Institutionen for datavetenskap

Department of Computer and Information Science

Final thesis

Design and Implementation of a User Friendly
OpenModelica Graphical Connection Editor

by
Syed Adeel Asghar & Sonia Tariq
LIU-IDA/LITH-EX-A--10/047--SE

2010-12-08

Linkopings universitet

Linkdpings universitet Linkopings universitet
SE-581 83 Linkdping, Sweden 581 83 Linkoping

Examiner
Prof. Peter Fritzson

Supervisor
Dr. Mohsen Torabzadeh-Tari

Advisor
Mr. Martin Sj6lund

Upphovsratt

Detta dokument halls tillgangligt pa Internet — eller dess framtida ersattare —fran publiceringsdatum
under férutsattning att inga extraordindra omstandigheter uppstar.

Tillgang till dokumentet innebar tillstand for var och en att lasa, ladda ner, skriva ut enstaka kopior
for enskilt bruk och att anvanda det oférandrat for ickekommersiell forskning och for undervisning.
Overféring av upphovsratten vid en senare tidpunkt kan inte upphiva detta tillstdnd. All annan
anvandning av dokumentet kraver upphovsmannens medgivande. For att garantera dktheten,
sdkerheten och tillgangligheten finns I6sningar av teknisk och administrativ art.

Upphovsmannens ideella ratt innefattar ratt att bli namnd som upphovsman i den omfattning som
god sed kraver vid anvdndning av dokumentet pa ovan beskrivna sitt samt skydd mot att
dokumentet dndras eller presenteras i sddan form eller i sddant sammanhang som ar krdnkande for
upphovsmannens litterdra eller konstnérliga anseende eller egenart.

For vytterligare information om Linkdping University Electronic Press se forlagets hemsida
http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet — or its possible replacement —from the
date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to
download, or to print out single copies for his/hers own use and to use it unchanged for non-
commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this
permission. All other uses of the document are conditional upon the consent of the copyright owner.
The publisher has taken technical and administrative measures to assure authenticity, security and
accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work is
accessed as described above and to be protected against infringement.

For additional information about the Linkdping University Electronic Press and its procedures for
publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Syed Adeel Asghar & Sonia Tariq.

Table of Contents

L] o] (=00 0 o 1=) £ PSP i
(D L=To [Tor- | A Te Yo WO PP UTTTTPRPPI iii
FANo g Lo RNV =T o Feq Yo o 1T o SRR v
Abstract vii

List of Acronyms and AbBreviationsocciiiiiiii it ix
[o)l S T {U] R Xi
[o) N - | o] L= O ORI xiii

Overview xv

(o T=1] =T g A 13X { o o [V 1 4 1o JS PSS 1
1.1 Modelica - INtrodUCHIONciiiiiiiiiicie et raa e e s e sbe e 3
1.2 MOAEIICA - VEISIONS. ...ueiiiiieeeiee ettt ettt et e e te e ste e s bt e e sab e e sateesabaessteesabeesnbaeens 3
13 FEAtures Of MOTEIICAc.uuviiieee ettt e e e e e e e e e tbre e e e e e e e eanrraaeeeas 4
1.4 (0] o 11011V, oY 1] [Tot- 1RSI 4
1.5 PUIPOSE .ttt ettt et e et e e et e e e e e e e e e e e e e e e s e e e eeaeassesasasesasasasasssssnsssnanannnnns 5
1.6 StUAY and ANAlYSIS PRASE...ciiiiiiiie ettt e e s e e s ebee e e s e e e e naeas 5
Chapter 2 REQUIFEMENTScieeeeeiireeeneiireennireeenseetrennsesseennseessenssessesnssessssnssessssnssesssnnssesssnnssasaes 7
2.1 AdVanced User INtErfacCe......uuii it e s e sebee e 9
2.2 Modelica Standard Library BroWSINgcccoocciiiiiieii ittt e e e 9
2.3 Pre-defined Component Models as SNapes.........ceeieeiecciiiiieee e 9
2.4 User Defined Shapesueiiiiiiiiecee e e e e e e et reeeaa s 9
2.5 Y1101 = 4T o PSP PR 9
2.6 2 1 T Y= USSR 9
Chapter 3 Tools and COmMMUNICAtIONcceuuiiiieeiiiiiiiiiiienicrreecrrreecerreaeesrennsessenassessennsnens 11
3.1 OpenModelica Compiler INteractive APl ... 13
3.2 100010 = 7SSOSR 13
33 O SRR 13
34 QU FramMEWOIK c..eviiieeeiee ettt sttt e s e e sba e e sabe e s abe e ssbeesbaeesabeesareas 13
3.5 (O L@ T o PO UPPPPPPPPPN 13
3.6 (D0)4V =L o R P P T P T 14
Chapter 4 Getting Startedccccvviiiiiiiiiiiiiiiiiiiiiiiisiississsisssnns 15
4.1 ADOUL OIMEGIT ..eiiviieiiieiiie ettt sttt e st e et e et te e sbe e sbee e sateesabeesabaessseesareesaseeens 17
4.2 HOW t0 Start OMEIT?uuviiiieeeeeccciiieee ettt ertrre e e e e e e e traae e e e e e e s tbraaeeeeeeesnsnnes 17
4.3 Introductory Model in OMEGITooiviiiiiiiiiie e e 18
4.3.1 Creating @ NEW File ..ottt et e e st e e s s bae e s senraeeesanes 18
4.3.2 Adding ComMPOoNeNnt MOGEIS.....ccccuiiiiiiiieiiiiee ettt e e e e st e e s sreeeeenes 19
4.3.3 MaKing CONNECLIONSuuiiiieeeee ittt ee e ettt e e e e e e sttt e e e e e e e esestsaeeeaeeeessnraeeeasessannsenns 19
4.3.4 SIMulating the MOdelooe i e e e e brr e e e e e e annns 20
4.3.5 Plotting Variables from Simulated Models........cccccoeeeiiiiieii e 20
4.4 How to Create User Defined Shapes/ICONS?cccuvieeveeereeeiee et e e et enneas 21
Chapter5 OMEdit Windows and Dialog BOXESccceuuunriiiiniiinennnniiiinniiieeessnsiinsiimeessssssses 23
5.1 WINAOWS ..ottt et e e st e e st te e e st e e s sabe e e s sabeee s ssabaeessnbaeesnanes 25
T I A 1 oY= VAV T Vo o YR 25
5.1.1.1 Viewing a Model’s DeSCriPLioNeeiecuiiieeciiee ettt e evee e e 25
5.1.1.2 Viewing a Model’s DocumMentation..........cccccvieieiiieeeeciiee e e e e 25

5.1.1.3 HOW t0 Check @ MOeI? ... 25

5.1.1.4 HOW t0 ReName @ MOEI?oueeeeiiieeeieeee et 25

5.1.1.5 HOW t0 Delete @ MOAEI? ... e 25
5.1.2 DeSigNer WINAOWuuiiiiiiiiiiiiiieee e eccttreee e s e s ecvttre e e e s s e sante e e e e e s e ssnnbaaeeeeeesennnnrnneeens 26
T I T o Fo AV o Vo o YU 26
5.1.4 MeSSABES WINUOWuuuiiiiiiiiiiiiiiiiee e e e ecciireee e e e e esbtaee e e e s s e saaata e e e e s s e esnnbnaeeeeeesennnnrnneeens 26
5.1.5 Documentation WINAOWccccuuiiiiiiieiicciiiieee et eeeree e e e e eenenre e e e e s e e snnranee s 26
5.2 D121 [=4 27
T 2% R =AYV - | Uo Y-SR 27
I 2 A {4 [V] = o T 1 =1 Lo 3SR 27
5.2.3 Model Properties Dialog......ccccccueiiiiieie ettt e et e e et e e eatae e e 28
5.2.4 Model Attributes DIalogceeiviieeiiiieee ettt et 28
Chapter 6 Design and IMplementation.........cccceeiiieeeiiiieenceriennieeteensieereenseesnensseessensseesssnssnens 29
6.1 CommuNICation With OMUC.......ccoiiiiiiiiiieeee ettt e e e e e e eeraree e e e e eeesarraeeeeeeeennnnnns 31
o O A O 11V, (O 0o o o - T [1 1< o = ol <SR UUTP 31
6.1.2 The Corba Client Server Archit@CtUIeccveeeiiiieeciiieeee e e 31
6.1.3 Invoking OMC through Corba........cccciiiiiiiiii it 32
6.1.4 What to do with the Corba IOR Fil@?.........ouviiieiiieee e 33
6.1.5 OMC API ENNaNCeMENTS..cccciiiiiiieie ettt e e et e e e e e ee e e e e e e e e nnraaaeeas 33
6.2 7Y o g Yo =1 of Lo -3 34
6.2.1 Shapes/Component Models ANNOLAtiONSccueeecveeeeieieieeecee et 34
6.2.2 Primitive Graphical TYPES oottt e e e e rae s 35
6.2.2.1 LiNE ANNOTAtION...ciiiiiieccccc e ——— 35
6.2.2.2 PolygON ANNOTAtioN ... 36
6.2.2.3 Rectangle ANNOTAtionueeiii i e 36
6.2.2.4 EllipSe ANNOLAtIONoiiiiiiicciieiee et e e e e e e e e e e nnnes 36
6.2.2.5 TeXt ANNOTAtION «ooo i 36
6.2.2.6 Bitmap ANNOTatioN.....coiiiiiiiiii 36
6.2.3 Connection ANNOLATION ... e e e aeaeaees 37
6.2.4 Documentation ANNOTAtioN....cciiiiiiiiii e aee 37
6.3 SEPUCLUIE Of ClaSSES..uuiiiiiiiiie ittt e e e et re e e e eatae e e e ntee e e sbaeeeennees 39
Chapter 7 Related WOrK......cccoiiiiiieeecccciiieceicscccse s reesneenssss s s s s s ennensssssssseeennnnsssssssssneennnnnnnns 43
7.1)[4 a1 o] - (=TSO R SRR OO PR OPOPOPPPPPPPPPPPPRE 45
7.2 [1Y70 Vo - PR 45
7.3 V=4 0]\ (oo [<] Tot- [T PUPR 45
Chapter 8 Conclusion and FULUIre WorK........ccceciiieeeiiiieenceiiennieeneensieeneenseesnennssessennseessenssnns 47
8.1 [00] o T (11 T o VSN RUURUPUPPPRRt 49
8.2 T U] IV Ao o PR 49
8.2.1 Integration with OMNOLTEDOOK........uviiiiiiiieee e 49
8.2.2 Interactive SIMUIGtIONceviii i e e e 50
8.2.3 Integrated OpenModelica Shell..........oovii i 51

20 <] =T o T YRS 53

Appendix A—DC MOLOr IMOTE........uiiiieeeec e e e e et e e e e e s eseebae e e e e e e seanrnns 55

Appendix B — List of OMC APl COMMANGSeeeiiiiieeiiiieeeeciieeeeeitee e ecteeeeetteeeesreeeeenteeeeebaeeeenrens 57

Dedication

We dedicate our work to our beloved parents, respectable teachers, and to the university. Without
their prayers, love, support and encouragement we would not be able to accomplish this task.

Acknowledgements

First of all we are thankful to Almighty Allah who gave us life, knowledge and strength to attest our
skills. Our deepest thanks go to our supervisor Dr. Mohsen Torabzadeh-Tari, and our examiner Prof.
Peter Fritzson who guided us through the bulk of the work. We express gratitude to our associated
supervisor, Mr. Martin Sjélund, as his detailed and constructive comments provided vital guidance
for our thesis development.

We would also like to say thanks to our friends, colleagues, and specially Dr. Adrian Pop, as their
contributions are immense in nipping errors and cleaning up the discussions.

We would like to extend our appreciation to IEl, Department of Management and Engineering,
Linkdping University who provided us a GUI prototype called HOPSAN which eventually become the
starting point of our thesis. And lastly, we thank Mr. Filippo Donida for explaining some issues related
to Modelica annotations and SimForge.

Abstract

OpenModelica (www.openmodelica.org) is an open-source Modelica-based modeling and simulation
environment intended for industrial as well as academic usage. Its long-term development is
supported by a non-profit organization — the Open Source Modelica Consortium OSMC, where
Linkoping University is a member.

The main reason behind this thesis was the need for a user friendly, efficient and modular
OpenModelica graphical connection editor. The already existing open source editors were either
textual or not so user friendly. As a part of this thesis work a new open source Qt-based cross
platform graphical user interface was designed and implemented, called OMEdit, partially based on
an existing GUI for hydraulic systems, HOPSAN. The usage of Qt C++ libraries makes this tool more
future safe and also allows it to be easily integrated into other parts of the OpenModelica platform.

This thesis aims at developing an advanced open source user friendly graphical user interface that
provides the users with easy-to-use model creation, connection editing, simulation of models, and
plotting of results. The interface is extensible enough to support user-defined extensions/models.
Models can be both textual and graphical. From the annotation information in the Modelica models
(e.g. Modelica Standard Library components) a connection tree and diagrams can be created. The
communication to the OpenModelica Compiler (OMC) Subsystem is performed through a Corba
client-server interface. The OMC Corba server provides an interactive API interface. The connection
editor will function as the front-end and OMC as the backend. OMEdit communicates with OMC
through the interactive APl interface, requests the model information and creates
models/connection diagrams based on the Modelica annotations standard version 3.2.

Keywords: Graphic editor, connection diagrams, Modelica, modeling, simulation, OpenModelica.

vii

List of Acronyms and Abbreviations

API
AWT
Corba
IOR

MSL
oMmcC
OMNotebook
OMShell
oMi

IDL

IDE

DS

URL
JVvm

DLR

Application Programming Interface
Abstract Windowing Toolkit

Common Object Request Broker Architecture
Interoperable Object Reference
Modelica Standard Library
OpenModelica Compiler
OpenModelica Electronic Notebook
OpenModelica Shell

OpenModelica Interactive

Interface Definition Language
Integrated Development Environment
Dassault Systemes

Uniform Resource Locator

Java Virtual Machine

Deutsches Zentrum fiir Luft- und Raumfahrt

List of

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:

Figure 6-1:

Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:

Figure 8-1:
Figure 8-2:

Figures

OMEit high [EVEI VIEW ..ceiiueiieiiciiie ettt ettt bee e e e e e e 17
(O 11V | o [y o] =T g I ol T =] o ST 18
OMEdit Main WINQOW.......oiiiiiiiiieiiieeiieeree ettt s s s 18
Modelica STandard LIDraryc..oeeoeeee ettt e e e sare e e e baee e e 19
Creating @ NEW MOME!cocciiiiiiiie e et e e s e e e e eaneeas 20
DCmotor model after CONNECLIONScoouiiiiiiiiiieee e 20
Y0 a 101 N oY T -1 o - PP 21
Plotted Variables ... e 21
User defined SHapES.....ccuiiii ittt et e e et e e e eare e e s reaeeeeaees 22
Context menu to view component model detailscccceeeeeeeeiiiiiiieee e, 26
Documentation WINAOWcccueiiiiiiiiieiie ettt 27
oY oYY [T B 11 Lo - SRR 28
F N au] o U T D=1 Lo} RSP 28

Client-Server interconnection structure of the compiler/interpreter main program
and some interactive tool interfaces [17] ...ccouveeieiiiiiiiiieeeee e e 31

Classes hierarchy for predefined graphical elements........ccccoeeeciiiieeiiiccciiieeee s 35
Implementation of connection anNotationccccceeiieiii e 37
Implementation of documentation annNotation.........c.cccveeiieiiei e, 38

OMEdit UML class diagram. The gray shaded classes are Qt core classes. This class

diagram is reversed engineered from the source code using BOUML [16].................... 39
OMEdit integrated with OMNOTEDOOKeveviriiiiieeiiie e 50
OpenModelica Interactive System Architecture Overview [17]cccccceeeeeiiiiieeeeeeeeennns 50

Xi

List of Tables

Table 1-1: MOdelica VEISIONS [14]uuviiiiieeeeciiiiieee e ettt e e e eeeeirreeeeeeeseetbbeeeeeeeessarssaeeeeeesenssrreseeeas 4
Table 6-1: OMEIL ClAaSSES ..uuiiiiiiieiiiiiiie ettt e e e e s crre e e e e e e e bt e e e e e e e e e s asataeeeeeeesnnnsraneaaanas 42

Xiii

Overview

Chapter 1:

This chapter describes the background information about the object-oriented Modelica language and
its different versions, and the open source OpenModelica platform. Also the purpose behind the
thesis is explained here together with an analysis study done in the design stages of this project.

Chapter 2:

This chapter elaborates all the requirements of the thesis.

Chapter 3:

Chapter 3 describes all the development tools used while creating the application.

Chapter 4:

Chapter 4 starts with the introduction to OMEdit - OpenModelica Connection Editor and then moves
forward with the demonstration of an introductory model in OMEdit.

Chapter 5:

This chapter gives a detailed walkthrough of OMEdit. Including information about all the dialogs and
windows, and also briefly explains what functionality is each interface is performing.

Chapter 6:

This chapter contains one of the major parts of the report. Chapter 6 discusses the design and
implementation of OMEdit. It highlights the OMC communication mechanism details and the
Modelica annotations description.

Chapter 7:

Chapter 7 lists the related model editors that are available open source as well as commercial.

Chapter 8:

This chapter briefly discusses some of the future implementations of OMEdit. The future milestones
like integrated OMNotebook, interactive simulation and integrated OMShell.

Appendix A:

It contains the source code of the DCmotor model that is being used in Chapter 4 section 4.3 for
demonstrating that how a model is created in OMEdit.

Appendix B:

It lists some of the OMC APl commands, however there is huge number of OMC APl commands and
all commands are not listed here.

XV

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Chapter 1 Introduction

e An overview of Modelica.

e History of Modelica.

e Features of Modelica language.

e A brief introduction of OpenModelica.

e What is the purpose behind this master thesis?

e How has the study and analysis been carried out?

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

1.1 Modelica - Introduction

Modelica is a freely available, object-oriented language for modeling of large, complex, and
heterogeneous physical systems. It is suited for multi-domain modeling, for example, mechatronic
models in robotics, automotive and aerospace applications involving mechanical, electrical, hydraulic
and control subsystems, process oriented applications and generation, and distribution of electric
power. Modelica is designed such that it can be utilized in a similar way as an engineer builds a real
system: First trying to find standard components like motors, pumps and valves from manufacturers
catalogues with appropriate specifications and interfaces and only if there does not exist a particular
subsystem, a component model would be newly constructed based on standardized interfaces [1].

Models in Modelica are mathematically described by differential, algebraic and discrete equations.
No particular variable needs to be solved for manually. A Modelica tool will have enough information
to decide that automatically. Modelica is designed such that available, specialized algorithms can be
utilized to enable efficient handling of large models having more than a hundred thousand equations

[1].

Modelica is a free language. Its design has been influenced by many object oriented modeling
languages. The Modelica community works hard and gives their precious time to provide many
services for their users like newsletters, free educational materials, lots of freely downloadable
papers and software, training courses, job offerings, and student work. There are a lot of people
involved in the design of this language, however a couple of key architects can be mentioned, Peter
Fritzson from Linkdping university, Martin Otter from DLR (Deutsches Zentrum fur Luft- und
Raumfahrt), and Hilding Elmqvist from Dynasim (now DS (Dassault Systémes)). The basic aim was to
develop an efficient object-oriented modeling language for modeling technical systems for reprocess
and exchange of models of dynamic systems in a standardized format. Modelica helps several
automotive companies in designing their energy efficient vehicles furthermore, it also facilitate to
enhanced air conditioning systems etc.

1.2 Modelica - Versions

The following table shows the Modelica versions release over the years,

Version No. Description Release Date

1.0 This version is based on DAE system with some discrete | September, 1997
features to handle discontinuities and sampled systems.

1.1 Version 1.1 introduced the prefixes discrete and non- | December, 1998
discrete (pre, when) features, array expression for
semantics, lots of built-in functions and operators.

1.2 This version allows code optimization, how to interface 15thJune, 1999
with C and FORTRAN, semantics for if-clauses, fixed and
nominal attributes dynamic types of inner/outer. Also
provide the higher flexibility about changing the external
function interface.

1.3 This version introduced the connection semantics for | December, 1999
inner/outer connectors, semantics for protected
element, and the scope of for-loop variables and
improved array expressions.

1.4 The main changes in this version are: | December, 2000

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Refined packages, and refined if and when-clauses,
functions can specify their derivative and many more.

2.0 Support for generic formulation of blocks applicable to | July, 2002
scalar and vector connectors, introduced enumeration
types, specified the graphical appearance of Modelica
object diagrams etc.

2.1 New annotations for version handling of libraries and | March, 2004
models, for library specific error messages, etc.
Introduced break and return statements in while loop
and function respectively. Also many other
enhancements.

2.2 The concept of Expandable connector was launched, | February, 2005
recursive inner/outer definitions etc.

3.0 All the previous versions of Modelica are more or less | September, 2007
backward compatible with minor exceptions but this is
the first version which is slightly non-backwards
compatible compared to earlier versions. It has almost
all the previous features, but also imposes the new
constraint of balanced model checking for earlier error
detection. This version is also called a clean-up version.

3.1 This version brings up several new features like URI’s | May, 2009
support in Modelica documentation annotation, better
support for expandable connectors, introduction of
stream connectors, overloaded operators, etc.

3.2 Version 3.2 provides better support for object libraries, | March, 2010
access control to protect intellectual property, functions
as formal inputs to functions etc.

Table 1-1: Modelica versions [14]

1.3 Features of Modelica

Modelica supports high-level models for composition and detailed modeling of library component.
Models of standard components are usually collected into libraries of models. With a graphical
model editor a physical system can be modeled by simply drawing a connection diagram, including
positioning of the models representing the components, making connections, and entering
parameter values in the dialog boxes.

1.4 OpenModelica

OpenModelica is an open source equation based modeling and simulation environment intended both
for industrial as well as academic usage [2]. The primary target language is Modelica; however it is
not only restricted to Modelica, C and FORTRAN code can also be compiled. More recently UML
software modeling integrated with Modelica is being supported through the ModelicaML
UML/Modelica profile The OpenModelica project is coordinated by PELAB, the Programming
Environments Laboratory, at Linkdping University [3].

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

1.5 Purpose

OpenModelica has previously only had SimForge from Politecnico di Milano [4], for creating model
diagrams. Although it provides most of the required functionalities needed in any connection editing
tool, it lacks responsiveness to the user (i.e., slow), as well as being a bit unstable, difficult to use for
the beginner, and not providing good support for Modelica 3.1 graphical annotations in the MSL 3.1
library. Therefore, a new advanced user interface was required to provide all the features that are
left out in SimForge. See Chapter 7 section 7.1 for a detailed description of why a new graphical user
interface was needed.

The main purpose of developing the new OpenModelica graphical editor was to provide a free user
friendly environment for its users. The new interface overcomes the present problems and
difficulties which users were facing while creating the models, connecting the instances, speed etc.

1.6 Study and Analysis Phase

When you start some new work you should have good knowledge about the problem area.
Therefore, in order to understand the thesis requirements, we studied many papers about Modelica
and OpenModelica and lots of other documents which helped us to understand the requirements.
Before starting the implementation we learned about the previous work (SimForge), how it was
functioning, how the application was built, what the problems and their consequences were, how we
could avoid the design mistakes that previous tools had done, and what could help us etc. The most
time consuming task in this thesis work was to learn how SimForge as well as commercial tools like
Dymola [5] and MathModelica [6] worked. We had to study the Modelica specifications in order to
understand the requirements and then we mapped it to the tools and verify how they had
implemented it.

A five days workshop organized by PELAB under the supervision of Prof. Peter Fritzson about
OpenModelica also helped us in gaining knowledge and solving problems.

The design and implementation of this editor used as a starting point an already existing GUI
prototype structure for hydraulic systems, the Hopsan GUI developed by IElI [7] Department of
Management and Engineering at Linképing University.

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Chapter 2 Requirements

e An advanced and easy-to-use responsive graphical user interface (GUI) was needed.

e The GUI should allow Modelica Standard Library browsing, preferably with the latest version
MSL 3.1.

e Modelica component models including graphical annotations should be interpreted and
displayed as graphical objects.

e Users are allowed to create shapes of their own choice.

e The application should use the OpenModelica simulation and plotting mechanism.

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

2.1 Advanced User Interface

As mentioned earlier, there already exists an open source graphical model editor called SimForge
that can be used with OpenModelica. But due to performance and stability issues discussed in
Chapter 7 section 7.1, a new advanced user interface was needed. The Qt platform, i.e., the C++
open source Qt libraries, was chosen for the GUI development for several reasons. Both of the
commercial tools Dymola and MathModelica are using Qt for their GUI development, showing that it
is possible to create a highly performing and stable GUI for a graphical connection editor based on
Qt. Moreover, the Hopsan GUI showed that it was possible to create a fast and functioning
connection editor (although simpler than a Modelica counterpart) with a rather limited effort. Third,
the Qt platform supports portable GUIs between the main platforms Windows, Linux, and Mac.
Fourth, the OpenModelica OMNotebook GUI is already implemented using Qt, which simplifies
integration between the connection editor and notebook GUI. Also the fact that the group
developing Hopsan offered to share their Qt GUI did lower the design and implementation effort for
a new GUI.

2.2 Modelica Standard Library Browsing

The GUI should support automatic loading of the Modelica Standard Library and make it available to
the user for browsing. The user should be able to drag and drop the pre-defined component models
into the connection diagram.

2.3 Pre-defined Component Models as Shapes

The GUI should create and display the shape of each pre-defined component model based on the
Modelica graphical annotations standard 3.2. The pre-defined components contain shape
information, i.e. annotations that OMEdit uses to draw the component shapes in the graphical view.
See Chapter 6 section 6.2.1.

2.4 User Defined Shapes

The application should allow users to create shapes, also called icons, for their own created models.
The shapes should follow the Modelica annotations 3.2 standard. Read more details about this in
Chapter 4 section 4.4

2.5 Simulation

The interface should be able to simulate a model created by the user using the simulation
mechanism provided by OpenModelica.

2.6 Plotting

The simulation of a model creates a simulation result file which contains a list of model instance
variables that are candidates for plotting. The GUI should use the existing OpenModelica plotting
feature to plot the variables, or if time permitted replace the current OpenModelica plotting
mechanism with a better plotting package.

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Chapter 3 Tools and Communication

e The OMC interactive API is used for communication with OMC.

e OmniORB is used to implement the OMC communication module.
e OMEdit is developed using C++ and the Qt libraries.

e The GUI is created using the Qt libraries.

e (Qt Creatoris used as the main development environment.

e The source code documentation is done using Doxygen.

11

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

3.1 OpenModelica Compiler Interactive API

The OpenModelica Compiler (OMC) Interactive API is used in order to communicate with OMC. The
communication is carried out through the Corba interface provided by the OpenModelica Compiler.
See Chapter 6 section 6.1 for the detailed description of OMC communication.

3.2 OmniORB

OMEdit acts as a client in the OMC communication mechanism. The Corba client in OMEdit is based
on the OmniORB Corba implementation [13]. The OmniORB IDL (Interface Definition Language)
compiler takes the OMC IDL file as input and creates the stub files.

IDL defines the interface for a software in a language neutral way. The stub files generated by the IDL
handle the communication between the two programs, which can be written in two different
languages.

The stub files created using the OMC IDL file are used by OMEdit to send/receive commands. See
Chapter 6 section 6.1 for further details.

3.3 C++

OMEdit is primarily developed in C++. It uses the Mingw [8] compiler for Windows executables and
GCC [9] for the Linux versions.

3.4 Qt Framework

Qt is a cross platform application and user interface framework [11]. The cross platform feature of Qt
is one of the main features that made us adopt Qt framework, the huge and enriched Qt graphics
library well-proven by several professional tools is the other.

OMEdit uses Qt for the GUI development. The main Qt features used are briefly describes below,

e Qt Graphics View Framework — The Designer Window (see Chapter 5 section 5.1.2) is based
on the QGraphicsView and QGraphicsScene classes. The Graphics view provides the surface
for creating and managing 2 dimensional graphical items. It also provides features like scaling,
rotating, and transforming graphical items. The QGraphicsltem class is used to create
component model shapes based on the Modelica annotations 3.2 standard.

e Qt Webkit Module — The Documentation Window (see Chapter 5 section 5.1.5) is based on
Qt’'s Webkit module. The Webkit module provides classes that are used to render HTML
contents. The Webkit module contains a QWebView class which is used to display the
Modelica documentation annotations.

e Qt Widgets & Dialogs — The Qt’s widgets (in this report widgets are referred to by the term
windows) and dialogs are used throughout the application to display contents, information
messages, forms etc. (see Chapter 5 for more details).

3.5 Qt Creator

Qt Creator is a cross platform Integrated Development Environment (IDE), used for the development
of OMEdit. The other possible candidate was Visual Studio 2010 [12], but in order to use Visual
Studio 2010 a separate add-in installation was required. Although, installing the add-in is not a big
task and was not the primary reason for not using Visual Studio 2010. The main reason behind not

13

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

using Visual Studio 2010, one of the most robust IDEs available in market, was that it lacks the Qt’s
Intel liSense feature; the feature that actually is available in Visual Studio 2010 doesn’t sometimes
show the declarations which are actually present. Compared to Visual Studio 2010, Qt Creator is very
strong with Qt’s IntelliSense because it is primarily created with this feature, and gives the rapid
application development environment to the user.

3.6 Doxygen

Doxygen is a documentation system used for a lot of languages including C++ [10]. For the source
code documentation of OMEdit we used Doxygen.

14

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Chapter 4 Getting Started

e A brief introduction of OMEdit

e How to start OMEdit?

e How to create a DCmotor model in OMEdit?

e How to create user defined shapes in OMEdit?

15

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

4.1 About OMEdit

OMEdit — the OpenModelica Connection Editor is the new Graphical User Interface for graphical
model editing in OpenModelica. It is implemented in C++ using the Qt 4.7 [11] graphical user
interface library and supports the Modelica Standard Library version 3.1 that is included in the latest
OpenModelica (version 1.6.0) installation. This chapter gives a brief introduction to OMEdit and also
demonstrates how to create a DCmotor model using it.

OMEdit provides user friendly features like;

e Modeling — Easy Modelica model creation.
e Pre-defined models — Browsing the Modelica Standard Library to access the provided models.

e User defined models — Users can create their own models for immediate usage and later
refinement and reuse.

e Component interfaces — Smart connection editing for drawing and editing connections
between model interfaces.

e Simulation subsystem — Subsystem for running simulations and specifying simulation
parameters start and stop time, etc.

e Plotting — Interface to plot variables from simulated models.

De;igner ——invoke simulation OpenMof?leIica
Window Compiler
[

l l l Simulation

Modelica - Diagram
. lcon View h /
Text View View Send/
Recieve
data from
OMC

sends simulation command

model creation
using Modelica Annotations

omc
Communication

shapes
creation
based on
Modelica

Annotations

CORBA
Interface

get model text .[OoMC Proxy <—‘ Send/

Recieve
plotting i:n:UIatEd Plot Window |—read simulation result
models

data fram
Figure 4-1: OMEdit high level view

OMEdit

OMEdit uses the OmniORB CORBA implementation [13] to communicate with the OpenModelica
Compiler. The Modelica 3.2 Graphical Annotations [14] present in most models are interpreted for
drawing Modelica Standard Library component models and user defined models. As a result, the
interoperability with other Modelica tool vendors becomes easier as the Modelica icon and diagrams
defined in other tools supporting the Modelica 3.1 or Modelica 3.2 standards are easily handled in
OMEdit. OMEdit also uses annotations for displaying Modelica documentation. See Figure 5-2.

4.2 How to Start OMEdit?

OMEdit can be launched using the executable placed in $OPENMODEL ICAHOME/bin. A splash screen
similar to the one shown in Figure 4-2 will appear indicating that it is starting OMEdit. After the
splash screen the main OMEdit window will appear; see Figure 4-3.

17

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Loading Modelica Standard Library

OMEddit

Version: 1.0

OpenModelica Connection Editor

Figure 4-2: OMEdit splash screen

4.3 Introductory Model in OMEdit

In this section we will demonstrate how one can create Modelica models in OMEdit, e.g. a DCmotor.

4 OMEdit - OpenMode ection Edito . C=re X
File Edit View Simulation Tools Help

A-THH # RL0 0 WeRel 9~

Components 8 x

Modelica Standard Library
= [Modelica

i [g] Blocks

[2] Constants
(& Electrical

=] Icons

& Magnetic

& [Math

& Mechanics
[Slunits

B StateGraph
[Thermal

[UsersGuide
[Utilities

Messages & x
OMEdit, Version: 1.6.0 A
Info: OpenModelica, Version: "1.6.0"

Modeica Library | Modelca Fles | 4)

Figure 4-3: OMEdit Main Window

4.3.1 Creating a New File

Creating a new file/model in OMEdit is rather straightforward. In OMEdit the new model can be of
type model, class, connector, record, block, function or package. The user can create any of
the model types mentioned above by selecting File > New from the menu. Alternatively, you can
also click on the drop down button beside new icon shown in the toolbar right below the File menu.
See Figure 4-5.

In this introductory example we will create a new model named DCmotor. By default the newly
created model will open up in the tabbed view of OMEdit, also called Designer Window (see
Chapter 5 section 5.1.2), and become visible. The models are created in the OMC global scope unless
you specify the parent package for it.

18

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

% OMEdit - OpenModelica C
File Edit View Simulation Tools Help

d-THH # RRL WOHOE 9+

Components

-

Modelica Standard Library
= 7 Modelica

(&) Blocks

[7] Constants

& Electrical

= Icons

* @ Magnetic =
& [Math |
= Mechanics [
[MultiBody

= k@ Rotational

= f@] Components
-8 BearingFriction
*‘@' Brake

&R Clutch

= Damper

=¥ Disc

= ElastoBacklash
[= Fixed

| Gearbox

-4 IdealGear

g IdealGearR2T
% IdealPlanetary
- #y IdealRollingWheel 2 -
Modelica Library | Modelica Fles |

Modelica Standard Library

Messages 8 x

OMEdit, Version: 1.6.0
Info: OpenModelica, Version: "1.6.0"

Figure 4-4: Modelica Standard Library

4.3.2 Adding Component Models

The Modelica standard library is loaded automatically and is available in the left dock window. The
library is retrieved through the loadModel (Modelica) API call and is loaded into the OMC symbol
table and workspace after the command execution is completed. Instances of component models
available in the Modelica Standard Library can be added to the currently edited model by doing a
drag and drop from the Library Window (see Chapter 5 section 5.1.1). Navigate to the component
model in the library tree, click on it, drag it to the model you are building while pressing the mouse
left button, and drop the component where you want to place it in the model.

For this example we will add four components as instances of the models Ground, Resistor,
Inductor and EMF from the Modelica.Electrical .Analog.Basic package, an instance of the
model SignalVoltage from the Modelica.Electrical .Analog.Sources package, one instance
of the model Inertia from the Modelica.Mechanics.Rotational.Components package and one
last instance of the model Step from the Modelica.Blocks.Sources package.

4.3.3 Making Connections

In order to connect one component model to another the user simply clicks on any of the ports. Then
it will start displaying a connection line. Then move the mouse to the target component where you
want to finish the connection and click on the component port where the connection should end.
You do not need to hold the mouse left button down for drawing connections.

In order to have a functioning DCmotor model, connect the Resistor to the Inductor and the
SignalVoltage, EMF to Inductor and Inertia, Ground to SignalVoltage and EMF, and finally
Step to SignalVoltage. Check Figure 4-6 to see how the DCmotor model looks like after
connections.

19

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

File | Edit View Simulation Tools Help

New ' Model
Open Ctrl+O Class
Q Save As Recard

Block
@ Close Crl+Q .
Function

(7] Constants
& [Electrical

Package

Q Save Ctrl+S Connector

wn |0 WOHOE 4

Ctrl+P

=] Icons

) Magnetic
[Math

] Mechanics
& [Slunits

B StateGraph
[Thermal

= [UsersGuide
[Utilities

Modelica Library Modelica Files

& OMEdit - Create New Model -

Model Name:

Insert in Package (optional):

[

Messages
OMEdTt, Version: 1.6.0
Info: OpenModelica, Version: "1.6.0"

L]
X

3|

Create New Model

Figure 4-5: Creating a new model

4.3.4 Simulating the Model

The OMEdit Simulation Center dialog (see Chapter 5 section 5.2.2) can be launched either from

Simulation > Simu

late or by clicking the simulate icon from the toolbar. Once the user clicks

on Simulate! button, OMEdit starts the simulation process. At the end of the simulation process
the Plot Variables Window (see Chapter 5 section 5.1.3) useful for plotting will appear at the right
the simulation dialog.

side. Figure 4-7 shows

File Edit Vi Simulation Tools Help

ERMN =11 &9.0 ®© wemeoll 9~

| components x
Modelica Standard Library
= [Modelica

(@] Blocks

(7] Constants

& & Electrical

[Icons

&) Magnetic

DCmotor* E

o = |wmeab|e ‘Oass |Deagmmwew ‘C:Ilhﬂm'x e .

& [Math

] Mechanics
[Slunits

G StateGraph
[Thermal

= [UsersGuide
[Utilities

aroundl

Messages

Modelica Library Modelica Files

QMEdt, Version: 1.6.0
Info: OpenModelica, Version: "1.6.0"

4

Figure 4-6: DCmotor model after connections

4.3.5 Plotting Variables from Simulated Models

The instance variables

that are candidates for plotting are shown in the right dock window, see

Figure 4-8. This window is automatically launched once the user simulates the model; the user can

20

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

also launch this window manually either from Simulation > Plot Variables or by clicking on the
plot icon from toolbar. It contains the list of variables that are possible to use in an OpenModelica
plot. The plot variables window contains a tree structure of variables; there is a checkbox beside
each variable. The user can launch the plotted graph window by clicking the checkbox.

&4 OMEdit - OpenModelica

A- 1K # 2200 CWOROE 9+
| Components ﬂx:W‘

-

Modelica Standard Library T E |wmea I ‘ MEdit - Sin

= [Modelica
& (@] Blocks | = =
o | Simulation
216 Hearicl Simulation Interval
(5] Icons
&) Magnetic Start Tme: [0.0]

&] Math Stop Time: [1.0

b= Mechanics

7 Slunits CQutput Interval

3 stteGraph I —
& [Thermal

[UsersGuide Integration

& [Utilities

Method: dassl %
Tolerance: 0.000001

OMEdEt, Version: 1.6.0
Info: OpenModelica, Version: "1.6.0"

Modelica Library Modelica Files ‘)

Figure 4-7: Simulation Dialog

Figure 4-8 shows the complete DCmotor model along with the list of plot variables and an example
plot window.

&4 OMEdit - OpenModelica

File Edit View

n - To

A- 1B # 2000 Wemom »F

| Components & X|| pcmotors B Plot Variables 8 X
_ . Plot Type:
Modelica Standard Library i E |wmeab|e | Class | Diagram View | C:/Users/x10syeas/Desktop/dcmotormo
- 7 [Piot =
= [Modelica
& (@] Blocks = DCmotor_res.plt =
(7] Constants F] time
(=) Electrical iukecei Il inductordLi
& [ElIcon - ¥l inertial phi =
'n': Plot Window = F¥ inertialw

[der(inductor.i) 4
r der(inertial phi)

I der(inertialw)

1 der(emf1.phi)

File Edit Insert Tools Help

Open Save | Print SelectPan Preferences Image

T

[
siaralvoltanal

,

Plot by OpenModelica Time=Teeart
I I 1 [inductoriv
0.4 Il inductorlny
@inertial.phi f :
0.2 | emf1.phi
L@
il @inertial.w em.fl.ﬁxed.ﬂange.tau
¥ resistorLv
02 @emfi.fixed.flange.tau ¥ resistorl.ny
] resistorl. LossPower
04 F inerti
@resstorl.v] inertiala -
-0.6 e
| e | I 8 x
0.8 [, | | || ©resstorL.n.v |
L L -
A L
0.2 0.4 0.6 0.8 Gt
time ¥
)

Connection closed

Figure 4-8: Plotted Variables

4.4 How to Create User Defined Shapes/icons?

The user can also create shapes by using the 6 types of shape tools available in OMEdit.

e Line Tool — draws a line. A line is created with a minimum of two points. In order to create a
line, the user first selects the line tool from the toolbar and then click on the Designer

21

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Window; this will start creating a line. If a user clicks again on the Designer Window a new
line point is created. In order to finish the line creation, user has to double click on the
Designer Window.

e Polygon Tool — draws a polygon. A polygon is created in a similar fashion as a line is created.
The only difference between a line and a polygon is that if a polygon contains two points it
will look like a line and if a polygon contains more than two points it will become a closed
polygon shape.

e Rectangle Tool — draws a rectangle. The rectangle only contains two points where the first
point indicates the starting point and the second point indicates the ending point. In order to
create a rectangle, the user has to select the rectangle tool from the toolbar and then click on
the Designer Window, this click will become the first point of rectangle. In order to finish the
rectangle creation, the user has to click again on the Designer Window where he/she wants
to finish the rectangle. The second click will become the second point of rectangle.

e Fllipse Tool — draws an ellipse. The ellipse is created in a similar way as a rectangle is created.

e Text Tool — draws a text label.

e Bitmap Tool — draws a bitmap container.

The shape tools are located at the top in the toolbar. See Figure 4-9.
Polygon Ellipse
Tool TQDI
Rectangle
Tool

Figure 4-9: User defined shapes

The user can select any of the shape tools and start drawing on the Designer Window. The shapes
created on the Diagram View of Designer Window are part of the diagram and the shapes created
on the Icon View will become the icon representative of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle
tool and a polygon using the polygon tool, in the Icon View of the model. The model’s Modelica
Text will look like,
model testModel
annotation(lcon(graphics = {Rectangle(rotation = 0, lineColor = {0,0,255%},
fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern =
FillPattern_None, lineThickness = 0.25, extent = {{ -64.5,88},{63, -
22_5}}),Polygon(points = {{ -47.5, -29.5},{52.5, -29.5},{4.5, -86},{ -47.5, -
29.5}}, rotation = 0, lineColor = {0,0,255}, fillColor = {0,0,255}, pattern =
LinePattern.Solid, fillPattern = FillPattern.None, lineThickness = 0.25)}));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon
annotation of the model. Similarly, any user defined shape drawn on a Diagram View of the model
will be added to the diagram annotation of the model.

At the time of finalizing this thesis the icon editor described here is not completely implemented.
However a rather small amount of work remains, and it is expected to be finalized soon.

22

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Chapter 5 OMEdit Windows and Dialog Boxes

e Library Window for Modelica Standard Library.

e Drawing interface in the form of Designer Window.

e Plot Window contains the list of instance variables.

e Messages Window displays the information, warning and error messages.

e Documentation Window displays the Modelica annotations based documentation in a
QWebView.

e New Dialog for creating Modelica models.

e Simulation Dialog for simulating Modelica models.

23

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

51 Windows

OMEdit displays a number of windows that show different views to users.

5.1.1 Library Window

The Modelica Standard Library (MSL) is automatically loaded into OMEdit. An entry for the MSL is
located on the left dock window. Once a new Modelica model has been started then the user can
just drag and drop components from the MSL the Library Window into the model. The available
libraries in the MSL are:

e Blocks

e Constant

e Electric

e Icons

e Magnetic

e Math

e Mechanics

e Slunits

e Thermal
UsersGuide

e Utilities

The Library Window consists of two tabs. One shows the Modelica Standard Library and is selected
by default. The other tab shows the Modelica files that user creates in OMEdit.

51.1.1 Viewing a Model’s Description

In order to view the model details, double click the component and details will be opened in the
Designer Window. An alternative way is to right click on the component and press Show
Component, this will do the same.

5.1.1.2 Viewing a Model’s Documentation

Right click the model in the Library Window and select View Documentation; this will launch the
Documentation Window. See Figure 5-1.

5.1.1.3 How to Check a Model?

Right click the component in the library window and select Check; this will launch the Check Dialog.
See Figure 5-1.

5.1.14 How to Rename a Model?

Right click the model in the Library Window and select Rename; this will launch the Rename
Dialog. See Figure 5-1.

5.1.15 How to Delete a Model?

Right click the model in the library window and select Delete; a popup will appear asking “Are
you sure you want to delete?”

25

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

File Edit View Simulation Tools Help

2-THd # RLL O WelRol 94

Components 8 x| | pcmotork [| model1* £ |
Modelica Standard Library | = |Writeah|e ‘ Model | Diagram View ‘
= [Modelica
(@] Blocks
(7] Constants
& & Electrical
= [Analog =
= (3 Basic
=+ Capacitor
I8 ccc
rIE ccv
<> Conductor [
-{LL EME. | Show Component
r = Ground = :
b= Gyrator H View Documentation
(-« HeatingResistor @ Check

= Inductor
= M_Transformer

i+ OpAmp

I+ OpAmpDetailed

<> Resistor

== SaturatingInductor Messages & x
AL Transformer OMEdt, Version: 1.6.0 -

Info: OpenModelica, Version: "1.6.0"

7* TranslationalEMF Simulated 'DCmotor’ successfully!

- VariableCapacitor
Modelica Library Modelica Files ‘ 4)

Figure 5-1: Context menu to view component model details

5.1.2 Designer Window

The designer Window is the main window of OMEdit. It consists of three views,

e [con View - Shows the model icon view.
e Diagram View - Shows the diagram of the model created by the user.
e Modelica Text View - Shows the Modelica text of the model.

513 Plot Window

The right dock window represents the Plot Window. It consists of a tree containing the list of
instance variables that are extracted from the simulation result. Each item of the tree has a checkbox
beside it. The user can click on the check box to launch the plot graph window. The user can
add/remove the variables from the plot graph window by marking/unmarking the checkbox beside
the plot variable.

5.1.4 Messages Window

The Messages Window is located at the bottom of the application and consists of 4 types of
messages,

e General Messages —Shown in black color.

e Informational Messages — Shown in green color.
e Warning Messages — Shown in orange color.

e Error Messages — Shown in red color.

515 Documentation Window

This window is shown when a user right clicks the model component in the library window and
selects View Documentation. This shows the OpenModelica documentation of models in a web
view. All externals links present in the documentation window are opened in the default browser of

26

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

the user. All local links are opened in the same window. Figure 5-2 shows the Documentation
Window view.

5% OMEdit - OpenModelica €

Eile Edit View Simulation Tools Help

d-TEHH # 220 0 WoBROE 9+

Components & X Documentation B X

Modelica Standard Library - Modelica
= Modelica :
i g Blocks

[2] Constants

= & Electrical Package Modelica is a standardized =nd free package that is developed together vith the -
Modelica languags from the Modslica see hito: M .ora. It is also called T
= [Analog Modelica Standard Library. It provides model components in many domains that are basad on
2 [Basic standardized interface definitions. Some typical sxamples are shovn in the next figure:

=~ Capacitor L{/. ;

HIE ccc = ﬁ

FIE ccv ., m
<> Conductor L \] '[

1

ambient 1=

= EMF
F* Ground & D_(i] I [
&k Gyrator | i - : [
== HeatingResistor . P B
= Inductor

= M_Transformer
%+ OpAmp

[+ OpAmpDetailed
<= Resistor

=== SaturatingInductor i B
Info: OpenModelica, Version: "1.6.0" -

For an introduction, have especially 2 look at:

= an overview of the Modslica Standard Library inside the User's Guids.

i Transformer Simulated 'DCmotor' successfully!

= TranslationalEMF Tnfo: modell deleted successfuly. |
8 VariableCapacitor ~ | |Info: DCmotor deleted successfully.

Modelica Library | Modelica Fles | < :

Figure 5-2: Documentation Window

5.2 Dialogs

Dialogs are a kind of sub-windows that are not visible by default. The user has to launch them or they
will automatically appear due to some user action.

5.2.1 New Dialog

The New Dialog can be launched from File > New > Model Type. The model type can be model,
class, connector, record, function, or package.

52.2 Simulation Dialog

The Simulation Dialog can be launched either from Simulation > Simulate or by clicking on
the Simulate! button in the toolbar. Figure 4-7 shows a simulation dialog. The simulation dialog
allows setting attributes of the simulation. You can set the value of any attribute, depending on the
simulation requirement. The simulation attributes are,

e Simulation Interval
= Start Time
= Stop Time
e Output Interval
= Number of Intervals
= Qutput Interval
e Integration
= Method
= Tolerance
= Fixed Step Size

27

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

5.2.3 Model Properties Dialog

The models that are placed in the Designer Window can be modified by changing their properties.
In order to launch the Model Properties Dialog of a particular model, right click the model and
select Properties. See Figure 5-3. The properties dialog contains the name of the model, the class
name the model belongs to, and the list of parameters of the component.

File Edit View Simulation Tools Help

A-T W # RPPL O WONOE +#

| Components B % | pcmotort B |

Modelica Standard Library A E |Wmeab|e ‘ Class ‘ Diagram View ‘ C:/Users/x10syeas/Desktop/d mo ”
= [Modelica

(g Blocks

(7] Constants

= & Electrical

= [J Analog

= (7 Basic

=+ Capacitor
& CcC

I v General | | Modiers |
== Conductor
fis ‘:,_ EMF Component

F* Ground Name: [emfL

[&k Gyrator Comment: Modelica.Electrical. Analog. Basic.EMF
<= HeatingResistor
= Inductor

== M_Transformer
¥+ OpAmp

ik~ OpAmpDetailed

== Resistor
=== SaturatingInductor st _ 8 %

Lo Transformer Info: OpenModelica, Version: "1.6.0"
& Simulated 'DCmotor' successfully!

e TranslationalEMF Tnfo: model1 deleted successfuly.

F-1. VariableCapacitor ~ | |Info: DCmotor deleted successfuly.

Modelica Library Modelica Fies <)

1

Properties

4[] »

Figure 5-3: Properties Dialog

5.2.4 Model Attributes Dialog

Right click the model placed in the Designer Window and select Attributes. This will launch the
attributes dialog. Figure 5-4 shows the Model Attributes Dialog.

File Edit View Simulation Tools' Help

-1k # L9200 “OmOR 34

Col its & X Ay
Ll | P9 A oMedit - Component Att
Modelica Standard Library .
= [Modelica
(&) Blocks
(7] Constants
= [Electrical
= [Analog = Type
o :
0 Basic Mame: Modelica.Electrical. Analog Basic.EMF
== Capacitor
L% coc Comment: |
rIE ccv
Varial Properties
<> Conductor i | oy ki
_‘:,. EMF () Constant [Final
L+ Ground t.‘_‘?- Paramter [E] Protected
|1 Gyrator () Discrete ke e
I <> HeatingResistor (@) Unspecified (Default) placeal

T Indictar Causalty Inner/Output

=1 M_Transformer

¥~ OpAmp © Input [Tnner L
e+ OpAmpDetailed ©) output
< Resistor @ None I outer
{-=== SaturatingInductor i =
Tnfo:

AL Transformer Simul

-~ TranslationalEMF nfo:
F-* VariableCapacitor T | T ———
Modelica Library m 4 b

Figure 5-4: Attributes Dialog

28

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Chapter 6 Design and Implementation

e How does the OpenModelica Compiler communication work?
e Improvements done in the OMC API.
e Interpreting Modelica annotations to draw graphical objects.

29

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

6.1 Communication with OMC

For graphical modeling OMEdit needs to draw shapes/component models that are defined by
Modelica annotations. In order to obtain the Modelica annotations OMEdit must be able to
communicate with the OpenModelica Compiler through the Corba interface.

6.1.1 OMC Corba Interface

OMC is the short name for the OpenModelica Compiler. There are two methods to invoke it:

e Asawhole program, called at the operating-system level, e.g. as a command.
e Asaserver, called via a Corba client-server interface from client applications.

OMEdit uses the second method to invoke the OpenModelica Compiler/Interpreter OMC, since this
allows interactive access and querying of the models, needed for interactive graphic editing.

6.1.2 The Corba Client Server Architecture

The Figure 6-1 below describes the design of the OpenModelica client server architecture. OMEdit
plays the role of client in this architecture. It sends and receives commands through the Corba

interface.
Parze I
OpenModelicaCompiler I Corba | OMEdit I

SCode I Interactive Untyped API

System

.
Plot I
Ceval Iﬁ etc.
______________________________ >

Figure 6-1: Client-Server interconnection structure of the compiler/interpreter main program and some
interactive tool interfaces [17]

Type Checked Cummandlj

Messages via the Corba interface are of two kinds. The first group consists of expressions or user
commands which are evaluated by the Ceval module. The second group consists of declarations of
classes, variables, etc., assignments, and client-server API calls that are handled via the Interactive
module, which also stores information about interactively declared/assigned items at the top-level in
the environment [17].

31

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

6.1.3 Invoking OMC through Corba

In order to start communication with OMC through Corba we need to start omc.exe as a process
with special parameters passed to it. The OMC binary executable file is located in
$OPENMODEL ICAHOME/bin. OMEdit invokes OMC with the special Corba flag +d=interactiveCorba
telling OMC to start with the interactive Corba communication environment. The complete
command will look like this:

omc.exe +d=interactiveCorba.

On Linux machines the omc.exe is located on the same location without the .exe extension. The
Corba flags work in the same manner. The complete command on a Linux system will appear as
follows:

omc +d=interactiveCorba.

OMEdit starts a new OMC process for each instance of OMEdit. Only one OMC is linked to each
instance of OMEdit. However, for some special tasks a new OMC is used and is removed as soon as
the task is completed. For example, this happens for tasks like opening an existing model. The
existing model is loaded into OMEdit through the loadFile APl command. The loadFile command
loads the model into the OMC global scope, overwriting any existing model with the same name. In
order to avoid this overwriting behavior of OMC, OMEdit loads the model in a new instance of OMC
and then checks whether this model exists in original OMC or not through the existClass API
command. OMEdit also passes one special argument flag +c to OMC which is used to specify the
Interoperable Object Reference (IOR) file name. By default the IOR file is created in the temp
directory.

// create new OMC instance and load the file in it
OMCProxy *omc = new OMCProxy(mpParentMainWindow, false);
QString fileName = path_to_model;
// if error in loading file
it (lomc->loadFile(fileName))
{

Print_Error_Message();

return;

// get the class names now to check if they are already loaded or not
QStringList existingmodelsList;

QStringList modelsList = omc->getClassNames();

bool existModel = false;

// check if the model already exists in OMEdit original OMC instance
foreach(QString model, modelsList)

it (mpParentMainWindow->mpOMCProxy->existClass(model))
{

existingmodelsList.append(model);
existModel = true;

}

// check if existModel is true
if (existModel)

{
Print_Error_Message();
return;

}

else

{ - .
mpParentMainWindow->mpOMCProxy->loadFile(fileName);
return;

}

OMEdit uses the application session identity number along with the current timestamp to ensure
that each instance of OMEdit gets a new OMC. Once OMC is started with the
+d=interactiveCorba flag, It will create a file named openmodelica.objid (name depends on the

32

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

+c argument value of OMC) in the temp directory of the operating system. This file contains the
Corba IOR.

6.1.4 What to do with the Corba IOR File?

The IOR file contains the Corba object reference as a string. The Corba object is created by reading
the string written in the IOR file. Here is an example with source code for starting OMC and creating
a Corba object:

QFile objectRefFile (path_to_ IOR_File);

int argc = 2;

static const char *argv[] = { ""-ORBgiopMaxMsgSize"™, "'10485760" };

CORBA::ORB_var orb = CORBA::ORB_init(argc, (char **)argv);

objectRefFile.open(QlODevice: :ReadOnly);

char buf[1024];

objectRefFile.readLine(buf, sizeof(buf));

QString uri((const char*)buf);

CORBA::Object_var obj = orb->string_to_object(uri.trimmed() -toLatinl());

6.1.5 OMC APl Enhancements

During the development of OMEdit several issues with the OMC Application Programming Interface
(API1) were discovered:

e Annotations for some models could not be retrieved via getlconAnnotation,
getDiagramAnnotation, or getDocumentationAnnotation.

e addConnection and updateComponent did not work correctly.

e renameComponent was very slow.

e The package Model ica.UsersGuide does not have any icon/diagram annotation but instead has
a non-standard Dymola annotation.

For example getlconAnnotation(Modelica.Electrical.Analog.Resistor) did not work
because the Resistor model had component references inside the annotations. This problem was
solved by symbolically elaborating (instantiating) the Resistor model, constant evaluate the
useHeatPort parameter expression and then elaborating the annotation record with this constant
value.

Using constant evaluated parameters from elaborated model does not work for annotations that
contain DynamicSelect and additional support for such annotations is needed. Unfortunately the
DynamicSelect annotation creates problems for Modelica software that uses a client-server
paradigm as it connects an annotation with a simulation, not with the actual model. However,
DynamicSelect can still be handled by returning the entire expression to the client who could link a
simulation variable to the annotation.

Retrieving the documentation annotation for MSL 3.1 did not work at first because documentation
annotations had been moved (MSL 2.x had no such requirements) to the end of the class (typically in
an equation section) and OMC only searches the public declaration sections. This was solved easily in
OMC by searching the entire model for the documentation annotation.

To make it easier to find which annotations cannot be retrieved correctly OMC was changed to
return the exact annotation that was present in the model. Using this feature the problematic parts
of the communication between OMEdit and OMC was debugged.

Updating components and adding connections to classes had small issues in OMC that were fixed to
support OMEdit.

The package Modelica.UsersGuide and several others do not have any icon/diagram annotation
and displaying these packages in the MSL 3.1 browsing tree did not look nice. However, we observed
that these packages had a non-standard Dymola specific annotation which is:

33

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Dymola_DocumentationClass = true. In order to retrieve this annotation in OMEdit the OMC API
had to be extended with a new function: getNamedAnnotation(Modelica.UsersGuide) =>
true. Now these packages can display a predefined icon in the tree browser.

To automatically test which component models had problems a script was written in OMEdit that
walks through the entire MSL 3.1 and calls OMC API functions on these models to see if the retrieved
information is correct or not. A list with problematic models was built. Subsequently these issues
were solved one-by-one.

The function to rename a component, renameComponent APl function, was extremely slow when
MSL 3.1 was loaded. This happened because OMC had to go through all models and components and
do a refactoring. We added a new API renameComponentInClass that renames the component only
in the model that is built using OMEdit and not in any other.

6.2 Annotations

Modelica annotations are used for storing auxiliary information about a model such as graphics,
documentation, versioning, etc. [14]. Once OMEdit is connected with OMC it can request the
annotations. OMEdit uses three types of annotations;

e Annotations for Graphical Objects
e Annotations for Connections.
e Annotations for Documentation.

6.2.1 Shapes/Component Models Annotations

All the shapes drawn in OMEdit are based on Modelica Annotations standard 3.2. Graphical
Annotations consist of two abstraction layers: the icon layer and the diagram layer. The icon layer
contains the icon representation of a component and the diagram layer shows the inheritance
hierarchy, connections, and inherited component models.

For example, a graphical icon representation of a Resistor component will look like this:

{-100.0,-
100.0,100.0,100.0,true,0.1,2.0,2.0,{Rectangle(true,{0.0,0.0},0,{0,0
,255%,{255,255,255},LinePattern.Solid,FillPattern.Soli1d,0.25,Border
Pattern.None,{{-70,30},{70,-30}},0),Line(true,{0.0,0.0},0,{{-
90,0},{-
70,0}},{0,0,255},LinePattern.Solid,0.25,{Arrow.None,Arrow.None},3,S
mooth.None),Line(true,{0.0,0.0},0,{{70,0},{90,0}},{0,0,255},LinePat
tern.Solid,0.25,{Arrow.None,Arrow.None}, 3,Smooth.None), Text(true,{0
.0,0.0}%,0,{0,0,0},{0,0,0},LinePattern.Solid,FillPattern.None,0.25,{
{-144,-40%},{142, -

72}},"R=%R"",0, TextAlignment.Center),Line(false,{0.0,0.0},0,{{0, -
100%}.{0, -
30}},{127,0,0},LinePattern.Dot,0.25,{Arrow.None,Arrow_.None}, 3,Smoot
h.None),Text(true,{0.0,0.0},0,{0,0,255},{0,0,0},LinePattern.Solid,F
illPattern_.None,0.25,{{-

152,87%,{148,47%}},"%name",0, TextAlignment.Center)}}

This graphical icon representation of the Resistor component is parsed by OMEdit for drawing this
component model. The icon annotation is retrieved from OMC through the getlconAnnotation API
command. Each graphical object is built using the primitive graphical types: Line, Polygon,
Rectangle, Ellipse, Text and Bitmap.

34

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

The primitive graphical types in OMEdit are handled through the QGraphicsltem class of Qt. A
ShapeAnnotation class was created which is derived from QGraphicsltem and QObject. This class
is an abstract class which contains classes of all primitive graphical elements. See Figure 6-2.

@0bject QGraphicsitem

1 l 1

ShapeAnnotation

| l | |

LineAnnotation PolygonAnnotation RectangleAnnotation EllipseAnnotation TextAnnotation

Figure 6-2: Classes hierarchy for predefined graphical elements

6.2.2 Primitive Graphical Types

Each graphical primitive extends from Graphicltem. Graphicltem is a partial record which defines
the model’s visibility; origin and rotation.

partial record Graphicltem
Boolean visible = true;
end Graphicltem;

Polygon, Rectangle, Ellipse and Text also extends from Fi l ledShape.

record FilledShape "Style attributes for filled shapes”
Color lineColor = Black "Color of border line';
Color fillColor = Black "Interior fill color";
LinePattern pattern = LinePattern.Solid "Border line pattern’;
FillPattern fillPattern = FillPattern.None "Interior fill pattern”;
DrawingUnit lineThickness = 0.25 "Border line thickness"

end Style;

The FilledShape record is used to define line color, line pattern, fill color, fill pattern and line
thickness of a model [15].

6.2.2.1 Line Annotation

A Line is a record that extends from Graphicltem.

record Line
extends Graphicltem;
Point[:] points;
Color color = Black;
LinePattern pattern = LinePattern.Solid;
DrawingUnit thickness = 0.25;
Arrow[2] arrow = {Arrow.None, Arrow.None}; "{start arrow, end arrow}"
DrawingUnit arrowSize = 3;
Boolean smooth = false "Spline if true";
end Line;

Whenever a Line object is found in an annotation string, OMEdit creates an object of
LineAnnotation which extends from QGraphicsltem class of Qt, see Figure 6-2. This class is also
used to create a user defined Line shape, see Chapter 4, Section 4.4 for detailed information about
Line shape [15].

35

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

6.2.2.2 Polygon Annotation

A Polygon is a closed shape which means its first and last points are always same. However, this is

only true if the Polygon contains more than two points. A Polygon extends from Graphicltem and
FilledShape,

record Polygon

extends Graphicltem;

extends FilledShape;

Point[:] points;

Boolean smooth = false "Spline outline if true";
end Polygon;

OMEdit creates an object of PolygonAnnotation for each Polygon instance [15]. See Figure 6-2.

6.2.2.3 Rectangle Annotation

A Rectangle is created using two points which also acts as the bounding box of the Rectangle.
Each Rectangle is represented as an object of RectangleAnnotation class in OMEdit.

record Rectangle
extends Graphicltem;
extends FilledShape;

BorderPattern borderPattern = BorderPattern.none;
Extent extent;

DrawingUnit radius = 0 "Corner radius";
end Rectangle;

The radius attribute defines the roundness of the Rectangle [15]. See Figure 6-2.

6.2.2.4 Ellipse Annotation

An Ellipse is similar to a Rectangle. The only difference is that Ell ipse is a rounded shape.

record Ellipse
extends Graphicltem;
extends FilledShape;
Extent extent;

end Ellipse;

An object of EIl ipseAnnotation represents the ENlipse instance in OMEdit [15]. See Figure 6-2.

6.2.2.5 Text Annotation

The Text record is defined as follows:

record Text
extends Graphicltem;
extends FilledShape;
Extent extent;
String textString;
DrawingUnit fontSize;
String fontName;
TextStyle[:] textStyle;
end Text;

The TextAnnotation class is derived from QGraphicsltem class and uses the textString,

fontSize, fontName and textStyle from the Text record to draw a text on the Designer Window
[15]. See Figure 6-2.

6.2.2.6 Bitmap Annotation

A BitmapAnnotation class is used to show a bitmap image. OMEdit uses the Bitmap record to
render the bitmap,

record BitMap
extends Graphicltem;

36

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Extent extent;

String fileName "Name of bitmap file";

String imageSource "Pixmap representation of bitmap";
end BitMap;

The bitmap can be specified through an external stored file or through the annotations. The bitmap
is scaled using the extent points given in the record [15].

6.2.3 Connection Annotation

This annotation defines the graphical representation of a connection between two component
models. An example of a connection annotation is the following:

connect (a.x, b.x)
annotation(Line(points={{-25,30}, {10,30}, {10, -20}, {40,-20}})):

A connection annotation is composed of the primitive graphical type Line. The points of the line
define the connection line co-ordinates between two connecting component models.

OMEdit creates an object of Connector class for each connection. Each Connector contains
instances of ConnectorLine depending on the number of points in a connection. The Connector
class is derived from QGraphicsWidget class which is container class for graphical objects. The
ConnectorLine class is derived from QGraphicsLineltem which represents a single line. If we have
n points in a connection annotation then we have n-1 instances of ConnectorLine. In short n
number of points creates n-1 lines. The following Figure 6-3 shows the implementation of
connection annotation in OMEdit.

In Figure 6-3 the GraphicsView class represents the Designer Window since all the connections are
drawn in it. GraphicsView has a QVector (mConnectorVector) which contains all the
connections in a model. Each Connector has a QVector (mpLines) which contains the list of lines
that are used to draw a connection between two component models.

QGraphicsWidget I QGraphics\View
i
==(Wector== Connectcrrl mpConnector | GraphicsView
mpLines I
mpParentGraphicsVYiew
<<(Wector==
mConnectorsWector

QGraphicsLineltem I

mpParentConnector

ConnectorLine éf‘

Figure 6-3: Implementation of connection annotation

6.2.4 Documentation Annotation

The Documentation annotation is used for textual descriptions of models. The documentation
annotation written as follows:
documentation_annotation:

annotation* (" Documentation (" "info"™ =" STRING
[ll,ll llrevisionsll ll=ll STRING] ll)ll ll)ll

37

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

OMEdit requests OMC for the documentation of a specific component/library through the
getDocumentationAnnotation command and OMC returns the info annotation contained inside
documentation annotation which is a string. The tags <HTML> and </HTML> define the start and end
of the string.

The Documentation Window is responsible for displaying the retrieved documentation annotation.
It uses Qt’'s Webkit module. The Webkit module is centered on QWebView which can display HTML
content. Since the documentation annotation is an HTML string so we have sub-classed QWebView
in a DocumentationViewer class which is contained inside the DocumentationWidget (also called
Documentation Window) class. The HTML string of documentation annotation contains four types of
links:

e Hyperlinks — Used to navigate to external websites.

e Image Links — Used to reference the local image files.

e Modelica Links — Used for linking to other component models.

e Mailto Links — Used to display email addresses that can be used for future contacts.

QWebView has built-in support for images so we didn’t have to handle that. We just set the proper
base path where all the images were located. However, for hyperlinks and mailto links we used the
QDesktopServices class. This class uses the default system browser in case of hyperlinks and
default email client in case of mailto link. The Modelica links are special links which starts with
Modelica:// and reference to some component model or a package. Consider the following code
snippet:

// 1T url contains http or mailto: send it to desktop services
iT (Qurl.toString()-startsWith('http™)) or (url.toString().startsWith("mailto:")))

QDesktopServices: :openUri(url);

// if the user has clicked on some Modelica Links like Modelica://
else if (url.toString().-startsWith('Modelica'))

{
// remove Modelica:// from link
QString className;
className = url.toString().mid(10, url_toString()-length() - 1);
// send the new className to DocumentationWidget
getDocumentationAnnotation(className);

}

In the above code snippet the else part handles the Modelica links. Whenever we have a Modelica
link clicked we trim the first word of the URL, which is Modelica://, and then use the remaining
part of the URL as the argument for getDocumentationAnnotation command.

OWidget

'T

DocumentationWidget

QWebVi gEtD'IZIEIJI'I'IEI'ItﬂTiEII'IAI‘II‘IEItﬂtiEII‘IIﬁ
eb\View

mpDocumentationViewer

DocumentationViewer I

Figure 6-4: Implementation of documentation annotation

38

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

6.3 Structure

of Classes

The following UML class diagram shown in Figure 6-5 shows the classes hierarchy used in OMEdit.

QGraphicsitem |

‘ QTreeWidget

LineAnnotation l PolygonAnnotation
mpC
mpComponent N " "
<=0lfist==
mpShapesLlist
‘Q‘Weh\.l"iew ‘E'“:“ Annotati mpComp Comp t mpComp RectangleAnnotation |
T L 2
DocumentationViewer || . mpDo{ DocumentationWidget OMCProxy QMainWindow QTabWidget << (Ligt=>
mShapesList
LibraryTree mpLicraryTree ngucumentatiun‘a'ifid_uet mpOMCProxy
[
ModelicaTree, LibraryWidget | mpLibrary | MainWindow || mpProjeciTabs | | ProjectTabWidget
ModelicaTree '_|
mprlotiVidges mpSimulation'idget mpParentProjectTabWidget
Ploml'idgetl SimulationWidget | ProjectTab QWidget |
mpModelicaEditor | MPParentProjectTab
‘QTex‘lEdi‘t ModelicaEditor GraphicsView
QWwidget

ModelicaTextHighlighter

QSyntaxHighlighter

Figure 6-5: OMEdit UML class diagram. The gray shaded classes are Qt core classes. This class diagram is

reversed engineered from the source code using BoUML [16]

The Table 6-1 shows the list of classes used in OMEdit. It lists each class with its parent class and also
briefly explains the implementation details. Table 6-1 also explains the UML class diagram shown in

Figure 6-5.
Class Name Inherits Description
Component ShapeAnnotation Creates a component model icon using the

graphical elements Line, Polygon, Rectangle,
Ellipse, Text and Bitmap. Handles all the
keyboard and mouse events related to the
component model. Also, provides an interface for
making connections from the component. This
class uses the Transformation class in order to
transform component model according to the
Modelica Annotations.

ComponentsProperties

This class is used to store component model
attributes which include name, classname,
comment, protected, final, flow, stream,
replaceable, variability, inner, outer and causality.

Connector

QGraphicsWidget

For each connect statement a Connector object
is created. This class contains the list of
ConnectorLine objects where one
ConnectorLine instance represents one line (one

39

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Connector can contains multiple lines). See
Chapter 6 section 6.2.3.

ConnectorlLine

QGraphicsLineltem

This class represents one line in a connection
between two component models. All the mouse
events are handled in this class like moving and
selecting a line.

Cornerltem

QGraphicsltem

This represents the angle brackets shown around
the component model. This class provides an
interface for resizing the component model
diagram.

DocumentationWidget

QWidget

Provides a container for showing the
documentation for Modelica models and libraries.
It contains the object of DocumentationViewer
which is used to display Modelica documentation
in a web view.

DocumentationViewer

QWebView

The DocumentationViewer class extends from
QWebView which provides Qt’s built-in support for
displaying HTML content. See Chapter 6 section
6.2.4.

EllipseAnnotation

ShapeAnnotation

Draws an ellipse based on Modelica annotations.
This class is used to draw an ellipse contained
inside the annotations of Modelica’s predefined
models and also provides interface for drawing
user defined ellipse shape.

GraphicsView

QGraphicsView

The GraphicsView class inherits from the
QGraphicsView class. QGraphicsView provides a
canvas for drawing graphical objects on it. This
class is used to show the Modelica component
model which is created using the
ShapeAnnotation class.

Helper This class is used for defining error messages,
enumerations and text as strings that are used
throughout the application.

LibraryWidget QWidget This is a container class and contains objects of

ModelicaTree and LibraryTree.

LineAnnotation

ShapeAnnotation

Draws a line based on Modelica annotations. It
creates a line by reading the annotations of a
predefined model and also provides the interface
for creating a user defined line shape.

MainWindow

QMainWindow

Represents the whole application interface. This
class extends from QMainWindow. QMainWindow
class provides a built-in layout which contains
menus, toolbars, dock windows, and status bar.
OMEdit’s all operations are initiated from this class
and are then forwarded to the respective class for
further handling. For example, if a user presses
Ctrl+N, MainWindow handles the user request and
then forwards it to ModelWidget which then

40

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

shows the new dialog.

MessageWidget

QTextEdit

This class shows the information, warning, and
error messages to the user depending on the
operation perform by the user. See Chapter 5
Section 5.1.4.

ModelicaEditor

QTextEdit

Used to display the corresponding Modelica text of
the model. This class also provides an interface for
searching a string inside the text. The user can
launch the search perspective by pressing Ctrl+F.

ModelWidget

QDialog

This class shows a dialog box where the user can
enter the name and a new model is created using
the name provided by the user. The MainWindow
class sends the user request to this class. The user
can request a new Model , Package, Function,
Block, Record, Class or Connector.
Depending on the user request ModelWidget
shows the appropriate dialog to the user.

OMCProxy

Provides a platform between the OpenModelica
Compiler and OMEdit. All requests to OMC are
sent through OMCProxy. This class uses the
OmniOrb Corba implementation to communicate
with OMC. See Chapter 6 section 6.1.

PlotWidget

QWidget

PlotWidget is used to read the simulation result
and draws a tree from it. The tree contains the list
of instance variables. See Chapter 4 section 4.3.5
and Chapter 5 section 5.1.3.

PolygonAnnotation

ShapeAnnotation

Draws a polygon based on Modelica annotations. It
provides an interface for creating a user defined
polygon shape and also creates a polygon by
reading the annotations of a predefined model.

ProjectTab

QWidget

This is a container class and contains instances of
GraphicsView and ModelicaEditor. Each
ProjectTab contains two instances of
GraphicsView, one for the Icon View and the
other for the Diagram View.

ProjectTabWidget

QTabWidget

The ProjectTabWidget class provides a tab-based
container. Each tab of this class represents an
instance of ProjectTab.

RectangleAnnotation

ShapeAnnotation

Draws a rectangle based on Modelica annotations.
It provides an interface for creating a user defined
rectangle shape and also creates a rectangle by
reading the annotations of a predefined model.

ShapeAnnotation

QGraphicsltem,
QObject

ShapeAnnotation is the base class for all the
shapes used in OMEdit. It handles all the mouse
and key board events preformed on shapes.
ShapeAnnotation inherits from QGraphicsltem
which makes it a graphical object. It also inherits
from QObject which allows it to use Qt's Signal

41

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Slot mechanism.

SimulationWidget

QbDialog

This class provides an

reads the simulation result.

interface for sending

simulate commands to OMC. The user starts the
simulation process by entering the simulation
parameters. Once the simulation is completed this
class invokes the PlotWidget class which then

Table 6-1: OMEdit classes

42

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Chapter 7 Related Work

e SimForge is another open source model editor for OpenModelica.

Dymola is a dynamic modeling tool and a strong multi-engineering modeling and simulation
environment.

MathModelica is a powerful multi-engineering modeling and simulation environment.

43

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

There is already one open source graphical editor available for OpenModelica called SimForge. There
are also several commercial tools available for graphical modeling. Those tools are professional
products that work well but are not freely available and are not open source.

7.1 SimForge

SimForge is a graphical and textual editor developed by Politecnico di Milano [4] implemented in Java
[18]. This editor is not very efficient, i.e., rather slow, from the user interactivity aspect. One of the
major reasons behind SimForge slowness is the Java implementation along with the graphical library
used Swing [19].

Matthias Kalle Dalheimer [20] compares Java with C++ in three aspects,

e Programmer-efficiency
e Runtime-efficiency
e Memory-efficiency

According to Matthias, Java programmers achieve higher programmer-efficiency than C++
programmers. However, the Java runtime-efficiency is lower than C++. If the programs are CPU
bound the Java runtime efficiency becomes even worse. For memory-efficiency Java uses the
Garbage Collection mechanism, which is quite remarkable but we have to trade off memory
consumption and slower runtime speed. Since, the Java Virtual Machine (JVM) has to keep track of
all the allocated memory blocks and their respective references and have to periodically check them
and remove any which is not required anymore.

Moreover, a lot of common functionality implemented in SimForge is not very efficient. Few of the
problems are listed below:

e In order to make a connection between two component models the user first have to press
the shift key and then have to click on the component port to start making the connection.

o If the user moves the two connected models then the connection lines started pointing to
some other location instead of the port it is connected to.

e SimForge allows the user to make a connection between two incompatible component
models. While OMEdit does not allow connections between two incompatible types.

e When the user drops a component model on the designer view, a pop up will appear asking
user to give the name to the component model. However, in OMEdit the unique names are
given dynamically and user can change them later on if he/she wants to.

e The support for Modelica documentation in SimForge is very poor. On the other hand,
OMEdit provides a very efficient support for component models documentation.

The above mentioned comparison makes a significant difference between SimForge and OMEdit and
also depicts that why there is a need for a new graphical model editor for OpenModelica.

7.2 Dymola

Dymola is a product from Dassault Systemes (DS). Dynamic Modeling Laboratory (Dymola) is a
complete tool for modeling and simulation of integrated and complex systems for use within
automotive, aerospace, robotics, process and other applications [5].

7.3 MathModelica

MathModelica is a product from MathCore Engineering AB. MathModelica is a powerful, flexible and
extensible system for multi-engineering modeling and simulation [6].

45

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Chapter 8 Conclusion and Future Work

e Summarizing the work
e Integration with OMNotebook
e Interactive Simulation
e Integrated OpenModelica Shell

47

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

8.1 Conclusion

This thesis has resulted in the development of new graphical connection editor for OpenModelica,
OMEdit. In this work, we have tried to overcome the problems that are faced by the OpenModelica
users while creating the models in already existing open source editor, SimForge. The focus has been
set from the beginning of this project on making OMEdit more user friendly and really easy-to-use,
especially for students learning modeling with Modelica.

The new connection editor is using Trolltech’s Qt libraries and it supports Modelica Annotations
Standard 3.2 when invoking the Modelica Standard Library in the editor. The annotations are fetched
through a Corba communication with the OpenModelica Compiler and the editor parses the
annotations and draws the component model shapes. It provides easy interface for modeling
Modelica models, simulating, and plotting them.

OMEdit uses OMC as a server from where it gets all the necessary information about the Modelica
component models. This client-server behavior is also valid for the model simulation carried out
through the Corba interface of OMC.

This thesis work started with the promise that the new graphical editor will work on all platforms.
We have managed to fulfill this promise to some extent and tested OMEdit successfully on Windows,
Linux and Mac OS X.

OMEdit was also designed taking in consideration the compatibility with other OpenModelica clients
(i.e., OMNotebook, OMShell). The work on integrating OMEdit with OMNotebook and OMShell is
going on and is also discussed in section 8.2.

8.2 Future Work

There is a long list of functions that we wish to realize in the near future. A few of them are listed in
the coming sections.

8.2.1 Integration with OMNotebook

OMEdit will provide an environment where connection diagrams can also be stored using the
OpenModelica electronic interactive notebook, OMNotebook [21]. The idea is that the user can do
the modeling in the connection editor and then can export his (graphical) models to OMNotebook.
Moreover, a graphical (and textual) model in a notebook could be loaded into OMEdit for further
editing.

A graphic model in an electronic notebook is just an image. The model including its equations,
algorithms, annotations etc. could be hidden behind that image. Thus, OMEdit integrated with
OMNotebook will allow users to click on the image and launch the model in the connection editor
where the user can manage the connections; add/remove component models etc.

The implementation work for this functionality is ongoing. Figure 8-1 shows an electronic notebook —
OMNotebook with DCmotor model as an image which is exported from OMEdit. When a user double
clicks on the image, the OMEdit editing view is popped up, allowing both textual and graphical
editing.

49

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Exercise - Graphical
Modeling

1The DC Motor

A)DC Motor

Make a simple DC-motor using the Modelica standard library that has the following structure:

e —l

'
model ...
Figure 8-1: OMEdit integrated with OMNotebook
8.2.2 Interactive Simulation

In order to offer a user-interactive and interactive real-time simulation, OpenModelica has an
additional subsystem to fulfill general requirements on such simulations, called the OpenModelica
Interactive (OMI), shown in Figure 8-2. With OMI the user will be able to simulate the system and
interact with it at runtime.

OMI will result in an executable simulation application, such as a non interactive simulation. The
executable file will be generated by OMC, which contains the full Modelica model as C/C++ code with
all required equations, conditions and different solvers to simulate a whole system or a single system
component. This executable file offers both a non-interactive together with an interactive simulation
runtime.

OpenModelica Interactive 1 Interactive GUI
(As Server/Service) I (As Client)
1
Simulation Units ! Communication Units:
OM Subsystem (old) | | OMI Subsystem (new) [
i | il
Global i i il
Data . ; \ 1
A ! 1 ol
1 1 H " .
y : | Calculation [} Control 4—{J—> Simulation
. | 1 [N | Control
OM Service i 1 !
Interface ! ! il
1 1 : I
1 1 1
r‘ : 1 |
! 1 :
' ! i
Orig. OM ! ! i 1
components ' i |
; vV | 4 il
i Result ! Transfer | L Simulation
: Manager |- \ L » DataFlow
i 1
i 1
H 1

Figure 8-2: OpenModelica Interactive System Architecture Overview [17]

50

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

8.2.3 Integrated OpenModelica Shell

The OpenModelica Shell - OMShell is an interactive session handler that parses and interprets
commands and Modelica expressions for evaluation, simulation, plotting, etc. The session handler
also contains simple history facilities, and completion of file names and certain identifiers in
commands [22].

OMEdit will provide an integrated OMShell, which gives users the facility to interact with OMC
without loading an external OMShell application.

51

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

References

(1]

(2]

3]

(4]

(5]

(6]

(7]

(8]
(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

Martin Otter and Hilding EImqvist. Modelica Language, Libraries, Tools, Workshop and
EU-Project RealSim, June 2001.
https://www.modelica.org/documents/ModelicaOverview14.pdf, accessed June 2010.

OpenModelica. Modelling and simulation environment for Modelica.
http://www.openmodelica.org, accessed December 2010.

PELAB. Programming Environments Laboratory. http://www.ida.liu.se/~pelab/, 4™
Decmber 2010

SimForge. Graphical and textual open source model editor,
http://trac.ws.dei.polimi.it/simforge/, accessed August 2010.

Dymola. Dynamic modeling tool. http://www.dynasim.se, accessed August 2010.

MathModelica. A powerful, flexible and extensible system for multi-engineering modeling
and simulation. http://www.mathcore.com/products/mathmodelica/, accessed August
2010.

IEl. Department of Management and Engineering. http://www.iei.liu.se/?l=en, accessed
June 2010.

Mingw. A Minimalist GNU for Windows. http://www.mingw.org/, accessed July 2010.

GCC. The compiler for the GNU operating system. http://gcc.gnu.org/, accessed July 2010.

Doxygen. Generate documentation from source code.
http://www.stack.nl/~dimitri/doxygen/, accessed July 2010.

TrollTech, Nokia. Qt a cross platform applicaion framework. http://gt.nokia.com/,
accessed Decmeber 2010.

Microsoft. Visual Studio 2010, and integrated development environment.
http://www.microsoft.com/visualstudio/sv-se, accessed November 2010.

OmniORB 4.1.4. A robust high performance CORBA ORB for C++.
http://omniorb.sourceforge.net, accessed July 2010.

Modelica Association. The Modelica Language Specification Version 3.2, March 24th
2010. https://www.modelica.org/documents/ModelicaSpec32.pdf, accessed November
2010.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica,
Wiley-IEEE Press, January 2004.

Bruno Pages. A free UML tool box. http://bouml.free.fr/, accessed November 2010.

Peter Fritzson, Adrian Pop, Martin Sjdlund, Per Ostlund, Peter Aronsson. OpenModelica
System Documentation Version 1.6, November 2010.

James Gosling. An object oriented programming language developed by Sun

Microsystems. http://www.oracle.com/technetwork/java/index.html, accessed
September 2010.
Sun Microsystems. Swing a Java GUI widget toolkit.

http://java.sun.com/products/jfc/tsc/articles/architecture/, accessed September 2010.

Matthias Kalle Dalheimer. A Comparison of Qt and Java for Large-Scale, Industrial-
Strength GUI Development. http://turing.iimas.unam.mx/~elena/PDI-Lic/qt-vs-java-
whitepaper.pdf, accessed September 2010.

53

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

[21]

[22]

Anders Fernstrom, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop.
OMNotebook — Interactive WYSIWYG Book Software for Teaching Programming. In Proc.
of the Workshop on Developing Computer Science Education — How Can It Be Done?
Linképing University, Dept. Computer & Inf. Science, Linképing, Sweden, March 10, 2006.

Adrian Pop, Peter Fritzson. OpenModelica Shell - OMShell. An Interactive environment for
working with the OpenModelica Compiler.
http://openmodelica.org/index.php/developer/tools/136, accessed November 2010.

54

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Appendix A — DC Motor Model

The following DCmotor model is used to illustrate that how a model is created in OMEdit;

DCmotor

model DCMotorCircuit
Resistor resistorl(R = 10);
Inductor inductorl(L = 0.2);
Ground groundl;
Inertia inertial(d = 1);
EMF emfl;
Step stepl;
SignalVoltage signalVoltagel;

equation

connect(stepl.outPort, signalVoltagel.inPort);
connect(signalVoltagel.p, resistorl.p);
connect(resistorl.n, inductorl._p);
connect(inductorl.n, emfl.p);
connect(emfl.rotFlange_b, inertial.rotFlange_a);
connect(signalVoltagel.n, groundl.p);
connect(groundl.p, emfl.n);

end DCMotorCircuit;

55

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

Appendix B — List of OMC APl Commands

loadModel(Modelica)

getlconAnnotation(className)
renameComponent(modelNam
e, oldName, newName)
renameComponentinClass(mo
delName, oldName, newName
getDocumentationAnnotation(

className)

getErrorString()

getClassNames(className)

getPackages(className)

is*(className)

getClassRestriction(className)

getParameterNames(classNam
e)

getConnectionCount(classNam
e)

getNthConnection(className,

number)

getNthConnectionAnnotation(
className, number)

Loads the Modelica Standard Library and stores it in the OMC
symbol table.

Outputs: true

Get the icon annotation representation of className from OMC.
Outputs: String

Renames a component model specified inside the modelName.
Outputs: true

Works similar to renameComponent command. Only difference is
that it only searches the component model inside the modelName.

Outputs: true

Gets the Modelica documentation of the specified className.
Outputs: String

Returns the error string

Outputs: String

Returns the list of classes contained inside className. The
parameter className is optional. If not specified OMC will list all
the classes that are present in global scope.

Outputs: list of classes as string.

Works similar to getClassNames command but instead of
returning all classes it only returns the list of packages.

Outputs: list of packages as string.

* indicates model, package, class, connector, record, function,
block etc.

Outputs: true

Returns the specific Modelica type of which the particular
className is.

Outputs: model, package, class, connector, record, function, block
etc.

Returns the list of parameters of a className.
Outputs: list of parameters as string.

Returns the connections of a specified className.
Outputs: number of connections as string.

Returns the connection listed at location identified by number in a
className.

Outputs: the connection string.

Returns the annotation string of a connection listed at location
identified by number in a className.

Outputs: connection annotation string.

57

Design and Implementation of a User Friendly OpenModelica Graphical Connection Editor

getinheritanceCount(classNam
e)

getComponents(className)

getComponentAnnotations(cla
ssName)

existClass(className)

deleteClass(className)

Returns the number of inherited instances.
Outputs: number of inherited models as string.
Returns a list of components in a className.

Outputs: list as a string.

Returns the list of component annotations in the same order as

components are listed through a getComponents command.

Outputs: list as a string.

Checks if the specified className exists in the OMC global scope.

Outputs: true.
Deletes the specified className from the OMC global scope.

Outputs: true.

58

