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Abstract

We consider code design for Wyner’s wiretap channel. Optimal coding
schemes for this channel require an overall code that is capacity achieving
for the main channel, partitioned into smaller subcodes, all of which are
capacity achieving for the wiretapper’s channel. To accomplish this we
introduce two edge type low density parity check (LDPC) ensembles for
the wiretap channel. For the scenario when the main channel is error free
and the wiretapper’s channel is a binary erasure channel (BEC) we find
secrecy capacity achieving code sequences based on standard LDPC code
sequences for the BEC. However, this construction does not work when
there are also erasures on the main channel. For this case we develop a
method based on linear programming to optimize two edge type degree
distributions. Using this method we find code ensembles that perform
close to the secrecy capacity of the binary erasure wiretap channel (BEC-
WT). We generalize a method of Méasson, Montanari, and Urbanke in
order to compute the conditional entropy of the message at the wire-
tapper. This conditional entropy is a measure of how much information
is leaked to the wiretapper. We apply this method to relatively simple
ensembles and find that they show very good secrecy performance.

Based on the work of Kudekar, Richardson, and Urbanke, which
showed that regular spatially coupled codes are capacity achieving for
the BEC, we construct a regular two edge type spatially coupled ensem-
ble. We show that this ensemble achieves the whole capacity-equivocation
region for the BEC-WT.

We also find a coding scheme using Arikans polar codes. These codes
achieve the whole capacity-equivocation region for any symmetric binary
input wiretap channel where the wiretapper’s channel is degraded with
respect to the main channel.
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Chapter 1

Introduction

Wireless communication is ubiquitous in today’s society. Indeed, cell
phones and Wifi networks are everywhere. Regrettably, wireless trans-
missions are by their broadcast nature open to eavesdropping. Everyone
has the possibility to listen in to the communication between for example
a computer and a wireless router. Such connections are usually secured
through encryption protocols, relying on pre-shared keys and the com-
putational difficulty of solving certain problems, for example, the prime
factorization of large integers, or the calculation of discrete logarithms.
This is not entirely satisfactory. Encryption protocols may have undis-
covered weaknesses, and, perhaps a smaller concern, the computational
hardness of these problems is only conjectured.

An example of the first problem is the Wired Equivalent Privacy
(WEP) protocol. It was introduced in 1997 as part of the original IEEE
802.11 protocol but has since then been found wanting [FMS01]. Today
there exist readily available tools that can break any WEP key in minutes,
and that run on an off-the-shelf personal computer. WEP was declared
deprecated in 2004 and has been replaced with newer protocols like WPA
and WPA2 that do not share its flaws, but it is still in wide use.

The assumption that prime factorization and calculation of discrete
logarithms is hard is not as big a concern as poorly implemented or de-
signed protocols. Today no efficient algorithms for solving these problems
on regular computers have been found, and it is widely believed that no
such algorithms exist. However, there exist algorithms for both of these
problems that run in polynomial time on quantum computers [Sho99).
There is a lot of research into quantum computing, and there have been
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experimental demonstrations of Shor’s algorithm for integer factorization
[LBYPOT, LWL™07).

In the field of Information Theoretic Security we take a different view
of the problem. We assume that the eavesdropper has unlimited com-
putational powers, rendering the approach of public-key cryptography
useless. Instead we assume that the legitimate receiver of the message
has a physical advantage over the eavesdropper. In the example of a
wireless network we will assume that the legitimate receiver has a higher
signal to noise ratio than the eavesdropper. One way of assuring this is by
assuming that the eavesdropper is situated further from the transmitter
than the legitimate receiver, for example that the eavesdropper is out-
side the building in which the wireless network is located. Based on this
physical advantage we then use a randomized coding scheme to trans-
mit information. The legitimate receiver has a better channel than the
eavesdropper and is able to determine which information we send. The
eavesdropper however is unable to obtain any information at all from her
received signals.

1.1 Outline and Contributions

This section outlines the thesis and summarizes its contributions.

Chapter 2

This chapter contains a review of fundamental results in information
theory and coding needed for the rest of the thesis. It is divided into three
parts. First we give an information theoretic overview of channel coding
and in particular Wyner’s wiretap channel. We also review previous
work on coding for the wiretap channel. The second part is an overview
of LDPC codes with a section devoted to spatially coupled LDPC codes.
The third part is an introduction to polar codes.

Chapter 3

In this chapter we introduce a two edge type LDPC ensemble for the
wiretap channel. We give a construction that achieves the secrecy
capacity when the main channel is noise-free. In the case of a noisy
main channel we numerically optimize the ensemble and find codes
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that operate close to the secrecy capacity. We also generalize a result
from [MMUQS] in order to be able to calculate the equivocation at the
eavesdropper. Using this result we find relatively simple ensembles that
have very good secrecy performance. Finally we introduce a spatially
coupled two edge type LDPC ensemble. Based on the result shown in
[KRUI0], that one edge type spatially coupled LDPC codes are capacity
achieving for the BEC we show that our construction achieves the whole
capacity-equivocation region for the BEC wiretap channel. This chapter

is based on the following published /submitted papers:

[RATT09]

[ART*10a)

[RATF10]

[RUASII)

V. Rathi, M. Andersson, R. Thobaben, J. Kliewer,
and M. Skoglund. Two edge type LDPC codes for
the wiretap channel. In Signals, Systems and Com-
puters, 2009 Conference Record of the Forty-Third
Asilomar Conference on, pages 834 —838, 2009

M. Andersson, V. Rathi, R. Thobaben, J. Kliewer,
and M. Skoglund. Equivocation of Eve using two
edge type LDPC codes for the erasure wiretap
channel. In Proceedings of Asilomar Conference on
Signals, Systems and Computers (to appear), Nov.
2010

V. Rathi, M. Andersson, R. Thobaben, J. Kliewer,
and M. Skoglund. Performance Analysis and De-
sign of Two Edge Type LDPC Codes for the BEC
Wiretap Channel. Submitted to IEEE Trans. on
Inf. Theory, Sep. 2010

V. Rathi, R. Urbanke, M. Andersson, and
M. Skoglund. Rate-Equivocation Optimal Spatially
Coupled LDPC Codes for the BEC Wiretap Chan-
nel. Submitted to Proc. IEEE Int. Sympos. Infor-
mation Theory (ISIT), Jul. 2011

where [RAT™10] is a journal version of [RATT09] and [ART"10a].
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Chapter 4

In this chapter we construct polar codes for binary input symmetric
wiretap channels where the wiretapper’s channel is degraded with
respect to the main channel. We show that the construction achieves the
whole rate-equivocation region. This chapter is based on the following
published paper:

ART™1
IAR b} M. Andersson, V. Rathi, R. Thobaben, J. Kliewer,
and M. Skoglund. Nested polar codes for wiretap
and relay channels. IEEE Communications Letters,
14(8):752 —754, Aug. 2010
Chapter 5

In this chapter we conclude the thesis and point out some directions for
possible future work.

1.2 Notation and Abbreviations

We will use the following notation and abbreviations throughout the the-
sis.

X A random variable
x A realization of the random variable X
X The set (alphabet) which X takes values in
| X The cardinality of X
px () The probability mass/density function of X
Py|x (y|x) The conditional probability mass/density
function of Y conditioned on X
E[X] The expectation of X
H(X) The entropy of X
H(X|Y) The conditional entropy of X
conditioned on Y
I(X;Y) The mutual information between X and Y
I(X;Y]S) The conditional mutual information between

X and Y conditioned on S
BEC(e) The binary erasure channel with erasure



1.2 Notation and Abbreviations

BEC(€m, €w)

log(z)
h(z)
Lisy

coef {3, F;D*, D7}

probability e

A wiretap channel where the main channel
is a BEC(€y,) and the wiretapper’s channel
is a BEC(ey,)

The logarithm to base 2

The binary entropy function to base 2

The indicator variable which is 1 if S is true
and 0 otherwise

The coefficient of D7 in ), F; D"

A vector with N elements

The vector [z; Tiy1 ... Tj—1 Tj]

The vector consisting of the elements in x
with even indices

The vector consisting of the elements in x
with odd indices

Low Density Parity Check

bits per channel use

N

N
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Chapter 2

Fundamentals

In this chapter we will review results used in later parts of the thesis.
We will begin by a short introduction to channel coding and the classic
result by Shannon [ShadS8]. We will then give an overview of the wiretap
channel as introduced by Wyner in [Wyn75]. We will give an introduction
to LDPC codes, spatially coupled LDPC codes, and polar codes, which
will be used in later chapter to construct codes for the wiretap channel.

2.1 Channel Coding

Channel coding is concerned with the communication problem depicted
in Figure 2l At the source there is a message that we want to replicate
at the destination. To do this we have a channel available. The channel
can in general be any medium, for example a telephone line, the air, the
Internet or a hard drive. Shannon studied this problem from a mathe-
matical viewpoint in his revolutionary paper [Sha48| and quantified how
much information the source can reliably, i.e. with low probability of
error, transmit to the destination.

Source | -Transmitter| - Channel - Receiver |~ Destination

Figure 2.1: A Communication System

We define the channel by the triple (X', Y, Py~ x~), where X and )
are two sets called the input alphabet and the output alphabet respectively,
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and Py~ xn (yN|zN) are the channel transition probabilities for different
number of channel uses N. Pyn|xn~ (y™|2) is the probability of sceing
the output yV at the channel when the input is 2% .

Note that in general we let the channel transition probability Py~ x~
depend on the block length N. If the channel transition probabilities

factorize as

N
Pynixn (yN|a) = H Py x (yilz:)

=1

we say that the channel is memoryless and write (X, ), Py |x).
An (M, N) code for the channel (X,)Y, Py|x) consists of a message
set

M={1,...,M}
of cardinality M, an encoder
f: M=l
and a decoder
g: YN - M.

The rate R of the code is defined as the logarithm of the number of
codewords normalized with the length:
log M
R=——.
N

The average decoding error probability is defined as

M
PY = 5 Y Prlgv™) £i1XN = £(0)

and it is the probability of the decoder making an error when all of the
possible messages in M are used with equal probability.

We say that a rate R is achievable if there exists a sequence of
([2VEN] | N) codes such that for every € > 0

liminf Ry > R — ¢,
N—oco

lim PN <e.
N —o00
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We call the supremum of all achievable rates the capacity C of the
channel

C =sup{R: R is achievable}.
Shannon showed that the capacity is equal to the maximum mutual infor-
mation I(X;Y) between the input and the output of the channel, where

the maximization is taken over all possible input distributions Px:

C:rrllpaxI(X;Y). (2.1)

We also define the symmetric capacity I(Py|x) of a channel as

py|x (ylz)
I(Pyix) =) E pY|X (ylz) log — | -
yeY :CEX > foex pY\X(?JLT )

This is the maximum achievable rate when all channel inputs x are used
with the same probability. If the maximizing distribution Px in (21
is the uniform distribution then the symmetric capacity is equal to the
capacity.

One class of channels for which this is the case is the class of symmetric
discrete memoryless channels. In order to define a symmetric discrete
memoryless channel we note that we can write the transition probabilities
of a discrete and memoryless channel in matrix form. Each row i of the
matrix correspond to a different input x; and each column j corresponds
to a different output y;. The element in position (i,7) is the channel
transition probability py|x(y;|z;). Based on this matrix we have the
following definition:

Definition 2.1.1 (Symmetric discrete memoryless channel [Gal68]). A
discrete and memoryless channel is said to be symmetric if we can parti-
tion the set of outputs y so that for each subset the matrix of transition
probabilities corresponding to this subset fulfills:

1. The rows of the matriz are permutations of each other,
2. The columns of the matriz are permutations of each other.

For an example of a symmetric channel see the following subsection,
in which we define the binary erasure channel, a channel model that we
will use frequently throughout the rest of the thesis.
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2.1.1 The Binary Erasure Channel

The Binary Erasure Channel was introduced by Elias [Eli55] as a toy
example. The practical interest in it, or rather in its generalization the
packet erasure channel, has risen since the introduction of the Internet.
The binary erasure channel with erasure probability €, or BEC(e), is a
memoryless channel with binary input alphabet X = {0,1}, a ternary
output alphabet J = {0, 1, ?} and channel transition probabilities given
by:

Py x(0[0) =1—¢
Py |x(1]0) =0
Pyx(?|0) =€
Py x(0[1) =0
Pyix(1]1) =1—¢
Py x(?|1) =€

In Figure we see a representation of the different possible channel
transitions and their probabilities. We see that the input is either recon-
structed perfectly at the output, with probability 1 — €, or erased, with
probability e.

X Y

Figure 2.2: Binary Erasure Channel
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We can write the channel transition probability matrix as
1—€ € 0
0 e 1—¢€|’
Rows one and two correspond to the inputs 0 and 1 respectively, and
columns one, two, and three correspond to the outputs 0, 7, and 1 re-

spectively. We now partition the output alphabet into the sets {0, 1} and
{?}. This gives us the following two transition probability matrices:

ot L

Since for both of these matrices the rows (and the columns) are a per-
mutation of each other the BEC(e) is a symmetric channel. Thus the
maximizing input distribution is the uniform distribution, and the ca-
pacity, as well as the symmetric capacity, is 1 — e.

In the next section we give a short information theoretic introduction
to the wiretap channel. We also present a code construction method
based on linear nested codes which will be used in the main part of the
thesis.

2.2 The Wiretap Channel

In [Wyn75] Wyner introduced the notion of a wiretap channel which is
depicted in Figure[Z3l It is the most basic channel model that takes secu-
rity into account. A wiretap channel consists of an input alphabet X, two
output alphabets ), and Z, and a transition probability Py z x (y, z|z).
We call the marginal channels Py x and Pz x the main channel and the
wiretapper’s channel respectively.

In a wiretap channel, Alice communicates a message S, which is cho-
sen uniformly at random from the message set S, to Bob through the
main channel. Alice performs this task by encoding S as a vector X of
length N and transmitting X”~. Bob and Eve receive noisy versions of
XN which we denote by YV and Z¥, via their respective channels.

The encoding of a message S by Alice should be such that Bob is able
to decode S reliably and ZV provides as little information as possible to
Eve about S. To measure the amount of information that Eve receives
about S we use the following normalized conditional entropy H (S|ZY)/N
which we call the equivocation rate.
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YN S
Alice Pyz1x Bob ——

ZN
Eve

Figure 2.3: Wiretap channel.

A code of rate Ry with block length N for the wiretap channel is
given by a message set S of cardinality |S| = 2/VE~T and a collection
of disjoint subcodes {Cs C XN }4cs. To encode the message s € S, Alice
chooses one of the codewords in Cs uniformly at random and transmits
it. Bob uses a decoder ¢ : YV — S to determine which message was sent.
We assume that all messages are equally likely. Let PN be the average
decoding error probability for Bob

PY =Pr(¢a (YY) #5)
and let RY be the equivocation rate of Eve

1
RN:NwaM.

€
The equivocation rate is a measure of how much uncertainty Eve has
about the message S after observing ZV. We want RY to be as high
as possible, and ideally it should equal the rate R. For ease of notation,
whenever we say equivocation in the rest of the thesis we will mean the
equivocation rate.

A rate-equivocation pair (R, R,) is said to be achievable if, for every
€ > 0, there exists a sequence of codes of rate Ry and length N, and
decoders ¢y such that the following reliability and secrecy criteria are
satisfied:

Rate : liminf Ry > R — ¢, (2.2)
N—oo

Reliability: lim PN <, (2.3)
N —o00

Secrecy: liminf RY > R, — e. (2.4)
N—oo
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The capacity-equivocation region is the closure of all achievable pairs
(R, Re).

For a general wiretap channel the capacity-equivocation region is
given by the rate-equivocation pairs (R, R.) satisfying

(R.R.):
U 0< R <I(U3Y]Q).
0<R. <R, ’
Pavtsiwteas |, < 10 Y1Q) - 105 21Q)

(2.5)

for some random variables U, ) that form the Markov chain @ — U —
X — (Y, Z) [CK78]. U corresponds to the message, and it is split into two
parts. One part is ) which can be decoded by Eve, while the other part
can be kept secret from her. We also see that the capacity-equivocation
region only depends on the marginal transition probabilities Py x and
PZlX.

The highest R, such that the pair (R, R) is achievable, is called the
secrecy capacity. In this case R = R,, which we call perfect secrecy. This
is equivalent to imy oo 1(S, ZV)/N = 0, or limy 00 H(S|ZN)/N = R,
and means that the information leakage to the wire-tapper goes to zero
rate-wise. The secrecy capacity for a general wiretap channel is

Cs=maxI(U;Y) - I(U; Z),
Py x

where U satisfies the Markov chain U — X — (Y,Z). As expected
there is no common part () that can be decoded by Eve. Note that the
secrecy capacity is always non-negative since we can choose U and X to
be independent. This will ensure that I(U;Y) — I(U; Z) = 0.

One could also consider the case where the mutual information be-
tween S and XV is required to go to zero instead of just the mutual
information rate, i.e

lim I1(S|ZY)=0
N—oo

instead of

I(S|ZN

im LB120)
N—o00

This constraint is called strong secrecy, whereas the constraint given in

(Z4) is called weak secrecy. Maurer and Wolf showed that the secrecy

capacity using the strong notion of secrecy is the same as the weak secrecy
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capacity if Alice and Bob are allowed to communicate over a noiseless
public channel in addition to the wiretap channel [MWO00]. We will only
consider the case of weak secrecy in this thesis.

If there exists a channel transition probability Pzy, with input al-
phabet ) such that

Py x(z]x) = Z Py x(y'|x)Pzy/ (z|y') Vz,z
y'ey
we say that the wiretapper’s channel is stochastically degraded with re-
spect to the main channel. If the channel transition probability Pzy|x
factorizes as

Py z1x (y, 2|2) = Py |x (ylz) Pz)y (2]y)

we say that the wiretapper’s channel is physically degraded with respect to
the main channel. Since the capacity-equivocation region only depends on
the marginal probabilities, the capacity-equivocation region for physically
and stochastically degraded wiretap channels is the same and is given by
[CKTS]:

(R, R.) :
0<R<IX;Y)
U 0<R <P (2.6)
PP | R, < I(X;Y) - I(X; 2)

In this case the secrecy capacity is

ngnllgaXI(X;Y)fI(X;Z).

The simplified region in (Z.0]) actually holds for more general channels
than degraded channels. Assume that I(U; Z) < I(U;Y) for all U such
that U — X — (Y, Z) is a Markov chain. If this condition holds we say
that the channel to Bob is less noisy than the channel to Eve. Degrad-
edness is a stronger condition than less noisy. It is straightforward to
show that every bound in (Z3]) is smaller than the corresponding bound
in (Z6]) using that I(U; Z) < I(U;Y). The less noisy region is also easy
to achieve by choosing U = X and Q = ().

In the less noisy case, if the same input distribution Px maximizes
both I(X;Y) and I(X; Z), for example when both Py x and Py x are
symmetric channels, the capacity-equivocation region is given by

R.<R<Cy, 0<R.<Cy-Cw, 2.7)
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and the secrecy capacity is
CS = maX(O, CM — Cw),

where C)jy and Cyy are the capacities of the main and the wiretapper’s
channels respectively. The rate region described by (Z7) is depicted in
Figure 24l The line AB corresponds to points with perfect secrecy, and
the point C corresponds to using the main channel at full rate.

R,
Cy — Cwl B C
A I I Cu - Cw Cm R

Figure 2.4: Capacity-equivocation region for a degraded symmetric wire-
tap channel.

When both the main channel and the wiretapper’s channel are binary
erasure channels we call the resulting wiretap channel the binary erasure
wiretap channel, and we denote it by BEC-WT (€, €,,). Here €, and €,
are the erasure probabilities of the main channel and the wiretapper’s
channel respectively. If €, > €,,, the BEC-WT(e,, €,,) is a symmetric

degraded wiretap channel and its capacity-equivocation region is given
by
Re<R<1l-¢€y, 0<R.<ey—€m,

and the secrecy capacity is
Cs = €y — €.

A detailed information theoretic overview of general wiretap channels
can be found in [LPSS09).

In the next subsection we present a coding strategy based on cosets
of linear codes introduced by Wyner.

2.2.1 Nested Codes

Wyner and Ozarow used the following coset encoding strategy [Wyn75|
OW84] to show that perfect secrecy can be achieved when the main chan-
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nel is error free and the input alphabet is binary. Similar nested code
structures for other multiterminal setups were considered in [ZSE02]. The
secrecy capacity of the wiretap channel considered by Wyner and Ozarow
is 1 — Cw. Let Cy be the binary linear code of rate Ry defined by the
parity check check equation Hz™ = 0. The coset Cs is the set

Co= {2V : HaV =5}

To transmit the binary message s, Alice chooses one of the messages in
Cs uniformly at random. Since there are 2V /2VFo different cosets, the
rate of the coding scheme is 1 — Ry. Bob decodes by multiplying H with
x. If Cyp comes from a capacity approaching sequence of linear codes both
the rate and the equivocation can be made as close to 1 — Cy as wanted.
To see this we consider the similar code construction method for a noisy
main channels using nested codes introduced in [TDCT07]:

Definition 2.2.1 (Wiretap code Cy with coset encoding). Let H be an
N(1—R®M2) x N parity check matriz with full rank, and let C?) be the
code whose parity-check matriz is H. Let Hy and Hy be the sub-matrices

of H such that
o[l

Hy

where Hy is an N(1—RM) x N matriz and Hy is an NRx N matriz. We
see that R = R — R Let CY be the code with parity-check matriz
H,. Alice uses the following coset encoding method to communicate her
message to Bob.

Coset Encoding Method: Assume that Alice wants to transmit a mes-
sage whose binary representation is given by an N R-bit vector S. To do
this she transmits X, which is a randomly chosen member of the coset

o[- )

Bob uses the following syndrome decoding to retrieve the message
from Alice.
Syndrome Decoding: After observing Y, Bob obtains an estimate
XN for XN wusing the parity check equations Hi XY = 0. Then he com-
putes an estimate S for S as S = HQXN.

We call this the wiretap code Cy .

We see that C") can be partitioned into 2V disjoint subsets given
by the cosets of C(1:?). This is a generalization of Wyner’s construction
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above. To see this note that in Wyner’s construction C?) is the set of
all binary vectors of length N, and V) = (.

Now assume that C(Y) comes from a capacity achieving sequence
over the main channel and that C(? comes from a capacity achiev-
ing sequence over the wiretapper’s channelY. Thangaraj et al.
ITDC™07] showed that in this case the coset encoding scheme achieves
limy 00 PN =0 and limy o I(S; ZV)/N = 0.

It is easy to see that the error probability over the main channel goes
to zero. Since CV) is capacity achieving over the main channel Bob can
determine which codeword XV was sent with arbitrarily low probability
of error, and then multiply Hs by XV to obtain S.

To bound the mutual information I(S; Z%), we use the chain rule of
mutual information on I(X",S; Z") in two ways:

I(XN; ZN) 4+ 1(S; ZV | XN) = 1(S; ZN) + 1(XN; ZN|9).
Since S — X~ — Z¥ is a Markov chain, I(S; ZV|X") =0, and we get
1(S; ZzNy =1(x™; ZzN) — 1(xN; ZN|9)
=1(XN; ZN) - H(X™N|9) + H(XN|ZN,9)
<NCw — NR® 4 H(xN|ZN, 8),
where we have used that I(XV;Z¥) < NCy and that

H(XN|S) = NR(™?) in the last step. Since ch2) i capacity achieving
we must have limy_,oo B2 = Cy. To bound H(XN|ZN,S) we use

Fano’s inequality:
H(XN|ZN|8) < n(PN%) + PNSNRED,
where PN 3 is the error probability of decoding XV when knowing ZN

and the coset S, and h(z) is the binary entropy function. Since all the
cosets Cg are capacity achieving over the wiretapper’s channel we have

limpy o0 PeN’S = 0. In total we get
1(S; 2 h(PY-S
lim (S; ) S lim (CW _ R(I,Q) 4 ( e ) +Pe]V,SR(1,2)> =0.
N—o00 N—oc0 N

O
In the next subsection we give a short overview of previous work on
coding for the wiretap channel.

ISince the cosets are just translations of each other, this implies that all cosets
Cs are capacity achieving over the wiretapper’s channel. Equivalently, conditioned on
which coset S a codeword zV belongs to, the error probability of the wiretapper can
be made arbitrarily small.
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2.2.2 Previous Work

Thangaraj et al. |[TDCT07] considered nested LDPC codes for the case
when the main channel is noiseless, but no explicit construction was given
for the case of a noisy main channel. Liu et al. also considered noiseless
main channels in [LLPS07], with a BEC, BSC, or an AWGN channel to
the wiretapper.

In [LPSLO§| Liu et al. considered nested codes designed for the BEC-
WT used over general binary input symmetric channels for transmission
at rates below the secrecy capacity. In [CV10] Chen and Vinck showed
that nested random linear codes can achieve the secrecy capacity over
the binary symmetric wiretap channel and an upper bound on the infor-
mation leakage was derived.

In [SSTT10] Suresh et al. suggested a coding scheme for the BEC-
WT that guarantees strong secrecy for a noiseless main channel and some
range of €, using duals of sparse graph codes.

That nested polar codes are capacity achieving for the wiretap channel
was shown by several research groups independently. The results by Hof
and Shamai [HS10], Mahdavifar and Vardy [MV10], and Koyluoglu and
El Gamal [OEI0] are closely related to the results we show in Chapter [l

In the next section we introduce LDPC codes. They are the building
blocks for the wiretap codes we consider in Chapter [3

2.3 LDPC Codes

Low Density Parity Check codes, or LDPC codes, were introduced by
Gallager in his PhD thesis [Gal63]. Following the success of Turbo codes
they were studied in the 1990’s in work by MacKay and Neal [MN95],
Luby, Mitzenmacher, Shokrollahi, Spielman, and Stemann [LMS97],
Richardson and Urbanke [RSUO0I], and many others. We will give a
short introduction and give the results we need. For a detailed overview
see [RUOS].

Low density parity check codes are linear codes defined by a parity
check matrix. We will consider binary codes, where all operations are
carried out in the binary field. Consider the linear code C defined by the
parity check matrix H, that is

C={z":Ha"N =0}.

To each parity check matrix we associate a bipartite Tanner graph
in the following way [Tan81]. We refer to the two types of nodes in the
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bipartite graph as variable nodes and check nodes respectively. Each row
in H corresponds to a check node, and each column in H corresponds to
a variable node. The check node 7 and the variable node j are connected
with an edge if element (4,7) in H is 1. The Tanner graph in Figure
corresponds to the check matrix

O R =
— O~
——= O
=)
—_ O
—_ O = =
e =)
O R =

and has the variable node names and check equations written out.

i; o L1 B 20 D x3 B s P re g =0
ﬁi 21 PT2Drs Dre Py Drg =0
iz T Br3Prs PrsBa;Parg=0

T7
xs

ToPr3PTsPTsPregParr =0

Figure 2.5: Tanner graph of an LDPC code of length N = 8.

The following compact notation for the degree sequences of an LDPC
code was introduced by Luby et al. in [LMSS01a]. Let A; be the fraction
of variable nodes of degree 1 and let I'; be the fraction of check nodes of
degree r in the Tanner graph, and let A(x) and I'(x) be the polynomials
defined by

Lmax Tmax

Ax) =) MAa', T(z) = Y Twa”,
1=1 r=1

where 1,.x and rpax are the largest variable node and check node degrees
respectively. For the graph in Figure we have A(z) = 2% and I'(z) =
8.

We call (A(z),T'(z)) the degree distribution from the node perspective
of the Tanner graph. We also define the degree distribution from the edge
perspective. Let A; be the fraction of edges in the graph connected to a
variable node of degree 1 and p, be the fraction of edges connected to a
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check node of degree r. Define the polynomials

Lmax Tmax

D=3 et p@) = 3 pear!
1=1 r=1

For the graph in Figure 2.5 we have \(x) = 22 and p(z) = 5.

Let N be the number of variable nodes in a Tanner graph, M the
number of check nodes, and F the number of edges. We can find the
following relations

E = NA(1) = MT'(1),
\ lA]_ I'Fr
1T kadx kAk’ pr = Zrmdx ka
Mz) . )
) M=y

Az) =

A

_ 1 _
Ay = Tmax Ay’ Iy = Tmax Pk’

k=1 'k k=1 k

1=

where f’(z) denotes the derivative of the function f(x).
If all rows of the parity check matrix H are linearly independent, then
the rate of the code defined by H is

LM N el
B e VI R Py

We call this the design rate of the code. Note that when the connections
in the Tanner graph are chosen randomly the check equations might not
be independent, and the true rate of the code might be larger than the
design rate. Both the actual rate and the design rate of the graph in
Figure 25 are 1/2.

Given a degree distribution (A(z),T'(z)) and a block length N define
the standard ensemble of LDPC codes as follows:

Definition 2.3.1 (LDPC(N,A(x),I'(x))). The LDPC(N,A(x),T'(x))
ensemble is the collection of all bipartite graphs that have NA; variable
nodes of degree 1 and NF/(I) check nodes of degree r for all 1 and r.
We allow multiple edges between two nodes. We impose a probability dis-
tribution on the ensemble by fixing one member of it and then permuting
the endpoints of all edges on the check node side using a permutation of
E objects chosen uniformly at random.
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Note that we allow multiple edges between a variable and check node.
To create a parity check matrix from a Tanner graph with multiple edges
let the corresponding entry in H be one if the variable and check node
are connected with an odd number of edges and zero otherwise.

In the following subsection we describe the belief propagation decoder
when the LDPC code is used over a BEC.

2.3.1 The Belief Propagation Decoder for the BEC

The belief propagation decoder is a message passing decoder. This means
that the nodes in the Tanner graph exchange messages with their neigh-
bordd. For general channels these messages are related to the probabilities
of the variable nodes being 1 or 0, but for the BEC these messages take
a simple form. A node can send the message 0, 1, or ? to its neighbor.
We call ? the erasure message.

1. We first look at a message from a variable node to a check node.
If a variable node knows its value, either from the channel observa-
tion or from incoming messages from other check nodes in previous
iterations, it sends that value to the check node, otherwise it sends
the erasure message.

2. Now look at a message from a check node to a variable node. If any
incoming messages to the check node from other variable nodes
are the erasure message, then the check node sends the erasure
message. Otherwise it calculates the XOR of all incoming messages
from other variable nodes and sends this value as the message.

3. In the final step we update the values of all variable nodes. If an
unknown variable node receives an incoming message which is not
the erasure message it becomes known.

4. If any unknown variable nodes were recovered in this iteration go
to step 1. Otherwise, if all variable nodes are known, return the
decoded codeword. Otherwise stop and declare an error.

Luby et al. analyzed the BP decoder for the BEC(e) using the fol-
lowing density evolution method in [LMS™97| and [LMSS01a]. Consider
transmission over the BEC(e) using a code from the LDPC(A(x), p(x))
ensemble.

2We say that two nodes are neighbors if they are connected by an edge.
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Let z(®) be the probability that a variable node sends the erasure mes-
sage in iteration k. Clearly (1) = e. Similarly let y(*) be the probability
that a check node sends the erasure message in iteration k. Consider an
edge connected to a variable node of degree 1. This outgoing message is
an erasure if the incoming message from the channel, and all incoming
messages on the other edges are erasures. This happens with probability
e(y®*=1)1=1 Averaging over all incoming edges we get

2® =3 " ne(y*I) = ey ) (2.8)
1

Now consider an edge connected to a check node of degree r. The outgo-
ing message on this edge is an erasure unless all the incoming r — 1 mes-
sages are not erasures. Thus the probability that this outgoing message
is an erasure is 1 — (1 — x(k))’_l. Averaging over all incoming messages
we get

y® =" pe(1 = (1= 2?1 =1 p(1 - 2®). (2.9)

Putting [2.8) and ([2Z3) together we get
2D = N1 — p(1 — zP)),

which we call the density evolution recursion equation. This equation will
correctly predict the erasure probability if the neighborhood of a variable
node up to distance k + 1 is a tree. For any fixed k the probability that
this neighborhood is not a tree goes to zero as N goes to infinity.

Successful decoding is equivalent to #(*) — 0. This happens if the
function

fe(z) = eX(1 = p(1 - x))

has no fixed points for x in the range (0, €).
Let

6BP

sup {fe(x) has no fixed point for x € (0,¢)}.
e€(0,1)

If € < €BP then the average error probability when communicating over
the BEC(€) using a randomly chosen code from LDPC(N, A(z),I'(z)) and
using the belief propagation decoding method goes to zero almost surely
as N — oo. Conversely, if € > €8T the average error probability is always
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bounded away from zero. eBF is called the belief propagation threshold

for the degree distribution (), p).

In the following subsection we describe a method to calculate the
conditional entropy H(X™|Y?) introduced by Méasson, Montanari and
Urbanke in [MMUQOQS].

2.3.2 MAP Decoding

In [MMUOS|, Méasson, Montanari and Urbanke considered the con-
ditional entropy H(XY|Y™) of the transmitted codeword X~ condi-
tioned on the received sequence Y when using LDPC codes over the
BEC. They found a criterion on the degree distribution (A(z), p(z)) and
the erasure probability e, that when satisfied allows the calculation of
limpy o H(XN|YN)/N.

Consider transmission over the BEC using an LDPC code. The Peel-
ing decoder introduced by Luby et al. in [LMST97] is an iterative message
passing decoder equivalent to belief propagation. The peeling decoder
removes edges and nodes from the graph as the variables get recovered.
When no more recovery is possible it returns the resulting graph. We call
this the residual graph G,es and an empty residual graph corresponds to
successful decoding. We now describe the decoding algorithm.

At each check node we introduce a book-keeping bit. The value of
this bit is the sum of all known neighbouring nodes.

1. Initialize all variable nodes to the received value and calculate the
book-keeping bit at each check node.

2. For each variable node v in G. If v is known, update the book-
keeping bits of all connected check nodes. Then remove v and all
its edges from G. Otherwise do nothing.

3. For each check node cin G. If ¢ has degree one, declare its neighbor-
ing variable node known and give it the value of the book-keeping
bit. Then remove ¢ and its edge from G. Otherwise do nothing.

4. If no changes were made to the graph in the last iteration return
G, otherwise go to 2.

In Figure we show the peeling decoder applied to the code defined
by the Tanner graph in Figure2H The sent codeword is 11101101 and the
received word is 17?701701. In the initialization step it removes all known
variable nodes and their edges from the graph. In the first iteration the
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decoder manages to recover xs since the third check node has degree 1,
but then it gets stuck since all remaining check nodes have degree at least
2. The resulting residual graph is the one on the right in Figure

1
; 1, 1 .0
! o ! 0 0
0

% 1y 1y

(1) 1 \1 \0

Figure 2.6: Peeling decoder

Now consider the ensemble of residual graphs defined as follows.
Choose a graph at random from the ensemble LDPC(N, A(x),'(x)),
transmit a codeword over the BEC(e), and decode it using the peeling
decoder. Call the resulting residual graph G and its degree distribution
from the node perspective (£2, ®). It was shown in [LMSS01b] that condi-
tioned on the degree distribution (2, ®) all residual graphs G are equally
likely. It was shown in [MMUOS] that the residual degree distribution
(Q, @) is concentrated around its expected value. This expected value
converges to (Ac(z),Te(2)) as N goes to infinity, where

Ac(z) = eA(zy),
Fe(z)=T(l—z+zz)-T(1—2)—22T"(1 — 2),

where « is the fixed point of the density evolution equation xy = eA\(1 —
p(1 — x,_1)) when initialized with zy = ¢, and y = p(1 — x). Here the
degree distributions (A, T¢) and (2, ®) are normalized with respect to
the number of variable nodes N in the original graph.

Now consider the residual graph. The number of different assignments
of ones and zeros to the variable nodes that satisfy all the check equations
is equal to the number of codewords of the original code that are con-
sistent with the received sequence Y. This means that H(XY|YN)/N
is equal to the rate of the residual graph. Lemma 7 from [MMUOS§]
gives a condition on the degree distribution (A,T") that when satisfied
guarantees that the rate of a randomly chosen code from the ensemble
LDPC(N, A, T) is close to its design rate:

Lemma 2.3.2 (Lemma 7 from [MMUOS]). Let C be a code chosen uni-
formly at random from the ensemble LDPC(N, A, T') and let rc be its rate.
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Let r=1—A'(1)/T'(1) be the design rate of the ensemble. Consider the
function W r(u)

War(u) =—A(1)log (1 ﬂw) + zljlog (1 J;“l
+ ?183 zr:log [1 + (LFZ)I] , (2.10)

1+

where

o\ Aut—l
U:<2121+u1> <21: 1+u1>' (2.11)

Assume that U r(u) takes on its global mazimum in the range u € [0, 00)
at u = 1. Then there exists B > 0 such that, for any & > 0, and
N > No(&,A,T)

Prlrg — 7| > € < e BN,

Moreover, there exists C' > 0 such that, for N > No(§, A, T)

log N

E —r|] < C——.

lIrg = rl) < =%

Proof. The lemma is proved using the following idea. The expected num-
ber of codewords where edges are connected to a variable node assigned
a one is given by

coe ul NA; (v MF",ue,ve
E[Nyw (e)] = f{Hl(]- + )(NA/I(_l[)r)q (v) }7 (2.12)

where coef{zj Djv7, vk} is the coefficient of v* in the polynomial
>; Djv? and g (v) = ((1+v)* + (1 —v)*)/2. To see this, note that

coef {H(l + ut)yNh ue}

1

3Here e is a variable and not the constant e.
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is equal to the number of ways of assigning ones and zeros to the variable
nodes so that e edges are connected to a variable node assigned a one.

Also
coef {H g ()M e }

is equal to the number of ways of assigning e ones to the sockets on the
check node side so that each check node has an even number of incoming
ones. The number of ways of connecting the sockets together is given by
el(NA'(1) — e)!l. Thus the total number of codewords involving e edges
in the ensemble is given by

coef{]:[(l + )N qu(v)Mr",ue, ve} el(NA'(1) —e)l.

1

Dividing by the number of graphs in the ensemble (NA’(1))! yields 212).
Since the expected rate

E[TG] =

%logze: NW(@)]

is hard to calculate we instead calculate

bl

which by Jensen’s inequality is an upper bound on the expected rate. If
limy o0 3 log (E[Y, Nw (€)]) = raes the rate of a code will be close to
the design rate.

Since the number of possible different values of e only grows linearly
with N we get

ecl0,1] N—o0

ngn@—log( ZNW ]) = sup lim %bg(E[NW(eNA'(l))])

From the Hayman approximations

coef { F(D) Dk}<alc2f0F() /¥,
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and

. 1 alN
1\}1—I>I<1>o N log {(eaN)} = ahle)
in [RUO8, Appendix D] we get

lim %log(E[NW(eNA’(l))]): infoqb(e,u,v)

N—oco u,v>

where

$le,u,v) =Y Aylog(l +ut) — A'(1)elog(u)+

* ?:El) D Telog(ac (1) — A'(1)e log(z) ~ N (1)he).

1)

We now bound the exponent SUP,e[o,1] inf,, » ¢(e, u,v) from above as
follows. The exponent is given by a stationary point of ¢(e,u, v). Taking
the derivative of ¢ with respect to e and equating it to zero gives

uv
14 uv

e =

Inserting this value for e into ¢ and taking the derivative with respect
to u gives the expression (ZIT]) for v. If we subtract the design rate rges
from the resulting expression we get ¥ r(u), which is an upper bound
on

) 1
ngnoo N log(E[N]) — rdes-

If sup,so ¥a,r(u) = 0, then the expected value of the rate is equal to
the design rate and we can use Markov’s inequality to get the bounds in
the lemma. |

We now use the above lemma to check that the residual graph has
rate equal to its design rate. If this is the case we can calculate the
conditional entropy as the design rate of this ensemble, making sure to
normalize its rate to the original block length N. This what is done in
IMMUO08, Theorem 10]:

Theorem 2.3.3 (Theorem 10 from [MMUOS|). Let C be a code picked
uniformly at random from the ensemble LDPC(N,A,T') and let He(X|Y)
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be the conditional entropy of the transmitted message when the code is
used for communicating over BEC(e). Let (A¢,T¢) be the typical degree
distribution of the residual graph and let Up_1_(u) be as defined in Lemma
232 Assume that ¥ a,_ . (u) achieves its global mazimum for u € [0, 00)
at u =1, that WY 1 (1) <0, and that € is nonexceptional. Then

. 1 ! A
Aim, FEH(XIY)) = MU=l -9) - 7753

(1-T(1—-2))+€'(y)

where x € [0,1] is the largest solution of © = eA(1 — p(1 — x)) and y =
1—p(1—2x).

As noted before, Theorem can be used to calculate the MAP
decoding threshold of an ensemble. We call this the MMU method in
acknowledgement of the authors of [MMUQS], and we will use it in a
generalized form in Chapter Bl to calculate the equivocation rate of Eve
when using two edge type LDPC codes over the BEC-WT (€, €,,). The
MMU method was extended to non-binary LDPC codes for transmission
over the BEC in [Rat08, RATL0].

2.3.3 Spatially Coupled Codes

Convolutional LDPC codes were introduced by Felstrom and Zigangirov
and were shown to have excellent thresholds [FZ99]. There has been a
significant amount of work done on convolutional-like LDPC ensembles
[EZ99, [LTZ99, 'TSS* 04, [SLCZ04, [LSZC05, [LFZC09, LSCZ10], and see in
particular the literature review in [KRUI10]. The explanation for the ex-
cellent performance of convolutional-like or “spatially coupled” codes over
the BEC was given by Kudekar, Richardson, and Urbanke in [KRUI0].
(In the following, we also use the term spatially coupled codes when we re-
fer to convolutional like codes.) More precisely, it was shown in [KRUL0]
that the phenomenon of spatial coupling has the effect of converting the
MAP threshold of the underlying ensemble into the BP threshold for the
BEC and regular LDPC codes. This phenomenon has been observed to
hold in general over Binary Memoryless Symmetric (BMS) channels, see
[KMRU10, LMECIOQ].

Thus, when point-to-point transmission is considered over BMS chan-
nels, regular convolutional-like LDPC ensembles are conjectured to be
universally capacity achieving. This is because the MAP threshold of
regular LDPC ensembles converges to the Shannon threshold for BMS
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channels as their left and right degrees are increased by keeping the rate
fixed. To date there is only empirical evidence for this conjecture.

In [KRU10] two ensembles of spatially coupled codes are defined. The
(1,r, L) ensemble, which is similar to the ensemble in [LEZC09], and the
(1,r, L, w) ensemble, which shows worse performance empirically, but is
easier to analyze. We will introduce the parameters 1, r, L, and w in the
following.

In order to introduce the (1,r,L) ensemble we first look at a cou-
pled ensemble of protograph codes. Protograph codes were introduced
by Thorpe, Andrews and Dolinar in [TAD04] as a way of designing struc-
tured LDPC codes. Counsider the (3,6) protograph in Figure 2711 Copy
this graph M times, so that there are M variable nodes at the top, M
check nodes, and M variable nodes at the bottom. There are six edge
bundles going between the check nodes and the variable nodes. To con-
struct an ensemble of protograph codes permute the edges within each
edge bundle choosing a permutation uniformly at random. In Figure 2.8
we show this procedure for the (3,6) protograph with M = 5.

Figure 2.7: Protograph of a (3,6) code.

To get a spatially coupled graph start with 2L + 1 copies of the pro-
tograph next to each other at positions numbered from —L to L. Then
switch the connections so that each variable node has one connection go-
ing to a check node at the position on the left, one connection going to
a check node at its own position, and one edge going to a check node at
the position to its right. Introduce extra check nodes at the boundary
to make each variable node have the same degree. Such a protograph
is shown in Figure Now copy this spatially coupled protograph M
times and connect the edges using a permutation as described above. To
generalize this protograph based ensemble, which needs r to be a mul-
tiple of 1, Kudekar, Richardson, and Urbanke introduced the (1,r,L)
ensemble which is defined for odd 1 and general r.
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Figure 2.8: (a) 5 copies of a (3,6) protograph. (b) One edge bundle
permuted. (c¢) All edge bundles permuted.

|
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Figure 2.9: Spatially coupled (3,6) protograph with L = 9.

Definition 2.3.4 (The (1,r, L) ensemble). Place M wvariable nodes at
each position in the interval [~L, L]. Let 1 = (1 —1)/2 and place M1/r
check nodes at each position in the interval [~L —1, L +1]. Connect one
edge from each variable at position i to a check node at positions [i—1,i+
1]. At the boundary there are fewer incoming connections to each check
node, so decrease the degree of the check nodes at the boundary linearly
according to their position. Impose a probability distribution on the codes
in the ensemble by choosing a random permutation of the incoming edges
at each check node position.

The above ensemble is difficult to analyze, so Kudekar, Richardson
and Urbanke introduced the (1, r, L, w) ensemble. Before giving this def-
inition, we define 7 (1) to be the set of w-tuples of non-negative integers
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which sum to 1. More precisely,

w—1

T@@) ={(to, -~ ,tw-1) : Z t; =1}.

<

Definition 2.3.5 ({1,r, L, w} Spatially Coupled LDPC Ensemble). As
above there are M wvariable nodes at each of the positions [—L, L]. Now
place M1/r check nodes at each of the positions [L, L+w —1]. Not all of
these check nodes will be connected to variable nodes. Now connect each
variable node at position i to check nodes at position [i,i+ w — 1] in the
following way.

For each variable node choose a constellation ¢ = (c1,...,¢1) with
¢; € [0, w — 1] uniformly at random. If a variable node at position i has
constellation ¢ then its kth edge is connected to a check node at position
i+ cp. We denote the set of all constellations by €. Let 7(c) be the w-
tuple which counts the occurrence of 0,1,--- jw — 1 in ¢. Clearly 7(c) €
T(1). We impose a uniform distribution over all constellations in €.
This imposes the following distribution over t € T (1)

p(t) = {ce €:7(c) :t}|.

wl

Now we pick M so that Mp™(ty) is a natural number for all t €
T (1). For each position i pick Mp™ (t) variable nodes. For each of these
variable nodes we use a random permutation over 1 letters to map t to a
constellation c. We then assign the edges of the variable nodes according
to the constellation c.

Finally, at each check node position connect the incoming M1 edges
to the M1/r check node edges using a permutation chosen uniformly at
random.

In [KRUIO] the following was shown:

Theorem 2.3.6 (Part of [KRUI(Q] Theorem 12). Consider transmission
over the BEC(e) using random elements from the ensemble (1,r, L, w).
Let BP(1,r, L,w) and eMAP(1,r, L,w) be the BP and MAP thresholds
and let R(1,r, L,w) be the design rate of this ensemble. Then

1
lim lim lim R(1,r,L,w)=1-—,
w—00 L—00 M—r00 r
lim lim lim €®"(1,r,L,w) = lim lim lim eMAP(l,r,L,w)
w—00 L—00 M —00 w—00 L—00 M—00

= ML),
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where eMAY (1, 1) ds the MAP threshold of the (1,t) reqular LDPC en-
semble.

Note that, since the MAP threshold of the (1, r) regular LDPC ensem-
ble approaches 1/r as 1 and r increase while keeping the ratio 1/r fixed
[KRUI0, Lemma 8], this means that the (1,r, L,w) ensemble achieves
capacity on the BEC.

2.4 Polar Codes

Polar codes were introduced by Arikan and were shown to be capacity
achieving for a large class of channels [Ar109]. Let W be a binary input
channel with discrete output alphabet ). Denote the channel transition
probability of W by W (y|x). Let I(W) denote the symmetric capacity

vyl W (1)
1) = 2 2 S Wi o8 o G

yeY xEX

and recall that I(WW) is the capacity of W when the input distribution
is constrained to be uniform. If W is a symmetric channel, then I(W)
equals the Shannon capacity of W.

Polar codes rely on a phenomenon called channel polarization, which
is achieved in a two-step process called channel combining and channel
splitting. Channel combining takes IV copies of the channel W and creates
a vector channel Wy (y™¥ [uV) in a recursive manner. The vector channel

W is then split into N binary input channels Wz(\;)- The channels Wz(\;)
are polarized in the sense that their symmetric capacities are either close
to 0 or 1, and the idea behind polar codes is to send information only
over the channels with I(W) close to 1. We now describe the channel
combining and channel splitting steps in detail.

Channel combining is a rec/ursivi transformation that takes two copies
2, N/2

uy

of a vector channel WN/Q(yiV ) and creates a new vector channel

W (y|ud) according to
N/2
W (1 [ul) = W2y / |Uf,[o D u{\{e)WN/2(y%/2+1|u{\{e)v (2.13)

where uf{o = (u1,ug,...,uny—1) and uf{e = (U2, Uy ..., UN).
For the first two steps N = 2 and 4, (213) becomes

Wa(y1, y2|u1, uz) = Wyi|ur @ uz) W (ya|uz)
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and

Wi(yilul) = Wa(y1, yolu1 @ uz, us @ ug) Wa(ys, yalusz, us)

respectively, as illustrated in Figures 2.10] and 2111

U1

Z1

Y1

U2

€2

Y2

Figure 2.10: The channel W5 constructed from two copies of W.

ui T 1574 Y1
Ry

Uz X2 1774 Y2

us €3 1574 Y3

Uy Ty W Y4

Figure 2.11: The channel W, constructed from two copies of Ws.

Note that the inputs (z1, . ..

, &N ) to the individual copies of the chan-
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nel W can be written as ul' Gy where
Gy = BNF®". (2.14)

Here By is a bit-reversal permutation matrix where the output is gen-
erated from the input by writing the indices of the bits u; in bit format
and reversing the indices. For example

BS : (ul,UQ,Ug,U4,U5,U6,U7,U8) — (ul,U5,U3,U7,UQ,U5,U4,U8)

since in bit format

(ula U2,U3,Uq,Us, Ug, U7, U8) =

(U0007 U001, U010, U011, U100, U101, U110, U111),

and

(ula Us, U3, U7, U2, U5, U4, US) =

(Uoom U100, U010, U110, U001, U101, U011, U111)-

The matrix F®" is the nth Kronecker power of the matrix

This means that in general we have Wi (y¥ [ul) = W (yN [ul¥ Gn),
where W (ylN|zlV) = Hfil W (y;|x:).

Channel splitting is done by converting the combined vector channel
W (y|ud) into N binary input channels W](Vi) (yN, ut ).

OGN ) = Y ). 219)
uﬁlefoi

Note that W](Vi) has y{v as well as the previous inputs ulfl as output.
The successive cancellation decoder proposed by Arikan gets around this
problem by decoding W](Vi) before WJ(VJ )if i < J, and thus obtaining an
estimate ; of u;. If these estimates are correct we will have all outputs
of W](\? ) available before decoding.

Arikan showed that the channels {W](\;)} polarize as N goes to infinity,
that is for any § € (0, 1), the fraction of indices ¢ for which I(WJ(\,i)) €
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(1 —10,1] goes to I(W) and the fraction for which I(WJ(\;)) € [0,6) goes to
1—I(W).

The idea behind polar coding is to send information only over the
good channels, while keeping the input to the bad channels fixed. Let A
be a subset of {1,..., N} and let uyq be a binary vector of length |.A|.
We call A and A€ the information set and the frozen set respectively.
Similarly we call u4 and u 4c the information bits and the frozen bits.
We now define the polar code P(N, A, uc) as follows:

Definition 2.4.1 (The polar code P(N, A, u4c)). Let G be the matriz
Gn as defined in (2.17) and let G4 be the submatriz composed of the
columns of G whose indices belong to the index set A. The polar code
P(N, A, uyc) is the set of codewords ™ of the form

LYJN:UAG_A@UACG_AC.

We see that the polar code fixes the input to the channels W,(f) where ¢
is in the frozen set, and sends information over the channels where i € A.
The rate of the polar code is equal to

The decoder that Arikan proposed uses the following successive can-
cellation decoding rule

U; iE.AC

W (i a4~ ui=0)
Wi (s ui=1)
1 otherwise

>landice A

to decode the transmitted bits. The decoder decodes the bits in increasing
order and thus has the estimates ﬁfl available when decoding u;.

The average error probability P of the successive cancellation de-
coder, averaged over all possible frozen sets, can be bounded from above
in the following way

ic A

= Z Z pu7W](\;)(y{V,’U;111|UZ)]1{ Wz(\fi)(y{\]yuliil\uieél)>1}
) A VARSI A A

EAYN ui” w N Wl ey T
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; . W(i)(yN’uiqwi ®1)
<STY Wl ) | A

Ay WA (i )
=Y"zY. (2.16)
i€ A

Here Z](\;) is the Bhattacharyya parameter of the channel W](Vi), defined
as

29 =3 S AW N i 0w o i ).

N i
Y uy

In [AT09] Arikan and Telatar showed the following result on the rate
of the polarization process:

Theorem 2.4.2 (Rate of Polarization [AT09]). For any 0 < 8 < 1/2
D ST _NF
n@;@ﬁ{z;zgﬁ <27 Ny =1(W).

This result shows us how to choose the frozen set when using the
successive cancellation decoder.

Theorem 2.4.3 ([Ar109], [AT09]). Let W be a discrete memoryless chan-
nel with binary input, and let R < I(W). For any 0 < 8 < 1/2 there
exists a sequence of polar codes of block lengths N = 2", with rates Ry
such that

lim Ry > R

n—oo

and there exists an ng such that the error probability under successive
cancellation decoding satisfies

PN < 27Ny > ng.
Proof. Let § < 8/ < 1/2 and choose the the non-frozen set Ay as
Ay ={i: 20 <277},
Then due to Theorem

lim Ry = I(W) > R.

n—oo
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For large enough N we have
NN < 9N
which together with (2.I6) implies that there exists an ngy such that
PN < Z 7 < N2 N < 9N
i€EAN

provided that n > ng. Finally since this is the error probability averaged
over all frozen sets there must exist a frozen set with error probability at

most N2-N”. O

If the channel W is symmetric, then the symmetric capacity I(W)
is equal to the capacity C, and further, the error probability does not
depend on the values of the frozen bits u4c [Ar109].
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Chapter 3

LDPC Codes for the
Wiretap Channel

In this chapter we consider LDPC codes for the BEC-WT channel. We
propose a code construction method using two edge type LDPC codes
based on the coset encoding scheme. Using a standard LDPC ensemble
with a given threshold over the BEC, we give a construction for a two
edge type LDPC ensemble with the same threshold. Thus if the standard
LDPC ensemble is capacity achieving over the wiretapper’s channel, our
construction guarantees perfect secrecy.

However, our construction cannot guarantee reliability over the main
channel if €, > 0 and the given standard LDPC ensemble has degree
two variable nodes. This is because our approach gives rise to degree
one variable nodes in the code used over the main channel. This results
in zero threshold over the main channel. In order to circumvent this
problem, we numerically optimize the degree distribution of the two edge
type LDPC ensemble. We find that the resulting codes approach the
rate-equivocation region of the wiretap channel. For example, for the
BEC-WT(0.5,0.6) we find ensembles that achieve the points (R, R.) =
(0.0999064, 0.0989137) and (R, R.) = (0.498836,0.0989137) which are
very close to the best achievable points B = (0.1,0.1) and C' = (0.5,0.1)
as depicted in Figure Bl

Note that reliability, which corresponds to the probability of decoding
error for the intended receiver, can be easily measured using density
evolution recursion. However secrecy, which is given by the equivocation
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€w — Em [

A I I €w = em 1 —€em R
Figure 3.1: Capacity-equivocation region for the BEC-WT(¢€,,, €).

of the message conditioned on the wiretapper’s observation, can not be
easily calculated. By generalizing the MMU method from [MMUOQS] to
two edge type LDPC ensembles, we show how the equivocation for the
wiretapper can be computed. We find that relatively simple constructions
give very good secrecy performance and are close to the secrecy capacity.

We also introduce a spatially coupled two edge type LDPC ensem-
ble. By showing that the density evolution recursion for the two edge
type ensemble is the same as for the regular spatially coupled ensem-
ble of [KRU10] we show that the spatially coupled two edge type LDPC
ensemble achieves the whole capacity-equivocation region for the BEC.
Since spatially coupled ensembles are conjectured to be capacity achiev-
ing not only for the BEC but also for general binary input channels we
conjecture that our construction is optimal for general binary input de-
graded wiretap channels.

The chapter is organized in the following way. In Section B we
define two edge type LDPC ensembles and give the density evolution
recursion for them. Section 3.2 contains the code design and optimization
for the BEC wiretap channel BEC-WT (€, €,,). The MMU method and
its extension to compute the equivocation of Eve for two edge type LDPC
codes is given in Section 3.3l In Section [3.4] we present various examples
to elucidate the computation of equivocation and show that our optimized
degree distributions also approach the information theoretic equivocation
limit. In Section we introduce the spatially coupled ensemble and
show that it achieves the whole capacity-equivocation region.
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3.1 Two Edge Type LDPC Ensembles

We will use the coset encoding scheme introduced in Section 22Tl A
natural candidate for coset encoding is a two edge type LDPC code since
a two edge type parity check matrix H has the form

ne [, o

The two types of edges are the edges connected to check nodes in H; and
those connected to check nodes in Hy. An example of a two edge type
LDPC code is shown in Figure

Type one checks Type two checks

Figure 3.2: Two edge type LDPC code.

We now define the degree distribution of a two edge type LDPC en-
semble. Let A§{)12 denote the fraction of type j (j = 1 or 2) edges con-
nected to variable nodes with 1; outgoing type one edges and 1, outgoing
type two edges. The fraction A§{ )1 , is calculated with respect to the total
number of type j edges. Let Aj;1, be the fraction of variable nodes with
1; outgoing edges of type one and 1, outgoing edges of type two. This
gives the following relationships between A, A1), and A\():

1A
M, =l 3.2
fite Zkl,kg klAk1k2 ( )
1oA1 1
A, = e 3.3
tilz Zkl,kg k2Ak1k2 ( )
Ml M7,
Ay, = — =1 (3.4)

(1) (2)
T B Dk
k1,k2 kg ki,ka ko
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Similarly, let pU) and ') denote the degree distribution of type j edges
on the check node side from the edge and node perspective respectively.
Note that only one type of edges is connected to a particular check node.
An equivalent definition of the degree distribution is given by the follow-
ing polynomials:

E A111 xll 12

11,12

2: (1) g1 12
)\1112
11,12

AP (a,y) = >0 Aty

11,12

F(]) ZF(J) =12,
(J) ZP(J) r— 17 j=1,2.

Like the standard LDPC ensemble of Definition 231l the two edge
type LDPC ensemble with block length N and degree distribution
AW AR pW &L ({A, W T3} from the node perspective) is the
collection of all bipartite graphs satisfying the degree distribution con-
straints, where we allow multiple edges between two nodes. We will call
a two edge type LDPC ensemble for which A(z,y) = zt1y*2, left regular,
and denote it by {11,1, T T},

Consider the two edge type LDPC ensemble {A,TM T}, If we
consider the ensemble of the subgraph induced by one particular type
of edges it is easy to see that the resulting ensemble is the standard
LDPC ensemble and we can easily calculate its degree distribution. Let
{A(j Y )} be the degree distribution of the ensemble induced by type j
edges, j = 1,2. Then AV, for j = 1,2, is given by

AI(L? ZA1112ﬂ A:(L? ZA1112 (35)
1o

We now derive the density evolution equations for two edge type LDPC
ensembles, assuming that transmission takes place over the BEC(e). Let

xEk) denote the probability that a message from a variable node to a check
node on an edge of type j in iteration k is erased. Clearly,

V=€ j=12 (3.6)
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In the same way, let yﬁk) be the probability that a message from a check
node to a variable node on an edge of type j in iteration k is erased. This
probability is

k j k ;
y B =1 p0 -2y, j=12 (3.7)

Using this we can write down the following recursions for z§k):

2 = A (M ), (3.8)
2T =A@y 0, (3.9)

In the next section, we show how the degree distribution of a two edge
type LDPC ensemble can be chosen such that it has the same density
evolution recursion as that of a given standard LDPC ensemble. We also
numerically optimize the degree distributions of two edge type LDPC
ensembles and show that we can approach points on the boundary of the
capacity-equivocation region.

3.2 Optimization

As the density evolution recursion for two edge type LDPC ensembles is
two dimensional, it is difficult to analyze. Thus we look for degree distri-
butions which reduce the two dimensional recursion to a single dimension.
This will enable us to use the density evolution recursion for standard
LDPC ensembles over the BEC, which has been very well studied. In the
following theorem, we accomplish this task.

Theorem 3.2.1. Let (), p) be a standard LDPC degree distribution with
design rate R and threshold € over the BEC. Then the following assign-
ment,

(@) = pP (@) = p(a), (3.10)
/\§11) = )\ﬂ = Ao, (3.11)
1 2 1

)‘5.,2+1 = )‘§+)1,1 = m)\21+17 (3.12)
1 2 1+1

>‘§+)1,1 = )\g,1)+1 = 21——1—1>\21+1’ (3.13)

ML, =, =0, -1 >1, (3.14)
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ensures that the two edge type LDPC ensemble { X1, X2, p1) s} also
has design rate R and threshold €*.

Proof. Assume that we choose AV, X2 p(1) and p) such that (BI0)
and the following relation

AV (z,2) = AP (2, 2) = Ax). (3.15)
is satisfied. Note that since

A9 (2, 2) Z )\gjl)h 1i412—1

11,12

-y (3 )

1;+12=k
(BI0) implies
SoaalL= Y a8, vk

1, +1o=k 1;+12=k

From the density evolution recursion for two edge type LDPC ensembles
given in [30)-(B.3), we see that (BI0) ensures that y(k) = yék) whenever
:cg ) = :L'ék), and (3.J0) ensures that :E(kﬂ) ékﬂ) whenever y( ) = y( )

Since 2V = €, we see by induction that x(k) ( ) and y§ ) = yék) for k >

1. Thus we can reduce the two dimensional den51ty evolution recursion to
the one dimensional density evolution recursion for the standard LDPC
ensemble

2D = eX(1 — p(1 — z)), (3.16)

where A\(z) = >0, Mt ™1,

= > A (3.17)

1;+12=1

and we have dropped the subscript of z*) as :L'(lk) = :L'(Qk). Note that by
GID-G14
AW A2
Sdz o DUl oyl (3.18)
1L 1

This ensures that (3.4) is fulfilled.
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We now show that (EII)-@BI4) guarantee that AV (z,z) =
A?)(z,2) = A(z). Then the two dimensional density evolution recursion
becomes the one dimensional recursion in ([B.I6) and the two edge type
ensemble will have the same threshold as the standard LDPC ensemble.
We have

AV (2, 2) = Z )\8)123011"’12_1

11,12

5 (M AT 4 A0, %)
1

(b) 1 21 21-1
= E — A\ + A
- (21 1 214+1% 21T

1+1 o1
g A
+ d 111 21417

= Z (Ao 12”t + Apnz™ )
1
=A(),
where (a) is due to (BI4) and (b) is due to BII)—(EI3). The proof for

A3 (z, ) is done in the same way.

We now show that the design rate of the resulting two edge type
LDPC ensemble is the same as the design rate of the given standard
LDPC ensemble. The design rate of the two edge type ensemble is

Rdes =1- (Ml + MQ)/N

where Mj; is the number of parity checks of type j and N is the number
of variable nodes. If we let da., denote the average check node degree
(this is the same for both types because of (BI0)) and count the number
of type j edges in two different ways, we get

N> 1M, = Myda, §=1,2,

11,12

or

% . 211,12 le1112
N

)

davg
A
. 112
@ 1 21,1,L7
2) Tl L
davg Z )‘gjl)lz
11,12 15
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® 1 1
= _
davgz )‘gjl)lz
11,12 15

where (a) is due to [34) and (b) follows since the Ag?h sum to 1. The
design rate then becomes

Res =1 — (Ml +M2)/N’

_1 1 1 i 1
— Ty NG NG
e 211712 l:|.1112 211712 3.1212
@, 2 (__t
dave A
211,12 1112
®,_ 2 1
- Az A2
davg 21 (2%1.1:1 + % + 2?{-:11)
_1 1 1
T d X Aot
avg 37, (2:2&?11 + 2_:1>
1 1

RS
davg Y1 5

where (a) is due to (BI8) and (b) follows using B.I1)) - (BI4). Since this

expression is the same as the design rate of the standard LDPC ensemble
(A, p), we have shown that the two edge type LDPC ensemble has design
rate R. This completes the proof of the theorem. O

To compute the threshold achievable on the main channel, we need
to compute the threshold of the ensemble of parity-check matrices Hy
induced by type one edges. The ensemble of matrices H; is a standard
LDPC ensemble, and its degree distribution can be easily calculated from
the degree distribution of the two edge type ensemble. Hence we can
easily compute its threshold.

Since all capacity approaching sequences of degree distributions have
some degree two variable nodes, because of ([BII) we see that our con-
struction will have some degree one variable nodes in the matrix H;.
This means that the threshold over the main channel will be zero. To get
around this problem we use linear programming methods to find good
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degree distributions for two edge type LDPC ensembles based on their
two dimensional density evolution recursion.

First we optimize the degree distribution of H; for the main chan-
nel using the methods described in [RUO8] and obtain a good ensemble
(A, 1MW),

For a given two edge type ensemble we can find the corresponding
one edge type ensemble for H; by summing over the second index, since
the fraction of variable nodes with 1; outgoing type one edges is given
by 212 A1,1,. To fix the degree distribution of H; we then impose the
constraint

ZA1112 = AS) for all 1.

1

For successful decoding we further impose the two constraints

:cgkﬂ) < :L'gk) and :L'ngrl) < :L'gk) which can be written as

z1 > eAD(y1, )

_ 1,—-1 12
=€ E )‘1112 Y1

11,12

11A11,12 11—1 1o
=€ Z k A yl y2 I
1;10 kq,ko 143k1 ko

where we have used (82 in the last step, and yi,y2 are given by
y;=1-pW 1 —x;), j=1,2.
This simplifies to the linear constraint

0< Z ll(xl - €y]1-1 ! 12)Alllz

11,12

The corresponding constraint for xs is

0< Y lo(ma —eyr'vz® Arn,.

11,12

The design rate can be written as

211712 11A1112 _ 211712 12A1112
1 2
211 11F§.1) 212 12F§2)

Rdes =1-
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where the term is a constant because of the fixed degree

11 11
distribution of Hy. If I'® is fixed, we see that maximizing the design
rate is the same as minimizing )3, , 12A;,1,. Thus we end up with the

following linear program:

12

minimize g 1oA1,1,
11,12

subject to

1
ZA1112 = Agl)a 1 = 27 ceey ll,max

1o

D i — ey Tt )Ar, 20, Y @,y 0 €0, 1] (3.19)
11,12

Z Li(za — ey'y3® A1, >0, V 2o, 41,42 € [0, 1] (3.20)
11,12

where 11 max is the largest degree in A1) (z). Since [BI9) and B20)
represent infinitely many constraints we replace them with

> ni(@i(k) — ey () lya(R)2)Ar1, 20, k=1,.. K

14,12
Z 11($2(k') - eyl(k)lly2(k)l2_1)Alll2 Z 0) k = 17 o '5K7
11,12
in order to have a finite number of constraints. The points

{x1(k), z2(k)H< | are chosen by generating a distribution A and then
running the density evolution recursion

o — g — ¢

) Z A0 0,40
) 2 A0, 149

K times. The program is then solved repeatedly, each time updating
{z1(k),z2(k)}< . This process is repeated several times for different
check node degree distributions I'® until there is negligible improvement
in rate.

We now present some optimized degree distributions obtained by this
method. We use the following degree distribution
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Standard LDPC' Degree Distribution 1.

AW () = 0.5572098z2 4 0.1651436z> 4 0.075679232"
+0.05713482° 4+ .043603z" + 0.026798022°
+0.013885518x1 + 0.0294308z'* 4 0.022253012!
+0.00886105219°,

() = 0.252° + 0.752°

as the ensemble (A, T(M) for the main channel. Tt has rate 0.498826
bits per channel use (b.p.c.u.), threshold 0.5, and multiplicative gap to
capacity (1 — e — Rges)/(1 — €) = 0.00232857. We use it to obtain two
optimized degree distributions, one for ¢,, = 0.6, and one for ¢, = 0.75.

The degree distribution for the ensemble optimized for the BEC-
WT(0.5,0.6) is given by

Two Edge Type Degree Distribution 1.

A(z,y) = 0.46384622 + 0.08149432%y + 0.011869122y>
+0.142392° 4 0.02016582%y 4 0.002588122%y2
+0.02922412* + 0.0464551z%y + 0.0564162x°
+0.00071858525y + 0.0436039z 7y
+ 0.02589262%y + 0.0009055032%y>
+0.0063147423y? + 0.00757076213y°
+0.011051zy + 0.0173718z14y>
+0.0010080724y® + 0.002407622>!
+0.001262623y* 4 0.0185828231y5
+0.0003261172'%* 4 0.00383319219%17
+0.00470174200y18

rY(z) = 0.252° 4+ 0.752,
r®(z) = 5.
This ensemble has design rate 0.39893 b.p.c.u., threshold 0.6, and the
multiplicative gap to capacity is 0.00267632. The rate R from Alice to

Bob is 0.099906 b.p.c.u. and R., the equivocation of Eve, is 0.0989137
b.p.c.u. Thus there is a small information leakage of 0.0009923 b.p.c.u.



50 3 LDPC Codes for the Wiretap Channel

However both R and R, are very close to the secrecy capacity Cs = 0.1
b.p.c.u.

The degree distribution for the ensemble optimized for the BEC-
WT(0.5,0.75) is given by

Two Edge Type Degree Distribution 2.

A(z,y) = 0.3678232% + 0.166244xy + 0.023142822y>
+0.1257272> 4 0.03941662%y + 0.00286773z*
4+ 0.0728115z%y + 0.05713482°y
+0.03009892 3% + 0.0135052 7>
4 0.019662225y> + 0.0071358225y*
+0.000565918z3y% + 0.0133196213°
+ 0.01497322y2 4 0.013221524y°
+0.00123612 4y + 0.0049083123%®
+0.017344723%° 4+ 0.001306062:10%17
4 0.0049893221%%3% 1 0.0025656729%3,

() = 0.252° + 0.752,

r®(z) = 0.252* + 0.752°.

This ensemble has design rate 0.248705 b.p.c.u. and threshold 0.75.
The multiplicative gap to capacity is 0.00518359. The rate R from Alice
to Bob is 0.250131 b.p.c.u. and R., the equivocation of Eve, is 0.248837
b.p.c.u. Note that the secrecy capacity C for this channel is 0.25 b.p.c.u.
Thus the obtained point is slightly to the right of and below point B in
Figure 311

As mentioned earlier, computing the equivocation of Eve is not as
straightforward as computing the reliability on the main channel. In

the next section we show how to compute the equivocation of Eve by
generalizing the methods from [MMUOS]| to two edge type LDPC codes.

3.3 Analysis of Equivocation

In order to compute the average equivocation of Eve over the erasure pat-
tern and ensemble of codes, we generalize the MMU method of [MMUOQS]
to two edge type LDPC codes. In [MMUQS], the equivocation of stan-
dard LDPC ensembles for point-to-point communication over BEC(¢) was
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computed. More precisely, let XV be a randomly chosen codeword of a
randomly chosen code C from the standard LDPC ensemble. Let XV be
transmitted over BEC(e) and let ZV be the channel output. Then the
MMU method computes

E (HC(XN|ZN))

N—o00 N ’

where He(XN|ZVN) is the conditional entropy of the transmitted code-
word given the channel observation for the code C, and we do the averag-
ing over the ensemble. Note that we need not average over the codewords
as the analysis can be carried out under the assumption that the all-zero
codeword is transmitted [RUOS| Chap. 3]. The MMU method is described
below.

1. Consider decoding using the peeling decoder. The peeling decoder
gets stuck in the largest stopping set contained in the set of erased
variable nodes. The subgraph induced by this stopping set is again
a code whose codewords are compatible with the erasure set. We
call this subgraph the residual graph. Thus the peeling decoder
associates to every graph and erasure set a residual graph. If the
erasure probability is above the BP threshold, then almost surely
the residual graph has a degree distribution close to the average
residual degree distribution [LMSS01a). The average residual degree
distribution can be computed by the asymptotic analysis of the
peeling decoder.

2. Conditioned on the residual degree distribution, the induced prob-
ability distribution is uniform over all the graphs with the given de-
gree distribution. This implies that almost surely a residual graph
is an element of the standard LDPC ensemble with degree distri-
bution equal to the average residual degree distribution.

3. One can easily compute the design rate of the average residual de-
gree distribution. However, the design rate is only a lower bound
on the rate. A criterion was derived in [MMUOQS], which, when sat-
isfied, guarantees that the actual rate is equal to the design rate. If
the actual rate is equal to the design rate, then the equivocation is
given by the design rate of the standard LDPC ensemble with de-
gree distribution equal to the average residual degree distribution.
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In order to compute the equivocation of Eve H(S|Z%), using the chain
rule we write H (S, X~|Z") in two different ways and obtain

H(XNZNY + H(S|XN, ZzN) = H(S|1ZN) + H(XN|S,ZN). (3.21)
By noting that H (S| XY, Z¥) = 0 and substituting it in (3.ZI)), we obtain

H(S|ZN)  H(XN|zN) H(xV|S,zY)
N = ¥ - N : (3.22)

In the following two subsections we show how the normalized average of
H(XN|ZN) and H(X™N|S, ZN) can be computed. The next subsection
deals with H(XN|ZN).

3.3.1 Computing the Normalized H(XY|Z")

In the following lemma we show that the average of
limpy o0 H(XN|ZN)/N can be computed by the MMU method.

Lemma 3.3.1. Consider transmission over the BEC-WT(€y,, €,,) using
the syndrome encoding method with a two edge type LDPC code H =
gl] , where the dimensions of H, Hy, and Hy are N(1 — R(2)) x N,
2
N(1—-RM)x N, and NR x N respectively. Let S be a randomly chosen
message from Alice for Bob and let X be the transmitted vector which

is a randomly chosen solution of HXN = {(5)’] Let ZVN be the channel

observation of Fve. Consider a point-to-point communication set-up over
the BEC(ey) using a standard LDPC code Hy. Let XN be a randomly
chosen transmitted codeword, i.e., XN isa randomly chosen solution of
H, XN = 0. Further let ZN be the channel output. Then

H (XV|2Y) = | (XN2Y).

Proof. We prove the lemma by showing that (X, ZV) and (XN, ZN)
have the same joint distribution. Clearly, Pr(ZN = 2N|XN = V) =
Pr(ZN = 2N| XY = 2") as transmission takes place over the BEC(e,,)
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in both cases. Now

PI‘(XN:IL'N):ZPI“(XN:I'N,S:S),

@ WLRZPr(XN:xMS:s),

b 1 1
~ 9NR Z 9NR(.2) L av =0y L{mmyan =5},
S

© Limav=o)
— W, (3.23)
where 1 gy is the indicator function for the statement S, (a) follows from
the uniform a priori distribution on S, (b) follows since conditioned on
s there are 2VE""” equally likely solutions to HaV = [0 s]7, and (c)
follows because for a fixed 2%,

> imen—g = 1.

Now the a priori distribution of XN is also the RHS of (323). This is
because X% is a randomly chosen solution of H; X~ = 0. This proves
the lemma. |

From Lemma [B.3.J, we see that when we consider transmission
over the BEC-WT (e, €,) using the two edge type LDPC ensemble
{A, TM T} we can compute the average of limy s H(XN|ZN)/N by
applying the MMU method to the standard LDPC ensemble {A() T(1}
for transmission over the BEC(e,,). We formally state this in the follow-
ing theorem.

Theorem 3.3.2. Consider transmission over the BEC-WT(ep, €,) us-
ing a randomly chosen code C from the two edge type LDPC ensemble
{A,TD TP} and the coset encoding method. Let XN be the transmitted
word and ZVN be the wiretapper’s observation.

Consider a point-to-point communication setup for transmission over
BEC(e,,) using the standard LDPC ensemble {AM) TMY. Let {Q, ®}
(from the node perspective) be the average residual degree distribution of
the residual ensemble given by the peeling decoder and let R}, be the
design rate of the average residual ensemble {Q, ®}. If almost every el-
ement of the average residual ensemble {Q, @} has its rate equal to the
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design rate R, then

des’

E (He(XN|ZN
lim ( C( | )) = ewA(l) (1 - p(l)(l - I)) des’
N —o00 N

where x is the fized point of the density evolution recursion for {A(), T}
initialized with erasure probability €., and p*) is the check node degree
distribution of Hy from the edge perspective.

Proof. Note that the condition that almost every element of the average
residual ensemble {Q, ®} has its rate equal to the design rate can be
verified by using Lemma

The proof is a straightforward consequence of Lemma [3.3.1] and The-
orem The factor €,AM) (1 —pM(1—z)), which is the ratio of
the block length of the average residual ensemble {Q, ®} to the initial
ensemble {A™M) T} takes care of the fact that we are normalizing
He(XN|ZN) by the block-length of the initial ensemble {AM) T, O

In the following subsection we generalize the MMU method to two
edge type LDPC ensembles in order to compute H(X™M|S, ZV).

3.3.2 Computing the Normalized H(X"|S,ZV) by
Generalizing the MMU method to Two Edge
Type LDPC Ensembles

Similarly to Lemma [B.3.1] in the following lemma we show that com-
puting H(X™N|S, ZN) for the BEC-WT (¢, €,,) using the coset encoding
method and two edge type LDPC ensemble {A,F(l), F(Q)} is equivalent
to computing the equivocation of the same ensemble for point-to-point
communication over the BEC(e,,).

Lemma 3.3.3. Consider transmission over BEC-WT(€p, €,) using the
H,
)
where the dimensions of H, Hy, and Hy are N(1 — R™?) x N,
N(1—-RM)x N, and NR x N respectively. Let S be a randomly chosen
message from Alice for Bob and let XN be the transmitted vector which

0]. Let ZN be the channel

syndrome encoding method with a two edge type LDPC code H = {

S

is a randomly chosen solution of HXN = [

observation of FEwve.
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Consider a point-to-point communication set-up for transmission over

the BEC(e,, ) using the two edge type LDPC code H = [Zl] . Let XN be
2

the transmitted codeword which is a randomly chosen solution of HXN =
0 and let ZVN be the channel output. Then

HXNS, zM) Y g(xN|s = 0,2V gV |ZN).

Proof. Equality (b) is obvious. To prove equality (a), note that for a

. 0 .
solution 2V of Hz™V = 4| Wecan write 2V = 2’V @z where Hz'Y =0

and HxlY = [ﬂ . Let 2V be a specific received vector and let 2’V be the

vector that has the same erased positions as zV and is equal to the

corresponding position in 2’V in the unerased positions. The proof is
completed by noting that

Pr(XN =N, ZN = NS = 5) = Pr(XN =2V, ZV = 2N|§ = 0).
(|

Thus from Lemma we see that H(X™|S, ZY) can be computed
by generalizing the MMU method to two edge type LDPC ensembles.
The proof of Step 1 and 2 of the MMU method for two edge type LDPC
ensemble is the same as for the standard LDPC ensemble. We state it in
the following two lemmas.

Lemma 3.3.4. Consider transmission over the BEC(e,,) using the two
edge type LDPC' ensemble {A, I‘(l),F(Q)} and decoded via the peeling de-
coder. Let G be a random residual graph. Conditioned on the event that
G has degree distribution {Q,®1) &2} it is equally likely to be any
element of the two edge type ensemble {Q, ®1) &2},

Proof. The proof is the same as for standard LDPC codes [LMSS01b]. O

Lemma 3.3.5. Consider transmission over the BEC(e,,) using the two
edge type LDPC' ensemble {A,F(l), I‘(Q)} which is decoded using the peel-
ing decoder. Let {Q,<I>(1),<I>(2)} be the average residual degree distribu-
tion. Let {Qg, (I>(Gl), (I>(GQ)} be the residual degree distribution of a random
residual graph G. Then, for any § > 0

lim Pr{d ((Q o), q><2>) , (QG, ol @g>)) > 5} —0.

N—oc0
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The distance d(-,+) is the Ly distance

d ((g @<1>’¢<2>) ’ <Q7@(1)7@(2))) -

D10, = [+ D (0F) — 00|+ > |0l — &),

1112 r r2

Proof. The proof is the same as that for standard LDPC ensembles
[LMSS98| [LMSS01b], [RUOS, Theorem 3.106]. |

In the following lemma we compute the average residual degree dis-
tribution of the two edge type LDPC ensemble.

Lemma 3.3.6. Consider transmission over BEC(e,, ) using the two type
LDPC ensemble {A,TN) T} which is decoded by the peeling decoder.
Let (z1,z2) be the fized points of (Z8) and (T9) when initialized with
channel erasure probability e,. Let y; = 1 — P (1 — zj), j = 1,2,
where p\9) is the degree distribution of check nodes of type j from edge
perspective. Then the average residual degree distribution {SQ, o), <I>(2)}
is given by

Q(21, 22) = eA(2191, 2292),
DU (2) = TW (1 — 2 + 252) — ;21" (1 — z)
*F(j)(]-*xj)a j:1a27

where T'0U)(x) is the derivative of T'U)(z). Note that the degree distribu-
tions are normalized with respect to the number of variable (check) nodes
in the original graph.

Proof. The proof follows by the analysis of the peeling decoder for gen-
eral multi-edge type LDPC ensembles in [HWI10]. However, as we are
interested in only two edge type LDPC ensembles, the proof also follows
from the analysis for the standard LDPC case [LMSS01b]. O

Lemma B.3.4] B.3.5] and generalize Step 1 and 2 of the MMU
method for two edge type LDPC ensembles. The key technical task in
extending Step 3 to two edge type LDPC ensemble is to derive a criterion,
which when satisfied, guarantees that almost every code in the residual
ensemble has its rate equal to the design rate. The rate is equal to the
normalized logarithm of the total number of codewords. However, as
the average of the logarithm of the total number of codewords is hard
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to compute, we compute the normalized logarithm of the average of the
total number of codewords. By Jensen’s inequality this is an upper bound
on the average rate. If this upper bound is equal to the design rate, then
by the same arguments as in Lemma [2.3.2] we can show that almost every
code in the ensemble has its rate equal to the design rate.

In the following lemma we derive the average of the total number of
codewords of a two edge type LDPC ensemble.

Lemma 3.3.7. Let Ny be the total number of codewords of a randomly
chosen code from the two edge type LDPC ensemble (A,T1) T(2)). Then
the average of Ny over the ensemble is given by

E(Nw) =

NAY(1,1),NAL(1,1)
coef

>

[Ta+ >N} )
E1=0,E>=0

11,12
NAJ(1,1) (1) NALH(L,1) 1 (2)
r T
7(1) T 7(2) T E;, Es
Coef{nrl,rz dr, (Ul) @ T gy, (U2) rmEa yUp U2

(NAg(ll,l)) (NA%(21,1)) ’

where AG(1,1) = Y0, ) LAy 1, T'O) = 3, 1, T8, j e {1,2).
The polynomial g (v) is defined as

qr(U)Z (1—|—’U)1';_(1—’U)r.

Proof. Let W(E1, E2) be the set of assignments of ones and zeros to
the variable nodes which result in Fy (resp. FEs) type one (resp. type
two) edges connected to variable nodes assigned value one. Denote the
cardinality of W(E1, E2) by [W(E1, E3)|. For an assignment w, let 1,,
be a random indicator variable which evaluates to one if w is a codeword
of a randomly chosen code and zero otherwise. Let Ny (E1, F2) be the
number of codewords belonging to the set W(E1, E2). Then we have the
following relationships

Nw (Ey, E3) = Z Loy,
weW(E1,E2)
NAY(1,1),NAL(1,1)
Ny = > Ny (E1, Es).

E1=0,E5=0
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By linearity of expectation we obtain

E(Nw(E1, E2)) = > E(ly),
’LUEW(El,EQ)

and

NAY(1L,1),NA5(1,1)

E(Nw) = > E(Nw (E\, Es)). (3.24)
E1=0,E>=0

From the symmetry of code generation, we observe that E(1,,), for w €
W(Eh, E2), is independent of w. Thus we can fix w to any one element
of W(E4, E2) and obtain

E(Nw (E4, Eq)) = |W(E1, E2)|Pr (w is a codeword) . (3.25)
Note that |W(E1, E2)| is given by
\W(Ey, Es)| = coef{ T @+ uqtugz) Ve, u{flu?} . (3.26)
11,12

We now evaluate the probability that an assignment w, w € W(E1, E2),
is a codeword, which is given by

Pr (w is a codeword) =

Total number of graphs for which w is a codeword (3.27)
Total number of graphs ' '
Similar to the arguments for the standard LDPC ensemble in the proof
of Lemma [Z.32] the total number of graphs for which w is a codeword is
given by

BBl (NAL(1,1) — EDI(NAY(L, 1) — Bs)!

NAJ(1,1) (1) NAH(L,1) 1(2)
(1) ry 7(2) T Eq, Eo
coef I I gr(v1) PO T g (vg) TP ® T2 w2 b (3.28)

ri1,r2

By noting that the total number of graphs is equal to
(NAL(L,))N(NALY(L,1))!, and combining (@24)-328), we obtain
the expression for the average of the total number of codewords.

O
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Remark: Note that related problems of computing the weight
distribution of two edge type and more generally multi-edge type LDPC
ensembles have been addressed in [IKST05, [KAD™09).

Lemma 3.3.8. Let E(N) be the set of (e, ea) such that

Coef{ H (1 + u%lu?)NAll*l? , u<i1NA'1(1,1)u;2NA'2(1,1)} #0. (329)

11,12

Then limpy o0 E(N) is the set of (e1,e2) such that

(e e ) B 211’12 llAll,lga(lla 12) 211712 12A11,120-(11) 12)
R AL T) ’ AG(1, 1) ’

where 0 < 0(11,12) < 1. We call this set £.

E can also be represented as the subset of the unit square enclosed
between two piecewise linear curves. Order the pairs (11,12) for which
A1, 1, > 0 in decreasing order of 11/l and assume that there are D
distinct such values. Let

1 if 11/15 takes the dth largest possible value,

0 otherwise,

oq(11,12) = {

and let

(X, i ,0a(11,12) 30, 0, 120y, 0,0a(1, 1)
= A (L 1) ’ Ay(1, 1)

Then & is the set above the piecewise linear curve connecting the points
{(0,0),p1,p1 + p2,...,(1,1)} and below the piecewise linear curve con-
necting the points {(0,0),pp,pp + Pp-1,--.,(1,1)}, where addition of
points p1 + pa is the point obtained by component wise addition of p1 and
p2-

Proof. The proof is given in Appendix [B3.Al O

Before stating our next result we need the following definition. For
a two edge type LDPC ensemble {A, T T(®)} with design rate Ryes we
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define the function 8(ey, eq2) for (e1,e2) € € as

O(e1,e2) = Z Ay, 1, log(1 +uus?) — Aj(1,1)er log uy

11,12

A(1,1
—A5(1,1)exlogus + ,1 )(1)ZF(1)1ogqu (v1)

AL(1,1)

— Nj(1,1)e; log vy + ,2 ’(1) ZF‘Q) 10g g, (v2)

— A3(1, Dezlogva — Ay (L, 1)h(61) — A5(1,1)h(e2)
— Raes, (3.30)

where w1, us,v1, and vy are positive solutions to the following equations

V1 (1) (1+’U1) 1—1 (1—’(}1):{171
— 'y =eq, 3.31
L’ (1) Z: Ho (I+ov)r+ (1 —wv)™ ! ( )
1+'U2) 2—1 (1*’02)1‘2_1
r = ey, 3.32
Z "2 (14 v2)72 4 (1 — wo)*2 ? (3.82)
1 uttul?
—_ A 1, ——2 — —e¢, 3.33
WD) 25 M Ty 539
1 u%lu?
—_ Ay 1, lo——== =e9. 3.34
A5(1,1) 1127:12 tiotz 21+u%1u§2 2 ( )

In the following theorem, we present a criterion for two edge type
LDPC ensembles, which, when satisfied, guarantees that the actual rate
is equal to the design rate.

Theorem 3.3.9. Consider the two edge type LDPC ensemble
{A, T TP} with design rate Raes. Let Ny be the total number of
codewords of a randomly chosen code C from this ensemble and let R¢ be
the actual rate of the code C. Then

_ log(E[Nw])

lim —————= = sup 60(e1,e2)+ Ryes,

N—oc0 N (e1,e2)€E (1 2)
where the set £ is defined in Lemma [3:38 and 6(e1,e2) is defined

in (Z30).  Also, if sup(, c,yecf(e1,e2) = 0, ide, 6(1/2,1/2) >
O(e1,e2),¥(e1,e2) € E, then for any 6 > 0

lim Pr(R¢ > Rges +0) =0.
N—o00
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Proof. By [324]), we have

. log(E[Nw])
R -

log(E[N (e NAY (1,1 NAL(1,1
wp i PEEIN(NAL(L D). eoNAS (L D))
(61762)E£N_>OO N

Using Stirling’s approximation for the binomial coefficients and [BMO04,
Theorem 2] for the coefficient growths in Lemma [3:3.7 we know that

L Jog(BIN (e NAY (1, 1), eV A (1, 1))
N—oc0 N

sup inf (e, ez, u1,uz, v1,v2)
(e1,e2)EE V1,U2,01,v2>0

where 1(e1, ea, u1, ug, v1,v2) is given by

37 Auyaalog(1+ulud?) — Af(1, 1)er loguy

11,12
1)

1

L(1,1)
F (2)(1) ZF 10gqr2 'UQ)

r2

—A5(1,1)ezlogva — AY(1,1)h(er) — AS(1,1)h(e2).

—A5(1,1)eq logUQJr ZF log gz, (v1)

ri

—Aj(1,1)e1 logvy +

Further, the infimum of ¢ with respect to u1, us,v1, and vs can be found
by solving the following saddle point equations

v _ov 0w _ 00 _
8u1 o aUQ o 81}1 o 81}2 -

which are equivalent to (331]) - (334)). The second claim of the theorem
follows from Lemma O

Note that in general for a two edge type LDPC ensemble, in order to
check if the actual rate is equal to the design rate, we need to compute
the maximum of a two variable function over the set £. However, the
set £ is just a line for left regular two edge type LDPC ensembles. Thus
we deal with the case of left regular LDPC ensembles in the following
lemma.
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Lemma 3.3.10. Consider the left reqular two edge type LDPC' ensemble
{11,1,, 7D T} with design rate Ryes. Let N be the total number of
codewords of a randomly chosen code C from this ensemble and R¢ be its
actual rate. Then

. log(E[Nw])
lim ———————= = sup 6(e) + Ryes-
N—o0 N e€(0,1) ( ) ¢

If sup,c(g1) 0(e) = 0 d.e. 0(1/2) > 0(e),Ve € (0,1), then for any 6 >0
lim Pr (Rc > Rges +0) =0

N —oc0

The function 6(e) is defined as

1

9(6) = (1 - 11 - 12)h(e) + F(T,(l) ZFE}) 10gqr(’U1)
1
I‘(T'Q(l) zr:l’](_?) log ¢r(v2) — €1y logv; — elalogva — Rdes,

where v1 (resp. vs) is the unique positive solution of (331) (resp. (3.33))
with ey (resp. ez) substituted by e on the RHS.

Proof. Most of the arguments in this lemma are the same as those of
Theorem [B:3.9 so we will omit them. First note that the cardinality of
the set W(E1, E»), as defined in Lemma [337] is given by

IW(E, Es)| = coef{(l + uil’lLéQ)N,ufluQE?}
_ {0 By B,

( Elj\/lll) otherwise.

Let e = E1/(N1y1) = E3/(N13). By Stirling’s approximation and the
saddle point approximation for the coefficient terms [RUO8| pp. 517], we
obtain

lim 1og(E]£[NW]) — lim s log(E[N(eN11,eN1s)])

N—o0 N—o0 e€(0,1) N

= sup inf {(1 —1; — 19)h(e)
ee(oyl)ylﬁy2>0

L (1)
+ I‘(T’(l) erl log g, (v1) — el log vy

ri
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L (2)
+ F(Q)’(l) ; Fr2 log qr, (02) —elslogug

= sup inf (e, v1,v2)
e€(0,1) Y1,¥2>0

The saddle point equations are obtained by taking the partial deriva-
tives of ¢ with respect to v;,j € {1,2} and setting them equal to 0.
These equations are the same as (B31]) (resp. [B:32))) with ey (resp. e3)
substituted by e on the RHS.

([l

Remark: Note that as in [MMUOS|], we can change the order of inf
and sup. Taking the derivatives after changing the order gives a function
which is an upper bound on 6(e). The advantage of this upper bound
is that it can be computed without solving any saddle point equations.
However, as opposed to the standard LDPC ensembles, for two edge type
LDPC ensembles this upper bound is not tight and does not provide a
meaningful criterion to check if the rate is equal to the design rate.

The following two lemmas show that in the case of a left regular
ensemble where I'™) and I'® both have only either odd or even degrees,
the function 6(e) attains its maximum inside the interval [0,1/2].

Lemma 3.3.11. Consider the left reqular two edge type LDPC' ensemble
{11,1,, 7MW TP}, Let O(e) be the function as defined in Lemma [Z-310.
If both TV and T'?) are such that both the type of check nodes only have
odd degrees, then for e >1/2

O(e) < 6(1/2).
Proof. The proof is given in Appendix 3.1l O

Lemma 3.3.12. Consider the left reqular two edge type LDPC ensemble
{11,1,, 7MW TP}, Let 6(e) be the function as defined in Lemma 3310
If both TV and T'®) are such that both the type of check nodes only have
even degrees, then for e € (0,1/2)

O(e) =6(1 —e).
Proof. The proof is given in Appendix 3.Cl O

In the following theorem we state how we can compute the conditional
entropy H(X™N|S, ZN) appearing in (3.22).
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Theorem 3.3.13. Consider transmission over the BEC-WT(ep, €y)
using a random code C from the two edge type LDPC ensemble
{A, I‘(l),F(Q)} and the coset encoding method. Let S be the message from
Alice for Bob, XN be the transmitted word, and ZN be the wiretapper’s
observation.

Also consider a point-to-point communication setup for transmission
over the BEC(e,, ) using the two edge type LDPC' ensemble {A, TV T(2)}
Assume that the erasure probability €,, is above the BP threshold of the
ensemble. Let {S2, o) CID(Q)} be the residual ensemble resulted from the
peeling decoder. Let R}, be the design rate of the residual ensemble
{Q, @M 0@}, 1f{Q, M) ®2Y satisfies the condition of Theorem[F3.3,
i.e. if the design rate of the residual ensemble is equal to the rate then

N N
L B(He (XS, ZY))
N—oc0 N

= ewA(ylayQ)Rges’ (335)

where y1, and yo are the fixed points of the density evolution equations
(ZR) and (329) obtained when initializing them with xgl) = acéQ) = €y.

Proof. From Lemma [3.3.3] we know that the conditional entropy in the
point-to-point set-up is identical to H(X|S, Z). The conditional en-
tropy in the point-to-point case is equal to the RHS of (3.35). This follows
from the same arguments as in [MMUOS8, Theorem 10]. The quantity
ewA(y1,y2) on the RHS of (B30) is the ratio of the number of variable
nodes in the residual ensemble to that in the initial ensemble.

O

This gives us the following method to calculate the equivocation of
Eve when using two edge type LDPC ensembles for the BEC-WT(e,,, €.,)
based on the coset encoding method.

1. If the threshold of the two edge type LDPC ensemble is lower than
€w, calculate the residual degree distribution for the two edge type
LDPC ensemble for transmission over the BEC(e,,). Check that
the rate of this residual ensemble is equal to the design rate using
Theorem 3391 Calculate H(XY|S, ZN) using Theorem If
the threshold is higher than e,, H(XY|S, ZV) is trivially zero.

2. If the threshold of the standard LDPC ensemble induced by type
one edges is higher than ¢, calculate the residual degree distribu-
tion of this ensemble for transmission over the BEC(e,). Check
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that its rate is equal to the design rate using Lemma Cal-
culate H(XN|Z"N) using Theorem If the threshold is higher
than e, H(XN|ZN) is trivially zero.

3. Finally calculate H(S|ZY) using
H(S|ZN) = H(XN|ZN) — H(XN|S, ZM).

In the following section we demonstrate this procedure by computing the
equivocation of Eve for various two edge type LDPC ensembles.

3.4 Examples

Example 1. Consider using the ensemble defined by
Standard LDPC' Degree Distribution 1.

AD (z) = 0.55720982% 4 0.16514362° 4 0.07567923z*
+ 0.05713482° 4 .043603z" 4 0.026798022°
+0.013885518x1% + 0.0294308z* + 0.0222530123!
+0.0088610521%,

rY(z) = 0.252° + 0.7521°

from Section for transmission over the BEC-WT(0.5,0.6) at rate
R = 0.498836 b.p.c.u. (the full rate of the ensemble), without using the
coset encoding scheme. Here every possible message s corresponds to
a single codeword zV, and encoding and decoding is done as with a
standard LDPC code. Since the threshold is 0.5, Bob can decode with
error probability approaching zero. The equivocation of Eve is given
by H(S|ZN) = H(X™N|Z"N) which can be calculated using the MMU
method. In Figure we plot the function W o) gy(u) defined in
Lemma 232 corresponding to the standard LDPC ensemble {Q™), &1},
which is the average residual degree distribution of the ensemble induced
by type one edges for transmission over BEC(e,,).

From Lemma .32 if the maximum of \I/{Q<1>7q><1>}(u) over the unit
interval occurs at v = 1, which holds in this case, the design rate of
the residual graph is equal to the actual rate. Thus we can calculate the
average equivocation limy oo H(X™|ZY)/N = 0.0989137 b.p.c.u. Using
this ensemble we can achieve the point (R, R.) = (0.498836,0.0989137) in
the rate-equivocation region which is very close to the point C = (0.5,0.1)
in Figure 311



66 3 LDPC Codes for the Wiretap Channel
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Figure 3.3: ‘P{Q<1)7¢<1)}(u) for Example [l and

Ezxample 2. Now consider the two edge type ensemble defined by
Two Edge Type Degree Distribution 1.

A(z,y) = 0.4638462% 4 0.0814943x%y + 0.01186912%y>
+0.142392° 4 0.020165823y + 0.0025881 223>
+0.02922412* + 0.0464551 2%y + 0.0564162°
4 0.000718585x5y + 0.04360392 7y
+ 0.025892625y 4 0.00090550325>
+0.006314742 3y + 0.0075707623y°
+0.011051z "y + 0.0173718z144?
+0.001008072y® + 0.0024076223!
+0.001262623y* + 0.0185828x314°
+0.000326117219%* 4 0.00383319219%17
+0.00470174200y18

() = 0.252° + 0.7521°,

() = a5,
from Section B2 for transmission over the BEC-WT(0.5,0.6) using the
coset encoding scheme. Again Bob can decode since the threshold of

the ensemble induced by type one edges is 0.5. Since the threshold
of the two edge type ensemble is 0.6, we get H(XN|S, ZN) = 0, and
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H(S|ZN) = H(XY|ZN). The degree distribution of type one edges
is the same as the degree distribution in Example 1, so we again get
limy 0o E(H(XYN|ZN))/N = 0.0989137 b.p.cu. Using this scheme
we achieve the point (R,R.) = (0.0999064,0.0989137) in the rate-
equivocation region which is very close to point B = (0.1,0.1) in Figure

B1

Ezample 3. Consider transmission over the BEC-WT(0.429, 0.75) using
the coset encoding scheme and the regular two edge type ensemble defined
by

Two Edge Type Degree Distribution 3.

A(z,y) = 2%y’
I‘(l)(:c) =75
r®(z) = 212,

The design rate of this ensemble is 0.25 b.p.c.u. and the threshold is
0.469746. The threshold for the ensemble induced by type one edges is
0.4294, so it can be used for reliable communication if €,, < 0.4294.

To calculate the equivocation of Eve, we first calculate H(X™|ZN)/N
by the MMU method. We calculate the average residual degree distribu-
tion {Q(l), (I>(1)} of the ensemble induced by type one edges for erasure
probability €, and plot ‘I/{Q<1>7¢<1>}(u) in Figure B4l As in Examples 1
and 2, we see that it takes its maximum at v = 1. Thus, by Lemma 232,
we obtain that the conditional entropy is equal to the design rate of
the residual ensemble, that is, limy_,0o E(H(XY|ZN))/N = 0.250124
b.p.c.u.

0.2 9‘4/ 2 0.8 1.0 0.2 04 0.6 0.8 1.0
\\/ 005}
\
-02}
-0.10

~0.15F
\ —020f
—o6| \ —025F

-030F

-08| | P

-035F

Figure 3.4: 6(e) and ¥ g0 pm)y(u) for Example B3

We now calculate the residual degree distribution (£2, o) CID(Q)) of the
two edge type ensemble corresponding to erasure probability €, and plot
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the function f(e) defined in Lemma If §(e) is less than or equal
to zero for e € [0,1], then the rate of the residual ensemble is equal to
the design rate by Lemma Then we can calculate H(XN|S, Z)
using Lemma In Figure 3.4l we see that sup.c(o 1) 0(e) = 0, and
we get limy . E(H(XN|S, ZN))/N = 0.000124297 b.p.c.u.

Finally, using (322) we get limy oo E(H(S|ZY))/N = 0.24999998
b.p.cu. We thus achieve the point (R, R.) = (0.25,0.24999998) in the
rate-equivocation region. We see that we are very close to perfect secrecy.
The reason that we are so far away from the secrecy capacity Cs = 0.321
is that the (3, 6) ensemble for the main channel is far from being capacity
achieving.

Example 4. Consider the two edge type ensemble
Two Edge Type Degree Distribution 4.

A(z,y) = 0.557209822%y° 4 0.165143623y> 4 0.0756792324y>
+ 0.05713482%y + .043603z"y> + 0.026798022%y>
+0.013885518z 3y + 0.0294308xz1%43
+0.022253012%19% + 0.0088610520%3,

I (z) = 0.252° + 0.7521°,

I‘(Q)(:c) = z'?

where the graph induced by type one edges has the same degree distri-
bution as Standard LDPC Degree Distribution [Tl and the graph induced
by type two edges is (3,12) regular. The rate of the overall ensemble
is 0.248836 b.p.c.u. and the rate from Alice to Bob is R = 0.25 b.p.c.u.
Consider transmission over the BEC-WT(0.5,0.751164).

In Figure B35 we plot ‘II{Q(I)’q)(l)}(u) for the residual ensemble
{QMW ®M1 induced by type one edges for transmission over BEC(e,).
Since the maximum of W ga) ¢)y(u) over the unit interval occurs at
u = 1, we obtain by Lemma that the rate is equal to the design
rate for this residual ensemble. In Figure we plot f(eq,e2) for the
residual ensemble (Q, (1), &) of the two edge type LDPC ensemble
for transmission over BEC(e,,). Since the maximum of 6(ey, e3) over the
set £ is zero, we obtain by Theorem that the rate is equal to the
design rate for this residual two edge type ensemble. In this case we can
calculate the equivocation of Eve and find it to be 0.24999999 b.p.c.u.,
which is very close to the rate. Thus this ensemble achieves the point
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(R, R.) = (0.25,0.24999999) in the capacity-equivocation region in Fig-
ure 31l Note that the secrecy capacity is 0.251164 b.p.c.u.

L L L L .
0.2 0.4 0.6 0.8 1.0

_—

Figure 3.5: 6(e1,e2) and \I/{Qm’q)(l)}(u) for Example 4.

These examples demonstrate that there exist simple ensembles with
very good secrecy performance.

In the following section we consider spatially coupled two edge type
LDPC codes. They are the extension of the spatially coupled LDPC
codes of [KRUIL0(] to two edge type codes. We show that regular two
edge type spatially coupled codes are optimal for the BEC-WT (e, €4,).

3.5 Spatially Coupled Codes

In this section we describe spatially coupled LDPC codes for the wiretap
channel. They are the two edge type equivalent to the spatially coupled
codes of Section As for the standard LDPC codes of the previous
sections we will use Wyner’s coset encoding method described in Defini-
tion 2211

In the previous sections we considered irregular two edge type ensem-
bles, but for our purposes here it is sufficient to focus on regular two edge
type LDPC ensembles.

Definition 3.5.1 ({11,12,r1,r2} Two Edge Type LDPC Ensemble). A
{11,129, 11,12} two edge type LDPC ensemble of block length N contains
all the bipartite graphs (allowing multiple edges between a variable node
and a check node) where all the N variable nodes are connected to 1; check
nodes of type i and all the type i check nodes have degree r;, i € {1,2}.

A protograph of a regular two edge type LDPC code with 1; =15 =3
and r; = ro = 6 is shown in Figure [3.0]
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Figure 3.6: A protograph of a two edge type LDPC ensemble with 1; =
12:3andr1:r2:6.

Based on the definition of an {1,r, L, w} ensemble from [KRUIL0],
we define the regular spatially coupled two edge type LDPC ensemble.
Before giving this definition, we define 7 (1) to be the set of w-tuples of
non-negative integers which sum to 1. More precisely,

T@@) ={(to, -~ ,tw-1) : i t; =1}.

=0

Remark: Note that the w-tuple (to,- - , t,—1) is called a type in [KRUILO0).
We avoid this terminology as we refer to different edges in the two edge
type LDPC ensemble by their type.

Definition 3.5.2 ({11,12,r1,72, L, w} Spatially Coupled Two Edge
Type LDPC Ensemble). Assume that there are M variable nodes each at
the positions [—L, L], L € N. The block length of a code in the ensemble is
N = M(2L+1). Every variable node has degree 11 with respect to type 1
edges and 1o with respect to type 2 edges. At each position [—L, L+w—1]
there are i—iM type 1 check nodes and 1—§M type 2 check nodes. All type
1 check nodes have degree r1 and all type 2 check nodes have degree rs.
Assume that for each variable node we order its edges in an arbitrary
but fized order. A type j constellation c is an 1j-tuple, ¢ = (c1,--- ,c1;)
with elements in {0,1,--- ,w—1}. Its operational significance is that if
a variable node at position i has type j constellation c then its k-th edge
of type j is connected to a check node at position i + ¢, j € {1,2}. We
denote the set of all type j constellations by €;. Let T(c) be the w-tuple
which counts the occurrence of 0,1,--- ;w—1 in c. Clearly, if c is a type j
constellation then 7(c) € T(1;). We impose a uniform distribution over
both types of constellations. This imposes the following distribution over
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teT(1;)

_ Hece € :7(c) =t}

()
p7(t) o

, Jeq{L,2}.

Now we pick M so that Mp™W (t1)p?) (t2) is a natural number for Vt, €
T(11),Vta € T(12). For each position i pick Mp(l)(tl)p@)(tg) variable
nodes. For each of these variable nodes we use a random permutation
over 1; letters to map t; to a type j constellation c. We then assign the
type j edges of the variable nodes according to the constellation c. We do
this for both type 1 and 2 edges. Ignoring boundary effects, for each check
position i, the number of type j edges that come from variables at position
i—k, ke{0,---,w—1}, is M% This implies that exactly a fraction
% of the total number M1; of type j sockets at position i. At the check
nodes, we distribute these edges by randomly choosing a permutation over
M1; letters, to the Mi—j check nodes of type j, j € {1,2}.

Remark: Each of the 1; (resp. 1) type 1 (resp. 2) connections
of a variable node at position ¢ is uniformly and independently chosen
from the range [i,...,i + w — 1], where w is a “smoothing” parameter.
Similarly, as was remarked in [KRUI0], for each check node each edge
is roughly independently chosen to be connected to one of its nearest w
“left” neighbors. More precisely, the corresponding probability deviates
at most by a term of order 1/M from the uniform distribution.

To summarize, a {1l1,1s,r1,r2, L,w} spatially coupled two edge
type LDPC ensemble is obtained by replacing the standard regular
LDPC ensemble in the (1,r, L, w) ensemble (defined in [KRUIL0]) by a
{11,13,11,12} two edge type LDPC ensemble. The spatial coupling is
done such that only edges of the same type are coupled together. An

Figure 3.7: A coupled chain of protographs of a two edge type LDPC
code with L =1for 1 =1y =3 and r; = ry3 = 6.
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example of a protograph of a two edge type LDPC code is shown in Fig-
ure and its spatially coupled version is shown in Figure 37 Solid
lines correspond to type one edges and dashed lines to type two edges.
In the next lemma we show that if the degrees of the two types of
check nodes are the same, i.e. if r1 = ro = r, then the {11,1q,r,r, L, w}
spatially coupled two edge type LDPC ensemble has the same asymptotic
performance as that of the spatially coupled ensemble (1; 4+ 1o, 1, L, w).

Lemma 3.5.3. The {11,1s,r,r, L, w} spatially coupled two edge type
LDPC ensemble has the same BP threshold as the spatially coupled en-
semble (11 + 12,1, L, w).

Proof. Let :Eyw ) be the average erasure probability which is emitted by
a variable node at position ¢ in the kth iteration along an edge of type j,
je{1,2}. Fori¢[~L,L], we set 2™ = 0. For i € [-L, L], j € {1,2},
and k =1, we set xglw) =€

As in [KRUIO], the density evolution recursion for the
{11,13,r,r, L,w} two edge type spatially coupled LDPC ensemble

is given by

(k) 1w—1 1w—1 ( ) r—1\ 1t
k1) _ k—1,1
O (M (BED e)
p=0 m=0
1 w—1 1 w—1 -1\ 12
(k—1,2)
(E( 1))
p=0 m=0
1w71 1 w—1 r—1\ 1
(k,2) _ (k—1,1)
P =1~ <1EZ zﬂ,_m)
p=0 m=0
1 w—1 1 w—1 r—1\ 1271
(k—1,2)
p=0 m=0
Here MY = zB2 g k=10 _ (k=12) Indeed, for £ = 1 and

i i U i
i€[-L L], :Egl’l) = IE§1’2) = e and for i ¢ [-L, L], %(1,1) = xl(,l’Q) =0.

Thus, by induction on the number of iterations k, xEk’l) = :L'gk’Q). Hence

we drop the superscript corresponding to the type of edge and write the
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density evolution recursion as

11+12—1

1 w—1 1 w—1 r—1
k k—1
n =12 (1 =2 x§+p—)m> . (339)

p=0 m=0

This recursion is same as that of {11 + 12, r, L, w} spatially coupled en-
semble given in [KRUI(Q]. This proves the lemma. O

Before proving the main result, we show that regular two edge type
LDPC ensembles {11,15,r,r} have the same growth rate of the average
stopping set distribution as that of the standard regular {1; + 1l2,r}
LDPC ensemble.

Lemma 3.5.4. Consider the {11,12,x,r} reqular two edge type LDPC
ensemble with block length N, 11 > 3, and positive design rate. Let
Ngs(N,wN) be the stopping set distribution of a randomly chosen code
from this ensemble and let E(Ngs(N,wN)) be its average. Then the
growth rate of E(Ngs(N,wN)) is the same as that of the standard regular
{11 4+ 12,1t} ensemble. In particular, the minimum stopping set weight of
the {11, 1o, 1,1} regular two edge type LDPC ensemble grows linearly in
N.

Proof. A stopping set is a subset of the variable nodes such that all check
nodes connected to this subset is connected to it by at least two edges.
We first show that

E(Nss(N, wN)) ==
< N > coef {p(r)(x)¥ : :E‘*’llN} coef {p(r) (z)# : :E‘*’12N}
Nw (a3, 3) (5 ’

where p®)(x) = (1 + x)* — rx. The proof of this is similar to the proof
of Lemma 3.1 Let vV be a binary vector of weight wN. From the
symmetry of code generation we see that the probability that a vector
v is a stopping set of a randomly chosen code is independent of v".

Thus we can fix vV to a specific vector and get

(3.39)

E(Nss(N,wN)) = ( N

wN) x Pr(v is a stopping set), (3.40)
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where (wj\][v) is the number of vectors of weight wN. The probability that

v is a stopping set is

Pr (UN is a stopping set) =

Total number of graphs for which v¥ is a stopping set

3.41
Total number of graphs ( )

There are 1;wN outgoing edges of type j from vV
ways of connecting them to the %N type j check nodes, so that no check

node is connected exactly once is given by

, and the number of

LN

r

le
coef Z <I:> z* BN Y = coef {p(r)(x) T ,xWIJ‘N} .

k=0,2,3,...

(3.42)
The number of ways of permuting the 1;,wN type j edges connected to

vV, and the 1;N — 1;wN type j edges not connected to v is given
by (LjwN)!(1;N — 1;wN)! and the total number of graphs is given by
(11 N)!{(12N)!. Combining these results we get
Pr (UN is a stopping set) =
coef {p(r)(x) 1er , m“llN} coef {p(r) (I) 1er , mwlgN}

EROIERY) ’

(3.43)

which gives us (3.39).
Using Stirling’s approximation for the binomial terms and the Hay-
man expansion for the coefficient term, see [RU0O8, Appendix D], we ob-
tain
lim log (E(Ngs(N,wN)))
N—oc0 N

=(1-1; —1)h(w)
+ l—rl log (p(r)(t)) — wly log(t)
+ l—r2 log (p(r)(t)) —wlylog(t), (3.44)

where t is a positive solution of

(1o -1

N Ty ) (3.45)
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From (344]), we see that the growth rate is the same as that of the
average stopping set distribution of the standard {1; + 1lo,r} regular
LDPC ensemble [OVZ05, Theorem 2]. Now, the linearity of minimum
stopping set distance immediately follows from [OVZ05, Cor. 7]. O

Remark: We could have come to this conclusion by specializing the
general result contained in [KADT09, Theorem 5]. But for the conve-
nience of the reader, and since the above proof is so short, we decided to
include a complete proof.

Lemma B354 and [KRU10, Lemma 1] imply that {1;,12,r,r, L, w}
spatially coupled two edge type LDPC ensembles with variable node
degree at least three have a linear minimum stopping set distance.
This gives us the following lemma on the block error probability of the
{11,15,r,r, L, w} ensemble under iterative decoding.

Lemma 3.5.5. Consider transmission over the BEC(e) using the
{11,19,x, 1, L,w} spatially coupled two edge type LDPC ensemble with
BP threshold €BY and block length N. Let 11 + 15 > 3. Assume that
€ < B8P Denote by PN the block error probability under iterative decod-
ing. Then

lim NPN =0.

N—oc0
Proof. In fact, a much stronger result is true — the block error probability
converges to 0 exponentially fast. But for our purpose we only need that
it converges to zero faster than linearly.

To see why this is correct, fix € < PP, Then, for any § > 0, there
exists a k so that after k iterations of DE, the bit error probability is below
§/3. Further, for N = N(k), sufficiently large, the expected behavior
over all instances of the code and the channel deviates from the density
evolution predictions by at most /3. Finally, by standard concentration
results (see [RUO8, Theorem 3.30]) it follows that the probability that
a particular instance deviates more than §/3 from its average decays
exponentially fast in the block length.

We summarize, with a probability which converges exponentially fast
(in the block length) to 1, an individual instance will have reached a bit
error probability of at most § after a fixed number of iterations.

If § is chosen sufficiently small, in particular smaller than the relative
minimum stopping set weight, then we know that the decoder can correct
the remaining erasures with probability 1. O

In the following lemma we calculate the design rate of the spatially
coupled two edge type ensemble.
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Lemma 3.5.6 (Design Rate). The design rate of the spatially coupled
two edge type ensemble ({11,1s,11, 12, L,w}) with w < 2L is given by

R(llalQ;II;IQaLaw) = (346)
1 1 1 1 1 -2 (i)7

(1-iﬁ)<i+ﬁ>w+ Yico (i) | (3.47)
r ro r Tro 2L +1

The design rate of the coset encoding scheme for the wiretap channel is
given by _
L, Lw+l-230,(2)

— 22 . 4
Raes o o 2L +1 (3 8)

Proof. Let C1(C2) be the number of type one (two) check nodes con-
nected to variable nodes and let V' be the number of variable nodes.
Then R(11,12,7r1,12, L,w) =1 —C1/V — C3/V and Rges = C2/V. The
calculations then follow from the proof of [KRUIL0, Lemma 3]. O

The number of possible messages s of the coset encoding scheme is
given by the number of cosets of Cg\}’m in C](\}). For a standard LDPC
ensemble the design rate is a lower bound on the rates of the codes in the
ensemble. This is not true for the coset encoding scheme for the wiretap
channel. For example, suppose that the rate of C](\;) equals the design

rate, but the rate of C](\}’Q) is higher than its design rate. Then there will
be fewer cosets than the maximum possible value. This corresponds to
the equation

Hi| o~ _ T

|:H2:| XY =1[0---05]
not having solutions for some S.

Now, we are ready to state one of our main theorems. It shows that,
by spatial coupling of two edge type LDPC codes, we can achieve perfect
secrecy (the branch AB in Figure B, and in particular the secrecy
capacity (the point B in Figure[B]) of the binary erasure wiretap channel.

Theorem 3.5.7. Consider transmission over the BEC-WT(ep,, €y) us-

ing the spatially coupled regular {11,1s,r,r, L,w} two edge type LDPC

ensemble. Assume that the desired rate of information transmission from

Alice to Bob is R, R < Cp, — Cy. Let 11 = [(1—-Cy, — R)r] and

1o = [(1 = Cyu)r] — [(1 = Cyw — R)x]. Let RY be the average (over the

channel and ensemble) equivocation achieved for the wiretapper. Then,
lim lim lim lim E(PN(Cn)) =0,

r—00 w—00 L—00 M—00
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lim lim lim lim RY = R.
r—00 W—00 L—00 M—»00

Let R(Cn) be the rate from Alice to Bob of a randomly chosen code in
the ensemble. Then

lim lim lim lim Pr(R(Cy) < R)=0.

r—00 w—00 L—y00 M—00

Proof. We first show that the rate from Alice to Bob is R almost surely.
Let C](\}’Q) be a two edge type spatially coupled code, and let C](\}) be the
code induced by its type 1 edges only. Then

R(Cy) = R(C)) — RC\?). (3.49)

Since both the two edge type spatially coupled ensemble and the ensemble
induced by its type 1 edges are capacity achieving we must have

. 1) _
rlggo wh_l;I(l)Q Lh—>H;o Mhinoo Pr(R(CyN’) > Cyw + R) =0, (3.50)
lim lim lim lim Pr(RC{?) > C,) =0. (3.51)

r—00 w—00 L—o0 M — o0

This implies that

lim lim lim lim Pr(R(Cy) < R)=0. (3.52)

r—00 w—00 L—00 M—00

The reliability part easily follows from the capacity achieving property of
the spatially coupled ensemble. This is because the rate of the ensemble
corresponding to type 1 edges approaches C, + R. As this ensemble is
capacity achieving, its threshold is 1 — C,, — R. As R < C,;, — Cy,, We see
that the threshold is greater than ¢,,. This proves reliability.

To bound the equivocation of Eve, we expand the mutual information
I(X™,8;ZN) in two different ways using the chain rule

I(XN,8;ZzN) = (XN, 2Ny + 1(S; 2V | X7) (3.53)
=I1(S;ZN)y + 1(XN; ZV | S). (3.54)

As S — XN — ZN is a Markov chain, I(S; zZN | XN) = 0. Using that
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I(S;ZN) = H(S) — H(S | ZN), we obtain,

CH(S| 2Y) = < (H(S) + 1(X";: 2V | 8) — I(X"; 2V)
= & (H(S) + H(X™ | 8) — H(xN | 2¥,9)
(XN ZV)
N
> % (HXN) —HXN | ZN,9)) = Cu, (3.55)

where we have used that H(S)+ H(XY | S) = H(S,X") = H(X") and
that I(XN;ZN)/N < C.

Since the ensemble induced by type 1 edges is capacity achieving its
rate must equal its design rate asymptotically, so

lim lim lim lim H(XY)/N =R+ C,. (3.56)
r—00 w—00 L—o0 N—o0
Denote the block error probability of decoding XV from Z~ and S
by PN-S. From Fano’s inequality we obtain,
H(XN |8, zZN) < h(PN-S

e) N,S
PNS(1—¢,). .
~ < —— + PV - c) (3.57)

Note that, as the two edge type spatially coupled construction is capacity
achieving over the wiretapper’s channel,

lim lim lim lim PN =0.
r—00 w—00 L—00 M —00

We now obtain the desired bound on the equivocation by substituting
BE1D) and (B56) in B353), and taking the limit r, w, L, M — oo. O

Note that in the previous theorem our requirement was to have perfect
secrecy. Hence we constructed a spatially coupled two edge type code
which was capacity achieving over the wiretapper’s channel. In the next
theorem we prove that using spatially coupled two edge LDPC codes, it
is possible to achieve an information rate equal to C,,, the capacity of
the main channel, and equivocation equal to C,, — €.

Theorem 3.5.8. Consider transmission over the BEC-WT(ep, €,) us-
ing the spatially coupled regular {11,1s,7,r,L,w} two edge type LDPC
ensemble. Assume that the desired rate of information transmission from
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Alice to Bob is R, R > Cp, — Cy and R < Cy,. Let 11 = [(1 — Cp,)1]
and 15 = [Rr]. Let RY be the average (over the channel and ensemble)
equivocation achieved for the wiretapper. Then,

lim lim lim lim E(PN) =0,

r—o0 w—00 L—o00 M —o00

lim lim lim lim RY =C,, — C,.
r—00 w—00 L—y00 M—»00

Let R(Cn) be the rate from Alice to Bob of a randomly chosen code in
the ensemble. Then
lim lim lim lim Pr(R(Cy) < R)=0.
r—o00 w—00 L—00 M —00
Proof. The proof that the rate is R asymptotically is the same as in the
proof of Theorem B.5.7
The reliability part easily follows from the capacity achieving prop-
erty of the spatially coupled ensemble corresponding to type 1 edges.
This is because the rate of the ensemble corresponding to type 1 edges
approaches C,,. As this ensemble is capacity achieving, its threshold is
€m- This proves reliability.
The proof for equivocation is very similar to that of Theorem B5.7
From ([B3.53), we know

CH(S | 2Y) 2+ (H(XY) - HXY [ 27,9) < Cue (358)

Since the code induced by type 1 edges is capacity achieving we have

lim lim lim lim H(XY)/N = C,,. (3.59)
r—o00 w—00 L—00 N—00
Note that as the two edge type code has rate C,, — R and is capacity
achieving, its threshold for the BEC is 1 — C}, + R. As R > C),, — Cly,
the threshold is higher than €,. As in Theorem B5.7 given S the error
probability of decoding X¥ from Z¥, denoted by, PN S goes to zero.
Thus (BE57) holds and we obtain

N N
lim lim lim lim w
r—o0 w—00 L—o00 M —o00 N

=0. (3.60)

We obtain the desired bound on the equivocation by substituting (3.59)
and (3.60) in (335]), and taking the limit r,w, L, M — oco. O

In the next subsection we show some simulation results measuring the
equivocation of Eve for some different ensembles.
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3.5.1 Simulation Results

We have showed that the ensemble {11,15,r,r, L, w} achieves the secrecy
capacity of the BEC-W (e, €,). In this section we show some simulation
results for the {11,13,11,r2, L} ensemble over the BEC-WT(0.5,0.75).
This ensemble is the two edge type equivalent of the {1,r, L} ensemble
in [KRU10]. In Table 3] we show the design rate and the equivocation
for the {3,3,6,12, L} ensemble for different values of L and M = 1000.
We see that as L increases the equivocation approaches the rate, and the
rate approaches the secrecy capacity Cs = 0.25.

L 20 30 40 50 60 70
R | 0.2622 | 0.2582 | 0.2562 | 0.255 | 0.2541 | 0.2535
R. | 0.2276 | 0.235 | 0.2387 | 0.241 | 0.2425 | 0.2436

Table 3.1: Rate and equivocation for the {3,3,6,12, L} ensemble with
M = 1000.

Appendix 3.A Proof of Lemma [3.3.8]

1 12)NA11

The terms in the expansion of H11 12(1 + uytuy 22 have the form

21 BE(12) Ay 0y 3y ) 12K(11,12) Ay 1y
Uq ' Uo s

er NAY(1,1) eaNAL(1,1) .
ANAL LD, e NAG(LL) 4o

where 0 < k(11,13) < N. If the coefficient of u
non-zero, there exist {k(11,12)}1, 1, such that

Z llk(ll, 12)A11712 = €1NA/1(1, ].)

11,12

and

Z lgk(ll, 12)/\11712 = EQNAIQ(L 1)

11,12
which is the same as

(6 e )7 211,12 11A11712O—(11’12) 211712 12A11,120(11a12)
ne AL 1) ’ AG(1,1) ’
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where 0 < 0(11,12) = k(11,12)/N < 1. When N grows this is the same
as (3:29).

Now we show that £ is the set between the two piecewise linear curves
described in the statement of this lemma. We show this by varying the
o(11,12) between 0 and 1 while trying to make the ratio e;/es as large
as possible. Start by letting o(11,12) = 0 if 11/12 is not maximal, and
letting o(11,12) increase to 1 if 1/15 is maximal. This traces out the
line between (0,0) and p1, and clearly we can not have (e1, e2) below this
line for (e1,e2) € €. Then increase o(11,1s) for 11,15 such that 1;/19
takes the second largest value. This traces out the line between p; and
p1 + p2 and again it is clear that we can not have (e, e2) below this line
for (e1,e2) € £. We continue like this until we have o(11,12) = 1 for all
11,15, which corresponds to the point (1,1). The upper curve is obtained
by reversing the order and starting with the line between (0,0) and pp.

O

Appendix 3.B Proof of Lemma [3.3.11]

Take the derivative of 8(e) with respect to e to get

do
de

1
=(1-1; —12)log (_e) —1ilogv; — 1alogus
e

(125 (22

o (U202).

We can now write

(1) A4v)™t 7t —(1—vy)7 2t 7t

1—e¢ _ F(l) (1) Zn IF (1+4v1)* 14+ (1—wvq1)™2
- (1) (14wvy)F1—1—(1—v;)r1—1!
¢ r(l) 1) Zrl il (1-t-v1)r1 (11— vi)rl

(1 (4w (1 —py )t
Zr I'lF (1 — U1 (1iU1)r1+(1 Ui)rl )

D), (w7 = (1—v)71 !
P R =
(1) (1) (1)1
_ Zrl rily (I+v1)"t+(1—v1)"L

= 14wy ) 1— 1 —(1—pq )11
Zrl rlFE‘l)vl ( (1-1i-)111)r1 +21_U3r1
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or

(1)(1+U1)r1 +(1—vy)tt
(1 —-e)n > Tils (T+01) 1 +(1—v; )71

= (1) (4v)m1 —t—(1—vy )1 =t
I N e

(3.61)

We obtain a similar expression for (1 — e)va/e. Note that v;(e) are in-
creasing functions of e and v;(1/2) = 1. Thus for e > 1/2, v; > 1 which

together with ([3:6]]) implies a e)vJ > 1 when all r are odd. This in turn

implies that 4 < 0 for e > 1/2

Appendix 3.C Proof of Lemma [3.3.12

O

First we show that v(1—e) = 1/v(e) if there are only even check degrees.

Let vj(e) =v and 1/v = 0. Then

__1/e HA+1/0)7 = (1 -1/o) !

Z F(]) 1+'U 1+(17’D)r71
+(1-2

F(J) (1+0)r o)

and

- v 514+ v)F - (1—wv)* !
toe=1- r(jm) D R (R

; (I4+ov) ' =1 -0
rm ZF()( A+roF+(1—oF )
v)
v)

1 1+v)*t+ (1 -0t
_ ()
= F(j)/(l) er

r

¥ I4+v)r+(1-

These two equations imply that v(1 —e) = 1/v(e). Now note that

(1) = =)

,Ur
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for r even, so

f(1l—e)=(1—-11 —12)h(l —e)+ I‘(l) ZF Y log g (v1)

—1;logvy + F(Q) ZF(Q log qr(’UQ) — 15 logve
—(1-e)1 log(l/vl) — (1 —e)lalog(l/v2) — Rdes
= 0(e).
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Chapter 4

Polar Codes

In this chapter we discuss the application of polar codes to the wiretap
channel. Based on a construction of nested polar codes by Korada [Kor09]
we construct polar codes that achieve the whole capacity-equivocation
region for binary input symmetric wiretap channels.

4.1 Nested Polar Codes

For polar codes we will define the nested structure in terms of the frozen
set instead of as the solution to a certain parity check equation as we
did for LDPC codes. These definitions are equivalent, but the character-
ization based on the frozen sets makes it particularly easy to prove the
results we want.

We will consider binary polar codes of block length N = 2". Let A
and B be two index sets such that

Bc Ac{l,. .. N} (4.1)

As for nested parity check codes the the nested structure of polar codes
comes from the cosets of a smaller subcode. Consider the polar codes
P(N,Ajusc) and P(N,B,[0,uyc]). Here [0,uyc] is a binary vector
whose elements are zero for the indices 7 in A\ B, and otherwise they equal
the corresponding elements in u 4c. AC is a frozen set for both codes,
but B€ is frozen only for P(N, B, [0,u.4c]). Similarly to Definition 4]
we now define the nested polar code as follows:
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Definition 4.1.1 (The nested polar code P(N, A, B,uc)). Let G be the
matrizc Gy as defined in (2.17) and let Gz be the submatriz composed
of the columns of G whose indices belong to an index set Z. The nested
polar code P(N, A, B,uc) is the set of codewords ™ of the form

N :UBGB@UA\BGA\B@UACGAC- (4.2)
The vector ug\g determines which coset of P(N, B, [0, u 4c]) the codeword
belongs to.

The rates of the subcodes P(N, B, [u\5, uc]) all equal |B|/N, and
the rate of the overall code equals |A|/N.
See Figure [4.1] to see a pictorial representation of the frozen sets.

B
N 5@ng3
RS )
A

Figure 4.1: A nested polar code. The rectangle corresponds to the whole
index set {1,..., N}. The two frozen sets are A° and B¢, and A€ C BC.

Let W and W be two symmetric binary input memoryless channels
and let W be stochastically degraded with respect to W. Denote the
polarized channels as defined in (23] by WJ(\,i) (resp. WJ(\,i)), and their
Bhattacharyya parameters by Zz(\? (resp. Z~1(\Z,)) We will use the following
Lemma which is Lemma 4.7 from [Kor(9]:

Lemma 4.1.2 (Lemma 4.7 from [Kor09)). If W is degraded with respect
to W, then WJ(VZ) 1s degraded with respect to W](VZ), and ZJ(\;) > Z](\;).

In the following section we use Lemma [£.1.2]to show that nested polar
codes achieve the whole capacity-equivocation region for the degraded
wiretap channel.

4.2 Nested Polar Wiretap Codes

We consider a wiretap channel where the input alphabet A" is binary,
and Bob’s and Eve’s output alphabets ) and Z are discrete. We assume
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that the main channel (denoted by W (y|x)) and the wiretapper’s channel
(denoted by W (z|z)) are symmetric. We also assume that W is stochas-
tically degraded with respect to W, that is, there exists a probability
distribution WI(Z|}j) such that W (z|z) = > yey W(zly)W(ylz) fEn" every
z. Since W and W are symmetric, Cpy = I(W) and Cy = I(W). For
this setup the capacity-equivocation region is given by

R.<R<(Cpy, 0<R.<Cypy-Cw. (4.3)

In Theorem [£2.7] we give a nested polar coding scheme for the wiretap
channel that achieves the whole capacity-equivocation region.

Theorem 4.2.1. Let (R, R.) satisfy {{-3). For every ¢ > 0 and every
0 < B < 1/2 there exists a wiretap polar code of length N = 2™ and rate
Ry that satisfies

Ry > R —¢, (4.4)
PN <977, (4.5)
RY > R, — e, (4.6)

provided n is large enough.

Proof. Fix < 8/ < 1/2. Let
Ay ={i: 20 < 27Ny

and choose the subset By as follows. Order the indices in Ay by
increasing ZJ(\;) and choose the N(Cpr — R) smallest ones.  Since
lim, 00 |[AN|/N = Cpr > Cpr — R a subset of this size exists provided
that n is large enough.

Now consider the nested polar code P(N, An, By, u4c). Since W and
W are symmetric channels the performance of the successive cancellation
decoder does not depend on the choice of the frozen bits u 4c. We will
therefore set u4c = 0.

As for the wiretap codes based on LDPC codes we let each coset cor-
respond to a different message. To send the message sy, Alice generates
the codeword

XN =TnGpy @SNGAN\BN, (4.7)
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where Ty is a binary vector of length |By| chosen uniformly at random.
There are 2AN\BNI different cosets, so the rate of the coding scheme is

_ |An|=1[Bn| _ |AN]
o N - N

Due to Theorem 242 we have lim,,_,o | An|/N = Cps which implies

Ry - Cuy+R

lim RN =R.

n—oo

This proves (4.

Since the codewords of the nested code are the same as the ones for
the polar code P(N, An,0) we can bound PV from above by the corre-
sponding error probability for P(N,.Ax,0). Since this error probability
is smaller than 2=N" provided that n is large enough we get ([@3]).

To show (6] we look at the equivocation for Eve. We first look at the
case where R > C); — Cyw. We expand I(XN7 SN; ZN) in two different
ways and obtain

I(XN,Sn; ZN) = I(XN; ZN) + I(Sy; ZV | X))
=I(Sn; ZN) + I(XN; ZV|Sy). (4.8)

Note that I(Sn; ZN|XN) =0 as Sy — XV — Z¥ is a Markov chain.
By (@8) and noting that I(Sy;ZY) = H(Sy) — H(Sy|ZY), we write
the equivocation rate H(Sx|ZN)/N as

N_H(SN)+I(XN;ZN|SN) — (XN ZN)

N N

_H(Sy) | HXM|Sy)

N N

H(XN|ZN,SN) I(XN;ZN)

- N N
o H(XN|ZN, Sy)

W TN
where we have used that H(Sy) + H(XY|Sy) = H(XN,Sy) =
H(X"N) = |An| and that I(XY; ZV)/N < Cy.

We now look at H(XN|ZN,Sy). For a fixed Sy = sy we see that
XN € P(N,B,[sn,0]). Let PN~ be the error probability of decoding
this code using an SC decoder. By Lemma L2 the set Ay = {i :

Z](\? < 2_Nﬂ/} is a subset of Ay. Also, lim, %|AN| = Cw, so if

H(Sn|Z™)/

S AN
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|Bn| < NCw we have By C An for large n, by the definition of By.
Since |By| = N(Cy — R) < NCyw, we have Z{) < 2=V Vi € By for
large enough n. This implies that

IALESY 70 < oM,
i€EBN

provided n is large enough. We use Fano’s inequality to show that
H(XN|ZN Sn) — 0 as n — co. We get

lim H(XN|ZV,Sy) < lim [h(PN*Y) + PN#¥|By|] =0,
n—oo n—oo

since PNV |By| = N2=N°|By|/N — 0 as n — oo. Thus we have shown
that

H(Sy|2Z™)

N >Cy—Cw —€>R.—¢

for n large enough.

We now consider the case when R < Cjps — Cyw. The only dif-
ference from the analysis above is the term H(XY|ZY, Sy). Since
|Bn| = N(Cyr — R) > NCyw, the code defined by (1) is not decodable.

Instead, let Biy = {i: Z](\;) < 2*NB/}, Ban = By \Bin, and rewrite (7))
as

XN =TiNGg,y ®TonGian ® SNG Ay \Bx -

Note that, since lim, o |Bin|/N = Cw, this code is decodable using a
successive cancellation decoder given Toy. If Thy is unknown we can try
all possible combinations and come up with 2/82¥! equally likely solutions
(all solutions are equally likely since T is chosen uniformly at random).
Thus H(XN|ZN,Sy) should tend to H(Tsn). We make this argument
precise by bounding H(XN|ZV Sy) as follows:

H(XN|zZN Sx) = HXN, Ton|ZV, Sn)
= H(Ton|ZN,Sn) + H(XN|ZN Sy, Taon)

where in the last step we have used the fact that conditioning reduces

entropy. We can show that the second term goes to zero using Fano’s

. ) . . H(T. .
inequality as above. Since lim,, . % = lim, oo ‘BJ"{,N | — Cy—R—

Cw, we get H(Sy|Z™)/N > R — € for n large enough. O
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4.3 Simulation Results

We show simulation results comparing Eve’s equivocation for nested polar
wiretap codes and two edge type LDPC codes over a wiretap channel
where both the main channel and the wiretapper’s channel are binary
erasure channels with erasure probabilities e,, and e, respectively. The
LDPC codes are optimized using the methods in Section and for the
LDPC codes the curve shows the ensemble average. The equivocation of
Eve is calculated using an extension of a result in [OW84J|§:

Lemma 4.3.1. Let Hy be a parity check matrixz for the overall code
(P(N, Ay) in the polar case) and let H be a parity check matriz for
the subcode (P(N,Bn)) in a nested coding scheme for the binary erasure
channel. Then the equivocation at Eve is rank(Hg) — rank(Hy ), where
He¢ is the matriz formed from the columns of H corresponding to erased
codeword positions.

Proof. The equivocation at Eve can be written as
H(Sn|ZN) = H(XN|ZN) — H(XN|Sy, ZV).

For a specific received z we have Hl,g:cg + Hlﬁgcl’gc = 0, where :Eg
is unknown. The above equation has 2V-Trank(Hie) golutions, all of
which are equally likely since the original codewords XV are equally
likely. In the same way H(XN|Sy, ZY) = N — rank(Hg). This implies
H(SNn|ZN) = rank(Hg) — rank(H; ¢). O

Figure shows the equivocation rate at Eve and also the upper
bound for R, as a function of e, for fixed R = 0.25 and e,, = 0.25. It
is interesting to note that even with a block length of only 1024 bits the
curves are close to the upper bound.

INote that the polar codes P(N,.Ax) and P(N, By) are linear codes and we there-
fore can calculate the corresponding parity check matrices.
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Figure 4.2: Equivocation rate versus e,,. Codes designed for R = 0.25,
em = 0.25, e, = 0.5, and block length N = 1024.
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Chapter 5

Conclusions

In this thesis we have investigated code design for the wiretap channel.

We have introduced two edge type LDPC ensembles for the wire-
tap channel. For the scenario when the main channel is error free and
the wiretapper’s channel is a binary erasure channel (BEC) we find se-
crecy capacity achieving code sequences based on standard LDPC code
sequences for the BEC. Our construction does not work when there are
also erasures on the main channel. For this case we have developed
a method based on linear programming to optimize two edge type de-
gree distributions. Using this method we have found code ensembles
that perform close to the secrecy capacity of the binary erasure wiretap
channel (BEC-WT). We have generalized a method of Méasson, Monta-
nari, and Urbanke [MMUQOQS] in order to compute the conditional entropy
limpy 00 H(S|ZY)/N. We have applied this method to relatively simple
code degree distributions and have found that these degree distributions,
which are simpler than the ones found using our numerical method, show
very good secrecy performance.

Based on the work of Kudekar, Richardson, and Urbanke [KRU10],
which showed that regular spatially coupled codes are capacity achiev-
ing for the BEC, we have constructed a regular two edge type spatially
coupled ensemble. We have shown that this ensemble achieves the whole
capacity-equivocation region for the BEC-WT. Based on the empirical
evidence that regular spatially coupled codes perform close to the capac-
ity over a wide range of channels we conjecture that our construction
works well over the corresponding wiretap channels, provided that the
wiretapper’s channel is degraded with respect to the main channel.



94 5 Conclusions

Based on Arikan’s [Ar109] polar codes and a lemma by Korada [Kor(9]
we have constructed nested polar codes that achieve the whole capac-
ity equivocation region for any symmetric binary input wiretap channel
where the wiretapper’s channel is degraded with respect to the main
channel.

In the next section we give some directions for possible future work.

5.1 Future Work

Based on the results and methods in the thesis we present some ideas
that might be worthy of further study.

LDPC Codes

From Section 4] we see that ensembles where the degree distribution of
type two edges is regular show surprisingly good secrecy performance.
Therefore it would be interesting to consider such two edge ensembles
where the degree distribution for type one edges comes from a capacity
achieving sequence for the BEC. Such an ensemble would achieve capac-
ity on the main channel and it might be possible to show, using weight
distribution arguments, that it is also optimal from the secrecy perspec-
tive.

Another approach could be to generalize our results to other channels
than the BEC. Our numerical optimization methods from Section
should readily generalize to general binary memoryless channels such as
binary symmetric channels or binary input additive white Gaussian noise
channels.

Polar Codes

The same nested structure used for wiretap codes is also optimal for
the Decode-and-Forward strategy for the relay channel [ARTT10b]. It
would be interesting to generalize this result to more general relay net-
works, such as the ones considered in [SK10], with or without security
constraints.
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