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CONSTRUCTING A SMALL CATEGORY OF SETOIDS

K.O. WILANDER

ABSTRACT. Consider the first order theory of a category. It has a sort of
objects, and a sort of arrows (so we may think of it as a small category). It is
shown that, assuming the principle of unique substitutions, the setoids inside
a type theoretic universe provide a model for this first order theory. It is also
shown that the principle of unique substitutions is not derivable in type theory,
but that it is strictly weaker than the principle of unique identity proofs.

In this note the construction of a small category of setoids is considered. A small
category has a set of objects and a set of all arrows, and can be described in first
order logic with equality. This differs from the usual type-theoretical formalisation
of a category, which has a type of objects and a set of arrows for each pair of objects
(so might be considered locally small). This usual formalisation does not use a
(propositional) equality on the objects of the category, instead relying on dependent
typing and typechecking, particularly for the formalisation of the composition of
arrows. In contrast, the formalisation presented in this note does include both an
equality on objects and an equality on arrows making all arrows comparable (not
just those given with the same domain and codomain), and requires all constructions
to respect these equalities.

A setoid is a constructive counterpart of a set, and consists of a type (or a set)
together with an equivalence relation on this type, and the maps of setoids are
functions respecting these equivalence relations.

We will also need a notion of smallness for types, which is provided by the
notion of a universe, and from a classical set-theoretic perspective corresponds to
an initial segment Vj; of the cumulative hierarchy, with  strongly inaccessible. This
is needed, not only to make the collection of small setoids a type, but also to let us
introduce a propositional equality on setoids.

The final ingredient is an extra axiom for the identity type on a universe, re-
lated to the auxiliary eliminator K suggested by Streicher [13], and in its full form
equivalent to the uniqueness-of-identity-proofs-principle UIP. This axiom

(US-refl(V)) X:U,a: ldy(X, X),z: T(X) F ldpx)(z, subst,())

(for a universe U with decoding family T') expresses that substitution along any
reflexivity proof is the identity, and so agrees (pointwise) with substitution along
the canonical proof of reflexivity, or more simply, that there is a unique substitution
on every U-set. It is needed to avoid problems related to the non-uniqueness of
identity proofs [6].

We begin with a short reminder of the axioms of a category in the appropriate
form, followed by a short discussion of the appropriate notion of model of such a
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theory. Then follows the model construction, in stages, followed by a discussion of
why the extra axiom is needed.

1. THE AXIOMS OF A SMALL CATEGORY

A small category is, in the notation of [8], [7, B2.3.1], [11], a three-sorted struc-
ture with sorts Cp, C1, and Cs (to be understood as the sorts of objects, arrows,
and composable arrows), with six function symbols (and their arities)

idZC()—>Cl dom:Cl—>C’0 COdZCl—>CQ
comp:Cy — Cy fst: Cy — Cy snd: Cy — (4,

to be understood as giving, in turn, the identity arrow on an object, the domain
and codomain of an arrow, the composite of a composable pair of arrows, and the
first and second arrow in a composable pair. Before giving the axioms the structure
should satisfy, we introduce two shorthand notations:

h~gof (Fz € Cy)(fst(x) = f & snd(z) = g & comp(x) = h)
koh~gof (FmeCy)im~koh&m~gof).
The axioms of a category are then:
(1) dom(id(z)) = =
) cod(id(z)) =z
) dom(comp(u)) = dom(fst(u))
) cod(comp(u)) = cod(snd(u))
) fst(u) = fst(v) & snd(u) = snd(v) — u=v
; dom(f) = cod(g) — (Fu € Cq)(fst(u) = g & snd(u) = f)
)
)

f ~ f o id(dom(f))
f~id(cod(f)) o f
k~fog&l~goh—koh~ fol

2. MODELS IN TYPE THEORY

There are several possible notions of a type-theoretical model for (many-sorted)
first order theories of this kind. Considering our example:

e The simplest one is insisting that all equalities be definitional, or in other
words, that the left- and right-hand sides compute to the same thing. This
is what Per Martin-Lof calls an intensional category. Though convenient
for many purposes (most particularly for work on internal models of type
theory) it is not well suited for the present purposes, since the equality of
setoid maps is not the definitional equality. It may also be quite difficult to
construct intensional categories, and frequently the objects of study become
contexts (possibly of particular form) and associated context morphisms.

e We can demand definitional equality on some of the sorts, but a (necessarily
coarser) propositional equality on the others. While an approach of this
kind will frequently work well, there is an important associated problem,
namely that all functions must respect equality. If the equality on the
codomain is definitional, but that on the domain is propositional, it will
generally be difficult or impossible to solve this problem (which may be
thought of as a kind of coherence problem). Having some of the equalities
definitional (thus without proof objects) and other equalities propositional
(thus with proof objects) may also in itself be inconvenient.
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e It is possible to use the standard notion of equality in type theory, namely
the identity type, as interpretation of all equalities. The identity type is
intended as an internalisation of the definitional equality, and working in
this way is at the base of direct formalisation of mathematics into type
theory. If one can consistently stay with this interpretation, there will also
be no coherence problems showing up. But type theory is a fundamentally
intensional system, and this creates problems. For our purpose, the prob-
lem is again the equality of setoid maps, which is extensional, identifying
two functions if they agree at each argument. Having accepted this, this
approach turns naturally into the next one:

e Bishop-style formalisation in type theory is based on Bishop’s view of a set
as consisting not only of a way to construct elements of the set, but also of
a notion of when two elements are equal [1], [2]. This leads directly to the
concept of a setoid, and is in fact the approach we will follow.

A setoid A consist of a type A: Set together with an (infix) equivalence relation
=4: (4, A)Set on that type. That the relation is an equivalence relation is witnessed
by terms refl 4: (Hz: A)(x =4 z), symy: (Ilz,y: A)(x =4 y — y =4 z), and
transq: (I, y,2: A)(x =4 y &y =4 2 —> & =4 2) for reflexivity, symmetry, and
transitivity respectively. Since these are the framework for our formalisation, and
not objects of it, the notion of equality of setoids is not important (equality of sorts
does not need an interpretation), so we may as well stick with definitional equality.

A map of setoids is an extensional function, that is, a function f: A — B is a
function A — B on the underlying types, together with a proof

exty: (Hz,y: A)(x =4y — f(x) =5 f(y))

that it respects the setoid equalities. Again, the equality of two such functions is not
essential, since they are the interpretations of function symbols (which are never
compared); however, two functions are considered equal if they agree pointwise,
that is f = g: A — B if we can show that (Vz: A)(f(z) =5 g(x)).

As indicated, we will interpret the sorts of a theory by setoids, (well-sorted)
equalities by the setoid equalities, and the function symbols as setoid functions.

3. TYPE THEORY, BACKGROUND AND NOTATION

The type theory used is the predicative intensional version of Martin-Lof type
theory, as described in [9], [10]. This formulation uses the so-called Logical Frame-
work, with a type Set containing inductively defined types, and which is also the
universe of propositions. The most important set formers are the Il-sets of depen-
dent functions, which also interpret the universal quantifier, the ¥-sets of dependent
pairs, which also interpret the existential quantifier, the empty set Ng, which also
interprets L, the always false statement, the natural numbers N, and the (inten-
sional) identity sets ld4(z,y) (where A: Set and x,y: A). From these, we may
define the non-dependent function set A — B as a Il-set with constant family,
interpreting implication, and the product set A x B as a Y-set with constant family,
interpreting the conjunction. We also have the intuitionistic negation —P defined
as P — 1.
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To this comes a universe (4 la Tarski) U: Set, which should be understood as a
collection of names for other sets, together with a decoding family T: (U)Set inter-
preting each name.! What particular sets have names in U will not be important —
for this article, not even the standard assumptions that U contains its own ‘small’
versions of both ¥- and Il-sets are needed.

Finally, we will make much use of a derived eliminator subst, ¢ (defined in [9,
Section 8.1]), which for an a: Ida(z,y) is of type C(z) — C(y). We will write just
subst,,, rather than subst, 7, when the family of sets is the decoding family for the
universe.

4. SETOIDS IN U

Since our aim is to construct a category of setoids, it is clear that the interpre-
tation of the sort Cjy should be the setoids. However, the interpretation of the sort
Cy should also be a setoid. For size reasons, it is clear that we can not have both,
so we must construct a category of small setoids, with the universe U providing the
notion of smallness.

Transferring the definition of a setoid to the universe U, a U-setoid A consists
of

e an element A: U for the small underlying set,

e a function =4: T(A) — T(A) — U, which will be written in infix notation,
for the equality relation,

a proof refl 4= (Va,y: T(A))T(x =4 y) of reflexivity,

a proof sym ,: (Vz,y: T(A)(T(x =4 y) — T(y =4 x)) of symmetry, and
a proof transa: (Va,y,z: T(A)(T(x =4 y) & T(y =4 2) — T(x =4 2)),
of transitivity of the equality relation.

Repeated use of the ¥ set former makes this a set. Note that this formulation has
used a minimum of assumptions about the universe U; if U contains for example
implications, then T'(—) — T(—) could have been written as T(— — —) (where
the arrow now is ‘in U’, but is interpreted as the standard implication by T'), giving
an equivalent notation with fewer occurrences of the decoding family 7.

Next is the question of the appropriate equality to turn this set into a setoid.
Since the equality must be propositional, the definitional equality is no longer an
option, but there are many possible choices. The choice for the purposes of this
note is: a proof that two U-setoids A and B are equal consists of

(1) a proof a: Idy(A, B), that the (names of the) underlying small sets are
equal, and

(2) a proof of (Va,y: T(A))(x =4 y <— substy(x) =p subst,(y)), that two
elements are equal in A if and only if they are equal in B (or rather, their
images under substitution are).

(So the equality is a X-set or, viewed logically, an existential statement.)

There are several reasons for choosing this equality. The simplest reason is that
it is easy to work with: directly reflecting the structure of the U-setoids themselves
it is conceptually simple, and (reasonably) easy to work with. It also separates
data from logic, and while this might not be entirely natural in a system as strictly

IThe type Set is not a universe in this sense, even though it too might be thought of as
containing names for (small) types. The differences are somewhat technical, and the interested
reader may consult [3].
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propositions-as-types as Martin-Lof type theory, we can then consider a similar con-
struction in other systems without this strong identification. Finally, it introduces
a very slight bit of proof independence, which may be exploitable for interpreting
extra function symbols, corresponding to chosen categorical constructions (as op-
posed to constructions such as pullbacks, which exist but can not be chosen in a
canonical and coherent way).

The other natural choice would be to directly use the identity type on the set
of U-setoids, in a direct type-theoretic formalisation. This would probably end
up both formally and conceptually more complicated, but the author intends to
explore this possibility in future research.

Before we can go on, we must verify that the equality relation chosen is reflexive,
symmetric and transitive.

e Reflexivity is no problem, since taking the standard reflexivity proof for the
underlying U-element makes the second part trivial.

e For symmetry, the assumption A = B gives us a proof «a: ldy (A, B), and
standard treatment of identity types yields a proof a~!: Idy (B, A). We
also have a proof that (Va,y: A)(x =4 y <— subst,(z) =p subst,(y)). As
a particular instance of this, we have

subst,-1 () =4 subst,-1(y) <— subst,, (subst,-1(x)) =p subst, (subst,-1(y)),

and since Id g (z, subst, (subst,-1(z))) holds generally, we are done.

e For transitivity, the idea is again similar: from the assumptions A = B
and B = C we get proofs a: Idy (A, B) and : Idy (B, C), and the standard
treatment of identity types gives us not only 8 o «a: Idy(A,C) but also
the identity ldc(substg(substy (x)), substgoen (), and we can reason as for
symmetry.

The setoid of U-setoids just constructed will be the interpretation of the sort Cy of
objects of the category.

5. SETOID MAPS IN U

The basic sense of setoid maps A — B is that they are functions A — B, between
the underlying sets, satisfying an extensionality condition, as mentioned earlier. For
U-setoids, a map f: A — B is an element of a 3-set, consisting of

e a function f: T(A) — T(B), together with
o a proof exty: (Vz,y: T(A))(T(z =4 y) — T(f(x) =5 f(y))) that this
function respects the equality relations on A and B.
As in the definition of a U-setoid, stronger assumptions on U would allow a less
cluttered notation.
To prove that two maps f,g: A — B are equal we must show that

(Vo: T(A)(T(f(z) =5 g(x))),
that is, provide a proof that they are pointwise equal. Showing that this defines a
setoid of maps A — B is easy.

However, this is only a particular homset, and the particular feature of a small
category is that we have a single sort for all arrows (and work in a standard many-
sorted first order theory, rather than a dependently sorted one). This means that
all the U-setoid maps must form a single setoid. Before defining this setoid, let us
see how maps between U-setoids and equality of U-setoids fit together.
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Let us first note that given two elements A, B: U of the universe and an identity
proof «: ldy (A, B) the substitution operation subst, is a function T'(A) — T'(B).
Then, if we have a proof a: A = B of an equality of U-setoids, we can extract an
identity proof @: Idy (A, B) from it, and a corresponding function substz. Then
the content of the remaining part of the proof object « is that this function is an
injective map A — B of U-setoids. Moreover, it is easy to verify that the proof
a~!: B = A, obtained by symmetry of equality, yields a map subst—— which is an
inverse for the map subst,. Also, given equality proofs a: A = B and 8: B = C,
transitivity of equality yields a proof 8o «a: A = C, and in fact

substm = substg o substg

as maps of U-setoids. This makes it natural to let the isomorphism substg of U-
setoids obtained from an equality proof « also be denoted by «, and no confusion
should arise.

Now, with this preparation done, we are ready to define our setoid C; of arrows.
The underlying set is a Y-set, whose elements are tuples consisting of

e two U-setoids A and B, together with
e amap f: A — B.

Since the U-setoids form a set Cy: Set, as do the maps, this set can be formed.
In contrast, since the setoids do not form a set a similar construction can not be
carried out for them. This is the point where the use of a universe is necessary.

Next, we must define an equality. A proof that two arrows f: A — B and
g: C — D are equal consist of

e two equality proofs a: A = C and B: D = B, for domains and codomains
(note the order of the codomains — equality proofs are directed, so this
matters); together with

e a proof that f = fogoa, as U-setoid maps A — B.

This can also be put as having two equality proofs a and [ as above, together with
a proof that the diagram

A——
|
B

commutes, where we write a and 8 not only for the proofs of equality, but also for
the substitution maps derived from them.

For the arrows to form a setoid, we must also verify that the equality relation is
an equivalence relation:

— QA
Q

<7
B

v

e Proving reflexivity is easy, since using the standard reflexivity proofs on the
U-setoids makes « and S both be the identity map.

e For symmetry, we of course use the symmetry of setoid equalities. Then
note that if f = Bogoa, then also 371o foa =310 (fogoa)oa?
(since composition of maps respects equality). But the latter equals g, by
our preparatory results.
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e Finally, transitivity is easy, considering the diagram

A—2sc—5¢

B<T'D<T}—

and earlier observations.

We should note that given a propositional equality on the U-setoids, there is es-
sentially only one choice for the equality on arrows (apart from cosmetic differences
such as taking equality proofs of U-setoids in the other direction in the diagram
above).

6. COMPOSABLE SETOID MAPS IN U

The third, and last, sort in the theory of a category is that of composable arrows.
It is not immediately clear what the best choice is for the setoid Cy of composable
pairs. There are a few constraints to take into account though: The setoid Cs
should have two projection functions fst,snd: Cy — C7, and not only should these
respect equality, Axiom 5 also tells us that

fst(u) = fst(v) & snd(u) = snd(v) — u = v,

so these projections actually define the equality on Cs. We must also consider
Axiom 6, which says that if dom(f) = cod(g), then ¢ and f form a composable
pair.

With this in mind, there seems to be two natural choices. The first one would be
to take C3 to consist of pairs (g, f) of arrows together with a proof that dom(f) =
cod(g). The main reason not to choose this version is that it introduces more
equality proofs into the constructions. There is also another problem, namely that
the composition operation would have to send ({(g, f), @) to foaog, and thus two
composable pairs differing only in the equality proof could be composed to different
arrows. However, it appears that this problem is unavoidable.

The other choice, which seems easier to work with, is to take Cy to consist of
diagrams of the shape -——-——-, or in other words, C3 is the ¥-set whose
elements consist of

e three U-setoids A, B, and C; together with
e two maps f: A— Band g: B—C.

The projection functions are defined by

fst:.ALﬂ'j’L)C — AL)B and
snd: A—1sB—2 3¢ B—2C

(and as the notation suggests, this also gives the interpretation of these function
symbols).
As indicated earlier, equality is then given by

u=v +— fst(u) = fst(v) & snd(u) = snd(v).

It is trivial to verify that this relation is reflexive, symmetric and transitive.
While it may seem that this definition avoids the second problem indicated
earlier, this is not in fact the case, as we will see later.
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7. INTERPRETING THE FUNCTION SYMBOLS

As we have now provided interpretations for all three sorts, it is time to provide
interpretations for the six function symbols. These interpretations should be setoid
maps between the appropriate sort interpretations, so we must not only define
the functions, but also verify that the functions are extensional, that is, that they
respect the setoid equalities.

e id: Cy — (4 should give the identity arrow on an object, so in our case
we send a U-setoid A to its identity 14, which is of course given by the
identity function, and is easily shown to be a map of U-setoids.

To see that this function is extensional, suppose «: A = B is a proof of
equality of U-setoids. That id is extensional then follows from the commu-
tativity of the diagram

A—"—

B
1Al llﬁ
A——/B.

«

e dom: C7 — Cp and cod: C; — Cj should give the domain and codomain
of an arrow. In our case, these are simple projection functions, since the
domain and codomain U-setoids are explicitly part of an arrow.

It is also trivially extensional, since proofs of equalities between domains
and between codomains are part of a proof of equality of arrows.

e fst: Cy — (7 and snd: Cy — (' should give the two arrows of a composable
pair. These were already defined above, and the definition of the equality
on (5 automatically makes them extensional.

e comp: Cs — (4 should send a composable pair to its composite arrow.

In our case, we naturally send the composable pair ALB%C to

AL%e

For extensionality, suppose we have two composable pairs v and v, and
a proof that u = v, that is, we have equalities «, 3,7, and § of U-setoids,
and proofs that the left and right square in the diagram

fst(u)  snd(u)
4> . 4) .

QJ ’ ( \> k Tig
. 4) . 4) .
fst(v) snd(v)

commute. Note that vof is a reflexivity proof for a U-setoid. It then follows
from the principle US-refl(U) that the corresponding map 7 o 8 equals the
identity map (since it is pointwise ld-equal to the identity). Thus we have
comp(u) = snd(u)ofst(u) = dosnd(v)oyoSofst(v)oa = Josnd(v)ofst(v)oa =
d o comp(v) o e, which provides the required extensionality.

8. INTERLUDE: THE PRINCIPLE US-REFL

In the previous section the principle US-refl(U) was used to prove the extension-
ality of the composition function comp: Cy — C;. This section has two goals: first,
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to show that the extensionality of comp is unprovable without additional princi-
ples; and second, to clarify how the principle US-refl relates to the principle UIP of
uniqueness of identity proofs.

For the unprovability result, consider the groupoid model of type theory with a
universe interpreted by the groupoid of V-small groupoids — together with their iso-
morphisms — as in [6]. The propositional-equality-is-isomorphism model discussed
at the end of that paper gives a helpful intuition for a counter-example.

Let us particularly pick out three elements of this universe: the six-element
set {1,2,3,4,5,6} (viewed as a discrete groupoid), {1,2,3}, and {1,2}. Together
with their respective identity types these form U-setoids. Note that the model
construction gives us the full symmetric groups as the collections of reflexivity
proofs of these sets, and that, trivially, these extend to equalities of U-setoids.
In particular, consider the identity proof corresponding to the cyclic permutation
(123) on {1, 2,3}, and particularly note that (123)(123) = (132). Also consider the
functions f: {1,2,3,4,5,6} — {1,2,3} and ¢: {1,2,3} — {1,2} given by

F1) = £2) = £3) = 1.
7(4) = £(5) = 2, and {
6) =3

9(1) =9(2) =1,
g(3) = 2.

The diagram

123)of

(1,2,3,4,5,6) — 20 1193y 202 4 9y
(123);‘7\ \3(123)

\
{1,2.3.4,5.6) ———— {1.2.3} ———— {12}

then exhibits two equal composable pairs. But now note that

e the composition of the upper pair is g o (132) o f which sends {4,5} to 1
and {1,2,3,6} to 2; while

e the composition of the lower pair is g o f which sends {1,2,3,4,5} to 1 and
{6} to 2.

Mere counting makes it clear that it is impossible to conjugate by permutations on
{1,2,3,4,5,6} and {1,2} (that is, reflexivity proofs on the domain and codomain)
to exhibit these as equal arrows. But that means the composition function is not
extensional in this model, and hence the extensionality of comp is unprovable.

While the counterexample above is quite straight-forward, there is a subtlety
worth mentioning: if we also have an elimination rule for the universe U, as outlined
in [9, Chapter 14], then any sufficiently “simple”? U-set u makes [z: Ulldy (u,z) a
decidable relation, that is (Va: U)(ldy (u, z) V =ldy (u, x)), and hence locally there
are unique identity proofs (see [12], strengthening the results of [4]), and in par-
ticular (Vo: Idy (u, w))ldig, (u,u) (@, r(u)). That means that simple U-sets have no
nontrivial automorphism — but the counterexample above depends on such. Hence,
in the presence of a universe elimination rule, any counterexample must arise as
the interpretation of “complicated” types (essentially, as dependent types).

2The typical simple U-sets are those named by constructors of U, as true, false, and the natural
numbers, but some further constructions like the disjoint sum are also simple enough.
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Having shown that some additional principle must be added to type theory, let
us go back to the principle suggested and used:

(US-refl(V)) X:U,a: ldy(X, X),z: T(X) F ldpx) (@, subst,()).
For comparison, let us also consider the following principles:
USs(U) X, Y:U,a,B: 1dy(X,Y),x: T(X) I ldpy) (subst, (), substs(z))
UIP-refliU) X:U,a: ldy(X, X) F Idig, (x,x) (e, r(X))
UIP(U) X,Y:U,a,B: ldy(X,Y) = Idig, (x,v) (v, B)
UIP A Set,a,b: A, a, 5: 1da(a, b)FId.dAab(a,ﬂ)
USt(U) C: (U)Set, X,Y: Uya,pB: ldy(X,Y),z: C(X)
F Idc(y)(subst%c( ),Subst/&c( )
US A: Set,C: (A)Set,a,b: A, 5: 1da(a,b),z: C(a)

F Idc(p) (substa, o (), substg o (x))

The last three principles are generalisations of earlier principles; note particularly
that UST(U) generalises from substitutions specifically in the universe-decoding
family T to arbitrary families, and the full principle US further to arbitrary sets.

Proposition 1. The following implications hold between the principles mentioned
above:

UIP —— UIP ) «—— UIP-refl(U

AN

US —— UST(U) ——— US(U) «+—— US-refl(V)

Proof. The implications in the top line are trivial or well-known. Similarly, the im-
plications in the bottom line are easy. For completeness, let us consider the impli-
cation US-refl(U)—US(U): assume US-refl(U) and suppose we have two identity
proofs a, 8: Idy(X,Y). Then S~! o a: ldy (X, X), so substg-1,, is pointwise equal
to the identity, by US-refl(U). But we also know that a =4 So(B~1oa), so it follows
that subst, =, substgo(g-10a) =pt Substg o substg-1,, =p: substg o subst,(x) =p
substg as required.

All the top-to-bottom implications are easy, and follow immediately by elimina-
tion of the identity proof provided by the corresponding version of UIP.

Next, consider the implication US— UIP. Rather than showing this implication
directly, let us show that US implies the principle

(UIP-refl) A:Set,a: A, lda(a,a) F ldig , (a,0) (@, r(a)),

which is clearly equivalent to UIP. So suppose US is valid, and take A: Set, a: A,
and «: ldg(a,a) arbitrary. We have of course that «a or(a) =4 «. But note
that o o r(a) is, by definition, subst, [z Ajid,(a,z)(r(@)), and hence US (or even
the obvious equivalent US-refl) gives us a o r(a) = substy . Ajid,(a,2)(r(@)) =14
subst,(q),[z: AJlda(a,2)(F(a)) = r(a), with the first and last equalities definitional, as
requlred

Finally, note that in the preceding proof, if we only consider the case A = U,
that is, we prove the principle UIP-refl(U), then the instance of US used is actually
an instance of US™(U), so this also proves the implication US™(U)—UIP(U). O

Proposition 2. The implications US(U)—UIP(U), US(U)—US*(U), and US-
refl(U)—UIP-refl(U) are not provable.
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Proof. Given the implications shown in Proposition 1, it is enough to show that
one of these implications is not provable.

Let us again consider the groupoid model of type theory. The standard inter-
pretation of the universe U would be the groupoid Gpd(V') of V-small groupoids
and their isomorphisms, for some metatheoretic universe V. The decoding family
would be given by the (full and faithful) inclusion functor into the category Gpd of
groupoids in the (larger) metatheoretic universe V interpreting Set. By modifying
the interpretations of U and T', we will find a model where the implications fail.

The basic intuition is that if we restrict the morphisms in U to those automor-
phisms which leave the connected components of the groupoids invariant (though
not necessarily pointwise fixed), then UIP(U) fails since there are many parallel
such functors, while there is always an arrow from an object to its image under
such a functor, loosely corresponding to US-refl(U). To actually be able to inter-
pret a term in the type given by US-refl(U), this needs to be elaborated.

In the general case, the universe U will be interpreted by a small groupoid
U € Gpd, and the decoding family T by a functor T: U — Gpd. Using the
interpretation of type theory in the groupoid model according to [6], we interpret
the principle US-refl(U).

e The context X: U,a: Idy(X, X),z: T(X) is interpreted by a groupoid T
whose
— objects are triples (X, a,x) where X € U, a: X — X in U, and
x € T(X); and whose
— arrows (X, a,z) = (X', o/, 2’) are triples (q,r,s) where ¢: X — X’ in
U is such that goaoq™! = o/, r = * witnessing the previous equality
(r is an arrow in a discrete category), and s: T'(¢)(xz) — 2’ in T'(X").
e The type (or family of sets) Idpx)(w, subst,()) is interpreted by a functor
I' = Gpd assigning
— to an object (X, o, x) € I the discrete category A(T(X)(z, T(a)(x))),
that is the set of arrows z — T'(a)(x) in T'(X);
— to an arrow (q,7,5): (X, o, 2) = (X',o/,2") in T the function (functor
between discrete categories) T'(X)(z, T(a)(x)) — T(X')(a', T(a/)(z"))
sending an arrow t: z — T'(a)(x) in T(X) to the arrow

T(a')(s) o T(q)(t) o s~": 2’ — T(a/)(2")
in T(X’). Tt is clear that this function is invertible, so it provides an
arrow in Gpd.
To provide a dependent object of this family is to provide

e for every object (X,a,z) € I' an arrow p(x.q): ¢ — T(a)(z) in T(X);
and
e for every arrow (g,

T, s):
( (S)OT( )( Xaz))os_l_>,u(X’ o’z
in A(T(X") (', T(a/)(2"))). In other words, the equality
(

,8): (X, o, ) = (X', a/,2') in T an arrow

(
)

(1) T(a')(s) o T(q)(1(x,0,2)) © 5~ " = (X", ,2)
must hold.

We aim to find a category U and functor T': U — Gpd where such a dependent
object exists, since it would provide an interpretation for a (new) term witnessing
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US-refl(U). As a first step, we consider a slightly simpler sufficient condition, and
then construct examples where this simpler condition holds.

Suppose the category U is such that every arrow in U is an automorphism.
Suppose further that for every arrow f: X — X in U there is a chosen nat-
ural transformation ¢(f): idpx) — T(f) satisfying o(f Y, = ¢(f)_11 ) and
d(f og) = ¢(f) = ¢(g) (the horizontal composition of natural transformatlons)
Choosing fi(x,a,z) = ¢(a), for the dependent object, these equalities, together with
the naturality of both ¢(a) and ¢(g), suffice for proving the equality (1) above.

It then only remains to provide U and T satisfying these conditions. Let us
provide two instances: first a slightly simpler one, but which restricts what small
groupoids are included in U; then a slightly more complicated one, but which allows
us to include all V-small groupoids as objects of U.

For the first case, take U to have as objects those V-small groupoids where
any parallel arrows are equal, and as arrows those automorphisms f: X — X
such that there is a natural transformation idxy — f. It is easily verified that
this is a groupoid. Further, take T' to be the inclusion of U into Gpd. Since any
parallel arrows in any object of U are equal, it follows that any parallel natural
transformations are equal, and the conditions above hold. This thus provides a
model where US-refl(U) holds. But note that there are nontrivial automorphisms
in U — for example, consider the groupoid having two uniquely isomorphic objects;
then the automorphism exchanging the two objects satisfies the condition above —
so UIP-refl(U) fails.

For the second case, take U to have as objects all V-small groupoids, but as
arrows pairs (f, f): X — X where f: X — X is an automorphism on the V-small
groupoid X, and f is a natural transformation idx — f (and all arrows are of this
form). Identities are given by the pairs (idy, idi4, ), composition by (f, f) o (g,9) =
(fog, f*9), and inverses by (f, f)~! = (f~!, f~1), where the component at z € X of
f~1is the inverse of ?f—l(z). It is easily verified that this is a groupoid. The functor
T:U — Gpd is identity on objects, and first projection on arrows. Again, the
conditions above are easily verified, so this provides another model where US-refl(U)
holds, and again we note that there are nontrivial automorphisms in U (for example
the one mentioned previously, together with the obvious natural transformation),
so UIP-refl(U) fails. O

To directly see that the model above does not satisfy UST (U), consider the small
groupoid G of shape

o

a b c+——d

and note that there are two U-automorphisms on G: the identity and the automor-
phism f fixing a and b and swapping c and d. Now, construct a functor F': U — Gpd
(that is, a Set-valued family over U) acting as the inclusion everywhere except at
G. Let F(G) = G, but send the U-automorphism f to the automorphism f’ also
swapping a and b. Since f' o f' = id = f o f, functoriality holds. Now, by a
calculation similar to the one in Proposition 2, substy r(a) = F/(f)(a) = f'(a) = b,
while subst, (g r(a) = F(idg)(a) = idg(a) = a, and hence, for US*(U) to hold, we
must have an arrow @ — b in G. This shows that the family F refutes UST(U).

Finally, note that the implications US*(U)—US and UIP(U)—UIP are not
provable either, as evidenced by the interpretation of U as the discrete groupoid of
V-small groupoids (as done in [5, p. 146]).
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We have thus shown that the principle US-refl(U), sufficient for the constructions
studied, is strictly weaker than the corresponding principle of uniqueness of identity
proofs UIP(U). There are still questions remaining open: Is extensionality of the
function comp equivalent to US-refl(U), or if not, is there a principle of independent
interest which is necessary and sufficient for the extensionality of comp? Also, what
collections of set formers can a universe U be closed under, while satisfying US(U)
but not UIP(U)? (Note that the counterexamples constructed above are not closed
under X-formation in nonempty contexts.)

9. VERIFYING THE AXIOMS

Before the interlude, we provided the interpretations for both sorts and symbols
of the first order theory of a small category. To finish, we must also verify that
the axioms are satisfied. It is well known that the U-setoids and their maps form a
so-called E-category (where there is not a single set of arrows, but rather separate
homsets, and a whole family of composition functions), and we will make use of
this, particularly in the diagrams below.

(1) dom(id(z)) = = — immediate, since the equality holds definitionally.

(2) cod(id(z)) = x — ditto.

(3) dom(comp(u)) = dom(fst(u)) — ditto.

(4) cod(comp(u)) = cod(snd(u)) — ditto.

(5) fst(u) = fst(v) & snd(u) = snd(v) — u = v — by definition of the equality
in Cs.

(6) dom(f) = cod(g) — (Fu € Ca)(fst(u) = g & snd(u) = f) — suppose we are
given arrows f and g and a proof a: dom(f) = cod(g). Then the following
diagram provides the required composable pair u as the top line, and the
commutativity of the two squares proves the required equalities:

g
m(g) —— cod(g —> cod(f

TINON

m( *> cod(g dom( f —) cod(f

where of course the intended proofs for the vertical equalities are the stan-
dard reflexivity proofs.

(7) f ~ foid(dom(f)) — unfolding the shorthand notation, we see that we must
provide a composable pair u such that fst(u) = id(dom(f)), snd(u) = f,
and comp(u) = f. Now, using Axiom 2 we have cod(id(dom(f))) = dom(f)
(as witnessed by the standard reflexivity proof), so we can consider the
composable pair constructed for the verification of Axiom 6. This only
leaves the final equation comp(u) = f to be verified, but inspection of the
construction shows that comp(u) = f oid oid, so this is easy.

(8) f ~id(cod(f))o f — similar to the previous.

(9) k ~ fog&l ~ goh —> koh ~ fol — the associativity axiom looks innocuous,
but turns out to be surprisingly complicated. Unfolding the shorthands in
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the assumptions, we get the given data indicated in the following diagram:

l

k

The boxes indicate the given composable pairs, and the small Greek letters
indicate proofs of U-setoid equalities.

Unfolding shorthands in the consequence, we see that we must provide
an arrow m, and two composable pairs w and z whose composites equal m
(one for k and h, and one for f and [). These, and the required equality
proofs are indicated in the diagram below.

l f
. . % .
[} K
fst(v) snd(v) snd(u)
w . . . .
€
¢
fst(v) € g 0 snd(u)
m . . . .
fst(v) € snd(u)
Z .
Y 4 A H
n " Lloeod
h . ” k

Note that this diagram is pasted together from (commutative) parts of the
previous, and some trivially commutative parts, and so is itself a com-
mutative diagram. Also note that the commutativity of this diagram has
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not required another use of US-refl(U), but actually holds directly in the
E-category of U-setoids.

Thus, all required axioms hold, and we have exhibited a small category of setoids.
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