenna at each location as
a separate terminal, and grouping terminals in 1-3 locations.
The results reported in Tables III-V for the QoS problem
formulation were obtained by averaging over the 900 channel
instances. We have tried tens of different configurations and
we are only presenting representative results for each scenario
considered. All channel gains are normalized before use by
the same constant (average amplitude over all channels and
all snapshots), in order to facilitate the comparison with the
simulated Rayleigh case. Note that this normalization maintains
differences in path loss. 300 Gaussian samples are employed in
the randomization/scaling loop.

The main findings regarding the performance of our algo-
rithms applied to the measured channel data can be summarized
as follows:
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TABLE III TABLE V
MEASURED CHANNEL RESULTS; 2 MULTICAST GROUPS OF 4 USERS EACH MEASURED CHANNEL RESULTS; 3 MULTICAST GROUPS OF 3 OR 4 COLOCATED
USERS EACH
feas. | opt. | feas. | all solutions | appr. solutions
feas. | opt. | feas. | all solutions | appr. solutions
SINR [oF Q; | appr. | mean std | mean std
SINR Q, Qr | appr. | mean std mean std
Group 1 (4 at L5) & Group 2 (4 at L7)
Group 1 (3 at L1), Group 2 (3 at L2) & Group 3 (3 at L3)
6 98 82 98 1.05 | 0.19 | 1.30 0.39
6 72 98 100 1.01 | 0.10 | 1.36 0.66
8 91 84 88 1.05 | 0.23 | 1.33 0.53
8 37 99 100 1.00 | 0.01 1.10 0.07
10 82 87 98 1.04 | 0.21 1.40 0.53
10 14 100 - 1 0 - -
12 50 92 99 1.04 | 0.29 | 1.61 0.95
Group 1 (4 at L1), Group 2 (4 at L2) & Group 3 (4 at L3)
14 19 91 98 1.02 | 0.08 | 1.23 0.19
6 29 95 99 1.02 | 0.11 1.36 0.40
16 9 94 100 1.01 | 0.06 | 1.16 0.22
8 8 100 - 1 0 - -
18 3 92 96 1.00 | 0.00 | 1.01 0
Group 1 (2 at L2 & 2 at L6) & Group 2 (2 at LS & 2 at L7)
P 00 | 51 9 1 105 Tois] 129 | o34 Q — Q,is tlght very frequently (79%—100%) and the
power penalty paid by the approximation step very small.
8 100 | 81 % | 105|018 | 130 | 033 These hold irrespective of the distribution of each group’s
10 96.1 | 86 99 1.04 | 0.17 | 1.32 | 0.36 users in one, two, or even three locations (see Table III).
12 83 | 90 | 99 | 1.04 | 026 | 143 | 0.80 * For two multicast groups of six users each, evenly dis-
” pos 3 % 15 128 | 373 | 1210 tributed in 2 locations, the 'relaxatlon Q — Q, is tight f'or
more than half of the occasions (see Table IV). There exist
16 31 93 | 99 | 102 1012 | 136 | 033 channel instances for which SINR up to 14 dB can be guar-
18 14 | 95 99 1.01 | 0.07 | 1.31 | 0.21 anteed; such high SINR values are unattainable under the
20 6 9 | 100 | 1.03 | 018 | 144 | 053 corresponding i.i.d. Rayleigh fading scenario. The quality

of approximation is good, even though the number of users

G I (latLl,1atL3 & 2atL6 . .
roup I (1 at L1, T at L6) per group is larger than the number of transmit antenna el-

Group 2 (1 atL2, 1 at LS & 2 at L7) ements. When the six users of each group are evenly dis-
6 100 | 72 98 1.12 | 0.54 | 145 | 0.98 tributed in three locations, the problem is feasible only up
8 99 | 75 | 98 | 1.09 | 031 | 139 | 055 to about 10 dB and the feasibility of the approximation step

can drop <80%.

10 93 80 97 1.18 | 2.71 | 2.03 6.44 .
* For three multicast groups (see Table V) of three colocated

12 73 | 87 | 97 | 1.05 | 025 | 144 | 0.63 users each, the relaxation Q — Q, is almost always tight
14 4 | 89 | 98 1.07 | 0.71 | 1.78 | 2.19 (>90%) and feasible up to 10 dB of prescribed SINR. For
16 23 93 99 103 o018 | 152 | o059 four users per group, it becomes infeasible for SINR values

larger than about 8 dB.

TABLE IV

MEASURED CHANNEL RESULTS; 2 MULTICAST GROUPS OF 6 USERS EACH VIL. CONCLUSION

The downlink beamforming problem was considered for the

feas. | opt. | feas. | all solutions | appr. solutions general case of multiple cochannel multicast groups, under two
SINR || O | O | appr. | mean | std | mean | std design criteria: QoS, in which we seek to minimize the total
Group 1 (3 at L1 & 3 at L3) & Group 2 (3 at L2 & 3 at L6) transmitted power while guaranteing a prescribed minimum
SINR at all receivers; and a fair objective, in which we seek

6 100 73 98 1.19 | 1.50 | 1.76 291 .. .. .
to maximize the minimum received SINR under a total power
8 9% | 68 94 1.39 1245 | 238 | 449 constraint. Both formulations contain single-group multicast
10 61 66 92 1.33 | 1.06 | 2.15 | 1.73 beamforming as a special case, and are therefore NP-hard.
12 8 | 72| o 133 | 115 | 256 | 2.12 Computationally efficient quasi-optimal solutions were pro-

posed by means of SDR and a combined randomization/scaling

G 1 (2atLl,2atL2 & 2 at L6 . . .
roup 1 (2 2 at L6) loop. Extensive numerical results have been presented, using

Group 2 2 atL3,2at LS & 2 at L) both simulated (i.i.d. Rayleigh) and measured outdoor wireless
6 70 | 24 82 | 225 | 3.51 | 278 | 4.06 channel data, showing that the proposed algorithms yield
8 33 | 41 81 202 | 358 | 3.08 | 4.90 high-quality approximate solutions at a moderate complexity

cost. Interestingly, our numerical findings indicate that the
solutions generated by our algorithms are often exactly op-
timal, especially in the case of measured channels. In certain
* For two multicast groups and number of users per group cases, this optimality can be proven beforehand, and alternative

equal to the number of Tx antennas (N = 4), the relaxation  convex reformulations of lower complexity can be constructed;

10 7 48 65 1.18 | 045 | 1.67 0.69
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see [8] and [9] for further details. In other cases, a theoretical
worst-case bound on approximation accuracy can be derived,
and shown to be tight; on this issue, see [15].
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