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1 Introduction

Although modern time series analysis has grown into a very complex and diverse area of research,
one task remains central to nearly all of its incarnations: how to use known history of evolution
of a stochastic process to say something about its future development. In probabilistic terms,
it translates into pursuit of different models of conditional expectation. Sometimes the abstract
concept of the latter is practically invisible in simplified models. Often it is modeled by simple,
computationally viable, algebraic or functional relationships like for instance in the constantly
growing family of GARCH type models. In general, conditional expectation does not lend itself
easily to computations, as in most non-trivial probabilistic models it involves projections of given
random variables onto infinite dimensional spaces of other random variables. In practice, this
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theoretical difficulty is compounded by practical considerations. For example, empirical data –
which by necessity is always finite – usually gives few clues as to realism of probabilistic assumptions
imposed on it by researchers, sophisticated statistical tests notwithstanding.

Classic recursive linear representations of discrete time stochastic processes originating from the
work of Levinson, Durbin, Whittle, Wiggins and Robinson (see e.g. [4], [9], [10], [11], [31], [30],[32])
have been expanded in many ways and widely used, usually with respect to stationary and non-
degenerate stochastic sequences. A comprehensive methodology extending this type of approach
has been proposed by the Japanese mathematician Yasunori Okabe, whose aim was to strike the
right balance between the use of purely mathematical considerations and handling of empirical data.
Okabe’s theory of KM2O-Langevin equations revolves around a computable approach to verification
of different types of stationarity, causality and determinism, as well as handling of prediction and
filtering problems. For more precise information see [20], [26], [17], [18] , [12], [7], [13], [8], [19] and
references given there.

The goal of this paper is to build a unified, geometrically clear and yet computationally powerful set
of tools well suited for handling of some problems of time series analysis. Initial steps in this direction
were taken in the earlier paper [8], but here the ideas are developed much further, encompassing in
particular practically all non-probabilistic mathematical notions needed in description of Okabe’s
theory of KM2O-Langevin equations. By not referring to the probabilistic context, the frame
properties themselves are often more general than the properties of stochastic flows explored in
Okabe’s work. Moreover, the block frame approach makes it possible to extract the geometric
principles behind many aspects of that theory. As such, many of the statements generalize earlier
results and can be potentially applied in many different settings.

The paper is organized as follows. The purpose of Section 2 is to establish notation. Section 3
introduces basic definitions and properties of block frames and improves on the approach to block
frames proposed in [8]. In Section 4 we look at the relationship between block frame coefficients
and matrix covariance functions. In particular, we obtain a new quick derivation of the Cholesky
decomposition for block matrices. Section 5 takes up the subject of weak stationarity. In particular,
we show that block frames can be conveniently used to characterize weak stationarity. In Section
6 we deal with different types of causality relationship between stochastic flows. We devote special
attention to handling of non-linear information in fundamentally linear models. Essentially this
is done by approximation of conditional expectation, which – in general – is based on an infinite-
dimensional model, by computationally viable finite dimensional projections combined with a non-
linear build-up of the given stochastic flow. We introduce a concept of information generating
function systems to facilitate the discussion. We also define the concept of a moving composition
of a stochastic sequence with a function to explain how the theory can be linked to practical
applications.
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2 Notation

In this and the next section we will modify slightly the concepts and notation from [8] in order to
cater with more general applications of block frames.

If L is a matrix (or a linear operator), then its transpose (resp. adjoint operator) is denoted by L∗.
The vector space Rd1×d2 of real (d1 × d2)-matrices is furnished with the natural Frobenius inner
product 〈A,B〉 = trace(AB∗), where A,B = [bij ] ∈ Rd1×d2 . If d is a positive integer and H is a real
Hilbert space with the inner product (x, y) 7→ 〈x, y〉, then the Cartesian power Hd is also a Hilbert
space with the inner product 〈(x1, . . . , xd), (y1, . . . , yd)〉 =

∑d
i=1〈xi, yi〉. It is convenient to refer to

elements of Hd as block vectors. For block vectors x = (x1, . . . , xd1) ∈ Hd1 and y = (y1, . . . , yd2) ∈
Hd2 , we define their Gram product 〈〈x,y〉〉 = [〈xi, yj〉] ∈ Rd1×d2 . The name is justified as 〈〈x,x〉〉 is
the Gram matrix corresponding to the vectors x1, . . . , xd. Note that 〈〈x,y〉〉 = 0 if and only if xi is
orthogonal to yj for all choices of i and j. Block vectors can be multiplied from the left by matrices
of suitable size: if A = [aij ] ∈ Rd1×d2 and x = (x1, . . . , xd2) ∈ Hd2 , then the i-th entry of Ax ∈ Hd1

is
∑d2

j=1 aijxj , for i = 1, . . . , d1. In particular A can be identified with a linear operator from Hd2

to Hd1 .

Obviously, if x,y are block vectors and A,B are matrices – all of compatible sizes – then 〈〈x,y〉〉 =
〈〈y,x〉〉∗ and A〈〈x,y〉〉B = 〈〈Ax, B∗y〉〉. In particular, if x = y and A = B∗ ∈ R1×d1 , the last property
shows that 〈〈x,x〉〉 is semi-positive definite. Moreover, with A = I ∈ Rd1×d1 and B ∈ Rd1×1, it
shows that 〈〈x,x〉〉 is invertible if and only if the components of x are linearly independent. If

x ∈ Hd has linearly independent components, C ∈ Rd×d and we define y = C
(√
〈〈x,x〉〉

)−1
x, then

〈〈y,y〉〉 = CC∗.

By an integer interval with end-points a, b ∈ Z ∪ {−∞,∞} we mean the set {a..b} = Z ∩ [a, b], if
a ≤ b or the empty set otherwise.

Let J be a non-empty index set and let xj = (x1j , . . . , xd1j) ∈ Hd1 where j ∈ J . The symbol
Span(xj : j ∈ J) will denote the closed linear span of all of the components of the given block
vectors, that is of the set {xij ; i = 1, . . . , d1, j ∈ J}. If J = {p..q}, with some p, q ∈ Z, we also

write Span(xp, . . . ,xq). With this notation in mind, y ∈ (Span(x1, . . . ,xn))d2 if and only if there
exist matrices C1, . . . , Cn ∈ Rd2×d1 such that y =

∑n
i=1Cixi. The matrix coefficients Ci are unique,

if the vectors xij are linearly independent.
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3 Basic properties of block frames

Let J be a linearly ordered finite or countable set. By `2(J) we will denote the Hilbert space of all
square summable sequences (λj)j∈J of real numbers, with the usual inner product

〈λ, η〉 =
∑
j∈J
〈λj , ηj〉.

Of course if #J = m, then `2(J) = Rm. By `2(J)m×n, we will mean the mn-th Cartesian power of
`2(J) with the natural inner product, and with sequences of m× n matrices as elements.

We will begin with a short recap of the basic properties of frames. Let H be a separable real Hilbert
space. An ordered collection of vectors F = (xj)j∈J ⊂ H is called a frame if for some constants
A,B > 0 (called frame bounds) we have

A‖x‖2 ≤
∑
j∈J
〈x, xj〉2 ≤ B‖x‖2, x ∈ H. (1)

By necessity, any frame for H is linearly dense in H. A frame is said to be tight if A = B. A tight
frame is exact if A = B = 1. Three linear mappings are associated in a natural way with each
frame. The first is called the analysis operator (or the Bessel operator) and is defined as follows

TF : H 3 x 7→ (〈x, xj〉)j∈J ∈ `
2(J).

Note that TF is injective because of the lower bound in (1). The second one is the adjoint of TF
which is called the synthesis operator (or the pre-frame operator) and is given explicitly by the
formula

T ∗F : `2(J) 3 (λj)j∈J 7→
∑
j∈J

λ1xj ∈ H.

It can be shown that T ∗F is always surjective. The third one is the frame operator SF = T ∗FTF .
Explicitly

SF : H 3 x 7→
∑
j∈J
〈x, xj〉xj ∈ H.

Clearly ‖TF ‖ ≤
√
B, ‖T ∗F ‖ ≤

√
B and ‖SF ‖ ≤ B. It is not difficult to check that SF is an

isomorphism. The main reason why frames have inspired much interest is the so called resolution
of identity :

x =
∑
j∈J
〈x, S−1

F (xj)〉xj , x ∈ H.

Such representation of x may potentially contain a large amount of redundant information about the
vector, in comparison with an expansion with respect of an orthonormal basis, but this is actually
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an asset in many applications of frames. An introduction to frame theory as well as list of further
references can be found in e.g. [1].

Let xj = (x1j , . . . , xdj) ∈ Hd, where j ∈ J , be a family of vectors and let M = Span(xj : j ∈ J).
In this case we say that F = {xj : j ∈ J} is a block frame for Md, if the family F = {xij : i =
1, . . . , d, j ∈ J} is a frame for M . We will be assuming that the index set {1, . . . , d}×J is furnished
with the reverse lexicographic order i.e. (m,n) ≤ (p, q) if either n < q or n = q and m ≤ p. We will
also say that F is the underlying frame for the block frame F . Obviously a block frame is not
necessarily a frame for Md. We define the block frame operator associated with F as

SF : Md 3 z = (z1, . . . , zd) 7→
(
SF (z1), . . . , SF (zd)

)
∈Md. (2)

Obviously

SF (z) =
∑
j∈J
〈〈z,xj〉〉xj , z ∈Md, (3)

and
SF (Cz) = CSF (z) z ∈Md, C ∈ Rd×d. (4)

We can say that SF is block homogeneous. Note also that

S−1
F : Md 3 (w1, . . . , wd) 7→

(
S−1
F (w1), . . . , S−1

F (wd)
)
∈Md.

Since SF is bijective, S−1
F is also block homogeneous.

It will be also convenient to define block versions of the analysis and synthesis operators. The block
analysis operator is defined as

TF : Md 3 z 7→
(
〈〈z,xj〉〉

)
j∈J
∈ `2(J)d×d.

The block synthesis operator is defined as

T ∗F : `2(J)d×d 3 (Cj)j∈J 7→
∑
j∈J

Cjxj ∈Md.

Both operators can be expressed more directly in terms of the underlying frame F . To this end
define

Rowk (Cj)j∈J = {Cj(k,m) : j ∈ J, m = 1, . . . , d},

for any family C = (Cj)j∈J of d× d-matrices, where Cj = [Cj(k,m)]k,m=1,...,d. Then

Rowk [TF (z1, . . . , zd)] = TF (zk), k = 1, . . . , d,
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and for C = (Cj)j∈J
T ∗F (C) =

(
T ∗F (Row1(C)), . . . , T ∗F (Rowd(C))

)
.

Clearly the operators TF and T ∗F are bounded. Moreover, TF is injective, T ∗F is surjective and
SF = T ∗FTF , just as in the case of ordinary frames. Furthermore T ∗F is indeed the adjoint of TF ,
because for C = (Cj)j∈J ∈ `

2(J)d×d we have

〈TF (z), C〉 =
∑
j∈J

trace
[
〈〈z,xj〉〉C∗j

]
=
∑
j∈J

trace〈〈z, Cjxj〉〉

= trace〈〈z,
∑
j∈J

Cjxj〉〉 = 〈z, T ∗F (C)〉.

In particular it follows that the block frame operator SF is self-adjoint.

If L : Hd −→ Hd is a bounded linear operator, we will say that it is block self-adjoint if

〈〈L(x),y〉〉 = 〈〈x, L(y)〉〉

for all x,y ∈ Hd.

If M is a closed subspace of H, then by PM we will denote the orthogonal projection of H onto
M . In particular, for the orthogonal projection PMd : Hd −→ Hd we have

PMd(x) = (PM (x1), . . . ,PM (xn)) ∈Md, x = (x1, . . . , xd) ∈ Hd.

For later use we will also define the block projection error by the formula

ErrMd(x) = 〈〈P(M⊥)d(x),P(M⊥)d(x)〉〉 = 〈〈P(M⊥)d(x),x〉〉. (5)

If M,N ⊂ H are two non-trivial closed subspaces and M ⊥ N , then clearly

P(M⊕N)d(x) = PMd(x) + PNd(x), x ∈ Hd. (6)

If in addition F,G are block frames for M,N respectively, then F ∪ G is a block fame for M ⊕N
and

SF∪G(x + y) = SF (x) + SG(y) x ∈Md, x ∈ Nd. (7)

The following theorem lists the basic properties of block projections and block frame operators.

Theorem 3.1 Let F = (xj)j∈J be a block frame for Md.

(i) The block frame operator SF : Md −→Md is a block self-adjoint isomorphism.
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(ii) Let d′ be positive integer. The orthogonal projection onto Md′ is given by the formula

PMd′ (y) =

n∑
j=1

〈〈y, S−1
F (xj)〉〉xj =

n∑
j=1

〈〈y,xj〉〉S−1
F (xj), y ∈ Hd′ . (8)

Moreover,
〈〈PMd′ (y), z〉〉 = 〈〈y,PMd(z)〉〉, y ∈ Hd′ , z ∈ Hd. (9)

In particular, the operator PMd′ is block self-adjoint.

(iii) Given y ∈ Hd′, define the affine subspace N(y) of `2(J)d
′×d by the formula

N(y) =

Y = (Yj)j∈J ∈ `2(J)d
′×d : PMd′ (y) =

∑
j∈J

Yjxj

 .

Then the orthogonal projection of the origin in `2(J)d
′×d onto N(y) is given by

Y = (Yj)j∈J =
(
〈〈y, S−1

F (xj)〉〉
)
j∈J . (10)

In other words, the vector (10), consisting of the block frame coefficients for y, furnishes the
minimum norm solution to the equation

PMd′ (y) =
∑
j∈J

Yjxj .

Proof: Because of (2) it is clear that SF is an isomorphism. In view of (3) SF is block self-adjoint.

In order to show (ii), suppose first that d′ = 1. Then

PM (y) =
d∑
i=1

n∑
j=1

〈y, S−1
F (xij)〉xij =

n∑
j=1

(
d∑
i=1

〈y, S−1
F (xij)〉xij

)
(11)

=
n∑
j=1

〈〈y, S−1
F (xj)〉〉xj , (12)

as needed. The second equality in (8) follows similarly from the basic properties of SF .
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For an arbitrary d′, we observe that for y = (y1, . . . , yd′) ∈ Hd′ we have

PMd′ (y) = (PM (y1), . . . ,PM (yd′))

=

 n∑
j=1

〈〈y1, S
−1
F (xj)〉〉xj , . . . ,

n∑
j=1

〈〈yd′ , S−1
F (xj)〉〉xj


=

n∑
j=1

〈〈y, S−1
F (xj)〉〉xj .

The other equality in (8) can be obtained in the same way.

The two representations of the projection in (8) imply that the left-hand side of (9) is the same as
the right-hand side because

n∑
i=1

〈〈y,xi〉〉〈〈S−1
F (xi), z〉〉 =

n∑
i=1

〈〈
y, 〈〈z, S−1

F (xi)〉〉xi
〉〉

=
〈〈

y,
n∑
i=1

〈〈z, S−1
F (xi)〉〉xi

〉〉
.

To prove (iii) we can use an argument from [8]. It suffices to prove the statement for y ∈Md′ . We
want to solve the equation T ∗F (Y ) = y with respect to Y . Any solution has the form Y = Y ′ + Y ′′,
where Y ′ is a uniquely determined element of the range of TF and Y ′′ is an arbitrary element of the
kernel of T ∗F . Thus the minimum norm solution must be by necessity Y = Y ′. Now(

〈〈y, S−1
F (xj)〉〉

)
j∈J =

(
〈〈S−1

F (y),xj〉〉
)
j∈J = TF (S−1

F (y))

is the required solution because T ∗FTF = SF . �

The vectors S−1
F (x1), . . . , S−1

F (xn) form another block frame for Md, which can be referred to as
the dual block frame for the block frame x1, . . . ,xn.

A number of block frame properties which were shown in [8] in the case of a finite J and with
d′ = d, remain true in the more general settings adopted here. The notation in this paper is slightly
different to allow the proofs and statements of those properties to be applied nearly verbatim in
the present case. More precisely, the target spaces in symbols for orthogonal projections and error
terms are now clearly specified e.g. like in PMd or ErrMd . Below we will only state explicitly the
formulas needed in this paper.

We will use the ampersand symbol & to denote concatenation of linearly ordered sets. So if F and
G are such sets, then F&G is also linearly ordered with any element of F regarded as preceding
any element of G. If G = {g} is a singleton, we will write F&g rather that F&G.

For any matrix A, let A† denote the Moore-Penrose pseudoinverse of A.
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Theorem 3.2 Let F = (xj)j∈J be a block frame for Md and let y ∈ Hd. Furthermore, let My =
M + Span(y), Fy = F&y and let d′ ∈ N. Then

PMd′
y

(z) = PMd′ (z) + 〈〈z, S−1
Fy

(y)〉〉P(M⊥)d(y), z ∈ Hd′ , (13)

Moreover,

ErrMd′
y

(z) =
(
I − 〈〈z, S−1

Fy
(y)〉〉〈〈y, S−1

Fz
(z)〉〉

)
ErrMd′ (z), z ∈ Hd′ , (14)

where Fz = F&z, Mz = M + Span(z) and I denotes here the d′ × d′ identity matrix. The frame
coefficients and error terms satisfy the identities

〈〈z, S−1
Fy

(xj)〉〉 = 〈〈z, S−1
F (xj)〉〉 − 〈〈z, S−1

Fy
(y)〉〉〈〈y, S−1

F (xj)〉〉, j ∈ J. (15)

〈〈z, S−1
Fy

(y)〉〉ErrMd(y) = ErrMd′ (z)〈〈S−1
Fz

(z),y〉〉. (16)

In particular, if y ⊥Md, then

P(My)d′ (z) = PMd′ (z) + 〈〈z,y〉〉〈〈y,y〉〉†y, z ∈ Hd′ . (17)

Proof: The first four properties above can be checked by straightforward modifications of the
arguments used in [8] to prove their less general counterparts. Formula (17) follows from (6)
combined with Corollary 4 in [8]. �

Remark 3.3 If the notation is extended to allow F = ∅, Fy = {y} and M = {0}, then and the
formulas (13), (14), (16) and (17) remain true.

4 Matrix covariance function and the blueprint algorithm

With any indexed collection of vectors F = (xj)j∈J ⊂ Hd one can associate its matrix covariance
function RF defined by the formula:

RF : J × J 3 (i, j) 7→ 〈〈xi,xj〉〉 ∈ Rd×d.

If J is finite, say J = {j1, . . . , jn}, then the then we can regard RF as a block matrix in Rnd×nd,
with the building blocks RF (jp, jq) ∈ Rd×d, where p, q = 1, . . . , n. Moreover, if

F = {x1,j1 , . . . , xd,j1 , x1,j2 , . . . , xd,j2 , . . . . . . , x1,jn , . . . , xd,jn},
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then
RF = RF . (18)

This is so, as the (k, l)-entry of the block matrix RF is the same as the (r, s)-entry of the (p, q)-block
〈〈xjp ,xjq〉〉, where

p =

⌊
k

d

⌋
+ 1, q =

⌊
l

d

⌋
+ 1

and
r = k − (p− 1)d, s = l − (q − 1)d.

Consequently, the matrix RF is symmetric and semi-positive definite.

Any symmetric (nd× nd)-matrix divided into (d× d)-blocks is necessarily self-adjoint with respect
to its building blocks, in the sense that the transpose of the (p, q)-block is the same as the (q, p)
block. In particular the matrix RF has this property, but it is generally not symmetric with respect
the the (d× d)-blocks forming it.

It is easy to check that any semi-positive definite symmetric matrix furnishes a covariance function
for some vectors1 or block-vectors in the case of block matrices. For example, let d = 1 and let
R ∈ Rn×n be symmetric and semi-positive definite, with a decomposition R = LL∗, with some
L ∈ Rn×n. (The classic Cholesky decomposition is one of the possible choices here, or alternatively
the square root of R can be taken as L.) If e ∈ Hn has orthonormal components, then the
components of x = Le have R as the covariance matrix. The case d > 1 follows from (18). For
other constructions of this type see also [18] or [13].

In [8] (see Corollary 7 there), it was shown that basic properties of block frames lead to a quick
derivation of an algorithm calculating frame coefficients and error terms on the basis of known
matrix covariance function. More precisely, given a finite block frame F = [x1, . . . ,xN ] for Md

and z ∈ Hd′ , the algorithm is a recipe for calculating the matrix coefficients of PMd′ (z) with
respect to F and ErrMd′ (z). In [8] it was assumed that, d′ = d, but in view of the comments
made in the previous section d′ can be arbitrary. What is remarkable about this algorithm is that
the only information about the vectors x1, . . . ,xN , z it requires, are the matrices 〈〈u,v〉〉, where
u,v ∈ {x1, . . . ,xN , z}. As such the algorithm can be viewed as a generalization of earlier versions
of Levinson’s type algorithms like for instance those presented in [9] (with an extra assumption
of non-degeneracy) and in [5], [6], [2] (with an extra assumption of stationarity). Formally, it is
also equivalent to a generalization of older results proposed by Matsuura’s [15] who dispensed with
the additional assumptions of non-degeneracy or stationarity. Matsuura obtained a minimum norm
version of the algorithm motivated by the need to lower sensitivity to observation noise in practical
applications. In what follows the name the blueprint algorithm will be used when referring to
the algorithm from [8] and its generalization to the case d′ 6= d. Calling the algorithm a block frame

1In fact much more general results can be found in literature also for infinite J .
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extension algorithm would have also been accurate, but a different name seems more appropriate as
block frames and block vectors feature on the algorithm only indirectly through matrices associated
with them. The algorithm exploits interrelationships between these matrices, never using directly
the underlying vector structure. One could say that it creates an matrix algebra blueprint for
relationships between block frames and other block vectors.

In the case of d = d′, we can express more succinctly what the blueprint algorithm allows us to do.

Theorem 4.1 If F = {xj : m ≤ j ≤ n} is a finite block frame for Md ⊂ Hd, xn+1 ∈ Hd and all
entries of R = RF&xn+1 are known, then one can calculate matrices

VR ∈ Rd×d and γR(j) ∈ Rd×d (for j ∈ {m, . . . , n}),

such that

VR = ErrMd(xn+1) and γR(j) = −〈〈xn+1, S
−1
F (xj)〉〉 (for j ∈ {m, . . . , n}).

The calculation of the matrices γR(j) and VR uses the values of the matrix covariance function R
as the only input data. Furthermore, the matrix VR is semi-positive definite and

R(n+ 1, k) = −
n∑

j=m

γR(j)R(j, k), k = m, . . . , n, (19)

R(n+ 1, n+ 1) = −
n∑

j=m

γR(j)R(j, n+ 1) + VR. (20)

Moreover, if the matrix covariance function R leads to the matrices γR(j) and VR, then the matrix
covariance function R∗ leads to the matrices γR(j)∗ and V ∗R.

The above theorem yields the following useful property.

Corollary 4.2 Let F (i) = {x(i)
j : m ≤ j ≤ n}, where i = 1, 2, be finite block frames for Md

(i) ⊂ H
d.

Let x
(i)
n+1 ∈ Hd, for i = 1, 2. If

R
F (1)&x

(1)
n+1

= R
F (2)&x

(2)
n+1

,

then
‖PMd

(1)
(x

(1)
n+1)‖ = ‖PMd

(2)
(x

(2)
n+1)‖. (21)
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Proof: Since the expression 〈〈PMd
(i)

(x
(i)
n+1),PMd

(i)
(x

(i)
n+1)〉〉 depends only on the matrix covariance

function and
‖PMd

(i)
(x

(i)
n+1)‖ = trace 〈〈PMd

(i)
(x

(i)
n+1),PMd

(i)
(x

(i)
n+1)〉〉

the result follows. �

Basic properties of frames lead to an alternative derivation of the block matrix Cholesky decompo-
sition shown in [13]. More precisely we have the following.

Theorem 4.3 Let x1, . . . ,xn ∈ Hd, where n > 1. Let Mk = Span(x1, . . . ,xk) and Fk = {x1, . . . ,xk}
for k = 1, . . . , n− 1. Let Id and Od denote the (d× d)-identity matrix and (d× d)-zero matrix re-
spectively. Define three block matrices with (d× d)-blocks as entries:

G = [gij ]i,j=1,...,n where gij =


−〈〈xi, S−1

Fi−1
(xj)〉〉 if i > j;

Id if i = j;
Od if i < j,

R = [〈〈xi,xj〉〉]i,j=1,...,n,

D = [dij ]i,j=1,...,n where dij =


x1 if i = j = 1;
ErrMd

i−1
(xi) if i = j > 1;

Od if i 6= j.

Then the minimum norm solution of the matrix equation

XRX∗ = D.

is given by the block matrix X = G. Moreover, L = G−1 is block lower-triangular – with matrices
Id on the diagonal – and the Cholesky decomposition holds:

LDL∗ = R.

Proof: Basically all we have to do is to calculate the (i, j)-th block entry of the block matrix
D̃ = [d̃ij ]i,j=1,...,n = GRG∗. With the convention that an empty sum is equal to zero we have:

d̃ij =

j−1∑
k=1

(
i−1∑
l=1

〈〈xi, S−1
Fi−1

(xl)〉〉〈〈xl,xk〉〉 − 〈〈xi,xk〉〉

)
〈〈S−1

Fj−1
(xk),xj〉〉

−

(
i−1∑
l=1

〈〈xi, S−1
Fi−1

(xl)〉〉〈〈xl,xj〉〉 − 〈〈xi,xj〉〉

)
,
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where the expressions in the two sets of round parentheses are of course the the entries of the i-th
row of GR, with a changed sign. Putting M0 = {0}, we can write that

d̃ij =

j−1∑
k=1

(
〈〈PMd

i−1
(xi),xk〉〉 − 〈〈xi,xk〉〉

)
〈〈S−1

Fj−1
(xk),xj〉〉 − 〈〈PMd

i−1
(xi),xj〉〉+ 〈〈xi,xj〉〉

= −
j−1∑
k=1

〈〈P(M⊥i−1)d(xi),xk〉〉〈〈S−1
Fj−1

(xk),xj〉〉+ 〈〈P(M⊥i−1)d(xi),xj〉〉

= 〈〈P(M⊥i−1)d(xi),P(M⊥j−1)d(xj)〉〉.

Obviously d̃ii = dii. On the other hand, if i < j, then Mi−1 ⊂ Mj−1 and xi ∈ Mj−1. Thus

P(M⊥i−1)d(xi) ∈Mj−1, which implies that d̃ij = Od = dij . The case i > j is symmetric.

Since ∆ = G− I is strictly lower triangular, it is nilpotent with ∆nd = 0. Also, consecutive powers
of ∆ have shorter-and-shorter non-zero parts of their rows. Thus the formula

G−1 = (I + ∆)−1 =

nd−1∑
k=0

(−1)k∆k,

justifies the last conclusion of the theorem. �

5 Weak stationarity and block frames

Let J be an integer interval. We say that an indexed collection of vectors F = (xj)j∈J ⊂ Hd is
weakly stationary if its matrix covariance function satisfies the condition

RF (i, j) = ρ(i− j), i, j ∈ J,

for some function ρ : {i− j : i, j ∈ J} −→ Rd×d.

Before focusing our attention on characterization of stationary sequences, it will be convenient
to introduce some notation and terminology. Some of the formulas we will have to deal with
are not particularly intuitive, so clearer terminology may be quite useful. Suppose that a family
{xj : j ∈ J} ⊂ Hd is given, where the index set J is an integer interval. If {p..q} ⊂ J , we define

F [p, q] = {xj : j ∈ {p..q}} , if {p..q} 6= ∅ (22)

M [p, q] =

{
Span {F [p, q]} if {p..q} 6= ∅,
{0} if {p..q} = ∅ (23)
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By L we will denote the lag operator shifting backward an indexed expression by one unit. We will
use positive and negative powers of the lag operator in the usual manner. More specifically, if k ∈ Z
and an expression to which Lk is applied involves any of the following: xm, F [p, q], M [p, q], then
the resulting expression will contain respectively xm−k, F [p−k, q−k], M [p−k, q−k]. Applications
of non-zero integer powers of the lag operator are also referred to as time shifts. A time shift
is admissible if it can be applied within J . An application of either L or L−1, provided that it
is admissible, is referred to as a minimal time shift. A time shift Lk is called maximal if Lk is
admissible, but Lk+sign(k) is not admissible. We will say that a block vector x and a block frame
F [p, q] form a projection pair, if either x = xp−1 or x = xq+1. In such a case the parameters of this
projection pair are the matrices

〈〈x, S−1
F [p,q](xp)〉〉, 〈〈x, S

−1
F [p,q](xp+1)〉〉 , . . . , 〈〈x, S−1

F [p,q](xq)〉〉, ErrM [p,q]d(x).

A projection pair is docked within the range J , if either p = min J or q = max J .

The following characterization of stationarity is a block frame version of Theorem 4.2 from [17]
and Theorem 6.5 from [13]. Our formulation of this Characterization Theorem, includes additional
equivalent conditions of stationarity formulated in terms of the lag operator. It should be noted
that a more elaborate variation of the theorem – for double stochastic sequences or for periodic
stationarity (see [17] and [13]) – can also be shown in a similar manner as a statement about block
frames.

Theorem 5.1 (Characterization Theorem) Let N be a positive integer and let

X = {xj : j ∈ {0..N}} ⊂ Hd,

such that
〈〈x0,x0〉〉 = 〈〈xN ,xN 〉〉; (24)

Then the following conditions are equivalent:

(a) X is weakly stationary;

(b) parameters of all projection pairs are invariant with respect to all admissible time shifts;

(c) parameters of all docked projection pairs are invariant with respect to all minimal and maximal
time shifts;

(d) for all n, i such that 1 ≤ i < n ≤ N :

〈〈xn, S−1
F [0,n−1](xi)〉〉 =

= 〈〈xn−1, S
−1
F [0,n−2](xi−1)〉〉 − 〈〈xn, S−1

F [0,n−1](x0)〉〉〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−n+1+i)〉〉

(25)
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〈〈xN−n, S−1
F [N−n+1,N ](xN−i)〉〉 =

= 〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−i+1)〉〉 − 〈〈xN−n, S−1

F [N−n+1,N ](xN )〉〉〈〈xn−1, S
−1
F [0,n−2](xn−1−i)〉〉,

(26)
and for all n such that 1 ≤ n ≤ N :

ErrM [0,n−1]d(xn) =
(
I − 〈〈xn, S−1

F [0,n−1](x0)〉〉〈〈xN−n, S−1
F [N−n+1,N ](xN )〉〉

)
ErrM [0,n−2]d(xn−1),

(27)

ErrM [N−n+1,N ]d(xN−n) =

=
(
I − 〈〈xN−n, S−1

F [N−n+1,N ](xN )〉〉〈〈xn, S−1
F [0,n−1](x0)〉〉

)
ErrM [N−n+2,N ]d(xN−n+1),

(28)

〈〈xn, S−1
F [0,n−1](x0)〉〉ErrM [N−n+2,N ]d(xN−n+1) = ErrM [0,n−2]d(xn−1)〈〈S−1

F [N−n+1,N ](xN ),xN−n〉〉.
(29)

Before giving a proof of the above theorem a few comments are in order. Although the above
condition (c) may look formidable, it simply a list of slightly modified general properties (15), (14)
and (16)2. The only difference is that some frame coefficients are shifted forward or backward.
Using the lag operator the formulas (25-29) can be re-written equivalently as follows:

〈〈xn, S−1
F [0,n−1](xi)〉〉 =

= L
[
〈〈xn, S−1

F [1,n−1](xi)〉〉
]
− 〈〈xn, S−1

F [0,n−1](x0)〉〉 L−(N−n+1)
[
〈〈x0, S

−1
F [1,n−1](xi)〉〉

]
(30)

〈〈xN−n, S−1
F [N−n+1,N ](xN−i)〉〉 =

= L−1
[
〈〈xN−n, S−1

F [N−n+1,N−1](xN−i)〉〉
]
−

−〈〈xN−n, S−1
F [N−n+1,N ](xN )〉〉 LN−n+1

[
〈〈xN , S−1

F [N−n+1,N−1](xN−i)〉〉
]
,

(31)

2See also Remark 3.3.
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ErrM [0,n−1]d(xn) =(
I − 〈〈xn, S−1

F [0,n−1](x0)〉〉 L−(N−n)
[
〈〈x0, S

−1
F [1,n](xn)〉〉

])
L
[
ErrM [1,n−1]d(xn)

]
,

(32)

ErrM [N−n+1,N ]d(xN−n) =

=
(
I − 〈〈xN−n, S−1

F [N−n+1,N ](xN )〉〉LN−n
[
〈〈xN , S−1

F [N−n,N−1](xN−n)〉〉
])
·

· L−1
[
ErrM [N−n+1,N−1]d(xN−n)

]
,

(33)

〈〈xn, S−1
F [0,n−1](x0)〉〉 L−(N−n+1)

[
ErrM [1,n−1]d(x0)

]
=

= L
[
ErrM [1,n−1]d(xn)

]
L−(N−n)

[
〈〈S−1

F [1,n](xn),x0〉〉.
] (34)

Proof: The implication (a)⇒(b) follows directly from the blueprint algorithm. The implication
(b)⇒(c) is obvious, whereas (c)⇒(d) because the properties (25 – 29) are identical with the prop-
erties (30 – 34). Let us assume that (d) holds true.

In order to show that X is weakly stationary we will use an induction argument to prove the
following assertion for n ∈ {0..N}:

Auxiliary Claim: The sequence {x0, . . . ,xn} is weakly stationary and 〈〈xi,xj〉〉 = LN−n [〈〈xi,xj〉〉]
for any i, j ∈ {N − n .. N}.

We will consider first the case of n = 1. We have:

〈〈x0,x1〉〉 = 〈〈x0,x0〉〉〈〈S−1
F [0,0](x0),x1〉〉+ 〈〈x0,P(M [0,0]⊥)d(x1)〉〉 (by (8))

= 〈〈x0,x0〉〉〈〈S−1
F [0,0](x0),x1〉〉 = 〈〈xN ,xN 〉〉〈〈S−1

F [0,0](x0),x1〉〉 (by (24))

= 〈〈xN−1, S
−1
F [N,N ](xN )〉〉〈〈xN ,xN 〉〉 (by (29) and (24))

= 〈〈xN−1, S
−1
F [N,N ](xN )〉〉〈〈xN ,xN 〉〉+ 〈〈P(M [N,N ]⊥)d(xN−1),xN 〉〉

= 〈〈xN−1,xN 〉〉 (by (8)).
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Because of (8) and the above we have

〈〈x1,x1〉〉 = 〈〈x1,x0〉〉〈〈S−1
F [0,0](x0),x1〉〉+ 〈〈x1,P(M [0,0]⊥)d(x1)〉〉

= 〈〈xN ,xN−1〉〉〈〈S−1
F [0,0](x0),x1〉〉+ ErrM [0,0]d(x1)

= 〈〈xN ,xN 〉〉〈〈S−1
F [N,N ](xN ),xN−1〉〉〈〈S−1

F [0,0](x0),x1〉〉+ ErrM [0,0]d(x1)

=
{
〈〈x0,x0〉〉 −ErrM [0,0]d(x1)

}∗
+ ErrM [0,0]d(x1)

= 〈〈x0,x0〉〉,

in view of (27). Similarly, but using (28) we can check that

〈〈xN−1,xN−1〉〉 = 〈〈xN ,xN 〉〉,

which completes the proof of the case n = 1.

Now assume that, the auxiliary claim is true for some (n − 1) ≥ 1. We will deduce its validity for
n. For j ∈ {0..n} we have

〈〈xn,xj〉〉 = 〈〈xn, S−1
F [0,n−1](x0)〉〉〈〈x0,xj〉〉+

n−1∑
i=1

〈〈xn, S−1
F [0,n−1](xi)〉〉〈〈xi,xj〉〉+

+ ErrM [0,n−1]d(xj)

=

n−2∑
i=0

〈〈xn−1, S
−1
F [0,n−2](xi)〉〉〈〈xi+1,xj〉〉+ ErrM [0,n−1]d(xj)+

+ 〈〈xn, S−1
F [0,n−1](x0)〉〉

[
〈〈x0,xj〉〉 −

n−1∑
i=1

〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−n+1+i)〉〉〈〈xi,xj〉〉

]

(35)

The first of the above equalities is a consequence of (8), the second one follows from (25).

If j ∈ {1..n− 1}, then by the induction hypothesis and because xj ∈ F [0, n− 1], we can see that

n−2∑
i=0

〈〈xn−1, S
−1
F [0,n−2](xi)〉〉〈〈xi+1,xj〉〉 + ErrM [0,n−1]d(xj) =

n−2∑
i=0

〈〈xn−1, S
−1
F [0,n−2](xi)〉〉〈〈xi,xj−1〉〉 = 〈〈xn−1,xj−1〉〉.
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Moreover, by the induction hypothesis and because xN−n+1+j ∈ F [N − n+ 2, N ], we have

n−1∑
i=1

〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−n+1+i)〉〉〈〈xi,xj〉〉 =

=
n−1∑
i=1

〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−n+1+i)〉〉〈〈xN−n+1+i,xN−n+1+j〉〉 = 〈〈xN−n+1,xN−n+1+j〉〉.

Hence, once again by the induction hypothesis, for j ∈ {1..n− 1} the formula (35) reduces to

〈〈xn,xj〉〉 = 〈〈xn−1,xj−1〉〉. (36)

A similar argument using (26) shows that

〈〈xN−n,xN−j〉〉 = 〈〈xN−n+1,xN−j+1〉〉. (37)

If j = 0, then ErrM [0,n−1]d(x0) = 0 and

n−1∑
i=1

〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−n+1+i)〉〉〈〈xi,x0〉〉 =

=
n−1∑
i=1

〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−n+1+i)〉〉〈〈xN−n+1+i,xN−n+1〉〉 =

= 〈〈PM [N−n+2,N ]d(xN−n+1),xN−n+1〉〉 =

= 〈〈xN−n+1,xN−n+1〉〉 −ErrM [N−n+2,N ]d(xN−n+1).

Thus – in view of the above combined with the induction hypothesis – the formula (35) becomes:

〈〈xn,x0〉〉 =
n−2∑
i=0

〈〈xn−1, S
−1
F [0,n−2](xi)〉〉〈〈xi+1,x0〉〉+ 〈〈xn, S−1

F [0,n−1](x0)〉〉ErrM [N−n+2,N ]d(xN−n+1).

(38)
Similarly

〈〈xN−n,xN 〉〉 =

n−2∑
i=0

〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−i)〉〉〈〈xN−i−1,xN 〉〉

+ 〈〈xN−n, S−1
F [N−n+1,N ](xN )〉〉ErrM [0,n−2]d(xn−1).

(39)

The first terms on the right-hand sides of the formulas (38) and (39) are closely related, namely one
is the adjoint of the other. This can be seen as follows. In view of the Theorem 4.1, (36) and (9),
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we see that the term of interest in (38) is simply 〈〈xn,PM [1,n−1]d(x0)〉〉. Expanding the projection,
using (36), the induction hypothesis and (37), we get the adjoint of the respective term in (37),
modulo a change of the summation variable.

Also the second terms on the right-hand sides of (38) and (39) are mutually adjoint, because of
(29). Consequently

〈〈x0,xn〉〉 = 〈〈xN−n,xN 〉〉. (40)

Finally, if j = n, then by (36) and the induction hypothesis

n−2∑
i=0

〈〈xn−1, S
−1
F [0,n−2](xi)〉〉〈〈xi+1,xn〉〉 =

n−2∑
i=0

〈〈xn−1, S
−1
F [0,n−2](xi)〉〉〈〈xi,xn−1〉〉

= 〈〈xn−1,xn−1〉〉 −ErrM [0,n−2]d(xn−1)

= 〈〈x0,x0〉〉 −ErrM [0,n−2]d(xn−1).

(41)

Furthermore, by (40), the induction hypothesis and a change of summation variable

〈〈x0,xn〉〉 −
n−1∑
i=1

〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−n+1+i)〉〉〈〈xi,xn〉〉 =

〈〈xN−n,xN 〉〉 −
n−2∑
i=0

〈〈xN−n+1, S
−1
F [N−n+2,N ](xN−i)〉〉〈〈xN−i−1,xN 〉〉 =

〈〈xN−n, S−1
F [N−n+1,N ](xN )〉〉ErrM [0,n−2]d(xn−1),

(42)

where the last identity follows from (39). Now, substituting (41) and (42) into (35) (with j = n),
and then using (27) we get the identity

〈〈xn,xn〉〉 = 〈〈x0,x0〉〉. (43)

Similarly, but using (28), we derive the identity

〈〈xN−n,xN−n〉〉 = 〈〈xN ,xN 〉〉. (44)

The principle of mathematical induction implies now weak stationarity of X. �

Corollary 5.2 Let n, d ∈ N and let dimH ≥ d(n + 1). If a sequence {x1, . . . ,xn} ⊂ Hd is weakly
stationary, then it can be extended to a weakly stationary sequence {x1, . . . ,xn,xn+1} ⊂ Hd, in such
a way that the components of xn+1 are not in Span(x1, . . . ,xn).
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Proof: Let xn+1 ∈ Hd. Obviously the target sequence {xm, . . . ,xn+1} is weakly stationary if and
only if the sequences {xj : j = 1, . . . , n} and {xj : j = 2, . . . , n + 1} have the same matrix
covariance function. Define

x =
n∑
j=2

〈〈xn, S−1
F (xj−1)〉〉xj ,

where F = {x1, . . . ,xn−1}. Clearly for k ∈ {2, . . . , n},

〈〈x,xk〉〉 = 〈〈xn,xk−1〉〉

and
〈〈x,x〉〉 = 〈〈PMd(xn),PMd(xn)〉〉,

where M = Span(x1, . . . ,xn−1). It is now enough to define:

xn+1 = x +
√

ErrMd(xn)
(√
〈〈y,y〉〉

)−1
y,

where y ∈
(
(M&xn)⊥

)d
is an arbitrarily chosen block vector with linearly independent components.

�

Using induction we can easily deduce a more general statement:

Corollary 5.3 (Extension Property) Let p,m, n, q ∈ Z, where p ≤ m < n ≤ q and let dimH ≥
d(q − p + 1). If a sequence {xm, . . . ,xn} ⊂ Hd is weakly stationary, then it can be extended to a
weakly stationary sequence {xp, . . . ,xq} ⊂ Hd, in such a way that the components of the added block
vectors are not in Span(xm, . . . ,xn).

For earlier versions of the extension property see [13] and [22].

6 Causality

We will be working now in the Hilbert space H = L2(Ω,F ,P), where (Ω,F ,P) is a given probability
space. If X ⊂ H is a non-empty family of random variables, then by σ(X ) we denote the smallest
σ-algebra with respect to which all members of X are measurable. The subspace L2(Ω, σ(X ),P)
will be called the information space generated by X . If X if finite, say X = {x1, . . . , xn}, then it is
well known that σ(X ) = (x1, . . . , xn)−1(Bn) ⊂ F , where Bn denotes the σ-algebra of Borel subsets
of Rn.

Following [27], we say that a subspace S ⊂ L2(Ω,F ,P) is probabilistic if S = S, 1Ω ∈ S, and S is
closed with respect to the operations (x, y) 7→ x ∧ y = min(x, y) and (x, y) 7→ x ∨ y = max(x, y).
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If ∅ 6= A ⊂ L2(Ω,F ,P), then its lattice envelope Latt(A) is the smallest probabilistic subspace of
L2(Ω,F ,P) containing A. Since a direct proof of the following property is not readily available in
literature, we enclose it here.

Lemma 6.1 If x1, . . . , xn ∈ L2(Ω,F ,P), then

Latt (x1, . . . , xn) = L2(Ω,x−1(Bn),P),

where x = (x1, . . . , xn) and Bn denotes the σ-algebra of Borel subsets of Rn.

Proof: Let G = x−1(Bn). Obviously Latt (x1, . . . , xn) ⊂ L2(Ω,G,P). We want to show the opposite
inclusion. We have:

L2(Ω,G,P) = Latt ((1G)G∈G) = Latt ((1G)G∈ arbitrary π-system generating G)

= Latt
(
{1x−1((−∞,c1]×...×(−∞,cn]) : (c1, . . . , cn) ∈ Rn}

)
= Latt

({
1y−1((−∞,c]) : c ∈ R, y ∈ {x1, . . . , xn}

})
.

(Recall that a π-system is a nonempty family of sets closed with respect to finite intersections.) We
want to show that the last set is a subspace of Latt(x1, . . . , xn). Take ε > 0 and c ∈ R. Let

A = y−1((−∞, c]), Bm = y−1((c+ 1/m,∞)) Cm = y−1((c, c+ 1/m]),

where m is chosen so that P(Cm) < ε. Define

ym = 1Ω −m
[
(y ∨ c− c) ∧ 1

m

]
.

Then
ym
∣∣
A
≡ 1, ym

∣∣
Bm
≡ 0, ym(Cm) ⊂ [0, 1].

Therefore ∫
Ω

(1A − ym)2 dP =

∫
Cm

y2
mdP ≤ P(Cm) < ε.

Since Latt(x1, . . . , xn) is a closed subset, 1A ∈ Latt(x1, . . . , xn). �

If X = (xn)n∈N, then

L2 (Ω, σ(X ),P) =
⋃
n∈N

L2 (Ω, (x1, . . . , xn)−1(Bn),P). (45)
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Clearly
PL2(Ω,σ(X ),P)(Z) = lim

n→∞
PL2(Ω,(x1,...,xn)−1(Bn),P)(Z), Z ∈ H.

We say that there exists a causality relation between X (the cause) and a random variable y (the
effect), and we write

X C−→ y,

if y ∈ L2(Ω, σ(X ),P). If X is finite, say X = {x1, . . . , xn}, then such causality relation means simply
that for some Borel function F of n-real variables y = F (x1, . . . , xn).

We say that there is a linear causality relation between X (the cause) and a random variable y (the
effect), and we write

X LC−→ y,

if y ∈ Span(X ).

These definitions can be extended in an obvious way to the case of vector valued families of random
variables. Suppose that X = (xj)j∈J ⊂ Hd and y ∈ Hd′ , where xj = (x1j , . . . , xdj) and y =
(y1, . . . , yd′). Let X = {xij : i = 1, . . . , d, j ∈ J}. Then by definition

X LC−→ y ⇐⇒ X LC−→ yk for each k = 1, . . . , d′;

X C−→ y ⇐⇒ X C−→ yk for each k = 1, . . . , d′.

Let X = {xj : j ∈ J} be a family of Rd-valued random variables, where J is finite or not. A family
of real-valued Borel functions F of several real variables is called an information generating function
system (or IGFS ) for X , if it is at most countable and for any finite subset Y = {y1, . . . ,yn} of X ,
there exists a subset G ⊂ F such that the random variables

{G(y1, . . . ,yn) : G ∈ G}

are linearly dense in the information space generated by Y. Just as before Y = {yij : i =
1, . . . , d, j = 1, . . . , n}, where yj = (y1j , . . . , ydj). In other words we have then

Span{G(y1, . . . ,yn) : G ∈ G} = L2
(
Ω, (y1, . . . ,yn)−1(Bnd),P

)
.

Example 6.2 A result of Dobrushin and Minlos from 1977 (see [3]) yields a very important example
of an IGFS. Suppose that x1, . . . , xn are random variables such that

e|xj | ∈ Lα(Ω,F ,P) (46)
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for some α > 0 and for j = 1, . . . , n. Suppose also that P(Rn) denotes the family of all real
polynomials of n-real variables. Then any sequence (Pj)j∈N ⊂ P(Rn), with the property that every
polynomial in P(Rn) is a linear combination of elements of this sequence, is an IGFS for x1, . . . , xn.
In fact, since we are dealing with powers of random variables it can be shown that the vector space
V (x1, . . . , xn) = {P (x1, . . . , xn) : P ∈ P(Rn)} is not only a subset of Lp(Ω,F ,P) (for each p ≥ 1),
but is also dense there. Interestingly, the property that V (x1, . . . , xn) ⊂ Lp(Ω,F ,P) for all p ≥ 1
and for some random variables x1, . . . , xn, does not imply that (46) is satisfied. To see this consider
Ω = R, F = B1 and the probability measure

P(A) =

∑∞
m=1m

− lnm1A(m)∑∞
m=1m

− lnm
, A ∈ F .

We have
mk

mlnm
<

1

m2
,

if k ≥ 1, provided that m is large enough. Also, for any α > 0

lim
m→∞

m

√
eαm

mlnm
= eα > 1.

Thus every polynomial P (x) is in all the spaces Lp for p ≥ 1, but there is no positive α for which
ex is in Lα.

Example 6.3 Suppose that the range x(Ω) of the random vector x = (x1, . . . , xn) : Ω −→ Rn is
countable and E|x| <∞. Then {1{a} : a ∈ x(Ω)} is an IGFS for x1, . . . , xn. Note that in this case
the information space generated by the random variables x1, . . . , xn is given by ∑

a∈x(Ω)

λ(a)1x−1(a) : λ ∈ L2
(
x(Ω), 2x(Ω),P ◦ x−1

) .

The concept of information generating function systems is useful if one wants to approximate the
conditional expectation E[y |x1, . . . , xn], where y, x1, . . . , xn are random variables with finite vari-
ance. The conditional expectation is in this situation simply the orthogonal projection of Y onto
the information space generated by x1, . . . , xn. Unfortunately the information space is usually
infinite-dimensional making the problem computationally difficult. In applications, a common way
of avoiding this difficulty is to assume that the random variables y, x1, . . . , xn have a joint Gaussian
distribution in which case E[y |x1, . . . , xn] is a linear combination of the constant function 1 and the
random variables x1, . . . , xn. However, this additional assumption is often quite unrealistic. The
general problem is quite pertinent to the distinction between linear and non-linear causality which
we we are going to address now.
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In the proof of the next theorem we will need the following easy to check property of orthogonal
projections.

Lemma 6.4 Suppose E1 ⊂ E2 ⊂ . . . En ⊂ . . . H is a sequence of a closed subspaces of a Hilbert
space H. Let

E =
⋃
j∈N

Ej .

Then for any x ∈ H the sequence ‖PEj (x)‖ is non-decreasing and PEj (x)→ PE(x) as j →∞.

Linear causality can be characterized in several ways (see [20] and [26] for earlier versions):

Theorem 6.5 Let (xj)j∈Z ⊂ Hd and (yj)j∈Z ⊂ Hd′ be such that the sequence (xj ,yj)j∈Z ⊂ Hd+d′

is weakly stationary. The following conditions are equivalent:

(a) {xj}−∞<j≤0
LC−→ y0;

(b) {xj}−∞<j≤n
LC−→ yn for some n ∈ Z;

(c) {xj}−∞<j≤m
LC−→ ym for each m ∈ Z;

(d) If n→∞, then
‖PM [0,n]d′ (yn)‖ ↗ ‖y0‖,

where M [0, n] is defined as in (23).

Proof: Obviously (a) ⇒ (b). Assume that (b) is satisfied with some value of n and pick m ∈ Z.
Since (yj)j∈Z is weakly stationary,

‖yn‖ =
√

trace 〈〈yn,yn〉〉 =
√

trace 〈〈ym,ym〉〉 = ‖ym‖.

But in view of Lemma 6.4 and Corollary 4.2

‖yn‖ = ‖PM [−∞,n]d′ (yn)‖ = lim
k→∞

‖PM [n−k,n]d′ (yn)‖

= lim
k→∞

‖PM [m−k,m]d′ (ym)‖ = ‖PM [−∞,m]d′ (ym)‖.

Hence
‖PM [−∞,m]d′ (ym)‖ = ‖ym‖,
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which means that {xj}−∞<j≤m
C−→ ym. Since m was arbitrarily chosen we get (c) Now if (c) holds,

then in particular
‖PM [−n,0]d

′ (y0)‖ ↗ ‖y0‖ as n→∞, (47)

but then by Corollary 4.2 we see that (d) is equivalent to (47). The latter yields (a). �

If any of these equivalent conditions are satisfied, we will say that there is a linear causality rela-
tionship between (xj)j∈Z (the cause) and (yj)j∈Z (the effect). In this case we write

(xj)j∈Z
LC−→ (yj)j∈Z.

By analogy to linear causality, we will say that there is a causality relationship between (xj)j∈Z (the
cause) and (yj)j∈Z (the effect), if (xj)−∞j≤n is the cause of yn for each n ∈ Z. In symbols[

(xj)j∈Z
C−→ (yj)j∈Z

]
⇐⇒

[
(xj)−∞j≤n

C−→ yn for each n ∈ Z.
]

A natural questions can be asked here. How to detect and measure linear causality when dealing
with empirical data? The answer can be obtained with the help of property (d) in the above theorem
combined with the computational recipe provided in the following statement.

Theorem 6.6 Let F = {xm, . . . ,xn} ⊂ Hd and y ∈ Hd′, where m < n. Define

ν(j) =

{
xm, if j = 0
P(M [m,m+j−1]⊥)d(xm+j), if j = 1, . . . , n−m, (48)

where M [·, ·] is defined as in (23). Define also

α(j) =

{
〈〈xm,y〉〉, if j = 0

〈〈xm+j ,y〉〉 −
∑j−1

k=0〈〈xm+j , S
−1
Fj−1

(xm+k)〉〉〈〈xm+k,y〉〉, if j = 1, . . . , n−m, (49)

where Fj = {xm, . . . ,xm+j}. Then

‖PM [m,n]d
′ (y)‖ =

√√√√√trace


n−m∑
j=0

α(j)∗〈〈ν(j), ν(j)〉〉†α(j)

. (50)

Proof: As a consequence of (17) and Remark 3.3

PM [m,n]d′ (y) =

n−m∑
j=0

〈〈y, ν(j)〉〉〈〈ν(j), ν(j)〉〉†ν(j),
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and hence

‖PM [m,n]d′ (y)‖2 = trace


n−m∑
j=0

〈〈y, ν(j)〉〉〈〈ν(j), ν(j)〉〉†〈〈ν(j),y〉〉

 ,

because if A is a matrix then A†AA† = A† and ν(i) ⊥ ν(j) for i 6= j. Now it is enough to observe
that

ν(j) = xm+j −
j−1∑
k=0

〈〈xm+j , S
−1
Fj−1

(xm+k)〉〉xm+k,

and α(j) = 〈〈ν(j),y〉〉. �

The theorem generalizes a slightly different formula obtained in [20] under the assumption that
d′ = 1 and 〈〈ν(j), ν(j)〉〉 is invertible. Note that the blueprint algorithm allows calculation of all
necessary quantities if the matrix covariance function for {xm, . . . ,xn,y} is known.

It was shown in [20] (see also [26] and [13]) that tests for linear causality can be adapted to deal with
the non-linear case. We will show that these earlier results can be generalized within the framework
adopted in this paper. Before proving a ‘‘non-linear’’ counterpart of Theorem 6.5 we need a lattice
version of Corollary 4.2.

Lemma 6.7 Let {x(i)
m , . . . ,x

(i)
n } ⊂ Hd and y(i) ∈ Hd′, where i = 1, 2. Let N(i) = Latt (x

(i)
m , . . . ,x

(i)
n ).

If (x
(1)
m , . . . ,x

(1)
n ,y(1)) and (x

(2)
m , . . . ,x

(2)
n ,y(2)) have the same probability distribution, then

‖P
Nd′

(1)
(y(1))‖ = ‖P

Nd′
(2)

(y(2))‖.

Proof: Let z1, . . . , zk denote the scalar components of the block vectors x
(i)
m , . . . ,x

(i)
n (where i

is fixed). Let y denote a chosen component of y(i). It is enough to show that the norm of
E[y | z1, . . . , zk] = PLatt (z1,...,zk)(y) does not depend on the choice of i.

Without loss of generality we may assume that z1, . . . , zk ≥ 0 (because if z is in a probabilistic
subspace, then so are z ∨ 0 and −(z ∧ 0)). Note that for any j, we have the L2-convergence
zj ∧ t −→ zj as t→∞, where t ∈ N. Thus⋃

t∈N
Latt (z1 ∧ t, . . . , zk ∧ t) = Latt (z1, . . . , zk),

and consequently - in view of Lemma 6.4 - we may suppose that z1, . . . , zk are bounded. Since
under this assumption (46) is obviously satisfied, we can use the result of Dobrushin and Minlos
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described in Example 6.2 and approximate E = Latt (z1, . . . , zk) with a non-decreasing family of
subspaces Ej = Span{π(z1, . . . , zk) : π ∈ P(j)}, where P(j) is a finite family of polynomials. Now
it is enough to use Corollary 4.2 and Lemma 6.4. �

Let J = {p..q} be an integer interval for some p, q ∈ Z∪{±∞}. Recall that a sequence (zj)j∈J ⊂ Hd

is said to be strictly stationary, if for any choice of integers m, s ∈ N and n1, . . . , nm ∈ J such that
n1 + s, . . . , nm + s ∈ J , the random vectors (zn1 , . . . , znm) and (zn1+s, . . . , znm+s) have the same
probability distribution. Obviously strict stationarity implies weak stationarity. Moreover if the
random vectors are chosen like in the definition and h : Rd×m −→ Rn is a Borel function (for some
n), then the random vectors h(zn1 , . . . , znm) and h(zn1+s, . . . , znm+s) have the same probability
distribution.

Theorem 6.8 Let (xj)j∈Z ⊂ Hd and (yj)j∈Z ⊂ Hd′ be such that the sequence (xj ,yj)j∈Z ⊂ Hd+d′

is strictly stationary. Let N [p, q] denote the information space generated by all the components of
xj, where j ∈ Z ∩ [p, q] and −∞ ≤ p ≤ q ≤ ∞. The following conditions are equivalent:

(a) {xj}−∞<j≤0
C−→ y0;

(b) {xj}−∞<j≤n
C−→ yn for some n ∈ Z;

(c) {xj}−∞<j≤m
C−→ ym for each m ∈ Z;

(d) If n→∞, then
‖PN [0,n]d′ (yn)‖ ↗ ‖y0‖.

Proof: The proof is similar to that of Theorem 6.5 except that we have to use N [p, q] and Lemma
6.7 instead of M [p, q] and Corollary 4.2, respectively. �

Note that the k-th component of PN [0,n]d′ (yn) is simply the conditional expectation of the k-th
component of yn, conditioned on the σ-algebra generated by the components of x0, . . . ,xn.

For earlier versions of the above property see [20] and [26].

We are going to close the paper with a few comments explaining how information generating function
systems can enter practical time series analysis or, in other words, how the above linear theory can
account for non-linear phenomena. As an example we will consider a relatively recent procedure
called the abnormality test or Test(ABN) developed in [24] in connection with analysis of stock
market data. Apart from possible use for financial risk analysis (see also [28]), the abnormality test
is useful in detection of early signs of deep low-frequency earthquakes (see [29]).
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Definition of moving compositions: Let A,B 6= ∅ and let k ∈ Z+. Let J be an integer interval.
If a (finite or infinite) sequence X : J −→ A of elements of the set A is given and f : Ak+1 −→ B
is a given function, then the moving composition of f with X is the sequence of elements of the set
B defined by the formula

(f ◦X)(n) = f
(
X(n− k),X(n− k + 1), . . . ,X(n− 1),X(n)

)
,

for all values of n for which the right-hand side of the above formula makes sense.

Suppose that a time series X represents some empirical data. Test(ABN) is meant to screen the
given time series for statistical anomalies or – to be more descriptive – for breakdown of stationarity.
A finite family of Borel functions P is chosen. For p, q ∈ P, p 6= q, we form

(
#P

2

)
time series Xpq =

(
p ◦X
q ◦X

)
.

We apply a weak stationarity test to all Xpq and count the number nX(t) of positive results at time
t. We say that a period of anomalies starts at time t if nX(t) ≤M but nX(t− 1) > M , where M is
a chosen threshold value. Test(ABN) can also be applied simultaneously to several concurrent time
series, say X1, . . . ,Xn, in which case the behavior of min{nXj (t) : j = 1, . . . , n} may serve as an
indicator of breakdown of stationarity.
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