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The work presented was done as a master’s thesis under the supervision of Luca Brandt in the 

Department of Engineering Mechanics at the Royal Institute of Technology (KTH), Stockholm.  

The thesis comprises six chapters. The first chapter is the introduction. The second chapter contains the 

literature review. Equation used for fluid and the swimmers are provided in chapter 3. Chapter 4 

explains the numerical techniques in the analysis done during this thesis while chapter 5 gives the 

results and discussions and chapter 6 is about the conclusion of the work. 
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Abstract 

 

This thesis is concerned with the numerical study of swimming of microorganism in shear flows. The 

problem is approached by direct numerical simulation (DNS) and Lagrangian particle tracking (LPT) for 

the fluid and particle phase. This numerical study is focused on dense swimmers in the solution at 

moderate values of turbulent Reynolds number. We track the swimmers in Lagrangian frame for 

turbulent open channel flow at Reτ = 74.243 and   Reτ = 180 for turbulent close channel flow.  We also 

studied the swimmers in laminar flow at Reτ = 44.723 for close channel. For all cases we have one way 

coupling so the swimmers cannot affect the flow behavior. We chose the swimmers with and without 

gyrotaxis having different shapes. For open channel, we investigate the concentration and orientation of 

swimmers across the channel. For close channel, we looked at the concentration and dispersion velocity 

of swimmers in horizontal and vertical channels with gravity in the same and opposite to the direction of 

flow.    
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Chapter 1 

1.1 Introduction 

The trajectory of swimming microorganisms can be determined by the advection of flow. The 

orientation of their swimming velocity vector with respect to the direction of flow altered in 

response to number of different internal and external factors [1]. In this thesis we studied the 

suspension of passive swimming particles in an open and close channel flow. The statistics of 

organisms are examined by varying the swimming speed of cells, their aspect ratio and with and 

without gyrotaxis at different resolutions in an open and close channel.  

For example, consider a typical algal cell, Chlamydomonas, has shape approximately spheroid 

with a pair of flagella at one end and due to this cell swims in a direction roughly parallel to its 

axis. These cells are bottom heavy and tend to swim upwards due to the anisotropic mass 

distribution of organelles within their cell body. If they start to swim at an angle to the vertical, 

the gravitational couple would immediately rotate them to the vertical. However, if the fluid 

medium flows with the horizontal component of vorticity, it will exert the viscous torque on the 

cell and rotate it away from the vertical. If the vorticity is not too large, there will be a balance 

between the viscous and gravitational torques, and the cell swim at a fixed angle θ  to the 

vertical. This mechanism of cells movement is called gyrotaxis.  

Equation 1-1 

Where “ω ” is the horizontal component of vorticity in the flow and “B” is the constant that is 

determined by the geometry of the cell and viscosity of the suspending fluid. 

 

 

 

 

ωθ B=sin
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                                                    Figure 1-1 

Figure 1-1 shows such a cell placed in a shear flow. where “p” is the unit vector in the swimming 

direction, “h” is the displacement of the center of gravity “G” from the center of the cell “C”, so 

that 





 −=

ΛΛ

θθ cossin yxhh  relative to the Cartesian coordinates, The force of gravity, acting 

through the centre of mass exerts a torque gmhTg ×= , where m is the mass of the cell and g 

is the acceleration due to gravity. The viscous torque on a spherical cell of radius ‘a’ in a fluid of 

viscosity µ is given by  

)2(4 3 Ω−×∇= uaT πµµ    Equation 1-2    

Where u is the fluid velocity field and Ω  is the cell's angular velocity. The rate-of strain tensor 

gives rise to an additional torque only on non spherical bodies. Hence the total torque is given 

by 

gmhuaT ×+Ω−×∇= )2(4 3πµ   Equation 1-3 

1.2 Microorganisms 

The term organism represents an individual that is capable to grow, metabolize nutrients, and 

usually able to reproduce. It can be unicellular or multicellular. Organisms which are so small 

and invisible to the naked eye constitute microorganisms. If any object is smaller than 0.1 mm, 

the human eye can not perceive it and even at a size of 1.0 mm very little details of an object 
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can be seen with the naked eye. Organisms are divided into five different groups named 

prokaryotes, protists, fungi, plants, and animals. These groups are also called kingdoms. [3] 

1.3 What is Taxis? 

Taxis is a Greek word which means arrangement. According to Henderson’s dictionary of 

biological terms its definition is  

“A movement of free motile, usually simple organisms, especially Protista, or part of an 

organism. Towards (positive), or away from (negative), a source of stimulation, such as light, 

temperature, chemicals; an orientation behavior related to a directional stimulus.” 

Taxes include change in surroundings and mechanisms of organism’s movement in response to 

that change in surroundings. Organisms move in random manner in the absence of taxes. Most 

organisms use a combination of random movement and taxes. Natural selection ensures that 

optimal tactics are always employed. 

There are some typical examples of taxis:  

Chemotaxis: in this, organisms move towards or opposite to the chemical concentration 

gradient. Chemotactic bacteria experience the change in nutrient concentration with time. If 

there is any change in sensed concentration level, they respond by appropriate change in their 

tumbling probability. 

Phototaxis: In this, organisms are sensitive to light intensity, its direction or polarization. 

Phototactic organisms need light for photosynthesis so they swim towards it. 

Geotaxis: In this, organisms move towards or opposite to the gravity. This is also known as 

gravitaxis. Organisms those are bottom heavy tend to move upwards due to anisotropic mass 

distribution of organelles within their bodies. This upward movement is known as negative 

gravitaxis or negative geotaxis. 

The orientation of organisms is due to gradients in local fluid velocity. Their swimming is 

vorticity sensitive. The rotational viscous drag and the distance between the center of volume 
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and the center of mass are responsible for the angle between the axis of the cell and the 

vertical direction. Swimming by this mechanism is termed as gyrotaxis. 

Rheotaxis: In this, organisms try to keep position in a stream rather than being swept 

downstream by the flow because of their shape. Some organisms exhibit negative rheotaxis 

where they will avoid flow. 

Microorganisms need any mechanism to come close for sexual mating. So chemotaxis can 

effectively drive sexual aggregation. Geotaxis and gyrotaxis result in pattern formation. In the 

absence of wind shear or thermal convection, gyrotaxis might work to extract more nutrients 

from the bed of a pond than a mere geotactic instability, involving organisms that do not 

exhibit gyrotaxis, by increasing the width of up flowing fluid and creating higher wall shear 

stress.  

1.4 Wall bounded Flows 

By definition Turbulent flow is not stationary but stationary in the mean i.e. fluctuating around 

the mean value. The fluid motion is irregular and shows a random variation in both space and 

time. The flow field should show large vorticity intensity and vortices should span over a large 

range of scale.  

Turbulent flows are categorized into internal flows and external flows. Fully developed flows 

through pipes and ducts are common examples of internal flows. In these flows mean velocity 

profile and friction laws are of important concern which illustrate the shear stress exerted on 

the wall by the fluid. External flows include flow around aircraft and ships etc.   

Boundary layer flows are complex as compared to flows in free shear layers because, walls 

present in bounded flows imposes constraint for example viscosity of the fluid causes no slip 

condition. This no slip condition or viscous constraint that causes a viscosity characteristic 

length of the order of ʋ/w where ʋ is the kinematic viscosity and w represents characteristic of 

the level of turbulent velocity fluctuations. At high Reynolds numbers, υ /w is smaller than 

boundary layer thickness δ, so we can say that υ /w will not influence the entire flow. 
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Friction velocity 

ρ
τ

τ
wu =     Equation 1-4 

Viscous length scale  

 
τ

ν
u

l =*     Equation 1-5 

The Reynolds number defines on the basis of viscous scales  

*

Re
lu

u δ
υ
δ

υ
δ

τ

τ
τ ===    Equation 1-6 

 The percentage of viscous stress to the total stress decreases from 100% at the wall where          

y
+
 = 0 to the 50% at y

+
=12 and less than 10% by y

+
=50. 

y

U
vuy

∂
∂

+〉〈−= µρτ ''
)(    Equation 1-7 

Where 〉〈− ''vuρ  represents the Reynolds stress and 
y

U

∂
∂

µ  viscous stress. 

We divide the regions near wall on the basis of y
+
.  

In 1925 Prandtl postulated that in inner layer u
+
 is only the function of y

+
 for y/δ << 1. 

   ( ) δ<<= +++ yyyU ,    Equation 1-8 

In viscous sub layer, the deviation from the linear relation u
+
=y

+
 are negligible for y

+
<5, but 

significant for y
+
 > 12. 

The log law or the logarithmic law of wall due to von Karman  

   ( ) ( ) By
k

yU += +++ ln
1

    Equation 1-9 
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Where “k” is von Karman constant and “B” is the constant of integration. In the literature, there 

is little variation in the values of these constants, but generally these are within 5%. 

K = 0.41 and B=5.2 

Buffer layer, is the region between viscous sub layer ( y
+
 < 5) and log-law region (y

+
> 30). It is 

transition region between viscosity-dominated and turbulence-dominated parts of the flow.   

In the outer layer where velocity profile is not expected to depend on the viscosity for high 

Reynolds numbers.  

( ) ( ) *1 ,Re, lyYuUyU o >>Ψ−= ττ    Equation 1-10 

Where 
δ
y

Y =  

1.5 Isotropic Turbulence 

Kolmogorov’s idea is that the parameters those are responsible for the size of dissipating eddies 

are relevant to the smallest eddies. These parameters are the rate of energy dissipation є and 

the viscosity ʋ that does the smearing out of the velocity gradients. In turbulent flow at high 

Reynolds number, the statistics of the small scale motions have universal form those can be 

determined by є and ʋ.   

With these parameters we can form length, time and velocity scales.  

4

1
3









=

ε
υ

η     Equation 1-11
 

Where “η” is the kolmogorov’s length scale 

2

1








=
ε
υ

ηt     Equation 1-12 

( )4

1

υεη =v     
 
Equation 1-13 
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We considered these length, time and velocity as the smallest length, time and velocity scales 

respectively in our problem. For channel flow, these scales vary as the distance from the wall 

varies. To find the swimming speed of micro-organisms we used the Kolmogorov’s velocity 

scale. 
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Chapter 2 

Literature Review 

In recent years, the interest to investigate spontaneous pattern formation in suspensions of 

motile microorganisms is increased. These organisms are evolved million of years ago wether 

they are in our stomach or affecting the global weather by photosynthesis in the sea. They form 

certain patterns which is definitely an important part of their life. It is crucial that we 

understand how and why these organisms, at the base of the whole food chain, behave. After 

all, they consist of the majority of the Earth’s biomass and variation in their numbers could 

have a catastrophic consequences e.g. positive or negative feedback effects in global warming.  

There is also the possibility of harnessing the power of microorganisms. Some algae and 

bacteria produce alcohol as an unwanted byproduct but to us this is a valuable commodity not 

least for its use as a fuel, plastics, fertilizers, waste treatment plants and solid fuels are other 

possible applications for algae and their products. Aim of this thesis is to explain the patterns 

observed in suspensions of swimming microorganisms. 

Fluid flow is affected by the microbes, these microbes act as point source of gravitational force 

in the fluid equations. Swimming speed and direction are affected by the physical factors e.g. 

vorticity and gravity, and the sensory factors. To use microbes as point particles allows the 

variation of input parameters and modeling, while performing calculations with very large 

number of particles so the realistic cell concentrations and macroscopic fluid effects can be 

modeled with one particle representing one microbe. Variety of external factors including 

nutrient concentration, gravity, and the vorticity and the rate of strain of the fluid affect the 

orientation of its swimming velocity vector relative to embedding fluid.  The angle between the 

axis of the cell and the vertical direction depends upon the rotational viscous drag and the 

distance between the centre of volume and the centre of mass. In the case of gyrotactic 

microbes, the swimming orientation is a function of the gradients of the fluid velocity field. A 

discrete representation of microbes is adopted; do not seek to capture in detail the geometry. 

Incompressible and homogenous fluid is assumed and very small volume fraction of microbes 
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which have negligible effect on the viscosity and inertia of the fluid-microbe suspension. When 

the geotaxis torque is coupled with the torque due to vorticity, two different affects can occur. 

Microbe rotates “end-over-end” at a uniform rate if the geo-orientation response may 

overcome by the large value of torque due to vorticity. At smaller turning moments, the 

torques balance at some intermediate orientation. If a neutrally-buoyant cell is bottom heavy it 

will tend to swim vertically upwards in the absence of any other stimuli resulting in negative 

“gravitaxis”. Such cells are also gyrotactic in that a local velocity gradient will produce viscous 

torques on the cell’s body tending to tip it away from the vertical. [7] 

Gyrotaxis can be established in an experiment, a vertical tube of circular cross section is used 

for a slow Poiseuille flow down. The balance between viscous torques and gravitational torque 

gives one stable equilibrium orientation with individual cells tipped away from the upward 

vertical towards the axis of the pipe. If cells are carried along in the pipe they swim towards the 

axis, and accumulate into a narrow beam. Conversely, they are oriented away from the axis 

toward the walls if the direction of the flow is reversed, confirming the role of gyrotaxis in cell 

orientation. If the cell is the most bottom-heavy possible, i.e., the center of mass is at the 

circumsphere, the value of B would be approximately 0.14s. On the other hand, if the cell 

becomes less bottom-heavy, the value of B increases and ultimately becomes very large. For 

small values of G (more bottom heavy cells), the cells swim upwards preferably and are less 

prone to focus laterally into the plume. If the value of G is large (less bottom-heavy cells) the 

viscous torque exceeds gravitational torque and as a result the cells tend to tumble. [8] 

Some extra stresses contribute to the bulk deviatoric stress tensor due to swimming of cell. The 

only significant addition to the bulk deviatoric stress tensor, other than the Newtonian stress, is 

the derived from the stresslets associated with the cells’ intrinsic motions when the suspension 

is dilute. Generalized Taylor dispersion theory is used to calculate this extra stress term but not 

complete theory exists for all flows. To make realistic computational progress, the stress 

associated with the cells’ locomotion is neglected. Inertial effects are negligible at the low 

Reynolds number flow associated with the motion of the cells, their orientation is specified by 
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Tg+Tµ =0 and leads to the equation for reorientation rate. Due to strong circulation at the 

bottom boundary cells remain at the bottom after reaching there, if the value of G is large. [9] 

Fluid flow is governed by the Navier–Stokes equations with a negative buoyancy term to 

represent the effect of the cells on the fluid (Boussinesq approximation). Explicit results for 

several useful cases are presented from the Taylor–Aris limit to fully coupled gyrotactic 

spherical swimming cells (i.e. cells that drive the flow and whose swimming direction is biased 

by external and viscous torques). The expressions reveal the mechanisms for several competing 

effects and explain how these lead to diffusion and (positive or negative) drift through the tube. 

Fundamentally, the cells swim and, in the limit that they are very bottom heavy, they may swim 

mostly against a down welling flow, leading to a negative drift relative to the mean flow. On the 

other hand, cells those are not bottom heavy act more like diffusing passive tracers, with no 

drift. In both these cases, the cells diffuse as a balance between gravitational and viscous 

torques, a balance that will vary across the pipe flow, can lead the cells to form gyrotactic 

plumes, inducing further flow and self-concentration. These centrally focused plumes of cells 

can be strongly advected with the flow (i.e. faster than the mean flow) but will sidestep classical 

shear-induced Taylor-Aris dispersion; effective diffusion may be dominated by swimming 

diffusion, even for large flow rates. It is clear that swimming behavior leading to drift across 

streamlines can have a tremendous influence on cell transport in such systems. [10] 

Whether the flow in tubes is laminar or turbulent, gyrotactic swimming cells are organized in 

patterns that alter the flow. It is well known that the transition to turbulence in a tube is 

strongly sensitive to the initial laminar state. It is interesting to note that the perturbation by 

the presence of swimming cells should inevitably change the onset of the transition. Cells in 

turbulent flows in pipes have not been analyzed, but Lewis showed that gyrotactic algae in a 

homogeneous and isotropic turbulent flow field retain their bias. Turbulence only changes the 

effective value of the diffusivity of cell orientation. [11] 

In almost all cases known to us the only relevant body force is gravity which operates whenever 

the average density ρ + △ρ of the cell differs from ρ of the ambient fluid; in this case F = g△ρ/ρ, 
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where g is the gravitational acceleration. A cell that is not swimming and for which △ρ is 

nonzero will have a terminal or sedimentation velocity Vt. In most cases of interest, the 

magnitude of Vs is much greater than that of Vt and sedimentation may be neglected while the 

cell is swimming. Most cells also rotate as they swim. At any instant, then, the sum of the total 

effective external torque L and the viscous torque Lv exerted by the ambient fluid must be zero. 

If L is zero and the cell is not swimming then it will rotate with a time-dependent angular 

velocity Ω that depends linearly on the ambient vorticity ω and strain-rate E, as analyzed for 

ellipsoidal bodies. If the cell is swimming then the angular velocity is likely to be modified. If L is 

nonzero and the ambient fluid is at rest, then the cell must either rotate or activate its 

swimming apparatus to generate an equal and opposite Lv. However, if L and the ambient 

velocity gradient are both nonzero, it is possible for the cell to have zero angular velocity or in 

other words a fixed swimming direction. Many microorganisms appear to swim, on average, in 

a given direction, k say, when the ambient fluid is at rest. This suggests that, if p were not 

parallel to k, the body would experience an effective external couple tending to reduce the 

angle between them. For a general rigid body at zero Reynolds number, the viscous torque Lv 

can be written as a linear combination of the velocity and angular velocity of the body relative 

to the fluid and of the strain rate. For a swimming cell the details of the flagellar or ciliar 

motions will also be important but their effect on Lv has as yet been analyzed only for 

spermatozoa with helically beating flagella in a fluid otherwise at rest. Most of the interesting 

effects to be discussed can be understood if we treat a cell as a rigid prolate spheroid whose 

axis of symmetry is aligned with p. for the case in which L is gravitational B was called the 

"gyrotactic orientation parameter". The component of the torque balance equation parallel to 

p merely states that the component of the cell's angular velocity in that direction is the same as 

that of the ambient fluid. In a steady but nonuniform velocity field, a cell's orientation will 

change gradually with time-assuming that a stable equilibrium orientation exists for each 

spatial location-because as it swims the cell's trajectory will take it to different locations where 

the vorticity and strain rate are different. Computations of the trajectories of individual cells, 

still neglecting random effects, have been made for spherical cells (αo = 0) in downwards pipe 

flow. [12] 
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Chapter 3 

3.1 Particle laden Flow                                                                                                               

Particle laden flow is a flow in which particles are dispersed. This makes it a two phase flow, the 

fluid forms the continuum phase while the particles form the dispersed phase. Multiphase 

flows have more complicated dynamics as compared to the single phase flow. Single phase flow 

can be characterized solely by the Reynolds number, but to characterize the two phase flow we 

need volume fraction of particles “ pΦ ” and Stokes number “St”. These non-dimensional 

numbers are defined as 

    

V

�VP
p =Φ      Equation 3-1 

 

s

p

t
T

T
S =      Equation 3-2 

    

Where  

N, Vp, V, Tp, Ts, represent the number of particles, the volume of a single particle, the total 

volume occupied by both phases, the characteristic time scale of the turbulent flow and the 

friction time scale considered for wall bounded respectively. 
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    Figure 3-1 

For small pΦ , the particles have negligible effect on the turbulence, and the interaction 

between particles and turbulence is termed as one way coupling. In such cases particle 

dispersion will depend only on the state of turbulence. If the value of pΦ  increases, the 

momentum transfer from the particles is large enough to change the turbulence structure. This 

is known as two way coupling. For very high value of pΦ   in addition to the two way coupling, 

particle-particle collision takes place, which is called four way coupling. In our simulations, we 

have low stokes drag, low inertia and passive particles so we have the case of one way coupling. 

3.2  Physical Model  

3.2.1. For Open Channel 

For open channel flow, we have constant pressure gradient. We have the periodic boundary 

conditions in “X” and “Z”, stress free boundary condition at upper boundary and no slip 

boundary condition at lower boundary. We have elastic collision for particle-wall interaction.  
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       Figure 3-2 

Parameters Used for Open channel  

Parameter Values Description 

  Channel dimensions 

  
Resolution for Turbulent 

 

α 

0.0 

0.8,0.9 

1.0 

Spherical 

Ellipsoid 

Elongated 

Vs 0.02, 0.04 and 0.05 Velocity of Swimming Particles 

Re 2100 Reynolds Number(Turbulent) 

 74.246  Friction Reynolds Number (Turbulent) 

npart 512000 Number of particles 

G 0.147 Gyrotaxis 

Note:  Data non-dimensional with half-channel height and centerline velocity for laminar flow 

 

 

 

zyx lll xx

zyx nnn xx

τRe

3

4
24 xx

ππ

128129128 xx

192129192 xx
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3.2.2. For Close Channel 

 For closed channel flow, we have constant mass flux, periodic boundary conditions in 

“X” and “Z” and no slip boundary condition on upper and the lower walls. We have elastic 

collision for particle-wall interaction. In the figures 3-2 and 3-3, we showed all the models those 

we used for closed channel cases. For all models length of the channel is considered along the 

x-axis, height of the channel is along the y-axis and width of the channel along the z-axis. In 

figure 3-2 the channel is horizontal and the direction of gravity is in negative “y” direction.  In 

figure 3-3(a) the channel direction is vertical and gravity is in negative “x” direction so the flow 

is against gravity and In figure 3-3(b) the channel direction is vertical and gravity is in positive 

“x” direction and the flow is in the direction of gravity.  

 

   

 

 

 

 

 

 

Figure 3-2: Horizontal channel with direction of gravity in negative “y” direction.  
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Figure 3-2: (b) Vertical channel with gravity in negative “x” direction. (c) Vertical channel with gravity in 

positive “x” direction. 

Parameters Used for Close Channel  

Parameter Values Description 

  Channel dimensions 

  Resolution for Turbulent 

  Resolution for Laminar 

α 
0.0 

0.8 

Spherical 

Ellipsoid 

Vs 0.02 Velocity of Swimming Particles 

Re 
4200 

1000 

Reynolds Number(Turbulent) 

Reynolds Number(Laminar) 

 180 

44.72 

Friction Reynolds Number (Turbulent) 

Friction Reynolds Number (Laminar) 

npart 512000 Number of particles 

G 

0.0833,0.05,0.01    

0.073,0.1 0.35 

Gyrotaxis  for Turbulent 

Gyrotaxis  for Laminar  

Note:  Data non-dimensional with half-channel height and centerline velocity for laminar flow 

zyx lll xx

zyx nnn xx

τRe

3

4
24 xx

ππ

128129128 xx

41294 xxzyx nnn xx
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3.3 Equation of Motion 

Equation of motion of spherical particles in turbulent flows has been developed and presented 

in literature. These particles are small as compared to the smallest characteristic scale of the 

flow. We have to stoke drag equal to zero. Corrsin and Lumley proposed the following equation 

of motion for small sphere with radius “a” and mass “mp” moving with speed V(t) with its centre 

located at Y(t) 

ifp

ii
t

ii

iiftYi
i

f
i

p

gmm

t

YuV
d
d

dattYutVa

ttYutV
dt

d
mu

Dt

Du
m

dt

dV
m

)(

)]([

]}),([)({
6)]),([)((6

]}),([)({
2

1

2
1

2

)(

2

−+

−

−
−−−

−−







∇−=

∫
∞− τπν

τττττµπµπ

ν

  Equation 3-3 

Where ui(x, t) is the mass of the fluid displaced by the sphere, and “µ” and “ν ”are dynamic and 

kinematic viscosity respectively. In the above equation 
dt

d
and

Dt

D
is the material and time 

derivative respectively. 

 Interpretations of the terms used in the above equation are followings: 

1. The first term represents the contribution of the pressure gradient of the flow on the 

force imposed by the flow on the particle, also known as pressure drag. 

2. The second term is the added mass or virtual mass. This is an inertia imposed by the 

fluid as the accelerating particle has to move a volume of the surrounding body while it 

moves through the fluid. 

3. The third term is the Stokes drag in the linear form. To achieve more accuracy we used 

in a nonlinear Stokes drag  

( ) )1()],([)(6 απµ +−− ttYutVa ii    

Where, 687.0Re15.0 p=α
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uVa −= Re2Re p  

Where “V” is the fluid velocity and “u” is the velocity of the particle. 

3.4 Fluid Dynamics 

A channel of size 4πh × 2h × 2πh is considered with dimensions streamwise “x”, wall normal 

direction “y”, and spanwise “z” direction respectively; with “h” being half channel height. 

Particles are injected in a turbulent flow with different initial velocities on a pseudo random 

pattern as the initial position. We solve the non-dimensional Navier-Stokes equations for 

incompressible viscous fluid. 

In this thesis we have  

( ) upuu
t

u 2

Re

1
. ∇+∇−=∇+

∂
∂

    Equation 3-4 

 

        0. =∇ u      Equation 3-5 

The flow is defined by the non-dimensional parameter, Re. The flow is periodic in streamwise 

and spanwise directions and is driven by a time dependent pressure gradient. At the lower wall 

one applied the no slip boundary condition.  The upper boundary of the domain can be treated 

as free surface with symmetry boundary condition for open channel and no slip boundary 

condition is used in case of poiseuille flow. 

3.5 Governing equations for the swimmers 

The flow is seeded with many particles, typically between 2 × 10
5
 and 10

6
. Swimmers are point 

particles which advected with the local flow velocity and the swimming speed us  

    puu
dt

dx
s

i +=
     

Equation 3-7 
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In this expression, u is the local fluid velocity, ( )uuuu ss ∇= ,  which may depend on local fluid 

velocity and shear and p is the local particle orientation. Note that one could modify the 

transport by including inertial effects, so that particles have a characteristic time scale to adjust 

to the local fluid velocity (this is zero for the expression above). This should not be the case for 

very small organisms.  

To close the system one needs to define rules for us and an evolution equation for the 

orientation p. Assuming spheroid shape, the angular velocity of the organisms is defined by the 

inertia-free balance of gravitational and viscous torques. The deterministic part of the cells’ rate 

of change of direction is given by 

  ( )[ ] ( ) ⋅⋅⋅−+×+⋅−=
•

pEppIpppkk
B

p
o

αω
2

1

2

1

 
Equation 3-9 

The first term in the above equation describes the reorientation due to cells’ being bottom 

heavy, k is unit vector in the vertical direction and B α µ/(ρpgh) is the gyrotactic reorientation 

parameter with h the distance between the centre of spheroid and its centre of mass. The 

second term represents reorientation due to viscous torque on the cell caused by vorticity “ω” 

and the third term is reorientation due to rate of strain of the linear shear flow, α0 = (a
2
 – 

b
2
)/(a

2
 +b

2
) the eccentricity of the spheroids which is represented by l in the plots in chapter 5, 

and E symmetric part of the deformation tensor. Rotational diffusion is added as stochastic 

process of given mean and standard deviation. 

We did the some cases with particles having zero velocity when injected in the fluid so the 

equation reduces to the following equation 

    u
dt

dxi =
     

Equation 3-10 

If the cells are symmetric not the bottom heavy, the gyrotactic reorientation parameter B will 

be equal to zero because “h” is equal to zero which is the distance between the centre of 

spheroid and its centre of mass. In this case the centre of spheroid and its centre of mass lie at 
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same the same point. For spherical cells a=b so α0 will be equal to zero so that the rate of strain 

does not affect the orientation due to these the equation 3-9 reduces to  

pp ×=
•

ω
2

1

     
Equation 3-11 

This shows that the reorientation due to viscous torque on the cell caused by vorticity “ω” But 

for the elongated shape having eccentricity equal to 1 and without gyrotaxis we have the 

following equation 

( ) ⋅⋅⋅−+×=
•

pEppIpp ω
2

1

   
Equation 3-12 

In this case, the first term represents reorientation due to viscous torque on the cell caused by 

vorticity “ω” and the second term is reorientation due to rate of strain of the linear shear flow. 
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Chapter 4 

4.1 Numerical Simulation 

We used a program called “SIMSON” for all simulations in our work. This solver is implemented 

in FORTRAN 77/90. An efficient spectral integration technique is used to solve the Navier Stokes 

equations for incompressible channel flows. We can run this program either as a solver for 

direct numerical simulations (DNS) in which all length and time scales are resolved or in large-

eddy simulations (LES) mode where a number of different subgrid-scale models are available. 

The evaluation of multiple passive scalars can also be computed. The code can be run 

distributed or with shared memory parallelization through the Message Passing Interface (MPI) 

or OpenMP, respectively. 

4.2 Fluid Phase 

Equations for fluid are solved in spectral space, i.e. Fourier series for streamwise and spanwise 

directions and Chebyshev series for wall normal directions. Their results are transferred back to 

the physical space using backward Fourier and Chebyshev transformations.  The streamwise 

and spanwise directions are spatically discretized using Fourier expansions, while Chebyshev 

polynomial on Gauss-Lobatto points is used for wall normal directions. For temporal 

integrations, two semi-implicit schemes are used. The third order Runge-Kutta (RK3) scheme is 

used for the integration of advection and forcing terms, while diffusive terms are integrated by 

an implicit second-order Crank-Nicolson scheme. The basic numerical method is similar to the 

Fourier-Chebyshev method used by Kim et al. (1987) classically used for canonical turbulent 

flows. 

4.3 Particle Phase    

 Particle advection is also solved in SIMSON. Fluid velocity and its derivative must be known at 

the particle position for the calculation of the force at the particle. For that, the particle 

position is projected onto the horizontal planes, both above and beneath. On each horizontal 

plane four grid points surrounding the particle projections are found and fluid velocities are 

then interpolated from these grid points on to the particle projections using a second order 



22 

 

accurate linear interpolation. Then fluid velocities are interpolated onto the particle position 

using another linear interpolation, this time in wall normal direction.   

For Particle integration we used the RK3 integration scheme, the same scheme that is used to 

integrate the fluid. For this particle equation of motion is solved at each of four RK sub steps 

and the interpolation of fluid velocities is taken at each sub step. Vorticity and velocity fields are 

used to get velocity gradients in Fourier space on each and every horizontal plane.  
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Chapter 5 

5.1 Results and Discussions for Open Channel 

 

Figure 5-1: Statistics of turbulent flow. Left: mean streamwise velocity. Right: streamwise velocity 

fluctuations. 

Here we report results for open channel flow with passive swimming particles. The flow is open 

channel, periodic in the streamwise and spanwise direction and delimited by a wall and a free 

surface in the vertical y direction. The friction Reynolds number is τRe = 74.246 and the domain 

size 4πh × 2h × 2πh.  In figure 5-1 we report the mean velocity profile and the fluctuations of 

the streamwise velocity component u versus the wall-normal coordinate. 

 

 

 

 

 

 

Figure 5-2: Concentration of swimmers across the channel. Left: Comparison between the three 

populations considered.  Right: comparison for elongated swimmers of different swimming speed. The 

concentration is scaled by swimming speed to show linear scaling. 
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For the results presented here for the swimmers, random rotational diffusion is not considered. 

In figure 5-2 we show the wall-normal distribution of the normalized particle concentration. For 

the case of dead elongated particles (eccentricity 1) and for spherical particles swimming at us = 

0.05 the concentration is uniform, as for passive tracers. Interestingly, elongated swimmers 

tend to accumulate at the lower wall. Simulations with lower values of the swimming speed 

show lower levels of accumulation. The concentration at the wall appears to be proportional to 

the swimming speed (see figure 5-2 right where the concentration is scaled by the swimming 

speed). 

 

Figure 5-3: PDF of cosine between the swimmer orientation and the x-direction (streamwise direction). 

 

The probability density function of the cosine of the angle between particle orientation and the 

streamwise direction is reported in figure 5-3 for particles located close to the wall. Dead 

elongated swimmers are aligned with the flow, equal probability for positive and negative 

orientation. Spherical swimmers show no preferential direction while elongated micro-

organisms those are injected with initial velocity are swimming against the mean flow. 
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Figure 5-4 : PDF of cosine between the swimmer orientation and the x-direction (streamwise direction). 

 

In figure 5-4 we showed the orientation for particles located at the centre of the channel and 

close to the free surface. A more uniform distribution is observed in this case: swimming 

prolate particles tend to align with the flow close to the free surface. The distribution of the 

orientation with respect to the spanwise and wall-normal directions does not show any peculiar 

behavior.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: Concentration of swimmers across the channel. Comparison between the two populations.  

 

In figure 5-5 we showed the wall-normal distribution of the normalized particle concentration. 

In this case all swimmers are injected with us = 0.04, elongated particles (eccentricity 1) tend to 

accumulate at the lower wall as shown earlier and the concentration of ellipsoid particles 

(eccentricity 0.8 and 0.9) seems uniform except at the wall due to large scale but if we look at 

the figure 5-8 this is not uniform at all.  
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Figure 5-6 : PDF of cosine between the swimmer orientation and the x-direction (streamwise direction). 

 

In figure 5-6, PDF of cosine between the swimmer orientation and the x-direction at the wall, 

ellipsoidal swimmers show no preferential direction while elongated swimmers are swimming 

against the mean flow. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7 : PDF of cosine between the swimmer orientation and the x-direction (streamwise direction). 

 

In figure 5-7, PDF of cosine between the swimmer orientation and the x-direction at the center 

and at the free surface. The ellipsoidal and the elongated swimmers show the same behavior. 

Swimmers of both shapes have more probability to move in the direction of mean flow at the 

top and at the center. 
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Figure 5-8: Concentration of swimmers across the channel.  

 

In figure 5-8, the comparison of three different concentrations is presented when the ellipsoid 

particles with three different velocities are injected in the fluid. Particles those are injected with 

zero initial velocity have uniform concentration across the channel but the particles those are 

injected with some velocity are accumulated at the lower wall and upper surface.  

 

 

 
 

Figure 5-9 : PDF of cosine between the swimmer orientation and the x-direction (streamwise direction). 

   

In figure 5-9, PDF of cosine between the swimmer orientation and the x-direction at the center 

and top, orientation of the swimmers at the top and bottom is same. Swimmers those are 

injected with zero velocity have equal probability for positive and negative orientation. 

Swimmers those are injected with some velocity have more probability to swim in direction 

with the mean flow. 
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Figure 5-10: PDF of cosine between the swimmer orientation and the x-direction (streamwise direction). 

 

In figure 5-10, PDF of cosine between the swimmer orientation and the x-direction at the wall, 

swimmers those are injected with zero velocity are normal to wall and to the mean flow 

velocity. They are symmetric with respect to the mean value. Swimmers those are injected with 

some velocity are mostly against the mean flow but have some probability of orientation 

normal to wall and to the mean flow.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11: Concentration of swimmers across the channel.  

 

 

In figure 5-11, the concentration comparison for spherical and ellipsoid gyrotactic swimmers is 

shown.  Ellipsoid swimmers are accumulating at the surface more than the spherical swimmers.  

But for both cases swimmers are accumulating at the surface more than any other location. 
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Figure 5-12 : PDF of cosine between the swimmer orientation and the x-direction (streamwise 

direction). 

 

In figure 5-12, PDF of cosine between the swimmer orientation and the x-direction at the center 

and top, orientation of the swimmers at the top and bottom is almost same and most of the 

swimmers are normal to wall and to the mean flow velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13 : PDF of cosine between the swimmer orientation and the x-direction (streamwise 

direction). 

 

In figure 5-13, PDF of cosine between the swimmer orientation and the x-direction at the wall, 

gyrotactic spherical swimmers show no preferential direction while gyrotactic ellipsoid 

swimmers are moving with the mean flow.  
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Figure 5-14: Concentration of gyrotactic swimmers across the channel.  

 

 

In figure 5-14, the concentration of the gyrotactic swimmers is shown at different time steps. 

First they are not steady but after some time they became steady and accumulating at the 

upper surface.  

 

 

 

 

 

 

 

 

Figure 5-15: left-Concentration of swimmers across the channel. Right-Comparison for elongated 

particles at different resolution scale. 
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Figure 5-16 : PDF of cosine between the swimmer orientation and the x-direction (streamwise 

direction). 

 

In the figures 5-15 and 5-16, we showed the dependence of concentration of the swimmers 

across the channel and pdf of cosines between their orientation and x-direction at two different 

resolutions                         and                          .  From the plots it is clear that there is no difference 

between the results at two resolutions. So all the results presented in future in the case of close 

channel are at                            this resolution to save the computation time. 
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5.2 Results and Discussions for Close Channel 

 

 

 

 

 

 

Figure 5-17: Concentration of  gyrotactic swimmers in turbulent flow across the channel   

 

In figure 5-17, left-we showed the concentration comparison of five different cases in the 

horizontal channel. Spherical swimmers without gyrotaxis are uniform across the channel while 

concentration of ellipsoid swimmers is non-uniform. Swimmers with gyrotaxis are tending to 

move up. Right-we showed the concentration comparison of gyrotactic swimmers in horizontal 

and vertical channel (with gravity in negative and positive x-direction). Swimmers in the vertical 

channel with gravity in negative x-direction are accumulating at the wall and away from the 

wall with gravity in positive x-direction while in horizontal they are tending to move up. 

 

 

 

 

 

 

Figure 5-18: Concentration of  gyrotactic swimmers in laminar flow across the channel 
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In figure 5-18, Left- the concentration of gyrotactic ellipsoid swimmers at different time steps is 

shown. In this case all the swimmers are accumulating at the upper wall. Right- the 

concentration of gyrotactic spherical swimmers is presented at different time step.  In this case 

swimmers are accumulating at the distance of 0.6 from the upper wall.  

 

Figure 5-19: left-initial position of swimmers in the channel. Right- Computation of Dispersion Velocity  

 

The figure 5-19, left shows that swimmers are localized in streamwise direction but the 

orientation of the swimmers is random. Figure at right is the position versus time plot for 

particle at 1% and 99% when ordered according to streamwise location (98% of swimmers 

within the delimited area). We computed the trailing and leading edge velocity of particle 

packet from linear interpolation after initial transient. 

Figure 5-20: Computation of Dispersion Velocity in turbulent channel.  
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In figure 5-20, left plot is velocity dispersion for spherical swimmers in turbulent flow. For the 

case four when the channel is vertical and the gravity is in negative x-direction swimmers tend 

to migrate towards the wall and this yields the largest spreading. Right plot is the velocity 

dispersion for ellipsoid swimmers (eccentricity 0.8) the trend of these swimmers in same as the 

spherical swimmers with slightly larger dispersion. The values on the top of each bar are the 

difference between the interpolated velocity of the swimmers at the trailing and the leading 

edge.  

Figure 5-21: Computation of Dispersion Velocity in laminar channel 

In figure 5-21, left-plot is velocity dispersion for spherical swimmers in laminar flow. Right-plot 

is the velocity dispersion for ellipsoid swimmers in laminar flow. In laminar case trend is not 

same for spherical and ellipsoid swimmers as we saw in turbulent case. We saw the maximum 

dispersion for vertical channel when the flow is against the gravity for both spherical and the 

ellipsoid swimmers. In these cases swimmers are accumulating at the both walls. While in the 

cases when the flow is in the direction of gravity swimmers are accumulating at the center of 

the channel. In horizontal channel spherical swimmers are moving with the flow but 

accumulating at the upper wall in case of ellipsoid swimmers.  
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Figure 5-22: Computation of Dispersion Velocity in turbulent channel 

 

In figure 5-22, we showed the dependence of dispersion velocity of spherical swimmers on 

gyrotactic parameter in turbulent flow when the channel is horizontal. Dispersion velocity 

increases with increase in gyrotactic value.  

 

 

 

 

 

 

 

Figure 5-23: Computation of Dispersion Velocity in laminar channel 

 

In figure 5-23, we showed the dependence of dispersion velocity of spherical swimmers on 

gyrotactic parameter in laminar flow. Trend for dispersion in all channels is same as observed 

previously in figure 5-21. In horizontal channel and the vertical channel with gravity in the 

positive x-direction with the increase in gyrotactic value the difference between the 
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interpolated velocities of the swimmers at the trailing and edge decreases but it increases in 

the case when the channel is vertical and the gravity is opposite to the direction of flow 

(negative x-direction). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-24: Computation of Dispersion Velocity in laminar channel 

 

In figure 5-24, we showed the dependence of dispersion velocity of ellipsoid swimmers on 

gyrotactic parameter in laminar flow. Trend for dispersion in all channels is same as observed 

previously in figure 5-24. But there is big difference for the horizontal channel because all 

swimmers are accumulating at the wall as shown in figure 5-18(left). In horizontal channel and 

the vertical channel with gravity in the positive x-direction with the increase in gyrotactic value 

the difference between the interpolated velocities of the swimmers at the trailing and edge 

decreases but it increases in the case when the channel is vertical and the gravity is opposite to 

the direction of flow (negative x-direction). 
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Chapter 6 

Conclusion 

 

We used direct numerical simulations (DNS) for solution of microorganisms in channel flow. The 

swimmers are tracked in the flow by implementing a Lagrangian particle tracking (LPT) model 

for swimmers in the spectral simulation code called SIMSON. We have one way coupling so only 

the effect of flow on the microorganisms is considered but we neglected the response of 

swimmers on the flow. The results presented include the statistical analysis of swimmers 

concentration and their orientation in the open channel turbulent flow for Reτ = 74.246. For 

close channel we reported the concentration and dispersion velocity of swimmers in turbulent 

flow at Reτ = 180. 

In the investigation of swimmers behavior in an open channel we found several interesting 

features. The concentration for spherical, dead ellipsoid and dead elongated microorganisms is 

almost uniform across the channel. Elongated swimmers are accumulating at the wall while the 

concentration of ellipsoid swimmers having some initial velocity is not uniform at all across the 

channel. Gyrotactic swimmers are accumulating at the upper surface which confirms the 

presence of gyrotaxis phenomena.  

If we look at the orientation of the microorganisms at the wall, spherical swimmers showed no 

preferential direction while dead elongated swimmers have equal probability of positive and 

negative orientation. Dead ellipsoid swimmers are normal to wall and to the mean flow 

velocity. Elongated and ellipsoid swimmers those are injected with some initial velocity swim 

against the mean flow may be due to shear stress at the wall. Gyrotactic spherical swimmers 

have the same behavior observed for spherical swimmers without gyrotaxis but the gyrotactic 

ellipsoid swimmers are moving with the mean flow.  

At the center and the free surface spherical swimmers showed no preferential direction same 

behavior observed at the wall but dead elongated and ellipsoid swimmers have equal 

probability of positive and negative orientation while elongated and ellipsoid swimmers with 
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and without gyrotaxis injected with some initial velocity have more probability to move in the 

direction of mean flow. 

In close channel, for turbulent flow the concentration of spherical microorganisms without 

gyrotaxis is uniform across the horizontal channel, while the concentration of ellipsoid 

swimmers without gyrotaxis is not uniform across the horizontal channel. Microorganisms of 

both shape and gyrotaxis are tending to move and accumulating at the wall. Concentration of 

gyrotactic swimmers across the vertical channel when the gravity is in the direction of flow is 

almost uniform but the gyrotactic swimmers are accumulating at the wall when the gravity is 

on opposite direction of flow. 

In laminar flow for horizontal channel at large gyrotactic value spherical swimmers are 

accumulating 0.6 units below from the upper wall while the ellipsoid swimmers are 

accumulating at the walls. For vertical channel when the gravity is in the same direction of flow 

the swimmers move towards the axis of the channel and accumulate there but when the 

gravity is in the opposite direction of flow microorganisms move towards the wall and 

accumulate there. These investigations are perfectly matched with the experimental results 

reported by John O. Kessler in 1986.   

When we look at the velocity dispersion in different channel for turbulent flow, maximum 

velocity dispersion is observed for vertical channel when the gravity is in positive x-direction for 

spherical swimmers and slightly larger dispersion is observed for the ellipsoid swimmers as 

compared to spherical swimmers. We observed the same trend when the channel is vertical but 

the flow is laminar. In horizontal channel when the flow is turbulent dispersion velocity 

increases with increase in gyrotactic value.  

Next step would be to study how cell patterns, e.g. accumulate at the wall and affect of 

turbulence  
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