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Abstract—We study a closed-loop control system with state feed-
back transmitted over a noisy discrete memoryless channel. With
the objective to minimize the expected linear quadratic cost over a
finite horizon, we propose a joint design of the sensor measurement
quantization, channel error protection, and controller actuation.
It is argued that despite that this encoder-controller optimization
problem is known to be hard in general, an iterative design pro-
cedure can be derived in which the controller is optimized for a
fixed encoder, then the encoder is optimized for a fixed controller,
etc. Several properties of such a scheme are discussed. For a fixed
encoder, we study how to optimize the controller given that full
or partial side-information is available at the encoder about the
symbols received at the controller. It is shown that the certainty
equivalence controller is optimal when the encoder is optimal and
has full side-information. For a fixed controller, expressions for the
optimal encoder are given and implications are discussed for the
special cases when process, sensor, or channel noise is not present.
Numerical experiments are carried out to demonstrate the perfor-
mance obtained by employing the proposed iterative design proce-
dure and to compare it with other relevant schemes.

Index Terms—Discrete memoryless channel, joint encoder-con-
troller design, joint source-channel coding, limited information
control, quantized feedback control.

I. INTRODUCTION

I N recent years, the demand for sharing resources effi-
ciently in large networked systems has been continuously

increasing. However, in many situations, there is a challenging
conflict between the amount of transmitted data and the re-
sponse time. In particular for emerging control applications,
not necessarily constrained by today’s communication proto-
cols, limits imposed on available signaling bandwidth from
communication channels can severely restrict the closed-loop
performance and even destabilize the system. Networked
control based on limited sensor and actuator information
has therefore attracted considerable attention during the past
decades.
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A. Control Over Data-Rate Limited and Noisy Channels

Significant research interest has been devoted to the analysis
and synthesis of quantized feedback control over a data-rate
limited communication link, to stabilize an unstable and noise-
less plant. Already in the simplistic situation where the ini-
tial state is the only unknown entity that the encoder needs
to convey to the controller, a wide range of interesting prob-
lems has been formulated. The properties of static quantizers
are thoroughly studied in, e.g., [1]–[5]. Advances in ergodic
theory and symbolic theory provide new insights into time-in-
variant and memoryless quantizers. For this type of quantizers,
the classical notion of stability is no longer relevant. Instead,
attractivity and practical stability are introduced. In [6], the au-
thors present a framework for a quantitative analysis and com-
parison among different static quantizers. They show the con-
flicting relation between the steady-state behavior and the con-
traction rate. In [7], it is proved that a logarithmic quantizer is the
coarsest quantizer that quadratically stabilizes a linear time-in-
variant system. The quantization regions are by most authors as-
sumed to be intervals. In contrast, it is demonstrated in [8] that
other quantization sets may have great potential in reducing the
transmission rate. Unlike the case of static quantizers, asymp-
totic stability is possible when time-varying quantizers are used,
e.g., [9]–[12]. Asymptotic stability is achieved by employing a
“zooming”-strategy in [13]. The basic idea is that the quantizer
resolution is increased when the state is close to the equilibrium,
while the resolution is reduced when the state is far away.

The fundamental problem of the minimum data rate required
to asymptotically stabilize an unstable plant was studied in e.g.,
[10], [14], assuming a noiseless plant. The relation between the
minimum rate and the intrinsic entropy rate of the plant was
characterized. Generalizations to more complex situations, e.g.,
systems with process noise, measurement noise and transmis-
sion errors, are challenging research topics. In [15], the authors
carried forward the study to systems with process noise and
measurement noise. In [16], [17], topological entropy is intro-
duced to study the minimum data rate above which systems with
process noise can be stabilized. An excellent survey of the state
of the art on rate limited control is given in [18].

In the aforementioned works, the communication channel
was essentially assumed to be noise-free, and the only limi-
tation imposed by the channel is the limited data rate. Some
recent works on control over a noisy channel include [19]–[30].
For unstable systems, where the allowed delay in the feedback
becomes critical, results based on classic Shannon capacity
must be used with caution. In particular, with strict delay con-
straints, the source-channel separation principle may in general
not be invoked [31]. Recent work that contributes to updating
the classic theories to fit delay-constrained control problems
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includes [19], [24], [32], [37]. These results are typically based
on some version of a control-channel separation principle. The
basic idea is to design the stabilizing control assuming that the
channel is noiseless, and then require the control commands to
be reliably transmitted over the noisy channel. In [32], the novel
concept of anytime capacity is introduced to show the necessary
rate to achieve anytime reliability over noisy channels. This
research has been further developed in [19], [23], [38].

Most work on control with limited information has been de-
voted to stability, while optimal designs are much less explored
in the literature. Exceptions include the study of optimal sto-
chastic control over communication channels, e.g., [11], [18],
[33]–[36], [39]–[41]. The recent paper [40] provides a useful
historical review of linear quadratic Gaussian (LQG) control
with quantized feedback. As mentioned in [40], LQG control
in the special case of a rate-limited but noiseless feedback link
was studied for the first time in the 60’ies, see e.g., [33]–[35].
Later, Fischer [36] characterized the optimal quantizer and con-
trols for this problem in the case of vector-valued state and ob-
servation. More recent work includes [39], in which a stable
system without measurement noise is considered and an inno-
vation coding scheme is proposed to periodically convey the
information about process noise to the controller, over a noisy
channel. Since the time between two transmissions is increased
when longer codewords are used, there is a trade-off between
the resolution and delay. Furthermore, the paper [41] essentially
considers the same problem as in [36], that is, quantized control
over a rate-limited but noiseless channel, however by restricting
the decoder to be memoryless. For this problem, the existence
of the optimal controller and its properties are explicitly studied.

A closely related problem to encoder design for quantization
of state measurements is the estimation of a Markov source.
Some interesting results can be found in [14], [21], [42]. In
[14], sequential rate-distortion theory is developed to handle the
delay and causality restrictions typically encountered in con-
trol systems. In the same paper, the sequential rate-distortion
functions for Gaussian–Markov sources are computed. In [21]
some theoretical results on real-time (finite decoder memory)
encoder-decoders for tracking the outputs of a Markov source
are presented.

B. Contributions

The main contribution of the present paper is the introduction
of an iterative design procedure for finding encoder-controller
pairs. The result is a synthesis technique for joint optimization of
the quantization, error protection and control over a bandlimited
and noisy channel. This is an important problem in networked
control in the case when a large set of sensor nodes need to
limit their individual access to the communication medium. We
consider the problem of controlling one single plant in a net-
work where the state measurement is transmitted over a noisy
channel. Our system model described in Fig. 1 includes process
noise, measurement noise and a finite-rate channel. The de-
tails will be specified in Section II. Unlike in most previous
work on minimum-data-rate control, our main concern is op-
timal average performance over a finite horizon, given a fixed
data rate. We derive and analyze optimality criteria that we em-
ploy to suggest an iterative design algorithm. The performance

Fig. 1. General system for feedback control over a discrete memoryless
channel. The dashed line indicates potential side-information signaling from
the controller to the encoder.

of the optimized system is then investigated through numerical
simulations.

As a significant step in motivating our optimality criteria, we
comment on the validity of decoder-controller separation in it-
erative encoder-controller design. Similar discussions have pre-
viously appeared in, for example, [14], [18], [36], [43]. How-
ever, these works focused on existence of optimal systems, while
we need a separation criterion that can be used at each step in
our design algorithm. As will be discussed below, this leads to
some subtle but important differences in the validity of the cor-
responding results. We also emphasize that, in contrast to [14],
[18], [36], we consider control over a noisy channel. Also, in
contrast to [36], [43], we allow for general initial state and noise
distributions, not necessarily Gaussian; meaning that sufficient
statistics at the encoder can in general not be computed based on
a Kalman filter, even in the presence of perfect encoder side-in-
formation. In addition, we introduce a general model that cap-
tures the potential presence of partial side-information at the en-
coder regarding the received symbols at the controller.

The paper embodies the previous work by the authors on this
problem, see [45]–[48].

C. Organization and Notation

The paper is organized as follows. In Section II we define
the control system with encoder, controller, and communica-
tion channel. Thereafter, the problem statement which concerns
a linear quadratic (LQ) objective over a finite horizon is for-
mulated. The joint encoder-controller design based on dynamic
programming is developed in Sections III and IV. The iterative
training algorithm is detailed in Section V. Finally, we present
numerical experiments in Section VI and conclusions in the last
section.

Some notation used throughout the paper is as follows. Bold-
faced characters are used for describing a sequence of signals
or functions, e.g., denotes the evolution of
a discrete-time signal from to . If , then the
sequence is empty. We use to denote the expectation op-
erator, the trace operator. Also, denotes a probability
density function (pdf) and probability. Moreover, the no-
tation stands for matrix transpose and matrix pseudoin-
verse. To indicate an optimal solution, the notation is used.

II. PRELIMINARIES

In this section, we first describe the system model in Sec-
tion II-A. Thereafter we discuss properties of the encoder side-
information in Section II-B. The performance measure and the
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problem formulation are specified in Section II-C. Finally, in
Section II-D, the iterative design is introduced.

A. System Model

Consider the control system with a communication channel
depicted in Fig. 1. Sensor data are encoded and transmitted over
an unreliable communication channel. Control commands are
derived based on the received data. Next we describe this system
in more detail.

The multi-variable linear plant is governed by the following
equations:

(1)

where , , are the state, the control,
and the measurement, respectively. The matrices ,

, , are known; moreover, is state
observable and is state controllable. The variable

is the process noise and is the measurement noise.
The noise signals are independent and identically distributed
(i.i.d.) and mutually independent. They are also independent of
the system initial state . In addition, we assume that the initial
state and the noise processes are zero mean, and their probability
density functions are known.

We consider an encoder that causally utilizes the encoder in-
formation. By the encoder information, we mean the set of vari-
ables whose values are known to the encoder. The encoder is
then a mapping from the set of the encoder information to a dis-
crete set of symbols. We take each symbol to be represented by
an integer index. At time , the index is ,
where is a fixed integer. In particular, we are interested in the
class of encoder mappings described by a function

(2)

Here, the parameter specifies how many of the past mea-
surements can be used by the encoder. For example, ,
gives the special case where only the present measurement is
available, while when , the encoder can use the full se-
quence . Given the sequence of past side-information, ,
and the measurements, , the encoder produces an index

, and the transmitted index is then received as
, where . The side-information repre-

sents available feedback to the encoder about the value of the
symbol received at the controller. In this paper, we define the
side-information (SI) at the encoder to be produced as

(3)

where is deterministic and memoryless. A de-
tailed discussion on the structure of SI is given in Section II-B.

The encoder output indexes, , are transmitted over a discrete
memoryless channel (DMC), with input and output alphabets
and , respectively. One use of the channel is defined as

(4)

where is a random memoryless mapping. Since
we assume , the output alphabet is potentially larger
than the input alphabet, and hence we allow the possibility of

soft information at the channel output. Conditioned on the trans-
mitted symbol , the mapping to is independent of other pa-
rameters in the system, e.g., the process and measurement noise.
The fact that the channel is bandlimited is captured by the finite
size of the input-alphabet ; we define the rate of the transmis-
sion (in bits per channel use) as . Our transmission
model encompasses all the common memoryless models; for
example, the binary symmetric channel (BSC) and the binary
erasure channel (BEC) [49].

At the receiver side, we consider a controller that causally
utilizes all the available controller information ,
to produce the control command

(5)

According to (5), when the sequence is available at the con-
troller, all past control commands are completely speci-
fied.

We denote the conditional mean estimator of the state ,
based on the history of the received indexes , as

(6)

We will use as a short notation for . Then,
let be the estimation error in estimating the state at time ,
that is, .

We note that we will use “encoder” and “controller” in quite
general terms (“the corresponding boxes in Fig. 1”), as well as
specific terms (“the mappings and at time ”). When there
is a need to be specific, we will adopt the following notation and
terminology. Let the notation mean the full
sequence of encoder mappings, from time 0 to . We will
call the “encoder” of the system (since the sequence spec-
ifies the operation of the encoder for all relevant time-instants),
and we will say that is the “encoder mapping at time ” or “the
component of at time ” when there is a need to specify a
particular time-instant and the corresponding mapping. For sub-
sequences of the full sequence of encoder mappings, we will use
similar notation, and say, e.g., “the encoder components .”
This notation will also be used for the controller, its individual
mappings or components, and subsequences, say, , and

, respectively.

B. Encoder Side-Information

Since the transmission rate is limited, the main mo-
tivation for using memory-based encoder-controllers is to
increase the resolution of the quantized observation. For
memory-based schemes, the system performance relies heavily
on the encoder’s knowledge about the controller state and
the controller’s belief in the encoder state. In the presence
of a noisy channel, care has to be taken in specifying how to
synchronize the states of the encoder and controller. We use the
term encoder side-information to specify explicit feedback to
the encoder from the controller concerning the received sym-
bols . Consequently, no SI is the extreme case when there
is no feedback information at all about , and full SI denotes
the situation that the encoder knows exactly the previously
received symbols . The latter is the case when the channel
is noiseless, so that , or when there is an error-free
side-information channel of the same rate from the output of
the forward channel to the encoder.
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According to the definition of the side-information mapping
in (3), we have and when full SI

is available, while and when there is no SI at the
encoder. Between the extremes, there are a variety of cases with
incomplete SI, for which . Note that in Fig. 1 we
illustrate the mapping from to as an explicit side-informa-
tion channel, even though this information can be obtained by
other means. For example, full SI can be obtained if the encoder
knows the previous control commands, , and the controller
is an invertible mapping, since then can be deduced from

. In general, when SI is transmitted back to the encoder via
a separate noisy channel, assuming the side-information map-
ping to be deterministic may be optimistic; results based on this
assumption then serve as bounds on the achievable performance.
However, as we also include the possibility of very low-rate SI
feedback (e.g., ), noiseless transmission may be moti-
vated by the application of heavy error protection in the side-in-
formation link.

Via the side-information link the encoder will be informed
about the potential transmission errors. However, in contrast to
conventional automatic repeat request protocols, no re-transmis-
sion will take place. Therefore, the controller must be designed
to maintain robustness to transmission errors.

C. Problem Statement

Our goal is to solve an optimal encoder-controller problem
and thereby finding the suitable encoder and controller map-
pings. The adopted performance measure is the following LQ
cost with finite horizon :

where the matrices and are symmetric and positive defi-
nite. The design objective is to find the encoder-controller map-
pings which minimize the expected value of the cost , namely

(7)

For ease of reference, we refer to the main design problem as
Problem 1, and summarize it below.

Problem 1: Consider the system in Fig. 1. Given the linear
plant (1) and the memoryless channel (4), find the encoder (2)
and controller (5) that minimize the cost (7).

We use the notation

for the optimal, but not necessarily unique, mappings that solve
Problem 1. Problem 1 can be viewed as an extension of the tra-
ditional LQ problem in which the optimal encoder-controller
minimizes the cost function with respect to initial state, process
noise, measurement noise, and a bandlimited noisy channel.

D. Iterative Design

In general, finding an exact solution to Problem 1 is not fea-
sible, because the optimization problem is highly non-linear

and non-convex. Therefore, we propose a method to design the
encoder-controller pair iteratively, with the goal of finding lo-
cally optimal solutions. Inspired by traditional quantizer and
vector quantizer designs [50], [51], the idea is to fix the encoder
and update the controller, then fix the controller and update
the encoder, etc. The iteration terminates when convergence is
reached. Unfortunately, the iterative optimization algorithm will
not guarantee convergence to a global optimum, but by influ-
encing the initial conditions of the design it is possible to search
for good locally optimal designs.

Criteria for updating the encoder and controller are developed
in the next two sections. First, the problem of finding the optimal
control strategy for a fixed encoder is addressed in Section III.
Then, in Section IV, we consider the problem of optimizing one
single encoder component, assuming the controller and other
encoder components are fixed. The encoding problem for some
special cases of the general settings in Section II-A are discussed
in more details to illustrate the impact of process noise, mea-
surement noise and transmission errors.

III. OPTIMAL CONTROLLER FOR FIXED ENCODER

This section presents the main results of the paper concerning
the characterization of optimal controllers. In particular, we in-
vestigate the properties of the optimal controller mapping ,
assuming the encoder is fixed and given. We begin with
a study of the general case in Section III-A, leading to an op-
timal control equation which is hard to solve. Thereafter, in
Section III-B, we investigate the full SI scenario by introducing
a modified system using an “open-loop encoder.” The optimal
control equation is solved for this type of system. Finally, in
Section III-C, we discuss how to use the results in Section III-B
in designing the system for the general case of partial SI.

A. General Case

The problem of finding the optimal control assuming the en-
coder is fixed fits well into the setting of stochastic optimal con-
trol, e.g., [52]. We apply dynamic programming to derive the
optimal control strategy recursively. In this case, the observa-
tions available at the controller are the integer-valued indexes

. Resembling a classical result in LQ control, we present the
following proposition.

Proposition 1: Consider a fixed encoder . Given the
plant (1) and the memoryless channel (4), a controller mapping
(5) that minimizes the LQ cost (7) fulfills the following recur-
sive relation:

(8)

for , where the cost-to-go is initialized with the
optimal cost-to-go of , namely, .

Proof: According to the principle of optimality, e.g., [53],
the truncated control sequence is the
optimal strategy for the truncated problem corresponding to the
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cost from time to . Hence, the optimal is the one that
minimizes the sum of the future costs, i.e.

Let us start the recursive derivation at the last stage . Since,
the optimal cost-to-go at time is zero, i.e., , the
optimal is the one minimizing , namely

where the term denotes the covariance ma-
trix of the process noise. Since the noise variance

is independent of the control , the control
minimizing is then given by

(9)

where . Substituting into ,
the optimal cost-to-go at is

(10)

At the second last stage , the optimal is the one
minimizing , as

(11)

Generalizing to any time , the optimal control can be ob-
tained by solving the following equation:

(12)

where is the cost-to-go, given by

Note that . This concludes the proof.
Unfortunately, it is in general not possible to efficiently solve

(12). One main obstruction lies in how the term
is affected by past controls. Consider for example .
The quantity in is difficult to ana-
lyze, since the received index is itself a function of
via encoding and transmission. Hence, obtaining an explicit so-
lution to (8) is typically not feasible. In the following two sub-
sections we will first investigate the case of full SI and demon-
strate that this assumption significantly simplifies the problem.

Fig. 2. Equivalent representation of the system.

Then we will discuss how to apply the conclusions derived as-
suming full SI in the general case.

B. Full Side-Information

An explicit solution to the optimal control problem (8) can
essentially be obtained only in a few special cases. In this section
we look at the special case that the encoder has full SI,

. In this case we are able to provide a characterization of the
optimal system.

Assume full SI is available, that is, the encoder map-
ping at time is given as . Now, let us look at
the system in Fig. 2, where the function is the map-
ping that gives

Note that is the part of remaining after removing the effect
of all previous control commands, so depends only on ,

and

That is, is the equivalent open-loop measurement. Moreover,
in Fig. 2 the mapping is defined as

where the output is used to reproduce the measurement . Ob-
serve that the only parameters needed to specify are the ma-
trices , and , while requires knowing the controller
mappings . That is, if the controller is changed, the map-
ping also changes. Since the operations carried out by and

cancel out, it is obvious that the system in Fig. 2 gives exactly
the same value for the cost (7) as the one in Fig. 1, provided the
same encoder and controller are used.

Now consider the mapping from the open-loop measure-
ment and the SI to the index , as enclosed within
the dashed line in Fig. 2. We call this the open-loop encoder
mapping. Motivated by Fig. 2, we define the system in Fig. 3,
assuming the same controller but a completely general mapping

(that is, one not necessarily related to and
as in Fig. 2). We call the system in Fig. 3 the open-loop encoder
system. For a given open-loop encoder system as in Fig. 3, with
the open-loop encoder and controller specified,
one can construct a system with the original structure of Fig. 1
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Fig. 3. Open-loop encoder system, a virtual help-system.

which has exactly the same performance. The corresponding
system in Fig. 1 utilizes the same controller , together
with an encoder whose components are determined by
and as

(13)

For the open-loop encoder system, we formulate the following
problem.

Problem 2: Consider an open-loop encoder system as illus-
trated in Fig. 3. Given the linear plant (1) and the memoryless
channel (4), find the open-loop encoder and controller mappings

and that minimize the
cost (7).

It is worthwhile here to emphasize our line-of-thought: Nei-
ther of the systems in Figs. 2–3 fits our original model in Fig. 1,
in particular since in Fig. 1 there is no connection from the con-
trols to the encoder (via the mapping ). Hence it is not ob-
vious why formulating Problem 2 is relevant. In the following
propositions we will however demonstrate how the optimal con-
trol problem can be solved for the open-loop encoder system in
Fig. 3, while we are not able to solve it in the case of the orig-
inal system in Fig. 1. We therefore emphasize that the purpose
of introducing the open-loop encoder system in Fig. 3 is to have
access to a “virtual help-system” in the sense that we will op-
timize the design for this system and argue that the solution is
useful also in the original system.

Open-loop systems similar to the one in Fig. 3 were consid-
ered also in [14], [18] (for noiseless channels). However, there
is a very important, albeit quite subtle, difference in that the
equivalent systems in [14], [18] need to use the controller map-
ping inside the encoder to “open the loop.” This is in contrast to
our open-loop encoder system in Fig. 3 where the encoder is a
completely arbitrary mapping, and where the loop is opened by
subtracting the controls via . This is crucial for the approach
in this paper, since in each step of the iterative design the con-
troller is fixed while updating the encoder, and vice versa. In par-
ticular, a controller that perfectly fits the encoder is not known
when updating the encoder. Hence, as will be demonstrated, our
open-loop encoder system is useful in iterative design, while this
is not the case with previously proposed equivalent systems. To
our knowledge, this issue has not been settled in previous work.

Now, given the plant, the memoryless channel and the de-
sign criterion, the solutions to the original Problem 1 and the
corresponding Problem 2 for the open-loop encoder system are
closely related, as revealed by the following proposition.

Proposition 2:
I. Consider a solution to

Problem 1. The same controller and the open-loop
encoder specified by as

(14)

jointly solve Problem 2.
II. Consider a solution

to Problem 2. The same controller and
the encoder specified by

according to

(15)

jointly solve Problem 1.
Proof:

I. If the open-loop encoder
according to (14), and do not jointly solve
Problem 2, then another solution to Problem 2
provides a cost lower than the one given by

. If this is the case, using
the encoder specified by the solution to Problem 2
according to (13), jointly with the controller of the same
solution, must lead to a lower cost than the one resulting
from . This contradicts the
statement that is a solution to
Problem 1. Hence, the statement in Proposition 2 must
be true.

II. The proof is similar to part I.

Proposition 2 indicates that a solution to Problem 2 specifies a
solution to Problem 1, and vice versa. As we will discuss below,
when using the iterative design approach, Problem 2 is in gen-
eral easier to solve than Problem 1. Hence, in the special case of
full SI we will focus on finding a solution to Problem 2, and then
derive a corresponding solution to Problem 1 according to (15).
Again, we note that Problem 2 is not an equivalent problem (as
the system in Fig. 1 cannot be transformed into the system in
Fig. 3). However, we will argue that striving to solve Problem
2 will result in encoder-controller pairs that can be converted to
fit the original scenario in Fig. 1. Recall that the iterative design
approach alternates between specifying an encoder for a fixed
controller and updating the controller for a fixed encoder. In the
remaining part of this subsection, we will therefore study the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAO et al.: ITERATIVE ENCODER-CONTROLLER DESIGN FOR FEEDBACK CONTROL OVER NOISY CHANNELS 7

optimal control problem for the open-loop encoder system in
Fig. 3, assuming a fixed and general open-loop encoder
(this encoder may be completely unrelated to any encoder
in the original system).

Consider now a fixed sequence of open-loop encoder map-
pings in the open-loop encoder system (that is, is fixed
and does not change when the controller mappings change).
Note that for any such fixed mappings, the transmitted indexes

do not depend on the controls , since the open-loop mea-
surements does not depend on and since

, etc., and
depends only on and potential channel errors. Because of

this fact, we will be able to solve (8), as revealed by the proof
of the following proposition.

Proposition 3: Consider the open-loop encoder system
in Fig. 3, assuming a fixed open-loop encoder

. Given the plant (1) and the memory-
less channel (4), the controller component that
minimizes the LQ cost (7) is given by

(16)

where . The control gain can be recursively
computed as

(17)

where is initialized with
.

Proof: According to Fig. 3, the open-loop encoder has ac-
cess to the open-loop measurement and . When the
sequence of mappings is fixed, we can verify that the es-
timation error is not a function of as follows:

since the controls are completely determined by the re-
ceived symbols . As are not affected by

, one can show by the following induction that the indexes
are not functions of . Start the induction at . The

statement holds true at since

Assuming for the moment the statement is valid for time , as
already validated for , then at time

which hence do not involve . Therefore, and de-
pend only on , , and potential channel errors,
but not on .

The fact that the estimation error is not a func-
tion of for the fixed mappings will
significantly simplify the derivation of the optimal control. Ac-
cording to previous calculations, the optimal is given by

(9), irrespective of the encoding. In order to derive the optimal
, let us consider (10) and (11). Since the covariance of the

estimation error is independent of , we can find the
optimal as

and the optimal cost-to-go at can be written as

(18)

with as given in (10).
Assume for time is established, as already validated

for , let us continue the derivation of . According
to Proposition 1, the optimal control is the one solving the
following equation:

where . By (18),
can be written as

Then, since does not depend on
at any time instance , we can obtain the optimal by solving
the following equation:

and the solution is given by

Finally, the resulting optimal cost-to-go is obtained by re-
placing in with

(19)

The results in (16) and (17) illustrate that given a fixed open-
loop encoder , it is possible to explicitly characterize the
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optimal control strategy (8). Observe that the optimal control
strategy (16) can be decomposed into a separate estimator/de-
coder and a controller. Hence, the separation property holds,
e.g., [52], [54]. Additionally, one can show that the derived
optimal control strategy (16) is a certainty equivalence (CE)
controller. A CE controller is obtained by first computing the
optimal deterministic control, in the absence of process noise
and assuming that perfect state observations are available at
the controller. Thereafter, the perfect state observations are re-
placed with estimates of the partially observed states, cf., (16).
The CE controller does in general not provide optimum perfor-
mance. In our case, we are able to show that the resulting CE
controller in (16) is optimal for the open-loop encoder system
in Fig. 3, assuming a fixed open-loop encoder. However, since
the open-loop encoder system is not an instance of the original
system in Fig. 1, we cannot claim that the CE controller structure
is optimal given a fixed encoder in the original system.

The CE controller is optimal if the second moment of the esti-
mation error does not depend on past controls [14], [55]. This
is obviously the case in the open-loop system since the depen-
dence on is removed before encoding. (This is not needed in
the classical LQG problem, where the CE controller is optimal
because the estimation error is Gaussian distributed with a fixed
variance.) As mentioned, similar approaches are also exploited
in, e.g., [14], [18], assuming fully observed plants and noiseless
transmission. The problem gets more involved when measure-
ment noise and transmission errors are present. And, again, the
corresponding open-loop system in [18] requires the encoder to
have instantaneous access to the controller mapping, while our
result is directly applicable to iterative encoder-controller de-
sign (as described in Section V).

Given a fixed encoder , used in the original system in
Fig. 1, the CE controller is not necessarily the corresponding
optimal control strategy. Still, in the jointly optimal pair

that solves Problem 1, the controller
is a CE controller, as concluded in the following proposition.

Proposition 4: If solves
Problem 1, then the controller is the CE controller
given by (16)–(17) for .

Proof: Given the linear plant (1), the memoryless
channel (4) and the cost function (7), one can find a solu-
tion to Problem 2. Then, according
to Proposition 2, the following encoder:

and the controller jointly specify a solution to Problem
1. As shown by Proposition 3, given by (16)–(17), is
a CE controller in the open-loop encoder system. Observe that
given and , and
produce exactly the same . Therefore, and consequently
the CE controller are identical for both systems in Problem 1
and Problem 2.

Again, Proposition 4 states that the optimal controller corre-
sponding to the optimal encoder is the CE controller.
While, in the general case, the optimal controller corresponding
to any encoder does not necessarily satisfy the separation
principle. This is in contrast to the open-loop encoder system,
where the optimal controller for any given open-loop encoder is
a CE controller. Thus, in designing for the “virtual help-system”
defined by the open-loop encoder system, we can use a CE con-
troller in each step of the design. Then, since we know that the
controller in the optimal pair for the original system can be sep-
arated, we employ the design we get for the open-loop system
in the original system, via translation. Proposition 4 motivates
this last step.

C. Partial Side-Information

When only partial SI ( ) is available at the encoder in
the case of the original system in Fig. 1, there is no result cor-
responding to Proposition 4 that motivates using the open-loop
encoder system with a CE controller as a basis for the design.
In the optimal encoder-controller pair for the original system,
the controller may not be separated without loss in the case of
partial SI. Since we are not able to solve (8) in the general case,
we resort to using the CE controller as a sub-optimal alterna-
tive to solving (8). That is, in the case of partial SI at the en-
coder, we propose an iterative design for the original system in
Fig. 1 based on constraining the controller to be a CE controller.
For completeness, and for later reference, we state the corre-
sponding expressions as follows: Consider the original system
Fig. 1, assuming a fixed encoder . By the “CE controller”
for this system, we mean the corresponding mapping

(20)

where , and where the control gain is com-
puted as

(21)

where is initialized as
.

IV. OPTIMAL ENCODER FOR FIXED CONTROLLER

In this section, we address the problem of optimizing the en-
coder component , for a fixed controller and fixed en-
coder components , . The optimal encoder mapping
needs to take the impact of the predicted future state evolutions
into account. The following results are a straightforward conse-
quence of the system assumptions and the design criterion.

Proposition 5: Consider a fixed controller and fixed
encoder components , . Given the linear plant (1)
and the memoryless channel (4), the encoder component

that minimizes the LQ cost (7) is given by

(22)
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Proof: The proof follows the principle of optimality. Re-
call the average LQ cost criterion:

The mapping influences by producing based on
and . Hence, it influences the states and controls

that depend on , i.e., and .
Let denote the set of all such that

given . Since ,
determining the optimal mapping is equiv-
alent to specifying the set such that the inner term

is mini-
mized over given and . That is

Since for any

because the choice of only influences “future” terms, we
equivalently get

where

This concludes the proof.
We refer to the sets as the encoder regions. In

general, for , these are non-overlapping subsets of
. For and (scalar quantization), and

assuming “smooth” (continuous or differentiable) pdf’s, the
regions are intervals or unions of intervals. In the Gaussian
case (Gaussian initial-state and noise pdf’s) our numerical
results indicate that the regions always become intervals when
the training is close to convergence. However, as it is possible
to find controllers that result in disconnected optimal sets

, it cannot be said in general that the encoder regions
are intervals. This also means that it is not possible to parame-
terize the encoder regions as intervals without loss.

In Proposition 6 below, we present a similar result for the
open-loop encoder in an open-loop encoder system. This
result is useful when looking for locally optimal solutions to
Problem 2 by iteratively alternating between optimizing the
open-loop encoder and the CE controller.

Proposition 6: Consider a fixed controller and the fixed
open-loop encoder components , . Given the linear
plant (1) and the memoryless channel (4), the open-loop en-
coder mapping that minimizes the LQ cost (7)
is given by

(23)

The proof is similar to the one of Proposition 5 with the
modification that is the information available
at the open-loop encoder. Since the CE controller in (16) is
the optimum control strategy in an open-loop encoder system
assuming a fixed open-loop encoder , the following result
is very useful.

Corollary 1: Consider an open-loop encoder system. There
exists a solution to Problem 2 that satisfies the following condi-
tions: The controller mapping is given by with as
in (17) and as in (6); and the open-loop encoder mapping
is given by

(24)

where can be obtained by (19).
Proof: By Proposition 3 we know, given a fixed open-

loop encoder (in this case the optimal open-loop encoder), the
CE controller (16) is the optimal control strategy. Also, it is
clear from (19) that, the choice of influences only the term

in cost-to-go . This concludes
the proof.

In the case of full SI or the open-loop encoder system, the
encoding rule (23) can be replaced with (24), in order to reduce
computations. Also notice that the encoder in (24) directly min-
imizes the weighted estimation error

Hence there is “separation” between quantization/coding/es-
timation and control, since the encoder tries to minimize the
(weighted) average mean-squared error and since the CE con-
troller splits into computing the estimate and the scaling .
The encoding is influenced by the control problem only via
the matrices , and computing at the
receiver side can be interpreted as decoding or estimation.

A. Optimal Encoding for Some Special Linear Systems and
Channels

This subsection is devoted to a discussion of the encoder
design in Proposition 5 for some special cases of the general
system described in Section II-A. In particular, we compare the
scenarios where process noise and measurement noise are ab-
sent and the communication link from the encoder to the con-
troller is noiseless. The following results, stated without proof,
follow from Proposition 5.

Consider a fixed controller , and the fixed encoder com-
ponents and , for a linear plant (1) and a memoryless
channel (4). Then we arrive at the following:
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1) If and , then that
minimizes the average LQ cost (7) is given by

(25)

where the expectation is over the initial state distribution.
2) If and , then that mini-

mizes the average LQ cost (7) is given by (25), where the
expectation is over the initial state and the process noise
distributions.

3) If and , then that mini-
mizes the average LQ cost (7) is given by (25), where the
expectation is over the initial state distribution, the process
noise distribution and the channel distribution.

In all three cases, the optimal encoder is described by (25).
However, the same expression leads to different levels of com-
putational complexity. In the first case, the initial state is the
only uncertainty involved in the estimation of the current con-
troller state and the prediction of the future evolution. In the
second case, the expectation takes not only the distribution of
the initial state but also the distribution of the process noise into
account. In the last case, the complexity is further increased, in
order to additionally take transmission errors into consideration.

V. ITERATIVE ENCODER-CONTROLLER DESIGN ALGORITHM

In this section, we propose an encoder-controller design algo-
rithm based on the results in Sections III and IV. The design is
suitable in particular for low transmission rates, and since the al-
gorithm strives to find good encoder-controller pairs for a given
noisy channel, it introduces protection against transmission er-
rors. That is, the result is a design for joint quantization, error
protection and control. Since the controller information has
finite resolution, there are only a finite number of possible con-
trol commands. Thus, these values can be pre-calculated and
stored in a codebook at the controller.

As mentioned, the overall joint encoder-controller optimiza-
tion problem is typically not tractable, and we therefore propose
to optimize the encoder-controller pair iteratively. There are two
cases to handle separately:

1) Full SI: In this case, as discussed in Section III-B, we carry
out the design for the open-loop encoder system in Fig. 3
and then use Proposition 2 to convert the solution to the
original problem in Fig. 1.

2) Partial SI: In this case, we constrain the controller to be a
CE controller, as discussed in Section III-C, and carry out
the design for the original system in Fig. 1.

Fig. 4 depicts a flow-diagram of the design procedure, with
notation for the original system (the case of partial SI). An
initial encoder-controller pair is specified. Thereafter, each en-
coder-controller component, , , , , , is succes-
sively optimized. After one round, if the improvement is not
below a pre-defined threshold , a new round is started to up-
date . At time , first is updated for
fixed , , and then is updated for fixed ,

, . The currently derived will replace the former
one to be regarded as a fixed component in optimizing the other
components , and , until next time when is

Fig. 4. Flow-diagram of the iterative encoder-controller optimization proce-
dure. The variable is a counter for the number of rounds. In each round,
all the encoder-controller components and are updated. The value

represents the resulting cost after round . The iteration is termi-
nated when the improvement in the system performance is less than a certain
threshold .

updated. The rules for updating the encoder-controller compo-
nents are developed in Sections III and IV. In particular, we up-
date the encoder component using (22) and the controller
using (20)–(21).

In order to jointly optimize the open-loop encoder and con-
troller in an open-loop encoder system, in the case of full SI, we
use instead Proposition 3 to update the CE controller. For the
encoding rule, we can use (23) or (24).

A. On the Convergence of the Design

In principle, the iterative design procedure always converges
in the case of the open-loop encoder system. This is because the
CE controller in Proposition 3 is optimal for any . That
is, each time Proposition 3 is invoked, given an updated en-
coder, the performance can only remain the same or improve.
Similarly, each time the encoder is updated for a given con-
troller, the resulting performance cannot decline. Hence, the de-
sign converges (since zero is a lower bound on the cost). This
is the usual rationale behind proving convergence for iterative
training-based designs for vector quantizers and related prob-
lems in which parts of a system are updated while others are held
fixed [50], [51], [56]. Again, in principle, the design converges,
and in this sense it reaches a local optimum. Still, nothing can
in general be said about global optimality [56].
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However, in the general case (with only partial SI) the design
does not necessarily converge at all, since in the step where the
controller is updated the expressions in (20)–(21) do not neces-
sarily lead to a new controller with better performance, because
the CE controller is not necessarily optimal for the given en-
coder. Still, in our numerical experiments this has not been a
problem, and, empirically, the design algorithm appears to con-
verge to a solution also in the general case. Loosely speaking,
the explanation is that after a few iterations the fact that the new
controller is a better CE controller than the previous one makes
the performance improve (while during the first few iterations
the performance need not improve in each step, depending on
the initialization).

B. Implementation and Numerical Considerations

The encoder is specified by the encoder regions ,
, . For , it is difficult to parame-

terize these regions, as they are subsets of . However,
in the scalar case, and , the regions can be spec-
ified by storing the boundaries between them. As mentioned in
Section IV the regions are not necessarily intervals, however,
according to our empirical experience they become intervals as
the design converges. Hence, can often be parame-
terized by storing at most real values for each possible

. The controller, on the other hand, can always be specified
by storing at most terms at time . Hence,
while carrying out the design can be computationally intensive,
the result can often be parameterized as a finite set of parame-
ters. Thus, the proposed system, when designed, can in general
be used at low or moderate complexity. Since the training can be
carried out off-line, its complexity is not of crucial importance.
Still, we comment on a few important aspects of the involved
computations as follows.

Let us for example look at implementing the controller com-
ponent (16). The linear feedback law is straightforward to
compute, so the computational complexity is mainly determined
by the calculation of the conditional mean estimate, .
This entity needs to be re-calculated whenever any of other en-
coder-controller components , , and , , has been
updated. Deriving an explicit expression for is in gen-
eral not possible. In our simulations, we therefore resort to using
sequential Monte Carlo sampling to approximate the expres-
sions involved in executing the design. Starting with a sample
set for the ’s, corresponding sample sets for , , , ,

, etc., can be generated until a sample set that describes the
conditional pdf is obtained and employed to estimate
values for . The accuracy of the result is affected by
the size of the sample sets. As the number of possible values
for increases exponentially with , the training is not
practical for problems with long horizon. Still, one approach to
finding useful systems at longer horizon would be to design the
system for, say, or 5, and then keep the solution constant
for a number of subsequent time-instants. The rationale being
that an unknown usually would represent a triggering distur-
bance, that can be attenuated by the controller over a number of
time-instants, while the remaining noise uncertainty can often
be handled by a stationary solution.

For a more detailed discussion of implementation aspects we
direct the reader to [44].

Fig. 5. System behavior is illustrated with respect to the crossover
probability . The state response , the transmitted symbol , the received
symbol and the control are depicted. In this example, results in
no transmission error and in three errors. (a) . (b) .

VI. NUMERICAL EXAMPLES

Here we present numerical experiments to demonstrate the
performance obtained by using the iterative encoder-controller
design. We study the special case of the general system in Fig. 1
of a scalar linear system with measurements encoded and trans-
mitted over a BSC. The system equations and the LQ cost are

The BSC is described by the crossover probability
. Let be a binary codeword of length

representing the encoder output for transmission via uses
of the BSC. The mapping between and is referred to as
the index assignment. Likewise, denotes the received
bit codeword. Due to the independent transmission of each bit,
the crossover probability is

where is the Hamming distance between
and , i.e., the number of bits in which they differ.

In Fig. 5, the state response is depicted together with the trans-
mitted symbol, the received symbol and the control. The system
parameters are: , , and . The ini-
tial state , process noise and measurement noise are all
zero-mean Gaussian distributed, with the variances 3, 0.5, and
0.5, respectively. The system has been studied for the channel
transition probabilities and 0.3. It can be observed that
the number of symbol errors increases with . Since a symbol
error can result in a control input doing more harm than good,
as expected, the magnitude of the admissible control becomes
smaller when the channel error increases.

In Fig. 6, we show the system performance in terms of the
crossover probability . The system parameters are: ,

, and . The initial state , process noise
and measurement noise are all zero-mean Gaussian, with

the variances 5, 0.5, and 0.5, respectively. Performance is
obtained by normalizing with the expected cost ob-
tained when no control action is taken, cf., the horizontal line in
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Fig. 6. Comparison of the control performance between the encoder-controller
proposed in the paper and two heuristic encoder-controllers (encoder-controller
A and encoder-controller B). Independent of the crossover probability, the pro-
posed encoder-controller gives best performance.

Fig. 6. Three types of encoder-controller pairs are studied: our
proposed encoder-controller is compared with two heuristic de-
signs A and B. The first pair, encoder-controller A, is designed
as follows. The measurement is quantized using a time-invariant
uniform quantizer with the encoder thresholds and
the reconstructions . At the controller, received
indexes are mapped into reconstructions which are fed into a
Kalman filter for estimating the state . The Kalman filter is
designed assuming the error due to measurement noise, quan-
tization and transmission is white and Gaussian distributed.
Thereafter, the control is calculated as a linear function of the
Kalman filter output. The linear feedback law is in (17).
By this method, the distortion due to quantization and channel
error is treated as a part of measurement noise. Note that, the
“extended” measurement noise (including quantization error
and channel error) is in fact neither Gaussian nor uncorrelated
with the state and the process noise, making the Kalman filter
a sub-optimal estimator. The second pair, encoder-controller
B, utilizes a time-invariant uniform encoder with the encoder
thresholds , together with the CE controller in (16).
The last pair is an encoder-controller trained according to our
proposed design in Section V where the encoder has full SI. It
can be seen in the figure that the trained encoder-controller pair
outperforms the other two schemes.

The side-information affects the system in several ways. In
Fig. 7, we show a comparison of different degrees of SI when
the encoder is optimized. In particular, we explore no, in-
complete and full SI scenarios. In the experiment, the same set-
ting as in Fig. 6 is adopted. The incomplete SI is generated as
follows. The least significant bit of the binary codeword is
discarded and the resulting codeword is fed back to the encoder
over a noiseless link. We demonstrate the convergence proper-
ties of the training algorithm by showing the successive iteration
results after each round.

The figure shows that full SI provides the best training result,
while the incomplete SI scenario outperforms the no SI scenario.
Generally in Fig. 7, the improvement given by knowing the SI is
minor. One of the main reasons is that the trained encoder-con-
trollers have resulted in similar densities , for
different ’s. This can be partly explained by the experiment
set-up, with a fairly short time horizon ( ), Gaussian dis-
tributed signals, and a CE controller. However, the advantage
of having SI becomes more significant for longer time horizon,

Fig. 7. Convergence of the training algorithm is illustrated with varying degree
of SI, at . Incomplete SI is generated by discarding the least significant
bit of the received binary codeword and feeding the new codeword back
to the encoder over a noiseless channel.

Fig. 8. Encoding boundaries given by and the corresponding reconstructions
with respect to .

because SI can reduce the encoder uncertainty in the controller
state which accumulates with time.

How the encoder and controller respond to increasing the
channel noise is illustrated in Fig. 8, using the same experiment
setting as in Fig. 6. In the figure, we demonstrate the partition
of the real numbers defined by the encoder mapping , and the
corresponding reconstructions , for growing . Recall that the
control is a linear function of the reconstruction. We note that
the number of controls chosen by the encoder decreases with in-
creasing . This phenomenon is well-known in quantization for
noisy channels and is attributed to the varying abilities of binary
codewords in combating channel errors. For very noisy chan-
nels, it is beneficial to transmit only the “stronger” codewords
[51], providing true redundancy for error protection. Note that
the asymmetry at is also a consequence of the fact
that the binary codewords are unequally sensitive to the channel
errors. Another impact of increasing is that the encoder thresh-
olds and the controls are all moved closer to zero, indicating that
only small-valued control actions are allowed.

VII. CONCLUSION

This paper has investigated joint optimization of the encoder
and the controller in closed-loop control of a linear plant with
low-rate feedback over a memoryless noisy channel. We intro-
duced an iterative approach to the design of encoder-controller
pairs inspired by the traditional design of vector quantizers. In
deriving design criteria, we arrived at new results regarding the
optimality of certainty equivalence controllers in our setting. In
the case of full SI, we introduced a “virtual help-system,” the
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open-loop encoder system. We showed that a CE controller is
optimal for any given encoder in this system, and we argued
that encoder-controller pairs designed for the help-system can
be translated to perform well in the original system. In the case
of partial SI, we cannot claim that enforcing the CE controller
structure is without loss. However, since the general controller
problem is challenging in this case, we used CE controllers as
sub-optimal, but practically feasible approximations.

We have performed various numerical investigations. Our re-
sults demonstrate the promising performance obtained by em-
ploying the proposed design algorithm. We also investigated the
impact on system performance of various degree of SI at the
encoder.

The present work focuses on a proof of concept, since the
suggested nonlinear encoder-controller mappings are not prac-
tical when their memory is extended over time. Future work
includes introducing structure in the encoder mapping, for ex-
ample via graphical or trellis descriptions, to allow for extending
the horizon in the cost criterion.
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