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Abstract

As CPU chips integrate more processor cores, computerrsgsaee evolving from
multi-core to many-core. How to utilize them fully and eféiotly is a great chal-
lenge. With message passing and native support of cond¢ypregramming, Erlang
is a convenient way of developing applications on theseegyst The scalability of
applications is dependent on the performance of the uridgrirlang runtime system
or virtual machine (VM). This thesis presents a study on ttaability of the Erlang
VM on a many-core processor with 64 cores, TILEPro64. Thepse is to study
the implementation of parallel Erlang VM, investigate ierformance, identify bot-
tlenecks and provide optimization suggestions. To achieigegoal, the VM is tested
with some benchmark programs. Then discovered problenexarained more closely
with methods such as profiling and tracing. The results sihavthe current version
of Erlang VM achieves good scalability on the processor withst benchmarks used.
The maximum speedup is from about 40 to 50 on 60 cores. Synidaton overhead
caused by contention is a major bottleneck of the system.s€akability can be im-
proved by reducing lock contention. Another major problsrinat the parallel version
of the virtual machine using one core is much slower than dgisntial version with
a benchmark program containing a huge amount of messagagasarther analysis
indicates that synchronization latency induced by unaudeed locks is one of the main
reasons. Low overhead locks, lock-free structures or dhgos are recommended for
improving the performance of the Erlang VM. Our evaluatiesult suggests Erlang is
ready to be used to develop applications on many-core sgstem



Acknowledgements

I would like to thank my examiner, Professor Mats Brorssonhis support and guid-
ance throughout the project. | would also like to express ppreciation to Richard
Green and Bjorn-Egil Dahlberg of the Erlang/OTP team at€soa, who introduced
me the implementation of the Erlang runtime system and areslvae many questions.
Without their help, the project would take longer time to gdate. Moreover, | need to
thank the Erlang/OTP team for providing us benchmark progrd have to thank re-
searchers in Kista Multicore Center at Swedish Institut€ahputer Science (SICS),
e.g. Karl-Filip Faxén, Konstantin Popov, for their valuabBbdvices.



Contents

1 Introduction 6
1.1 Motivationand Purpose . . . . . . . . ... e 6
1.2 Methodologies . . .. . ... . . . . ... . 7
1.3 Limitations . . . . . . . . .. 7
1.4 ThesisOutline. . . ... . . .. . . . . ... e 8
2 Background 9
2.1 TheErlangSystem . .. ... ... .. .. ... .. ... . ..., 9
2.1.1 Introduction. . . . . . . ... 9
2.1.2 ErlangFeatures . . . . . . . ... oo 10
2.1.3 Erlang’s Concurrency primitives . . . . . .. ... ... ... 31
2.2 TILEPro64 Processor . . . . . . . v v i i i i e 13
22,1 CacheCoherence . ... ... . ... ... . ... .... 14
2.2.2 ProcessingEngine . . ... ... ... .. 16
2.23 MemoryConsistency . . . . . . . ... .o 16
2.3 Many-coreSpeedup . . . . . ... 16
24 RelatedWork . . . ... .. .. 17
2.5 Contributions . . . . ... 17
3 Erlang Runtime System 18
3.1 Erlang Process Structure . . . . . ... .. ... ... ... 18
3.2 MessagePassing . ... .. ... . ... .. 21
3.3 Scheduling . ... ... ... . . ... .. 22
3.3 1 Overview . . . ... 23
3.3.2 Numberof Schedulers . . ... ... .. .. ......... 24
3.3.3 Number of Active Schedulers . . . .. ... ......... 26
3.3.4 Migration PathwithUnderLoad . . . . ... ......... 28
3.3.5 MigrationLimit. . . ... ... ... ... ... .. ..... 28
3.3.6 Migration Path with FullLoad . . . . . ... ... ...... 30
3.3.7 WorkStealing. . . ... .. ... ... o 31
3.3.8 Schedulingand Scalability . . . . ... ... ......... 31
3.4 Synchronization. . . ... ... .. ... . ... 33
341 OVEIVIEW . . . . . o e 33
3.4.2 AtomicFunctions. . . . . ... ... oo 35



343 SpinLock. ... .. ... ... 36

3.4.4 Mutual Exclusivelock . . . . . ... ... ... ... 37
3.4.5 Readers-WriterLock . . . . ... ... ... ... ... 38
3.4.6 Condition Variablesand Thread Gate . . ... ... ... .. 39
3.4.7 Lock Functions for Specific Data Structures . . . . . . ... . 39
3.4.8 ProcessLock . .. ... ... . ... o 40
3.4.9 Synchronizationand Scalability . . . ... ... ....... 14
3.5 MemoryManagement. . . . . . . . .. ... 42
351 Overview . . . ... 42
352 sysalloc .. ... ... 43
353 mseg alloc .. ....... ... ... ... .. 46
3.5.4 alloc utilallocators . . . . ... ................ 47
355 fixalloc .......... ... ... ... . ... 49
3.5.6 Process Heap Garbage Collection . . . .. ... ... .... 49
3.5.7 Memory and Scalability . . . ... ... .. ......... 50
Evaluation and Analysis 53
4.1 Experimental Methodology . . . . . .. ... ... ... ... ... 53
4.1.1 \Variability of ExecutionTime . . . . . ... .. ... .... 54
4.1.2 Factors AffectingSpeedup . . . . . ... ... L. 55
413 Methods . ... ... .. . ... 56
4.1.4 BenchmarkPrograms. ... ... ... ... ......... 56
4.2 ResultsandAnalysis . . . . . ... .. ... o 57
4.2.1 Mandelbrot Set Calculation . . . ... ... ......... 57
422 BigBang . ... ... ... .. 63
4.2.3 Erlang Hackbenchon TILEPro64 . ... ... ... ... .. 67
424 Random . . ... .. . ... 71
4.3 SUMMArY . . . . . e e 72
Conclusions and Future Work 74
5.1 Conclusions . . . . ... . . .. 74
52 FutureWork . . . . . .. 75



List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
414
4.15
4.16

TILEPro64 Processor Block Diagram . . . .. ... ......... 4 1
TILEPro64 Tile Block Diagram . . . . . ... ... ... ...... 14
Heap Structure . . . . . . . . . . . .. e 19
Listand TupleLayout. . . . . . .. .. .. ... . ... ....... 20
Scheduling Algorithm . . . . . . . . ... o o 25
Numberofschedulers . . . . .. .. ... ... ... .. ... .... 26
MigrationLimit . . . . . . ... .. L 30
MigrationPath . . . .. ... ... ... ... ... ... ..., 31
Relationshipofallocators . . . . ... ................ 44
ARed-Blacktree . . . ... ... ... ... 45
A Red-Black treewithlists . . . . ... ... ............. 48
Buckets . . . . . ... 48
Memory movementin minor collection . . .. ... ... ...... 51
Memory movementin major collection. . . . . ... ... ..... 51
Speedup of Mandelbrot Set Calculation 250-600 on TIbBRr . . . 58
Speedup of Mandelbrot Set Calculation on TILEPro64 . ...... . 59
Mandelbrot Set Calculation 100-240 on 1 scheduler . . . .. .. 59
Mandelbrot Set Calculation 100-240 on 60 schedulers . . . . . . 60
Number of scheduler 100-240 . . . ... ... ... ... ...... 61
Number of Scheduler250-180 . . . ... ... ... ... ...... 61
Lock Conflicts Mandelbrot Set Calculation 100-240 . . ...... .. 62
Speedup of Big Bang with 1000 Processes on Simulate@i@yst. . 64
Speedup of Big Bangon TILEPro64 . . . . . ... ... ....... 64
Speedup of Each Test Run of Big Bang with 800 ProcessEl &Pro64 65
Lock Conflicts BigBang800 . . . . . . . ... ... .. ....... 66
Memory AllocatorLocks . . . . . . .. ... o 67
Speedup of Hackbench 700 - 500 on TILEPro64 . . . . . ... ... 68
Lock Conflicts Hackbench 700-500 . . . ... ... ... ...... 07
Speedup of Randomon TILEPro64 . . .. ... ... ........ 71
Lock Conflictsof Random180 . . . . . .. .. ... ... ...... 72



List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6

Allocators . . . . . . . 42
Execution Time of Mandelbrot Set Calculation . .. ... .... 59
ProfiingResult . . . . . . ... .. ... ... ... . ... ..., 63
Number of ReductionswithBigBang . . . . . ... .. ....... 66
Execution time on different platforms . . . . . . ... ... ... 68
Execution time and number of instructions . . . . .. ... ...... 69
Profiling Result of Random 180 . . . . .. ... ... ... ..... 72



Chapter 1

Introduction

The number of processing units integrated into a single digackage is increasing.
We will see more and more general-purpose or even embeddeelgsors with dozens,
hundreds, or even thousands of cores. The many-core erpiisaghing. A many-
core processor contains a large number of cores. Althowgthtieshold is not definite,
usually a processor with more than 30 cores can be considsmdny-core. It requires
more efficient techniques than traditional processorsekample, an on-chip network
may be used to interconnect all cores on a chip.

1.1 Motivation and Purpose

How to fully utilize many-core systems imposes a great emgé on software de-
velopers. Programs have to be parallelized to run on diftereres simultaneously.
Workload should be balanced on these cores. The access ofimomesources has
to be synchronized between different tasks, and the synctation overhead must be
as low as possible. We need good programming models, taolanguages to make
software development on many-core platforms easy and ptiveu

Erlang [2][3][4][5] is a language developed for programmaoncurrent, soft-real-
time!, distributed and fault-tolerant software systems. Wittiveasupport of con-
current programming, Erlang provides an efficient way otwafe development on
many-core systems. In Erlang, programmers explicitlydath pieces of work that can
be executed simultaneously by spawning light-weight Eylprocesses. The sched-
ulers in the runtime system distribute workload carried logse processes to differ-
ent cores automatically. Erlang processes are synchmhbizasynchronous message
passing only. When a process has finished some work, it seesisages to other pro-
cesses which are waiting for it. Programmers don’t haveitikthbout locks, mutexes,
semaphores, and other synchronization primitives, sinegetis no shared memory.
All these error-prone and tedious synchronization mecmasiare hidden by the run-
time system. Shared memory and related synchronizatiomadstare only used in the

For a soft-real-time system, it is tolerable if some operatimiss their deadlines



Erlang VM to implement higher level features such as mesgagging. The scalability
of Erlang applications is dependent on the performanceso¥/i.

The objective of this project is to study the implementatbparallel Erlang VM,
evaluate its scalabilifyon a many-core platform, identify bottlenecks and provide
some recommendations for improvement. The study also aeslyajor parts of code
in the VM that are related to the performance on many-coreqs®ors, such as syn-
chronization primitives, memory management and schegulgorithm. Techniques
currently in use are introduced, and better techniquesmarsiigated. The study re-
sult could give insights about the readiness of the Erlangtdidupport the software
development on many-core platforms.

1.2 Methodologies

A state-of-the-art processor TILEProbdeveloped by Tilera is used in this project.
TILEPro64 is a typical general-purpose many-core CPU (&&Rtocessing Unit) with
64 cores. It integrates on-chip networks [40] which are 8xé#3hes to interconnect the
cores, memory subsystem and other peripherals. The onaeltigorks [12] provide
more bandwidth than traditional bus or crossbar intercotioie, and are more scalable
when core count increases.

Some Erlang benchmark programs are utilized to evaluatpahfermance of the
Erlang VM. Test results indicate the current version of Bgl&M achieves good scal-
ability on the TILEPro64 processor. Some benchmarks aehieaximum speeddp
from about 40 to 50 on 60 cores. There is also possibilityrfggiovement by reducing
lock contentions. The major problem found during benchimaris that the parallel
version of the VM using one core is much slower than the setiplarersion with a
benchmark program. Further analysis indicates that spmikation latency induced
by uncontended locks is one of the main causes. Low overloe#d,llock-free struc-
tures or algorithms are suggested to improve the performahihe Erlang VM.

1.3 Limitations

This project only investigates the scalability of the Edamintime system. Ideally,
performance should increase linearly as the number of dnoesases if an applica-
tion has enough parallelism. In other words, the executioe bf a program should
decrease linearly as the core count increases. The metrimfoparison of scalabil-
ity is speedup, which indicates the ratio of improvement paring execution time on
multiple cores with that on a single core.

To evaluate the Erlang runtime system comprehensivelypémormance should
also be compared with other programming languages’, sué asd C++. But that
is not considered in this project, since the objective of hrioject is to investigate the
new problems that are introduced on many-core systems.

2|n this context, scalability means the ability of a systera¢doommodate an increasing number of cores.
Shttp://www.tilera.com/products/processors/TILEPRO64
4Performance gain of utilizing multiple cores



Also, only the core part of the Erlang runtime system is aredy Erlang comes
with a set of development tools, libraries and databaseihwk called OTP (Open
Telecom Platform) [38]. These features are not concernede®er, we focus on the
execution of bytecode, and don't study the execution ofveticompiled code. The
networking and 1/0 (Input/Output) functions are not invgated too.

The benchmarks used are not real applications. They arbetjmbenchmarks or
micro-benchmarks. As a result, the conclusions made fragyptioject may not reflect
the actual performance of the Erlang VM very precisely. Ibétter benchmarked
with a standard benchmark suite, which contains a divetsef seorkloads. But there
is no such suite for Erlang yet. Furthermore, to investiglagescalability on many-
core systems, sequential benchmarks are not used sincgénfrmance cannot be
improved with multiple cores. Even with parallel applicats, if they don’t contain
enough parallelism or their performance is mainly consediby other factors, such
as network bandwidth, they are not used in this project.

Erlang/OTP is an evolving platform. The runtime system irojzed constantly
by its maintainers. In this project, the release R13B04 eduand therefore all the
description and results stated hereafter are based ondhsgor. We also focus on
SMP (Symmetric MultiProcessing) VM which is the paralleksien of the Erlang
VM. The newer R14B released near the end of this project ma#asiperformance
on many-core processors except optimized readers-woitd?.| In addition, the test
and analysis are based on the Linux operating systems (@&sustherwise specified.
The SMP Linux OS used is specially built by Tilera for TILEBdowith kernel version
2.6.26.7-MDE-2.1.0-rc.94454, and the compiletils-cc with version 2.1.0-rc.94454.

1.4 Thesis Outline

The thesis is organized as follows. In Chapter 2, backgradrietlang, TILEPro64

processor and speedup calculation is described. Somedelark and the contribu-
tions of this thesis are also introduced. Chapter 3 presgutly result of the imple-
mentation of the Erlang VM in more details. Emphasis is git@aspects that have
a great impact on many-core performance, such as messagjegya/nchronization
primitives, memory management and scheduling. In Chaptevauation results are
described and analyzed. Then some optimization suggsssiengiven. Chapter 5
concludes the thesis and makes recommendations for figsearch.

5A lock that can be acquired by either multiple readers or oritew



Chapter 2

Background

2.1 The Erlang System

2.1.1 Introduction

Erlang is a general-purpose, concurrent, and functiorgamming language devel-
oped by Engineers from Ericsson in 1980s. It was inventeddwige a better way
of programming telecom applications [4]. Telecom systemeshaghly concurrent,
distributed and soft real-time systems. They are inheyatthcurrent. For example
each telephone call is an independent transaction exdepaating with other support
functions such as billing occasionally, and there are a hugeber of such transac-
tions ongoing simultaneously in a system. Telecom apjinatare also intrinsically
distributed. A phone call is served by many network elem#rdsare physically dis-
tributed in different locations. Even in the same equipméifterent phone calls may
be processed by different boards. In telecom software, maeyations have timing
requirements. Furthermore, telecom systems have to betrahd fault-tolerant. The
average downtime of a telecom system should be less than mifewtes per year.

Today, these requirements are applicable to many otheicafiphs, such as servers,
financial systems and distributed databases [8]. As a rdsilidting gains more popu-
larity in these areas. Interest in Erlang also increasegdasuitability of software
development on multi-core processors. With its supporighftiweight concurrency,
it is very convenient to develop parallel applications. Bmrer, the message passing
paradigm provides a higher level abstraction of synchiation mechanism than locks.
As the core count increases, cache coherence will be exgemsid shared memory
synchronization cost will increase dramatically due tdloontention [18]. Although
lock contention can be reduced by some techniques suchagalditioning, it is not
sustainable in many-core era. Regarding a many-core moras a distributed system,
in which a node consists of a core or a group of cores, and peirig synchronization
between nodes by message passing might be more suitablelveh@mmber of cores is
very large [6]. Erlang applications can be ported to mamgsgstems without change
if parallelism is sufficiently exposed at the beginning.

Erlang is also a high level declarative language. Decladsinguages are expres-



sive. Programs developed in Erlang are usually more coiiegsetheir counterparts
implemented in other traditional languages, such as C angd &nd it also takes less
time to develop [32]. Shorter time to market can be achielredddition, the resulting
code is more readable and maintainable.

While Erlang is productive, it is not a solution for all needad it is by no means
trivial to write correct and efficient Erlang programs. Ihist suitable for some applica-
tion domains, such as number-crunching applications aaphics-intensive systems.
Ordinary Erlang applications are compiled to bytecode hed interpreted or executed
by the virtual machine which is also called emulator. Bytieis an intermediate repre-
sentation of a program. It can be considered that the soordis compiled according
to an intermediate instruction 3ethat is implemented by the virtual machine and dif-
ferent from the one implemented by the underlying real pgsae The bytecode is
translated into the instructions that can be run on the readhine by the emulator.
Because of this extra translation step, applications ngan a VM are usually slower
than their counterparts that are directly compiled into hirae code. If more speed
is required, Erlang applications can be compiled into matachine code with HIPE
(High Performance Erlang System) compiler [21][22][35]utBf an application is
time critical and compute-intensive, and its executioretshould be reduced as much
as possible, such as some scientific programs, Erlang idwaysa good choice [10]
and a fast low-level language may be better. In one wordngréhould be used in the
right place.

2.1.2 Erlang Features
In general, Erlang has the following featufes

e Concurrency - A separate task, or piece of work, can be entatpsd into an Er-
lang process. It is fast to create, suspend or terminatelandeprocess. Erlang
process is much more light-weight than OS prodesshread. An Erlang sys-
tem may have hundreds of thousands of or even millions ofwwant processes.
A process’ memory area can vary dynamically according taireqnents. Each
process has a separate memory area, and there is no sharedym#&sma result,
a process cannot corrupt another process’ memory. Asynobsomessage pass-
ing is the only way of inter-process communication provitbgdhe language.
Message sending is non-blocking. A process continues érecafter sending
a message. A process waiting for a message is suspenderkifsm® matching
message in its mailbox, or message queue, and will be infbrien a new
message comes.

¢ Robustness - Erlang supports a catch/throw-style exaegétection and recov-
ery mechanism. A process can also register to receive aqatiifn message
if another process terminates even it is executing on ardiftemachine in a

1The set of instructions implemented by a processor

http://www.erlang.org/white_paper.html

3A process is an instance of a program that is being executed.

4A thread is a part of a process that can be executed condyreent scheduled by operating system
separately.
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network. With this feature, processes can be supervisedhisyrs If a process
crashes, it can be restarted by its supervisor.

e Hot code replacement - Due to the high availability requiatof a telecom
system, It cannot be halted when upgrading. Erlang provadeay of replac-
ing running code without stopping the system. The runtinstesy maintains a
global table containing the addresses for all the loadedutesd The addresses
are updated when new modules replace old ones. Future watlka functions
in the new modules. The old code is phased out. Two versioaswddule can
run simultaneously in a system.

e Distribution - Erlang applications can be executed in aritisted environment.
An instance of Erlang virtual machine is callechade Multiple nodes can be
run on one machine or several machines which may have ditfér@rdware
architectures or operating systems. Processes can beegpémwnodes on other
machines, and messages can be passed between differentradtly as on one
node.

e Soft real-time - Erlang supports developing soft real-tmpglications with re-
sponse time demands in the order of milliseconds.

e Memory management - Memory is managed by the virtual machirtemat-
ically. It is not allocated and deallocated explicitly by eogrammer. Every
process’ memory area is garbage collegtegparately. When a process termi-
nates, its memory is simply reclaimed. This results in atsarbage collection
time and less disturbance to the whole system. Also a be&ttditime property
can be achieved. If the memory of all processes is garbatprted at the same
time, without a sophisticated memory collector that canrdoémental garbage
collection [36] the system will be stopped for a long time.

In addition to the above main features, Erlang is a dynanyitgbed language. There
is no need to declare variables before they are used. A vaigbound to a value when
it first occurs, and the value cannot be changed later, whichlled single assignment.
All variables are local to the functions in which they are bduGlobal variables don’t
exist. There is an exception that data associated with ade¥e stored in the process
dictionary and retrieved in the life time of that processioethey are erased. It behaves
like a global variable. The value associated with a key cao bé changed. Using the
process dictionary is not encouraged, since the resultiogram is hard to debug and
maintain. Erlang provides some way of sharing data, sucha&TS (Erlang Term
Storage) table [15] and the Mnesia database [31].

Erlang’s basic data types anembery atom function type binary, reference pro-
cess identifigrandport identifier Numberdncludeintegersandfloats An integercan
be arbitrarily large. A large number that doesn’t fit into ards represented with arbi-
trary number of words, which is callddgnum The precision of a floating-point value
is the same as that of a 64-bit double precision number deifintnd IEEE 7541985

5Garbage collection is to reclaim the memory occupied by dbjacts that are no long in use. It may
compact the remaining data by moving them closer.
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standard Atomsare constant literals. It is like enumeration types in othaguages.

In the Erlang VM there is a global table storing actual valoelgerals of all the atoms
used in the system, and atoms are indices to the table in Tdwre is no separate
Booleantype. Instead, the atonisue andfalseare used with Boolean operators. Since
Erlang is a functional programming languagéjactioncan be considered as a type of
data. Functions can be passed as arguments to other fusiaiiaan be results of other
functions. They also can be stored in composite data stessuch atuplesandlists,

or sent in messages. Binaryis a reference to a chunk of raw, untyped memory, or a
stream of ones or zeros. Itis an efficient way of storing argferring large amounts of
data. Because other data types are heavily tagged [2][38¢haneans in the internal
representations there are extra tags indicating the tyfpéata objects. For example,
each integer has a tag. With binary, less tag overhead dinted. A binary can be
manipulated on bit level. It's a good way to implement messay packets of com-
munication protocols like HTTHReferenceare unique values generated on a node,
and can be used to label and identify messaBescessandport identifiersrepresent
different processes and ports.

Erlangportsare used to pass binary messages between Erlang nodes anthext
programs which may be written in other programming langsagech as C and Java.
An external program runs in a separate OS process, and isct@thto a port via
pipe$ on Linux. In an Erlang node, a port behaves like a processe&ahn port, there
is an Erlang process, hamed connected process, respofwiltieordinating all the
messages passing through that port.

Erlang’s composite data types argles lists andrecords Tuplesandlists are
used to store a collection of items. Items are data valués#mebe of any valid Erlang
types. The difference between tuples and lists is that thepcessed differently. We
can only extract particular elements from a tuple. But lésta be split and combined.
Especially, a non-empty list can be broken intoead the first element in the list, and
atail, a list that contains all the remaining iten@haractersandstringsare not formal
data types in Erlang. They are represented by integersstsafiintegers respectively.
Recordis similar to structure in C programming language. It is adstucture with a
fixed number offields. Fields have names and can be accessed by their names, while
in tuples, fields (items) are accessed by positions.

Erlang programs consist ofiodules each of which contains a number of related
functions Functions can be called from other modules if they are eitlgliexported.

A function can include severalauses and a clause is chosen to execute at runtime
by pattern matching according to the argument passed. dcdaasn’t provide loop
constructs, so that loops are built with recursive functialis. To reduce stack con-
sumption, tail call optimization is implemented. A new $tdame is not allocated
when the last statement of a function is a call to itself.

The Erlang language is concise, but it has a large set ofipuiitnctions (BIFs).

In particular, the OTP middleware provides a library of staml solutions for building
telecommunication applications, such as a real-time da®lservers, state machines,
and communication protocols.

6Pipe is used to communicate with a process by reading fronritingrto associated file descriptors.
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2.1.3 Erlang’s Concurrency primitives

Spawn “I" (send), andreceiveare Erlang’s primitives for concurrent programming.
These primitives allow a process to spawn new processescanichunicate with other
processes through asynchronous message passing. Whemirgpaprocess, node
name, module name, function name, and arguments to theidararte passed to the
built-in functionspawn() A process identifier is returned if the spawning is sucegssf
Messages are sent with tRed ! Messageonstruct, in whichPid is a process identifier,
andMessages a value of any valid Erlang data type. Tieeeivestatement is used to
retrieve a message from a process’ message queue, whidnehiadéwing form:

receive
Patternl when Guardl> expressionsl;
Pattern2 when Guard2> expressions2;
Other —> expressionsother
after % optional clause
Timeout —> expressionstimeout
end

In the statemengfter clause (timeout mechanisnotherclause anduardsare op-
tional. When aeceivestatement of a process is executed, the VM checks each neessag
in the message queue of the process to see whether it is mgumhé of the patterns.
The patterns are matched sequentially. If a pattern is rmg@nd the corresponding
guard, which is a test, succeeds, the expressions follow thagpasire evaluated, and
the following patterns are not matched any more. When tlermimessage in the
gueue or no matching message, the process is suspendedhaadlsd out. A sus-
pended process waiting for a message becomes runnabledkives a new message,
and is appended to the run queue of the scheduler which tcegs@s associated with.
Then when the process is selected to execute, the new masgsageched to the pat-
terns in the receive statement again. It is possible that¢éiemessage doesn’'t match
any patterns, and the process is suspended once more. B@sdtie last pattewther
is set to match all messages, and if a message doesn’t matghemious patterns, the
expressions following the last pattern will be executed dre@lmessage is removed
from the message queue.

When there is aafter clause and the process is suspended waiting for a message, it
will be woken up after Timeout milliseconds if it doesn’t edee a matching message
during that time and then the corresponding expressionsamuted.

2.2 TILEPro64 Processor

Figure 2.1 is the block diagram of TILEPro64 processor. AHHro64 CPU integrates
64 identical processor corestdesinterconnected by Tilera's iMesh on-chip networks.
There are six independent networks for different purpolealso integrates memory
and some 1/O controllers. Each tile is a complete processtr bl (Level 1), L2
caches and a switch connecting the tile to the 8X8 meshesoassn Figure 2.2. A
full operating system can run on each tile independentithisyproject, we run a single

13
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Figure 2.2: TILEPro64 Tile Block Diagram
(Downloaded from Tilera website)

SMP Linux OS on multiple tiles, and the processor used rum®atMHz frequency
with 4 GB (GigaByte) main memory.

2.2.1 Cache Coherence

A cacheis a memory component between processor and main memorgdacing
average memory access time. Usually a processor is mueh thah the main memory
which is typically a DRAM (Dynamic Random Access Memory). riRaularly, the
interval between the moments a memory access request edissd the requested
memory can be used by a processor, i.e. memory access |ateratgtively large. The
cache is faster and smaller than the main memory. It storesameblocks recently
accessed by processors. If an instruction or data requiegi@grocessor can be found
in the cache later, which is a cache hit, the access is mutdr than fetching it from



the main memory every time. But if there is a cache miss thieuoson or data still
has to be retrieved from the main memory. Data are transf&etveen the cache and
the main memory as blocks with a fixed size and stored in cdobs.| If a part of a
memory block is requested by a processor and its cache ddes@ a valid copy of
that block, the whole block is copied from the main memorysoAlwhen a part of
a memory block stored in a cache is modified and has to be wiigek to the main
memory, the whole block is transferred.

The memory address used by an OS process is virtual addriffesebt processes
may use the same virtual addresses, but they are mappedifieient areas in the
main memory except for some shared objects. In addition, ongispace is divided
into many equally sized blocks known pages Besides instruction and data caches,
there are also caches for buffering information about thppimey between virtual ad-
dresses and physical addresses of the memory pages, whichlkd TLBs (Transla-
tion Lookaside Buffer).

System performance is improved with cache by exploring tirecjple of locality.
Many programs exhibit good spatial locality and temporahldy. Spatial locality
means if a memory location is accessed (referenced), itrislikely that its nearby
locations will be accessed in the near future. For instaimsgructions in a program
are usually executed sequentially except when branchurigins are encountered.
Temporal locality means if a memory location is referended, very likely that this
location will be referenced again in the near future. Fomapie, instructions in a loop
are executed repeatedly.

The cache subsystem is critical for providing high perfonoea Multiple levels of
caches can be included in a computer system. In each tile 8fEPFo64 processor,
an L1 instruction cache is 16 KB (KiloByte) and direct-magpeith cache line size
64 bytes. For a direct-mapped cache, each memory block dgrbercached in one
cache line according to its physical address. Each L1 dataeda 8 KB and two-way
associative with cache line size 16 bytes. For a two-way s&d@ative cache, each
memory block can be cached at any cache line of a set compistitwo lines. Each
L2 cache is a unified cache containing data and instructidins. 64 KB and four-
way associative with cache line size 64 bytes. Each L1 in8tm or data TLB has 16
entries, and is fully associative. In a fully associativetes a memory block can be
placed in any cache line.

The TILEPro64 processor provides hardware cache cohefg8Févhile it could
be disabled). The data stored in different caches are ¢ensisvhich means they can’t
contain different values for the same data. L1 cache is fgriimevery tile, while all
the L2 caches form a common and distributed L3 cache (4 Magaliyach cache line
has a home tile. Ihash-for-homéeature is enabled, cache lines in a memory page are
homed at different tiles according to a hash function, ah@mtise they are homed at
the same tile. By default, only stacks are not hashed-fonéhoFor a multithreaded
program, the stack of each thread is homed at the tile wheréhtiead is running on.
When a processor core accesses a variable or a memory lnghitics not in the L1 or
L2 cache (cache miss) of the same tile, it will be fetched fthenL2 cache of its home
tile which can be regarded as L3 cache. The L2 cache in the literie responsible
for data consistency.
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2.2.2 Processing Engine

TILEPro64 is a 32-bit VLIW (Very Long Instruction Word) pressor. Two or Three
instructions can be combined into a 64-bit instruction Bemwhich is scheduled by
compiler. The processing engine in a tile has 3 pipelined therefore up to 3 instruc-
tions can be executed per cycle. The instruction bundlessaued to the pipelines in
order. The pipelines are not stalled on load (read) or steriés) cache misses. It keeps
executing subsequentinstruction bundles until the dataetually required by another
instruction. That means if two instructions read or writélifferent memory locations,
they may finish execution or retire out of program order, whille memory dependen-
cies are enforced. This achieves better performance byapgng cache miss latency
with useful work. When a cache miss happens, it will intraglbigh latency, since the
data has to be fetched from the caches with higher levels) maimory or even hard
disk, which are slower. Because the read and the write teréifit addresses can be
retired out of order, special cares have to be taken wherlalgng parallel programs.
Memory fence instruction can be used to guarantee thateatgmory operations be-
fore it are finished and visible to other tiles before therunstions that follow it are
executed.

2.2.3 Memory Consistency

Memory consistency model [18] specifies the orders in whiemmry operations espe-
cially data writes of a processor core are observed by otiressc TILEPro64 employs
a relaxed consistency model [37]. Memory store operati@rfopmed by a tile be-
come visible simultaneously to all other tiles, but the isguile may see the results
earlier than other tiles. Because the results can be bypés$ater instructions in the
execution pipelines of the issuing tile before they aredfamed to the L2 cache in its
home tile. As a result, although data dependencies, suchas(Read After Write),
WAW (Write After Write) or WAR (Write After Read) to the sameamory location,
are enforced on a single tile, other tiles may see them irewdifft order. The order
can be established by the memory fence instruction. Anatisénuction test-and-set is
atomic to all tiles.

The main memory is shared by all tiles. A traditional sharesmary programming
model can be used to develop concurrent or parallel softagpéications. It also sup-
ports message passing programming paradigm. Programareexplicitly pass short
messages between tiles through one of the interconneatiovorks, User Dynamic
Network (UDN).

2.3 Many-core Speedup

Many-core speedup is the ratio
Program execution time on one core
Speedup- Program execution time on multiple cores
A program’s speedup can be calculated using Amdahl’s Lay [Adahl’'s Law
states that the performance improvementto be gained framg geme faster mode of

execution is limited by the fraction of the time the fasterda@an be used, that is
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. Fractiongphanced
(1—Fractiongnhanced+ SpeedUpnnancod

Fractionenhanceds the fraction of code can be enhanced by using multiplescore
can be run in parallel. As a result, the overall speedup aahle is affected by the
ratio of the sequential and parallel portion of a progranthla project, since we don't
investigate how much programs can be parallelized withrigrlave are mainly inter-
ested in benchmark programs with high parallelism. Bencksaith great sequential
portion complicate the problem. But pure parallel programgsrare. When measuring
execution time, we try to avoid the sequential part as mugoasible.

Speedu@erall =

2.4 Related Work

Interest in suitability of software development with Edpan multi-core processors
is increasing. For instance, Convey et al. [10] investighéerelative merits of C++
and Erlang in the implementation of a parallel acoustic ragihg algorithm. Marr et
al.[27] analyze virtual machine support for many-core dedtures including Erlang.
But as far as we know, there are few literatures presentsearehes on the scalability
of Erlang on multi-core or many-core systems more comprsiely.

Many parts of the Erlang VM implementation are investigatedifferent litera-
tures. [2] gives an overview of initial Erlang implementeti [17] documents the first
attempt of building multithreaded Erlang VM, while the aemt implementation is not
quite like that one. Erlang process’ héachitecture, message passing and garbage
collection are introduced in [23]. Implementations of gagb collection schemes cur-
rently in use for process-local heap and binary heap arebaisfly mentioned in [36].

2.5 Contributions

The major contribution of this thesis work is that we provétene insights about the
feasibility and readiness of software development on naomg-platforms with Erlang.
We also expose the aspects of the Erlang VM that can be ogtilméspecially regard-
ing to the scalability on many-core systems. In addition,imteoduce many parts
of the Erlang VM implementation which may hinder performaffom improving on
many-core systems in more details, such as synchronizatiemory management,
message passing and scheduling. In particular, there wdstaided description of the
scheduling algorithm of the parallel Erlang VM in literagsr

"Heap is an area for dynamically allocated memory. It is madasy C library functions like malloc and
free.
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Chapter 3

Erlang Runtime System

Currently BEAM! is the standard virtual machine for Erlang, originatingrirdurbo
Erlang [16]. It is an efficient register-based abstract rivee?h The first experimental
implementation of SMP (parallel) VM occurred in 1998 as ailesf a master degree
project [17]. From 2006, the SMP VM is included in official eakes.

The SMP Erlang VM is a multithreaded program. On Linux, ilizéis POSIX
thread (Pthread) libraries. Threads in an OS process stmegrery space. An Erlang
scheduler is a thread that schedules and executes Erlaogsgas and ports. Thus it
is both a scheduler and a worker. Scheduling and executigmazfesses and ports
are interleaved. There is a separate run queue for eachuehstbring the runnable
processes and ports associated with it. On many-core marsgghe Erlang VM is
usually configured with one scheduler per core or one sckegel hardware thread if
hardware multi-threading is supported.

The Erlang runtime system provides many features oftercégsd with operating
systems, for instance, memory management, process soigedand networking. In
the remainder of this chapter, we will introduce and anatyzedifferent parts of the
current SMP VM implementation (R13B04 as mentioned befatalh are relevant to
the scalability on many-core processors, including presésicture, message passing,
scheduling, synchronization and memory management.

3.1 Erlang Process Structure

Each Erlang process includes a process control block (RC&ack and a private heap.
A PCB is a data structure containing process managemenmniratmn, such as process
ID (IDentifier), position of stack and heap, argument reggistand program counter.
Besides the heap, there might be some small heap fragmeiats are merged into the

main heap after each memory garbage collection. The hegmémats are used when
there is not enough free space in the heap and garbage mrleahnot be performed

to get more free memory. For instance, when a process isrggadnessage to another

1Bogdans/Bjorn's ERLANG Abstract Machine
2A model of a computer hardware or software system
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Figure 3.1: Heap Structure

process, if the receiving process doesn’t have enough hpeege $0 accommodate the
incoming message, the sending process doesn’t invoke agmntwollection for the
receiving process in the SMP VM. In addition, binaries latpan 64 bytes are stored
in a common heap shared by all processes. ETS tables aretaled 81 a common
heap. Figure 3.1 illustrates these main memory areas (dreralso other memory
areas, such as for atom table).

As Figure 3.1 shows, the stack and heap of an Erlang procedsaated in the
same continuous memory area which is allocated and managether. From the
standpoint of an OS process or thread, this area belongs teedp, which means
the stack and heap of an Erlang process actually are stordgkiheap of its VM.
In the area, the heap starts at the lowest address and gravesdsy while the stack
starts at the highest address and grows downwards. Heaftoawean be detected by
examining the heap top and the stack top.

The heap is used to store some compound data structures stieples, lists or
big integers, while the stack is used to store simple dataefiedences (or pointers) to
compound data in the heap. There are no pointers from thetbalp stack, which
eases garbage collection. Figure 3.2 shows an example ofistnand tuples are
stored in the stack and heap.

Erlang is a dynamically typed language. A variable is asgedi with a type at
runtime. Its data type cannot be determined at compile timthe internal implemen-
tation of data, there are tags indicating the types. The tvgixdeast significant bits of
a word, which is 32 bits on a 32-bit machine or 64 bits on a @4nbichine, are used as
atag. For a tuple, the value in the stack contains a pointen bject in the heap. The
object is stored in a consecutive memory area. It contalibalelements which can
be of any valid Erlang types, even tuples or lists. It alsdudes a header indicating
the length of the tuple. A tuple’s elements can be locatetsfase it is an array.

On the other hand, a list is implemented as a linked list. &lieeno header indi-
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Figure 3.2: List and Tuple Layout

cating its length. Each element of a list is followed by a peirto the next element
except the last element which is followed by a null pointek Nliwo elements may be
separated by other data in the heap. Lists are used extbnisirlang, because they
can be appended, joined or split. Figure 3.2 also shows theamelayout of a list,
List C, which has been constructed by appending List A toRidtirst all the elements
of List B were copied, and then the last pointer was modifiedl @minted to the first
element of List A. If List B is long, the operation would takdomg time to complete.
Thus it is better to append a long list to a short list. Projg¢nhanipulation is essential
to write efficient Erlang applications. From the structufadist, we also can see that
to get the size of a list, all the elements have to be traversed

The structure of List C shows that there is some memory shaetween variables
in a process. But it is not between processes. If List C is isemimessage to another
process, the whole list has to be copied. The message indb&irgy process cannot
have a pointer to list A in the sending process. In additibhist A is sent to the same
receiving process later, the content of List A will be cop#ggin. This will result in
more memory usage in the receiver than the sender.

An Erlang process starts with a small stack and heap in ocdsupport a huge
number of processes in a system. The size is configurablehendefault value is
233 words. In general, Erlang processes are expected ttlstear and have small
amounts of live data. When there is not enough free memorkarheap for a pro-
cess, it is garbage collected, and if less memory can be fresdrequired it grows.
Each process’ heap is garbage collected independentlys Wwhen one scheduler is

20



collecting garbage for a process, other schedulers caneeasuting other processes.
The private heap architecture has high message passiniyeawksince messages are
copied from the senders’ heaps to receivers’ heaps. Howeitlerthis architecture
garbage collection causes less disturbance to the system avery process is sepa-
rately garbage collected, and when a process exits, its meisigimply reclaimed.
Besides the default private heap architecture, the Erlavigcein also be compiled to
use a hybrid architecture [23]. In hybrid mode, private gatastored in private heaps
while messages are stored in a common heap for all procédsssage copying is not
needed in that mode, and message passing has a constantsinby passing pointers
to messages. The problems with the hybrid architecturethesgarbage collection of
the common message heap may stall all processes’ execltimngarbage collector
is not very sophisticated and the garbage collection tintagher since the root set
contains all processes’ working data. It needs an incremhgatbage collection mech-
anism [36]. Currently the hybrid heap version of the Erlang ¥ experimental and
doesn’t work with SMP. It also lacks compiler support. Thenpder has to predict
that which variables are likely to be sent as messages, amdabsigns them to the
common heap.

3.2 Message Passing

Message passing between two processes on the same nodéeimented by copying
the message residing on the heap of the sending process bedpeof the receiving
process. Inthe SMP VM, when sending a message, if the reggivbcess is executing
on another scheduler, its heap cannot accommodate the ngsageeor another mes-
sage is being copied to it by another process, the sendinggsallocates a temporary
heap fragment for the receiving process to store the newages3 he heap fragments
of a process are merged into its private heap during gark@peton. After copying,
a management data structure containing a pointer to thalaviessage is put at the
end of the receiving process’ message queue. Then the irggerocess is woken up
and appended to a run queue if it is suspended. In the SMP \éMntssage queue of
a process actually consists of two queues. Other processdssessages to the end of
its external or public queue. It is protected by locks to eghimutual exclusion (see
Section 3.4). A process usually works on its private queuennietrieving messages
in order to reduce the overhead of lock acquisition. Butghinh't find a matching mes-
sage in the private queue, the messages in the public queueraoved and appended
to the private queue. After that these messages are mat¢hedoublic queue is not
required in the sequential Erlang VM and there is only onaugue

If a process sends a message to itself, the message doeshtiorige copied. Only
a new management data structure with a pointer to it is akaca he management data
in the public queue of the process cannot contain pointésstsxheap, since data in the
public queue are not in the root set of garbage collectiona fesult, the management
data pointing to a message in the heap is put to the privateequhich is a part of
the root set, and otherwise the message would be lost duairitage collection. But
before the management data pointing into the heap is appgerddier management
data in the public queues have to be merged into the privateeyurhe order in which
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the messages arrive is always maintained. Messages in dpefitagments are always
reserved during garbage collection. The message queue rafcass is a part of its
PCB and not stored in the heap.

A process executingeceivecommand checks its message queue for a message
which matches one of the specified patterns. If there is alimgjanessage, the cor-
responding management data are removed from the queueelatetrinstructions are
executed. If there is no matching message, the processisraisd. When it is woken
up after receiving a new message and scheduled to run, thenesgage is examined
against the patterns. If it is not matching, the processdpanded again.

Since messages are sent by copying, Erlang messages acteexfzebe small.
This also applies to arguments passed to newly spawnedgs@&e The arguments
cannot be placed in a memory location that is shared by diftggrocesses. They are
copied every time a process is spawned.

Message passing can affect the scalability of the Erlang Vivhany-core proces-
sors. First, on many-core systems access to the externahgeegueue of a process
has to be synchronized which introduces overhead. Sedoad)/lbcation and release
of memory for messages and their management data alsoeexymichronization. All
the scheduler threads in a node acquire memory from a comneomony space of an
OS process which needs to be protected. A memory block forssage or a manage-
ment data structure may be allocated from a memory pool wimeseory can only be
assigned by the sending scheduler. But if the message orgearet data structure is
sent to a process on another scheduler, when the memoryibldelallocated and put
back to its original memory pool, synchronization is stifjuired to prevent multiple
schedulers from releasing memory blocks to the pool simettasly. Third, if many
processes can run in parallel, their messages can be senbider that is quite differ-
ent from the order in which they are sent on the sequentiahigrVVM. When messages
arrive differently, the time spent on message matching eay) which means the work-
load can change. As a result, the number or frequency of megsessing in an Erlang
application has an influence on the scalability. It is al§ecéd by how the messages
are sent and received.

3.3 Scheduling

There are four types of work that have to be scheduled, psopest, linked-in driver
and system-level activity. System-level tasks includeckimg 1/0 activities such as
user input on the Erlang terminal. Linked-in driver is aretiechanism for integrat-
ing external programs written in other languages into Eylawhile with normal port
the external program is executed in a separate OS procestrnal program written
as a linked-in driver is executed as a thread in the OS pradessErlang node. It also
relies on a port to communicate with other Erlang procesBes following description
of scheduler is focused on scheduling processes.
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3.3.1 Overview

Erlang schedulers are basedreductioncounting as a method for measuring execution
time. A reduction is roughly equivalent to a function calin& each function call may
take a different amount of time, the actual periods are rosdme between different
reductions. When a process is scheduled to run, it is agsigmeimber of reductions
that it is allowed to execute (by default 2000 reductions #8B04). The process can
execute until it consumes all its reduction quantum or pats&vait for a message. A
process waiting for a message is rescheduled when a new geessmes or a timer
expires. Rescheduled or new processes are put to the endedpgonding run queues.
Suspended (blocked) processes are not stored in the ruegjueu

There are four priorities for processesiaximum high, normal andlow. Each
scheduler has one queue for the maximum priority and anagheue for the high
priority. Processes with the normal and low priority shames$ame queue. Thus in the
run queueof a scheduler, there are three queues for processes. Bhasia queue
for ports. The queue for each process priority or port isecgdriority queuein the
remainder of the report. In total, a scheduler’s run quemsists of four priority queues
storing all the processes and ports that are runnable. Theewof processes and ports
in all priority queues of a run queue is regarded as run quength. Processes in the
same priority queue are executed in round-robin order. Raobin is a scheduling
algorithm that assigns equal time slice (here a number afatzhs) to each process
in circular order, and the processes have the same prioréyéecute.

A scheduler chooses processes in the queue with the maximaritypto execute
until it is empty. Then it does the same for the queue with igh priority. When there
are no processes with the maximum or high priority, the gses with the normal
priority are executed. As low priority and normal priorityggesses are in the same
queue, the priority is realized by skipping a low priorityopess for a number of times
before executing it.

Another important task of schedulers is balancing worklmadhultiple processors
or cores. Both work sharing and stealing [7] approaches en@ayed. In general,
the workload is checked and shared periodically and retimfrequently. During a
period, work stealing is employed to further balance thekload. Every period one
of the schedulers will check the load condition on all schedu(or run queues). It
determines the number of active schedulers for the nexbgdrased on the load of
the current period. It also computes migration limit, whishthe target number of
processes or ports, for each priority queue of a schedugsdoapon the system load
and availability of the queue. Then it establishes migrapaths indicating which
priority queues should push work to other queues and whidrifyr queues should
pull work from other queues.

After the process and port migration relationships ardesktpriority queues with
less work will pull processes or port from their counterpattiring their scheduling
time slots, while priority queues with more work will pushska to other queues.
Scheduling time slots are interleaved with time slots (iges)) for executing processes,
ports and other tasks. When a system is under loaded and stméusers are inac-
tive, the work is mainly pushed by inactive schedulers. timaschedulers will become
standby after all their work is pushed out. But when a systefull load and all avail-
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able schedulers are active, the work is mainly pulled by dalees which have less
workload.

If an active scheduler has no work left and it cannot pull wiookn another sched-
uler any more, it tries to steal work from other schedulefghé stealing is not suc-
cessful and there are no system-level activities, the sdbethread goes into waiting
state. Itis in the state of waiting for either system-lewahaties or normal work. In
normal waiting state it spins on a variable for a while wajtto be woken by another
scheduler. If no other scheduler wakes it up, the scheduleatl is blocked on a con-
ditional variable (see Subsection 3.4.6). When a schedulead is blocked, it takes
longer time to wake it up. A scheduler with high workload withke up another wait-
ing scheduler either spinning or blocked. The flowchart guiFé 3.3 shows the major
parts of the scheduling algorithm in the SMP VM. The balantecking and work
stealing are introduced in more details in the remaindehisfdection.

3.3.2 Number of Schedulers

The load of an Erlang system (a node) is checked during a atihgdslot of an ar-
bitrary scheduler when a counter in it reaches zero. Theteoimeach scheduler is
decreased every time when a number of reductions are exidoyfgrocesses or ports
on that scheduler. The counter in the scheduler which chealefice is reset to a value
(default value 2000*2000 in R13B04) after each check. Assaltethe default period
between two balance checks is the time spent in executin@*2000 reductions by
the scheduler which does the balance checks. If a schecadezxtecuted 2000*2000
reductions and finds another scheduler is checking baléne#, skip the check, and
its counter is set to the maximum value of the integer type.ifit@is in every period
there is only one scheduler thread checking the load.

The number of scheduler threads can be configured whemstdngé Erlang VM.
By default it is equal to the number of logical processorshia system. A core or
hardware thread is a logical processor. There are alsadiff@ptions to bind these
threads to the logical processors. User can also set onlst afghe scheduler threads
on-line or available when starting the Erlang VM, and by défall schedulers are
available. The number of on-line schedulers can be chartgadt@#me. When running,
some on-line schedulers may be put into inactive state dotpthe workload in order
to reduce power consumption. The number of active scheslidexet during balance
checking. It can increase in the period between two consedodlance checks if some
inactive schedulers are woken up due to high workload. Sdrtteactive schedulers
may be out of work and in the waiting state.

As illustrated in Figure 3.4, the active run queues (or salexd) are always the
ones with the smallest indices starting from 0 (1 for schedy) and the run queues
which are not on-line have the largest indices. Off-lineestifiers are suspended after
initialization.

The objectives of balance check are to find out the number tofeaschedulers,
establish process and port migration paths between diffesxghedulers, and set the
target process or port number for each priority queue. Thedfiep of balance checking
is to determine the number of active schedulers for the Iméggnof the next period
based on the workload of the current period. Then if all thdilne schedulers should
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be active, migration paths and limits are determined toesivarkload between priority
queues.

3.3.3 Number of Active Schedulers

There are two flags in the data structure for each run queuesitialy whether it has
been in the waiting state during a whole balance check peratithe second half
period (1000*2000 reductions), which are out of work flag &atf time out of work
flag. With these flags, the number of schedulers which arernie\tee waiting state
for the full period, Nty shes and the number of schedulers which are never in the
waiting state for the second half peridsha ¢ sheg Can be counted. The number of
active schedulers for the beginning of the next perfgiive next, is determined with
the following formula.
{Non“ne if Nhait shed=NonlineOr multi-scheduling is unblocked
Nactive_ next = -
Nact nexe  Otherwise
Nactive next iS Set to the number of on-line schedul&gine, if Nhait_shedis equal
to Noniine. That means if all the on-line schedulers are not out of worktie whole
second half period, they will be kept active in the next piiriactive next is also equal
to Ngniine iIf multi-scheduling feature is unblocked during the period/hen multi-
scheduling is blocked, only the first scheduler is available
When some on-line schedulers have been in the waiting stategdthe second
half period, and no multi-scheduling unblocking has haggeim the whole period,
Nact nexe in the previous formula is decided as follows.
Nact_next_min if Nact_nexG < Nact_next_min
Nact nexe = § Nonline if Nact nexg > Nonline
Nact nexs otherwise
Nact nexe cannot be larger thayniine. In addition, there is a minimum value for it,
Nact next min- If Nhai_shediS greater than MNact next min is €qual tdNhait shes Otherwise
it is set to 1. That means the number of active schedulergdigginning of the next
period is at least equal to the number of schedulers whicp keking in the second
half of the current periodNact nexs is got with the following equation.
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Nactive_current if Nactive_pbegin< Nactive_current
Nact_nexB - Nprev_rise else |f Nact_nexm < Nprev_rise,a.nd |0ad decrease < 10%

Nact nexs otherwise

As mentioned before, during a period of balance check sohedsders may be out
of work and in the state of waiting. They might be woken up Byeotschedulers with
high workload later. For an active scheduler that is waijtitgstate is not changed to
inactive. There is another counter with each scheduler &king up other schedulers.
Every time when a scheduler has more than one process ompitstrun queue, the
counter will increase a number of reductions proportioadht run queue length, and
otherwise decrease a number of reductions. When the cowatetnes a limit, another
scheduler is woken up. It tries to wake up a waiting activeedctter first, and then an
inactive scheduler. If an inactive scheduler is woken wgpstate is changed to active.
Thus the number of active schedulers can increase in a pegiagken two consecutive
balance checks. The number of active schedulers can onhgater during balance
checking.

Nact nexs is equal to the number of schedulers which are active cuyrdre. at
the moment of the balance checkimdactive current, If Nactive current iS greater than the
number of active scheduler at the beginning of the peNggive phegin Which was
calculated during the previous round of balance check. herotvords, if the number
of active schedulers has increased or some inactive sarsduhve been woken up
during the period, the active schedulers stay in the actate sThe increase of active
schedulers is also recorded for later use.

If the number of active schedulers doesn'tincrease in theeatiperiod Nact nexa
(introduced later) is compared to the number of active saleeslwhich was recorded at
the last time when the number increasgley rise. If it is smaller, the maximum value
of all run queues’ maximum length, and the sum of reducticeseted by processes
and ports on all the run queues in the current periedsneqs are compared with
the old values which were also recorded at the last time whemumber of active
schedulers increased. If they are in the range of more thratynpercentNact nexs is
set toNprey rise- AS a result, if the number of active schedulers is increasederiod,
it is not going to be decreased very easily in later periodsweéver, it will decrease
when the maximum run queue length or total reductions of e@drave fallen more
than ten percentNaet nexu is calculated with the following formula.

{ |[redSsshedy Periothinchk]  if some schedulers haven't waited
Nact_next4 =

Nactive pbegin— 1 otherwise

If some schedulers haven't been in the waiting state dutegcurrent period,
Nact nexs is equal to the total reductions executed on all schedteeishqsdivided by
the balance check period (default value 2000*2000 rednsiionR13B04periodhnchk
The division result is rounded down to the nearest intedeil the schedulers are out
of work sometime in the periodNact nexs is equal to the number of active schedulers
at the beginning of this period minus one. As a result, ifta#l schedulers are waiting
for work, the number of active schedulers will decremergradtach balance check.

From the above description, we can see the schedulers aee alsecome active
than to become inactive in order to accommodate workloattase.
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3.3.4 Migration Path with Under Load

For each priority queue in a scheduler, there are migrategsfshowing whether it
should push workd&migration flag or pull work (immigration flag. There are also
fields in its data structure indicating which scheduler®pty queue with the same
priority it can push work to or pull work from, and the migmti limits of itself and
its counterpart. The migration limits control the numbepodcesses or ports that can
be pulled or pushed, while they don't limit the work stealiMyhen a scheduler pulls
processes or ports from another scheduler’s priority quiesbould stop if either the
limit of its own priority queue or the other’s is reached.

If the number of active schedulers for the next pem@ive next is less than the
number of on-line scheduletdniine, for the Nactive next active schedulers, migration
flags are cleared and active flags are set. They will not pughulbwork in the next
period. For inactive schedulers, inactive flags are set amdration flags are set for
every priority queue. As mentioned before, the active sulerd have smaller sched-
uler indices than inactive schedulers. For a priority quaws inactive scheduler with
run queue indexndexnactive, the queue with the same priority in an active scheduler
whose run queue index equals lodeXnactive ModuldNactive next) is chosen as the target
for process or port emigration (push).

In this case, the system is under loaded, and not all of thinerschedulers will
be active in the beginning of the next period, while it is plolesthat all or some of
the inactive schedulers will be woken up in that period. Tttéva schedulers will not
pull work in the next period but can steal it. An inactive sghier can keep pushing
processes or ports until there is no work, and there is noatiar limit for it. A
process or port is pushed when it is supposed to be addednaetive scheduler’s run
queue. The push can occur when a new process or port is spgamaeated), or an
old process or port has finished its time slice of executiahiafeing put back to the
run queue.

3.3.5 Migration Limit

If Nactive next is the same as the number of on-line schedulers, migratitibfior each
priority queue of every run queue is calculated. Then migngpaths are established
based on the migration limits and maximum length of eachripyigqueue. The mi-
gration limit of them priority queue in a run queue with the indaxs calculated as
follows.

migration limitmn = L(ﬂi”l“”emaxlengtmn) * (avalilmn/ z?g"l””eavailm’n)J

In the equationm can be maximum, high, normal, low, or port. Although normal
and low priority processes share the same queue, some ofctih@rol information,
such as migration limits and migration paths, is stored isg¢ply. We can imagine a
virtual low priority queue heremaxlength, is the maximum queue length of tine
priority in the run queue with the indexrecorded during the current perioavailm,
is the availability of them priority in the run queue with the index which will be
introduced later. The first term in the right of the above ¢igmas a sum of maximum
length of all priority queues with the priorityn, and the second term is a ratio of a
priority queue’s availability to the sum of availability afl the priority queues with
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priority m. Hence migration limit is a distribution of the sum of all theximum run
queue length values according to each priority queue’sabibfy.

availm, is calculated based on the reductions executed omthgority queue in
the run queua, on the whole run queug and on all the run queues:

if run queue waited

availgmn * (Nfun_sheda* fullreds,)/fullredsall otherwise

For run queues that have been in the waiting state in thertypegiod, the avail-
ability of every priority queueavaily, is 100%. For other run queues, availability
is calculated in two steps. The first step is to calcukateilgm, only based on the
reductions executed on a priority queue and on its run queue.

availm’n =

0 if redrg, =0
avail )1 else ifm= max port
G = (red ph — redmaxn) /red p else ifm= high

(red g — rédmaxn — rednighn)/redp  else ifm= normal,low

First if the sum of reductions spent on all the process giésriand port of a run
queueredray, is zero, theavailgm, of each priority queue of that run queue is 0. For
a scheduler whosedraq, is not zero, the availability of its maximum priority or port
queue is 100%. The execution of ports is interleaved withettezution of processes,
and therefore the execution of processes doesn’t affeatthitability of port execution.
In the above formulaed p, is the total reductions spent on all process priorities ef th
run queua, andredn, is the reductions spent on processes with priorityf that run
queue. High priority processes are always executed afteinmoan priority processes,
and normal and low priority processes are always executed maximum and high
priority processes. Thus the calculationasailgmy for a priority queue is intuitive.
The normal and the low priority processes are stored in theespuieue and they have
the same availability.

In the second step, ttevailgm, is adjusted according to the total reductions spent
on all the run queues that are never out of work in the periodetbavailn,. In
(Nfuil_shea* fullreds,)/fullredsall, Nfy)_shed iS the number of run queues (sched-
ulers) whose out of work flags are not set during the balaneelcperiod, as men-
tioned before.fullredsall is the sum off ullreds, of all the run queues whose out of
work flags are not seffullreds,is calculated as follows:

fullreds, = (3= redchangen)/8

redchangeg, is a historical value of reductions spent on the run queuetivé index
n. For exampleedchangen is the number of reductions executed in the current period
andredchange 7, is the number of reductions executed in the period that plece
the current period 7 times. If in a period a run queue is out ofkwthe reduction
entry of that periodredchangey, in its history list is set to a fixed value (2000*2000
in R13B04), otherwise it is the sum of reductions actuallgrgpon all the processes
and ports.

Figure 3.5 is a simple example of migration limit calculation Figure 3.5, we
assume there are only processes with the normal prioritgiwisithe usual case, and
each priority queue has the same availability. Then theutation of migration limit is
a simple averaging operation.
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Figure 3.5: Migration Limit

3.3.6 Migration Path with Full Load

After migration limits are calculated, the next work is tdasish migration paths.
A migration path indicates which priority queue to trandtesks for another priority
queue having longer maximum queue length than its migrditioh For each priority
gueue of every run queue, its maximum queue length is subttday its migration
limit. If the result is positive, the queue is a candidate ofkvemigration (push). If
the result is negative, the queue has less work and is a atedifipulling work from
another queue.

For each priority, the queues are sorted according to th&aslon results. A
migration path is set between the queue with the largestipodifference and the
queue with the least negative difference, and then betweequeue with the second
largest positive difference and the queue with the secaast feegative difference, and
so on. The emigration (push) flag is set on a queue with a peslifference, and the
immigration (pull) flag is set on a queue with a negative défee. For a queue with
zero availability another flagvacuationis set. The target for emigration (push to) or
source for immigration (pull from) is also set, and thererifymne target or source for
each queue. A queue is either pushing or pulling, but not.both

It is possible that the number of queues with positive differes is not equal to the
number of queues with negative differences. If there areerearigrating queues, the
emigration flags are set on the remaining emigrating quebesthese queues, their
target queues for emigration are chosen starting from tleeiguvith the least nega-
tive difference. So there may be more than one queue pushingte a queue. But
the pulling queue only has one source for immigration. li¢éhare more immigrat-
ing queues, the immigration flags are set on the remainingigmating queues. The
sources of immigration are chosen starting from the quetletive largest positive dif-
ference. Thus there may be more than one queue pulling wonk & queue. But the
corresponding pushing queue only has one target for errograt

Figure 3.6 is an example of migration paths. There are maitmguueues in the
figure. Both queues with the maximum length 7 and 4 pull wookfithe queue with
the maximum length 14, but only the queue with the length &isas the emigration
target for the emigrating queue. Maximum queue length idwevacorded in a period,
and it doesn’t mean that the run queue has that number ofgses®r ports at the time
of balance check.
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Figure 3.6: Migration Path

After the migration paths are established, in every schiedulot of a scheduler
if at least one of its priority queues has the immigration #ag the scheduler tries to
pull one process or port for each priority queue with a setignation flag. The times
of migration is limited by the migration limits set duringlhace checking as stated
before. The processes or ports are pulled from the head ofsqueues.

An active scheduler with the emigration flags set doesn’hptsstasks repeatedly.
The emigration flag is checked when a process or port is goibg idded to a priority
queue. Ifitis set, the task is added to the end of the migrateget's queue instead
of the current queue. The emigration flag for that prioritgae is cleared after one
process or port is pushed. Thus for a priority queue of avesttheduler, it pushes
work only once. Tasks are mainly pulled by priority queuescoltare the migration
destinations.

3.3.7 Work Stealing

If an active run queue is still empty after task pulling atpgrand there is no other
work to do, it tries to steal a task from other schedulergidstto steal a task from an
inactive run queue first, and then an active run queue. Wheatirsg from inactive run
queues it starts from the one with the index that is equal to:

indeXictim rq = iINA€Xirst_inactive rq + (indeXurrent rq) MO Ninactive)

Ninactive IS the total number of inactive run queues. When stealingn fastive run
queues, it starts at the next run queue with larger indextti@aourrent run queue. Thus
the stealing victims are distributed. When trying to steaif a run queue, the attempt
is made from the maximum priority queue to the normal and lowrjty queue, and
then the port queue. The stealing is successful and tereairib process or port is
stolen. The process or port is stolen from the end of a queue.

3.3.8 Scheduling and Scalability

The performance of scheduling algorithm has a great impastalability. Most im-
portantly, if workload is not evenly distributed, the idegieedup is not achievable.
Another drawback induced by scheduling for many-core systis that the cache per-
formance may be worse. When processes are migrated fromronesgor core to
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another, their data and code should also be transferred tatthes associated with the
new core, and cache misses can occur before they are browglthé caches. But for
the sequential Erlang VM running on one core, there is nogg®aigration.

From the above description of the scheduling algorithm enEnlang VM, we can
see that it has the mechanism of distributing workload totiplel cores. It predicts
the workload and the availability of each Erlang schedwdettie next period based on
the data of the current period and previous periods. It putsesschedulers into the
inactive state to save power consumption when a system ifultyptoaded. When it
is fully loaded, the scheduling algorithm tries to balartoe workload periodically. It
actually attempts to balance the number of processes & foortach priority queue as
the example in Figure 3.6 shows, since it is not possible twkime exact workload of
each process in advance. Assuming there are only procegtbeth@normal priority
which is the usual case (excluding some Erlang system mesgsthe round-robin
algorithm also requires each process has equal chancedotex®n a homogeneous
many-core processor in which each core has the same pnoggesier, there should
be the same number of processes on every core, and othelwipedcesses on cores
with fewer processes will be assigned more time slices taweehan those on cores
with more processes.

In reality, the numbers of processes on different cores #iieudt to be kept the
same with a variable workload. First, the migration limite aalculated based on the
maximum length for each priority queue observed during édeflhe actual number
of processes at the end the period is very likely less thasihe of these maximum
values. Second, processes are pushed or pulled one by ¢taleedtan amount of time
before all the migration limits are reached. Third, the nenmdf processes can change
in a period between two balance checks because of proceasisgaand termina-
tion. Inside the period, processes cannot be shared exoégt.sBut working stealing
occurs only when a scheduler is out of work. If a process onhaduder spawns a
lot of new processes, the scheduler will have much more taskse the next balance
check. Thus the properties of round-robin are not easilgtmbintained on many-core
systems. However on a single core, they are still kept.

This feature can affect the execution time of an individualcess, although it
has less effect on the total performance. For example, fd&rimg application that
executes shorter than the period of balance check, it may &eery scheduler busy
because of work stealing, and achieve nearly ideal spedédilighe schedulers finish
their work at the same time. But a process in the applicatibithvis stolen by a
scheduler occupies the whole scheduler or core, and cah &recution much earlier.
Assuming there is a main process in the application and Wwspall other processes,
and there are much more processes than schedulers, theggseéhich are not stolen
are all on the same scheduler where the main process restugswill finish execution
later. In other words, different processes in an Erlangiegfibn can achieves different
speedup on many-core systems. It has to be considered ifrimgtof an individual
process is important. The speedup for different processasa Erlang application is
not guaranteed to be the same.

In addition, since schedulers in the waiting state have tevbken up by other
schedulers, it also affects the speedup. The time for wakiryscheduler is dependent
on the state of the scheduler and the workload of anothedsitdrenvhich wakes it up.
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When a scheduler is out of work and in the waiting state, insin a variable first.
Another scheduler can wake it up quickly by changing theealfithe variable. After
spinning on the variable for an amount of time, if no one wakag the waiting
scheduler thread will wait on a condition variable and beckénl. Longer time is
needed to wake up a blocked scheduler thread. The countexcimealuler for waking
up other schedulers increases proportionally to the nuoifigocesses or ports on the
scheduler. When there is more workload on a scheduler, iesvak other schedulers
more frequently. The time spent in waking up idle schedulghsmake significant
impact if the work comes in bursts.

In general, regarding the overall performance of the Erligon many-core sys-
tems, a balanced workload can be expected if there are aisnffimimber of processes
or ports and the total execution time is long. For each imftial process the speedup
can vary.

3.4 Synchronization

At present, most existing commercial multi-core or manyeccomputer systems are
with shared memory architectures. The main memory and/@wadvels of cache of a
system are shared by all cores. The most efficient way of camgation in these sys-
tems is through shared memory. In Erlang, although sharedanegs abstracted away
from Erlang application programmers, system developdishstve to deal with the
shared memory to build an efficient Erlang virtual machinanylhigh-level features
like message passing are based on shared memory. On TILERM#t messages can
be passed between tiles directly via one of the on-chip mésvd his feature may be
utilized to build a different flavor of message passing oeofanctions. However it is
not guaranteed to be faster.

Access to shared memory has to be synchronized on procestonsultiple cores,
otherwise programs may not behave as they are expectedHdi8xample, when two
threads on two different cores try to increment a variabieuianeously, if the access
is not serialized they may read the same value, incremeatdtwrite the same value
back. The value ends up with being increased by only once.ct8gnization is a
necessity for developing shared memory multithreadedrprog.

3.4.1 Overview

Synchronization introduces overhead since the progressemiution is delayed. First,
a lock (introduced later in this section) has to be acquiretllater released every time
when a block of shared memory is accessed. This cost musidheyen when there is
no contention of lock attempts by different cores. The leygntroduced by acquisition
and release of a lock can be different for different kindsoekk. It is affected by the
speed of the memory subsystem and contention. If the menumgsa latency of a
system is shorter, the lock overhead will also be smaller. elVtihere is less lock
contention, the overhead is likely to be smaller. In patdguvhen there is only one
core, every attempt of lock acquisition is always succésafd the following release
and new acquisition attempts will be faster if the lock valgais kept in the cache. If
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there is a lot of contention, the memory copies of the lockakde in the caches of
the cores which contend for it will be invalidated frequgnéind cache misses will be
large. This can produce an effect on scalability, since wdee count increases, the
contention tends to be higher.

Second, when contention occurs, threads fail to acquirelatave to wait until it
is released by its current owner. Obviously if more threadg,wnore time is wasted
which results in poorer speedup. The waiting time also dépen the time for releas-
ing the lock, and the time for executing the code protectetthbyock which is called a
critical section. The size of a critical section or lock grahould be appropriate. With
a small critical section, less shared memory is protecteallbgk, and more locks may
be needed. Then more lock latency is introduced. Howevérailiarge critical section,
all threads which fail to acquire the lock protecting it hawevait a long time before
the lock is free. Each contending thread experiences diftervaiting time since the
access to a lock is serialized and they claim the lock one aftether.

Third, for some types of locks, when contention occurs, tBepfdcesses or threads
which have failed will attempt to acquire the access agaier dhe lock is released.
Extra overhead is introduced between the time when a loc&léased and the time
when itis acquired again. Another issue arises when a shiticet section is protected
by a lock of these types. All the cores which see that the ledkee will try to lock
it, although only one of them will succeed. When the crit®attion is short, the core
having the lock will finish the execution soon and then redehe lock. But before the
lock release operation is performed by the memory subsysteme lock acquisition
attempts issued earlier than it may not have been executhdy dre accessing the
same lock variable, and usually these lock operations legverformed by the memory
subsystem before the unlock operation. In that case momdead is introduced duo
to the delay of lock release operations.

In general, lock overhead can be divided into two parts. Rarracontended lock,
it still introduces latency. For a contended lock, therexisaserialization cost induced
by the contention. When there are more cores accessing swenedsmemory, the
possibility that they contend with each other is greaterrdvmontention leads to more
waiting time which is wasted. As a result the total executiore is longer and the
speedup is smaller. The penalty induced by contention dactafcalability greatly.
In many-core systems, synchronization overhead is a patdmtttleneck if the con-
tention is high. Even with little contention, the lock latgrshould also be as small as
possible, otherwise the parallel version of a program wélste too much time on syn-
chronization comparing to its sequential counterpart.idadly we need low latency
and low contention locks.

There are many different types of synchronization methed irsthe Erlang virtual
machine. They can be roughly categorized into three classesiic primitives, locks,
and condition variables. There are also different kindoks, spin lock, mutex, and
readers-writer lock. Another synchronization methode#uar gate, is built based on
mutex and condition variables. Other high-level lock fumes$ are constructed on top
of these basic methods for synchronizing some specific datatgres, such as run
queues and process table.

Atomic primitives are used for synchronizing simple valéshbin order to reduce
overhead, since they are lock-free and fast if they are tijrbailt from atomic instruc-
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tions implemented by the hardware. The Erlang virtual maelilso tries to reduce
lock contention by partitioning data structures. For instg there is one run queue
for each scheduler. Each scheduler works on its own run gonese of the time, and
hence the lock contention can be reduced. To achieve a gotalpance, memory
should be shared as less as possible.

3.4.2 Atomic Functions

User-level synchronization mechanisms usually rely omWare primitives, i.e. as-
sembly instructions supported by hardware, which can atalfgiread and modify a
memory location [18]. If hardware provides these primiiv@/nchronizing some sim-
ple shared data, for instance an integer, with atomic ojpeiais much faster than with
lock operations, because lock overhead is eliminated. \Vt@mic instructions up-
dating the same memory location are issued simultaneoyseveral cores, they are
serialized by the memory subsystem. This is like lock cam@nwvhich occurs when
multiple cores try to acquire a lock simultaneously. Forginity, in this report all
the contention caused by different synchronization ojnais called lock contention
sometimes.

The Erlang virtual machine utilizes many atomic functiosiszch asatomic incre-
ment decrementadd, exchangeandcompare exchangeThere are native atomic
function implementations fox86/x86_64 SPARC32/SPARC6H4nd PowerPCarchi-
tectures, which means the functions are built with hardveaoenic instructions pro-
vided by these architectures. For example in x86/x86_6#inary increment, decre-
ment, add, exchange, and compare exchange instructionlsecaurned into atomic
instructions by preceding them with the prelfixck [19].

There is also a native atomic function implementation fdtHPro64. Since there
are only two instructionstest-and-setind memory fencefor building atomic oper-
ations, these atomic functions are in fact not implement#l tardware primitives
but with locks. TILEPro64’s test-and-set instruction lead32-bit word from a mem-
ory location into a register and atomically writes the valumto that location [37].
Since it only can write the value 1 into memory atomicallysihot possible to imple-
ment other atomic operations with it directly, for instamice atomic increment. Other
atomic functions have to be built with locks.

The test-and-set instruction is suitable for building logerations where the value
0 means that the lock is free and the value 1 indicates thabtheds not available. A
processor core tries to acquire a lock, which is an integewriiting the value 1 to the
memory location assigned for the lock and examining theiptesvwvalue of the lock
returned in a register. If the previous value is 0, the corpiaes the lock. If the value
is 1, then another core has already locked it, and the loeknuit fails. The core can
keep trying to acquire the lock, spinning around a loop ttgilicceeds which happens
when the core having the lock releases it by writing the valteit. This mechanism
is calledspin lock

Storing a value in each loop introduces much unnecessaryonyetraffic when
there are some other processor cores also trying to actpeileck, because the value
modification has to be propagated to other processor cotes.sdheme can be opti-
mized by utilizing the cache coherence feature of a processstead of spinning on
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read and write operations, a processor core can spin onddeoperation only [34]. If
the lock value is not changed by other core which owns the, lvekill keep reading
the copy of the lock value stored in its cache without extranmey traffic on the net-
works interconnecting the processor cores and the memabgystem. It continuously
reads the lock until it is changed or freed. After the lockueais changed, the core’s
copy of lock is invalidated, and updated because of cachereoke when a read miss
occurs. Then it races to acquire the lock again by writingvhleie 1 to the lock. It
goes back to wait if the lock is acquired by another core.

If there are a lot of cores contending for a lock, lock coritantan be reduced
by introducing exponential back-off [1]. A core that failemlacquire the lock for the
first time has to delay for a while before the next attempt. d&kay is exponentially
increased each time when it fails. The first attempt is nadyked in order to achieve
low lock latency when there is no contention.

Atomic operations can be built upon spin locks if there areappropriate hard-
ware primitives, however they are not truly atomic, since@pammer can bypass the
locks and modify the memory directly which breaks the atdtyido obtain atomicity,
memory access can be guarded by spin locks. Before moditiimgnemory, a lock
has to be acquired avoiding multiple cores accessing itlsimeously. As the mem-
ory address space is large, there will be lots of lock cordarit all the addresses are
protected by a single lock. Yet it is also impractical to gasvery memory address a
lock. A lock table is usually used, which is the case in thelemgntation of atomic
operations on TILEPro64 processor. On TILEPro64, the |ladiet resides in kernel
space. Each lock or unlock operation has to cross into kenoele’. It can produce
substantial overhead. For a lock table, there is a tradevitlffits size. Larger table
introduces lower lock contention, but more memory consionptHow memory ad-
dresses are mapped into the lock elements protecting thenhoick table also affect
the performance. Usually a hash function is used.

On TILEPro64, atomic functions used by the Erlang VM are iempénted with
C library API (Application Programming Interface) funati®inatomic.h These API
functions are in turn built on other functions, such as atouidate and compare ex-
change. Atomic update and compare exchange functions énsoftware interrupts,
and cause corresponding system calls to be executed. Tymtsenscalls implement
atomic update or compare exchange based on spin locks witmextial back-off.

For other architectures without native atomic implemeatet, the Erlang VM im-
plements its own atomic functions with Pthread spin lockcfions. If it cannot find
the Pthread spin lock implementation, Pthread mutex is instdad.

3.4.3 Spin Lock

Lock functions in Erlang VM are also built with atomic assdynimstructions and

Pthread routines. On Windows, Windows thread functionsused. Because this
project investigates the performance of the Erlang VM orukirwindows implemen-

tation is omitted in the following description.

3In kernel mode, a processor can execute any valid instngémd has unrestricted access to the hard-
ware resources including memory. It is usually reservedHeroperating system.
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There are native spin lock implementations for x86/x86 SFPARC32/SPARC64,
and PowerPC architectures which are built with atomic irettons. The mechanism is
similar as stated in the previous subsection, except tlumtesn’t employ exponential
back-off. This may introduce large overhead if lock conitamts high. Other methods
to reduce lock contention are essential. The Erlang VM imglets spin lock functions
with Pthread spin lock or mutex functions for the architeetithat it doesn’timplement
a native one. There is no native spin lock implementationTivEPro64. It uses
Pthread spin lock instead. The Pthread spin lock implentient@an TILEPro64 is
efficient, and implemented with test-and-set and expoabngick-off.

Spin lock is efficient if the lock is held for a short period ohe. Since it doesn’t
block the thread when lock contention occurs, the latenchptt it is low after it
is released. There is re-scheduling and context switchueghead when a thread is
blocked. Before a blocked thread is re-scheduled, the tipgrsystem scheduler may
schedule other threads to run. Context switch consume tirddave penalty of TLB
invalidation. However if a lock is usually held for a long dtion, spin lock is not a
good choice. It wastes time that could be utilized by otheedHts. It increases the
possibility that a thread holding the lock is preempted leydbheduler, and the threads
scheduled to run later try to acquire the lock. That wouldtev@sen more time.

Simple spin locks without other technics like exponentiatkoff don’t scale well
the number of cores is large. Each core that sees a free lacktlis waiting for will
try to perform a lock operation. That will introduce a lot afrtention and extra traffic
on memory subsystems. With the exponential-backoff teghhere are fewer cores
contending for a lock at any time, and therefore less extnaaomg traffic is produced.
Queuing lock(or ticket lock)[29] is another technic to improve the performance of
spin locks. For a queuing lock, a thread that fails to claiwilt keep checking a
separate variable. When its turn comes, it is informed byhghrey the variable that
it spins on. The queuing lock can provide fairness by grantire lock according to
the order when the lock requests are issued. It introdusssdeerhead when core
count is large or contention is high, because unlike noripial lck, when a queuing
lock is released no waiting threads make acquisition atteagain, and the ownership
is simply transferred to another waiting thread. Queuirak$orequire more memory
since each core needs a separate variable.

3.4.4 Mutual Exclusive Lock

Mutual exclusive lock (mutex) is used to avoid the simultareuse of common re-
source by multiple processor cores. Only one process aadloan access the memory
or run code protected by a mutex lock. Mutex lock functionshi@ Erlang VM are
implemented with Pthread mutex. Pthread mutex is not like gk, because it will
block a thread when its lock attempt fails. To improve perfance, Pthread mutex
allows the thread to spin on the lock for a while in user nfduefore calling kernel to
queue up and block its execution [14][13]. Pthread mutexisg¢e maintain the con-
text information for each thread. Thus it has high overhepeeially when it has to go

4In user mode, the executing code cannot access hardwac#ydaad run some privileged instructions.
It is only allowed to reference a part of the whole memory spac
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into kernel mode when contention occurs. It is relativegmsivhen a blocked thread
is re-scheduled after the lock becomes free. It has an aalyarthat when a thread
fails to acquire a lock it is blocked and its remaining timieeskcan be utilized by other
threads. Since Pthread mutex locks can cooperate with tteglaer in an operating
system, the thread which has failed may vyield its time slicéhe thread holding the
lock. Pthread mutext locks are better to be used to proté&atairsections that take
longer time to execute than the time spent in blocking angtteduling a thread.

3.4.5 Readers-Writer Lock

Readers-writer locks also control access to shared reseutallows multiple threads
to read the shared memory concurrently. But if a thread needsite the memory,
it should acquire an exclusive lock. Since there might beymaaders and the writer
cannot grab the lock if it is acquired by one reader, it carseawrite-starvation. To
avoid write-starvation, writers usually have higher pityowhich means when a writer
is waiting for the lock, a new lock request from a reader isgranted.

There are two types of readers-writer lock functions usatiérErlang virtual ma-
chine. The first one is a wrappenf Pthread read-write lock implementation or con-
structed on top of Pthread mutex and condition variablelséfé is no Pthread read-
write lock implementation. The second one is low-weightabhis built with atomic
instructions, or Pthread spin lock for some architectunes the VM doesn’t imple-
ment a native one. But if Pthread spin lock functions alsotdmist, the second type
is implemented with the first type.

When using Pthread mutex and condition variables to buileba@rs-writer lock,
the lock is a data structure consisting of the number of neadeaiting readers and
waiting writers, condition variables for readers and foiters, and a mutex lock. A
reader acquires the readers-writer lock when there are itnwavriters after it has
acquired the mutex lock. The mutex lock is released aftermdeehas acquired the
readers-writer lock, and therefore another reader carotactjuire the readers-writer
lock later. If there are some writers waiting to acquire thaders-writer lock, the
reader waits on the condition variable for readers, whidhbei broadcast by a writer
unlocking the readers-writer lock when it is ready for thaders to acquire. After the
condition variable is signaled, a reader continues the &itkmpt. A writer acquires
the readers-writer lock after it has acquired the mutex l@id when there are no
readers holding it and no earlier waiting writers. The muteok keeps locked if a
writer is holding the readers-writer lock, in order to pnatether writers and readers
from obtaining the lock. If there are some readers holdirgréaders-writer lock, the
writer waits on the condition variable for writers, whichl\be signaled by the last
reader unlocking the readers-writer lock.

The readers-writer lock is a data structure containing a lgmk and a counter if it
is implemented with Pthread spin lock. The modification ef tounter is protected by
the spin lock. After acquiring the spin lock, a writer triesacquire the readers-writer
lock by setting the 31th bit, the highest significant bit ofarsigned integer, to the
value 1. If all other bits are 0, which means there is no readéding the lock, the

5A wrapper function is a different interface for another ftime. It mainly calls that function.
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writer gains the lock, otherwise it retries. The first wrjtetich locks the spin lock
and finds all the readers have released the readers-wrier doquires it. A reader
acquires the readers-writer lock when the bit 31 is not set @fhas acquired the spin
lock, and then increments the counter, otherwise it wait tlve bit 31 is cleared. The
31th bit of the counter is a flag indicating whether there isaiting writer.

The method to implement readers-writer lock functions aiibimic instructions is
similar as when they are implemented with Pthread spin legkept that the lock is
an integer. When the lock is greater than 0, there are sordengholding the lock. If
it is an extremely small negative value, it is acquired by dexr A reader atomically
increases the value of the lock by one. It acquires the latkdid value is not negative.
A writer tries to acquire the lock by atomically adding it tvia small negative value.
If the previous value of the lock is 0, it succeeds.

3.4.6 Condition Variables and Thread Gate

The Erlang virtual machine’s condition variable functi@me wrappers of Pthread con-
dition variable functions. While other locks control acs#s shared data, condition
variables provide a method for threads to synchronize basdte value of the data.
By calling the functionpthread_cond_wait()a thread waits on a condition variable
and is blocked until the condition variable is signaled bgther thread calling func-
tion pthread_cond_signalQr pthread_cond_broadcast(With condition variables, a
thread doesn’t waste time in polling the condition to chddkhappens.

Thread gate controls the progress of threads waiting onea Jdtte gate is a data
structure consisting of a Pthread mutex lock, a conditiagialsde, and a variable show-
ing the number of threads allowed passing the gate. A thresis wn the gate by in-
voking thepthread_cond_wait(outine. The gate is opened by another thread calling
pthread_cond_signal(dr pthread_cond_broadcasifithe number of threads allowed
to pass is more than 1. After a thread passed a gate, the nafnibeeads allowed to
pass is decremented.

3.4.7 Lock Functions for Specific Data Structures

A lot of approaches are employed to reduce synchronizatienhead in the Erlang
VM. Many critical data structures are divided or partitidn&or example, there is one
separate run queue for every scheduler, storing the preeessl ports for that sched-
uler. In each data structure, there may be different locksratect different fields.
These methods reduce lock contention by making the locks fimg-grained. Special
lock functions are built based on basic synchronizatiorfions described in the pre-
vious subsections for some data structures to meet theifadpequirements. There
are specific lock functions for run queue, process, port,driver etc. Most of these
functions are tailored for different data structures basedasic functions with little
modification. The locks for the process data structure aieradre complex.
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3.4.8 Process Lock

The data structure for an Erlang process is protected byadeeks. Accessing some
fields needs to acquire only one lock, while accessing sofmer®needs to acquire
multiple locks. These locks represented by bits are conaliime an integer flag. Lock

order is implemented to avoid deadlock. Each lock has a segueumber equals to

its position in the lock flag. A lock with a smaller sequencenter is locked before a

lock with a larger sequence number. Then when locks withdhmessequence number
on different processes are going to be locked, They are tbsfesting from the process
with the lowest process ID to the process with the highestgss ID.

At the beginning, the process lock function tries to gralthedllocks needed, which
are specified when the function is invoked, at once. This gémented withatomic
compare exchangaperation, which updates a memory location with new valubef
old value at the memory location equals an expected old \aaideeturns the actual old
value, otherwise the memory value is not changed and thatpefails. The function
spins around a loop that atomically compares and exchamhgesaiue of the lock
flag with expected new value that it would be when the needgdslare successfully
acquired, until the operation succeeds. Then by checkimglthvalue of the lock flag,
it knows whether one of the locks that it tries to acquire veskéd by another thread
before the atomic compare exchange operation. If there $si0b lock, all the needed
locks are acquired by the function.

If some required locks are already locked by other thredds the lock function
tries to lock a part of the locks that are free at the same tigice it should enforce
the lock order, the lock function finds the free lock with thighest sequence number
in the required lock set, and meanwhile all other locks ingéewith lower numbers
are also free. After that it tries to acquire these locks #mmeously with the atomic
compare exchange operation again. This procedure repadtsllthe locks in the set
are acquired or the times of repetition has exceeded a pnedetiireshold. In each
iteration, the locks that it tries to lock can change, beealisring the period some
locks which are released by other threads can be collected.

On condition that the above procedure repeats certain time:¢here are still locks
that cannot be claimed, the function tries to acquire as niaoks as possible one at
a time in order. It is implemented withtomic bitwise oroperation similar as with
atomic compare exchange. It stops at the first lock that dammacquired. Then the
lock request is put into a FIFO (First In First Out) queue a&ged with a process that
owns the lock which it tries to acquire. The requesting salexdhread is blocked by
waiting on a thread gate.

When a scheduler thread releases a lock, it will dequeueamka équest from the
head of the lock request queue related to the released latkamsfer the lock to it.
The unlock function also tries to acquire all the other loleisfor the dequeued lock
request one by one. If not all the remaining locks can be aeduthe lock request is
again put into another lock queue. However if the unlock fiomfinds that a dequeued
lock request has grabbed all the needed locks, it will opentiread gate for the thread
which issued the request.
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3.4.9 Synchronization and Scalability

Building synchronization functions and using them are clexpnd tricky. Synchro-
nization routines are usually developed by system softwarelopers and used by
other application programmers, while in Erlang only vittorachine developers build
and use them. Erlang application developers don’'t needaachese low-level syn-
chronization mechanisms such atomic primitives, locks@rdlition variables, at all.
They work with message passing as the only way of synchrbaizbetween different
processes or ports.

Software development with locks is difficult. It is hard to kegdhe programs work
properly, and they are also hard to test and maintain. Iriquéat, a lot of efforts have
to be made to avoid deadlock. Although synchronizing by mgs$®assing is not guar-
anteed to be deadlock-free, it provides a higher level ofrabson. We can consider
the synchronization mechanisms on a higher level. It isseasithink about the mes-
sage interaction needed for each application and verifyoiteectness. Nevertheless on
shared memory machines, the most efficient way of implemgrail those high-level
features provided by Erlang like message passing is usiagedhmemory. Thus to a
great extent, the scalability of the Erlang VM is dependanth® performance of the
synchronization methods.

Synchronization functions are used everywhere in the Bridd whenever there
are shared data and their access needs to be serializedafopke when processes are
migrated between different run queues and when messagssrarbetween different
processes. Some data structures are global that each amerihstance in a system,
and they are accessed by all the schedulers. For instamre,ithone global process
table for an Erlang node containing the PCBs of all the preegsFor global data, if
they are accessed frequently the lock contention will bé higsulting in poor perfor-
mance. Other data are divided and consist of several instasach as run queues and
memory allocators. Data partitioning can reduce the logk@ation since most of the
time each thread only accesses on a subset of the data.

There are many factors related to synchronization that ffantahe scalability of
the Erlang VM on many-core systems. First, the scalabiitgependent on the char-
acteristics of each Erlang application. For example, if ppliaation spends most of
its time in passing messages between processes, the laitketprg these messages
will introduce big overhead to the total execution time. il wot scale well if the con-
tention is large. Furthermore, the performance of diffeemplications can be limited
by different locks. For instance, for an application in whinany processes generate a
lot of other processes the lock guarding the process tabjeb@eome a major bottle-
neck, while for an application with a large number of messade performance may
limited by the locks protecting the passing of messages.

Second, as mentioned in the above subsections, the sigledlso dependent on
the types of locks used and where they are used. Every typecks has its special
properties. For each critical section or a block of shared,d@asuitable lock (or atomic
primitive) has to be chosen according to its execution titme contention rate, and the
number of cores.

Many different types of locks are utilized in the Erlang VMftodifferent data.
New technics are continuously employed to make it more bt@al®ue to the complex
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| Allocator type | Description

temp_alloc Allocator for temporary allocations

eheap_alloc Allocator for Erlang heap data

binary_alloc Allocator for Erlang binary data
ets_alloc Allocator for ETS data

driver_alloc Allocator for driver data
sl_alloc Allocator for memory blocks that are expected to be shogdi
Il_alloc Allocator for memory blocks that are expected to be longdiv
fix_alloc Fast allocator for some data with fixed size based on Il_alloc
std_alloc Allocator used for most memory blocks not allocated by alaiigeators
sys_alloc Usually default malloc implementation of the OS

mseg_alloc Memory segment allocator that caches deallocated segments

Table 3.1: Allocators

nature of the locks and their pervasive use in the VM, it igaylikely that there are

many things that still need to be improved. Synchronizativerhead is a potential
bottleneck, especially for applications that can make nsghgdulers in the VM access
some shared data frequently and simultaneously. Whenlegeg ts significant lock

contention, the ideal speedup is hard to achieve.

3.5 Memory Management

The amount of memory that is used by the Erlang virtual mazbiranges dynamically.
When a process is spawned, new memory has to be allocated ftack and heap,
and a slot in the preallocated process table is assignedsforaocess control block.
A process’ heap can also grow and shrink according to the medwnand. When a
message is passed, memory is allocated for it and for its gesmnent data structure. If
a process exits, its memory is reclaimed by the VM.

Since memory is not deallocated by programmers explidily, VM is responsi-
ble for collecting memory that is not used anymore by a prec&¥hen a process’
heap doesn’t have enough space to accommodate new datgaibege collected. It
expands if the garbage collection couldn’t free enoughifneenory.

3.5.1 Overview

The Erlang VM contains an internal memory allocator libyarys_allo®, for allocat-
ing memory blocks dynamically at runtime. Currently there &1 types of allocators
as shown in Table 3.1. Eight of them, excludii®rg alloc sys_allocandmseg_alloc
belong to an internal framework callatloc_util. The purpose of having multiple types
of allocators is to reduce memory fragmentation by sepagatifferent kinds of mem-
ory blocks, and reduce time spent in finding suitable memtrgits that are frequently
allocated.

Shttp://www.erlang.org/doc/man/erts_alloc.html
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sys_allocandmseg_allo@allocators acquire memory from the OS by callstgk()
or mmap()functions. They are the foundations of other allocatorshe®tllocators
manage their own memory pools allocated by $iys_allocand mseg_allocalloca-
tors. Different types of allocators use different struetito organize their free memory
blocks, such as binary search tree and linked list.

Thesys_allocandfix_allocallocators are always enabled. Timseg_alloalloca-
tor is enabled if the system has themap()implementation and other allocators using
it are enabled. Othexlloc_util allocators can be enabled or disable by usgys. alloc
is the default replacement if a type of allocator is disabl€de number of allocator
instances for eacélloc_util type can also be set according to the number of scheduler
threads. There can be one instance per scheduler threamhfieralloc_util types. One
allocator instance per scheduler thread reduces lock ebote but also introduces
more memory consumption. It should be configured based oohhacteristics of a
specific application. If the application uses a lot of memaoryhere is a lot of mes-
sage passing, one allocator instance per scheduler mafititbeeperformance. For
a compute-intensive application, fewer allocator inséenmay result in less memory
footprint’ and better performance. Figure 3.7 shows the relationsiipeden different
types of allocators. For simplicity, only oadloc_util allocator instance is illustrated in
the graph. The remainder of this section will introduce ¢hafocators in more details.

In the Erlang VM, different garbage collection mechanisg# pre applied on dif-
ferent heap areas. A copying generational garbage callsctsed for process heaps.
The common binary heap is garbage collected with refereanating. Each binary
data contains a counter indicating the number of procesigbgeferences (pointers)
pointing to it. It is reclaimed when the counter reaches z&iwe common heap for
ETS tables is not recycled automatically. Instead, prognans need to delete the ta-
bles manually. However, a table is linked to the processdrfested it, and when the
process exits the table is deleted by the VM. The table fairgiatom values is also
not garbage collected and it cannot be deleted. It keepsiggomhen new atom values
are used.

3.5.2 sys alloc

On Linux, this type of allocator is a wrapper ofalloc[25] implementation of GNU
C library by default. The Erlang VM also implements its owralloc functions for
some operating systems if their native implementationstgmnformance well. It is
anaddress order best fillocator based on Red-Black binary search tree [Bg&kt fit
means the allocator tries to find a memory block that is equtié size required, and
if there is no such free block, a block with larger and the eftsize is selected. For
address order best fitvhen there are multiple free blocks with the required size,
block with the lowest address is chosen.

Memory blocks are acquired from the OS via the systemstak()when there are
no suitable free blocks. A process’ virtual memory spacevigldd into different seg-

"The amount of main memory used by a program while it is running
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ments, such as tétstack, daty BSS® and heapsbrk()increments the heap segment
by a user specified size. As the heap segment incrementsiorkf) is consecutive, a
memory block cannot be freed to the OS before other blocksnbee allocated later
than it are freed. Memory blocks acquired by the systemmaiap()don’'t have this
limitation, and therefore the Erlang VM also provides theeg_alloallocator based
onmmap() The Erlang VM’'s implementation ahalloc doesn't call sbrk() to shrink
the segment size, and hence the allocator doesn'’t returronyemthe OS.

The performance of an allocator is affected by how the freenorg blocks are
organized. Themallocimplementation of the Erlang virtual machine links the free
memory blocks as a balanced binary search tree, Red-Blaek This kind of trees
guarantee that search, insert, and delete operations f&g,0) time in the worst
case, where n is the number of nodes in the tree.

A Red-Black tree is a binary search tree with one extra bitnpete indicating its
color which is eithered or black If a child or the parent of a node doesn't exist, it is
regarded pointing to a dummy external node. It satisfiesalh@fing properties: every
node is either red or black; the root is black; the leavesetes nodes) are black; if
a node is red, both its children are black; all paths from aentodits descent leaves
contain the same number of black nodes. Figure 3.8 is an drashRed-Black tree,
in which external nodes are omitted.

Each node contains pointers to its left and right childrewl,igs parent. It also con-
tains a key field. In the free memory pool of an allocator, a merblock corresponds
to a node in the tree with its memory size and/or address &eyts All the keys in
the left subtree of a node are not greater than the key of tiae,rand all the keys in
the right subtree of a node are not less than the key of tha.nbthere are two free
memory blocks with the same size, the Erlang VMiallocimplementation puts the
one with lower memory address to the left subtree of the atbde.

Searching for a block for memory allocation from a free bltrele is simple. Start-
ing from the root node, if the size of the current node, i.e.esrmary block, is less than
the required, its right subtree is checked afterwards,rafise this node is marked as

8A segment contains program code.

9A data segment contains initialized global and static \rem

10A data segment contains uninitialized global variables static variables that are initialized to zero by
default.
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a candidate and its left subtree is checked for a more saitai#. This procedure will
continue until a leaf node is reached. The last marked catelidode is theddress
order best finode.

How the selected node is removed from the free memory bleekisrdependent on
the number of its child nodes. If it has no child (excluding dnmmy external nodes),
it is removed from the tree directly. If it has only one chilode, it is removed, and its
parent node is connected with the child node. When the selectde has two children,
it is replaced by its successor which doesn'’t have a leftdchihd the successor’s right
child is connected to the successor’s parent node. A nodetessor has the smallest
key that is greater than the node’s if all the keys are distifie node has a right child,
its successor is the leftmost node of its right subtree. Tintlee case of node deletion,
the successor doesn’t have a left child because it is thadestt

Then if the removed node or its successor replacing it iskbldee properties of
Red-Black tree may be violated, and as a result a proceduestore the properties is
needed which can be found in [11].

When a memory block is deallocated, it is inserted into tee fslock tree. Before
the insertion, if the block with the memory address immeaaljabefore or after the
deallocated block is also free, they are merged after theedirg or tailing block is
unlinked from the free tree to reduce memory fragmentatidren the merged block
is inserted back to the tree. There is a flag in each block méadieating whether the
preceding block is free.

The process of looking for the position to insert is also dengstaring from the
root node, if the size of the merged block or deallocated lbletthout merging is
less than the size of the current node or equal to the sizeeafulrent node but with
lower address, it is inserted as the left child of the curreade if the current node
doesn’t have a left child (excluding the external node), ieccurrent node’s left child
is checked if there is one already. If the size is greater thasize of the current node
or equal to the size of the current node but with higher adgli¢ss inserted as the
right child of the current node if the current node doesnitehane, and otherwise the
current node’s right node is checked. The blocks are indextdeaves (excluding the
dummy external nodes).

A newly inserted block is set as red if it is not the root nodeitd parent is a
red node, the properties of Red-Black tree are violated. prbeedure to restore the
properties can be found in [11].

3.5.3 mseg_alloc

An mseg_allo@llocator acquires memory blocks or segments from the O8heiays-
tem callmmap() It also releases memory to the OS usingnmap() Before releasing
deallocated memory segments, they are cached for a whikvtotane for later allo-
cation. The cache is a linked list with fixed size. A segmemémoved from the end
of the cache periodically. When allocating a memory segiéstcache is checked
for a best fit one before acquiring a new one from the OS, whiduces the number
of system calls.
mmap()is a POSIX system call that maps files or devices to memory.Ertang

VM utilizes anonymous mapping that maps a certain area tfiaimemory backed
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by swap spacé instead of a file if it is supported by the OS. If it is not, thetwal
memory is mapped to a special fiev/zero

3.5.4 alloc_util allocators

An alloc_util allocator manages multiple memory carriers as a pool focation. A
carrier is a segment of memory either allocatediseg_alloor sys_alloc A single-
block carrierstores one block, andmaulti-block carriercontains several blocks. When
allocating, if the required block size is larger than a thodd parameter, a single-block
carrier is assigned, otherwise it is placed in a multi-bloakrier. Usually there is a
main multi-block carrier that is never deallocated for eattbcator. Thus if there is
one instance per scheduler for soallc_util allocator types, the allocator instances
acquire memory from the OS even when they are not used.

There is a total limit for the number of carriers that are cdiied by thenseg_alloc
allocator. When the limit is reached, new carriers will bieedted by thesys alloc
allocator. For each type of ttredloc_utilallocators, there are also limits for single-block
carriers and multi-block carriers that theesg_alloallocator can allocate. For every
allocator if these limits are not reached, new carriers ageiiaed from themseg_alloc
allocator.

If a memory block being allocated should be placed in a sibipek carrier, the
mseg_alloor sys_allocallocator is called to allocate a memory segment for the car-
rier. When a block in a single-block carrier is deallocatibe, carrier is freed by the
mseg_allo@llocator if it was allocated by it, and otherwise it is frdgdthesys_alloc
allocator. There is no free block list for single-block ¢arr

When allocating a block that should be placed in a multi-kloarrier, the free
blocks in currently allocated multi-block carriers arersbad before allocating a new
carrier. If a free block found in a multi-block carrier isdgar than the required size and
has extra capacity to make a new free block, it is split. Whieloek is deallocated, it is
coalesced with the preceding and/or following block to imemory fragmentation
if both or one of them is also free. A multi-block carrier ise@sed by thenseg_alloc
or sys_allocallocator when the whole carrier is free. The free blocks idtiblock
carriers are managed according to the allocation strategyanalloc_util allocator
uses. There are four allocation strategiégst fit address order best figood fif
andA fit. Address order best fis similar as the one used in the Erlang VM’s own
implementation ofmalloc

Thebest fitstrategy is also implemented with a balanced binary seageh but it
is slightly different with the one used in ttealdress order best fitAll the nodes in a
tree have distinct keys, i.e. memory sizes. If some memargldsl have the same size
as that of a node in the tree, they are linked as a list, anddbe nontains an extra
pointer pointing to the list.

A deallocated block is inserted at the head of the list if¢fiea node in the tree with
the same size, while allocation starts from the tail of the IThis can reduce allocation
time when lists are not long, because if a tree node is remiovealy take extra time to

11An area on hard disk holds some data temporarily for main nmgmben it doesn’t have enough space.
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find its successor and restore the Red-Black propertiesré&®9 is a simply example
of the structure described above (the key values are nastieahemory block sizes).

Good fitis a special algorithm implemented in the Erlang VM. The tokecks are
organized as segregated free lists or buckets. Each ftestdies blocks with sizes in
a specific range, as illustrated in Figure 3.10 (block sizesat realistic).

When a block of a multi-block carrier is deallocated, it iskied as the head of a list
according to its size. When allocating a block, the buckat tlovers the required size
is searched first if it is not empty. If the search fails andéhie a non-empty bucket
covering larger size, that bucket will be searched. Thers#search always succeeds,
because all the blocks in the bucket are larger than requiteel search in each bucket
is limited by the maximum search depth which is small, by difa. The algorithm
tries to find a best fit from the limited number of blocks stagtfrom the list head. All
the insert, delete and search operations take O(1) timewhé&ans it is not dependent
on the number of nodes and sizes of lists.

An A fitallocator manages only one free memory block list. A freebis inserted
at the head of the list if it is larger than the old head blo¢keowise after it. Thus the
block at the head is always the largest. When allocating, i first block in the free
list is checked. If the first block is smaller than requiredesv carrier is created. The
time for block insert, delete and search operations is eonsT his allocation strategy
is fast, but doesn’t use memory efficiently. It is only useddayporary allocator.
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A util_alloc allocator has data structures to store its configurati@mgntance the
memory carriers it manages, parameters controlling tres@fcarriers, and allocation
strategy it uses. These parameters are chosen to meetspagifirements of different
applications, and can be customized by users.

3.5.5 fix_alloc

A fix_allocallocator manages memory pools allocatedlbglloc that are never deal-
located. There are different pools for some different datectures with fixed size that
are allocated frequently, such as processor structune, stimicture, and module struc-
ture. Every time dix_allocallocator acquires memory that can serve a certain number
of requests for a specific data structure if the free memaosyrtia out. The free blocks

for a data structure are linked as a list. When there is a mgailmcation request, the
memory block at the head of the related list is handed ous.dtiery fast allocator.

3.5.6 Process Heap Garbage Collection

In the Erlang VM copying generational garbage collectorssdifor process heaps. A
generational garbage collector classifies memory objettgdifferent generations. In
the Erlang VM there are two generations, young and old. ThHeator is based on the
observation that the most recently created objects aretladsmost likely to become
unused quickly. By avoiding processing objects with loriferepeatedly the garbage
collection time can be reduced. The young generation isaggricollected more fre-
quently than the old generation. In the Erlang VM, for eaatpss garbage collection
is performed when there is not enough free space in the hestprionew data. When
a process terminates, its memory is simply reclaimed witlyatbage collection since
the heap is private for every process. The garbage collecto€heney-type [9] stop-
and-copy collector with two types of collection, minor @ation and major collection.
When collecting garbage, the process is stopped. Duringmuallection only the
young generation is garbage collected, while during majptiection, all the genera-
tions are collected. Major collection is performed aftetuanber of minor collections,
or after that a minor collection couldn't free up enough spas required. The garbage
collection algorithm is described as follows.

Besides the ordinary heap, a process may also have a heiag sterdata of the old
generation. The ordinary heap contains the data of the ygangration. Data objects
that have survived two or three minor collections are pra&uddb the old generation.
That is controlled by a mark, high water mark, in the youngpheghe data objects
with lower addresses than the high water mark are older ygengration, while the
data objects above the mark are younger young generati@ddta objects below the
mark have survived at least one minor collection or majolectibn.

During a minor collection a new heap is allocated to storedita of the younger
young generation that can survive the collection. Its sizddtermined by compar-
ing the size of the young heap and heap fragments associitethe process being
garbage collected to a table. Entry values in the table groa Fibonacci sequence
starting from 34, and when the values are greater than 1li®@mihey grow proportion-
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ally. So the size of the new heap may grow in order to redudeaggr collection times.
Data in the heap fragments are copied to the new heap witlaohage collection.

Root set, from which what data are working can be derivedudes the stack,
process dictionary, argument registers, messages thabaattached, and some other
elements in the process structure (PCB) which are not imatedalues. Working data
referenced by the root set in the young heap are copied tddheap if their addresses
are under the high water mark (older young generation),raflse they are copied to
the new heap, and the references in the root set are updaieithgdo old or new heap.
After that some references in the new or old heap may stithtptoi data in the young
heap. Thus memory objects in the young heap referenced hyird#ite new heap or
older young data in the old heap are copied to the new or old heeording to their
original positions.

The young heap is freed after all the working data are mowved tlhe new heap
becomes new young heap, or new ordinary heap for the probessig a minor col-
lection, the old generation data in the old heap which weoeest during previous
collections are not touched. This reduces garbage calletitne. After a minor col-
lection, the high water mark is set to the start of the new gcheap if there were older
young generation data during the collection, and otheritiseset to the new young
heap’s top. The working data copied to the new heap is coragachich means they
are stored in a consecutive memory area starting from the $t@at to the heap top.
Figure 3.11 is a simple example of the memory movement in @ndallection (Heap
fragments and stack are omitted).

During a major collection data both in the current heap (@pgeneration) and the
old heap referenced by the root set are copied to the new fibap.the data in the new
heap are checked to get the remaining working data, whicimdirectly referenced by
the root set, from the current and the old heaps. After thatthrent heap and the old
heap are freed, and the new heap becomes new current hegpobtiess. Figure 3.12
is a simple example of the memory movement in a major cotledtHeap fragments
are omitted and stack).

3.5.7 Memory and Scalability

Modern processors are usually much faster than the main myeffmaddress the prob-
lem, a hierarchy of memory is introduced in computer systelnsmemory subsystem
can include registers, multiple levels of caches, main nrgnamd a swap space on a
hard disk. From the registers to the swap space, their speathcrease, while their
sizes increase. A slow memory subsystem can be a bottleaettkef whole system.

For a multithreaded program like the Erlang virtual machaikthe threads share
the same virtual address space. When allocating memoryffereht threads simulta-
neously, synchronization mechanisms are needed. Thentmmend latency induced
by synchronization may reduce the scalability of the progsanificantly if it contains
a lot of memory allocation. Thus on the Erlang virtual maehstalability is dependent
on the characteristics of each application. If an applicatequires frequent memory
allocation, it may scale poorly.

The number of instances for a type of allocator can also ttffiecscalability, since
when there are more instances it is less likely that cordardccurs. If there is one
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instance for each scheduler, every scheduler can allocaeony from a separate al-
locator instance. Synchronization is still required if negnblocks can be transferred
between schedulers and a scheduler has to deallocate a ynblook that was al-
located by it, such as the memory blocks for messages in tladEVM. When a
memory block is deallocated, usually it is not returned tacke OS immediately, but
is put into a pool of free memory blocks associated with tthecator which allocated
the block earlier. The memory blocks in the pool are orgahirea form like tree,
bucket or list. If several threads can insert and remove nnginiocks from the pool
simultaneously, synchronization is needed to protecttituetsire of free blocks.

The time to allocate or deallocate a memory block is dependerits position
in the free memory pool. For example in a tree if the blockahlé for a memory
allocation request is at the bottom of the tree it will takerger time to find it. When
there are more instances for a type of allocator, the trethagm be smaller since free
memory blocks are distributed to more pools. It can resutaster memory allocation
or deallocation time.

52



Chapter 4

Evaluation and Analysis

4.1 Experimental Methodology

The performance of an Erlang application is dependent orcaiméiguration of the
Erlang runtime system. The VM can be fine-tuned for differgpplications. There
are many parameters that can be adjusted. For instance,teimdefault process heap
size is small, if an application consumes a large amount ahang, there will be
many garbage collections. If a larger initial heap size msdushe number of garbage
collections can be reduced and the performance is improved.

In this project, we don't attempt to fine-tune the performafar each applica-
tion. Most of the time, we test with the default setup exceiesluler binding and
multi-allocator features. Each Erlang scheduler is bound different core in the
tests. A bound thread cannot be moved to different coresdgdheduler of the OS,
which can prevent two Erlang scheduler threads from beisigasd to the same core
by the OS scheduler. Sonadloc_util memory allocator types can be configured one
instance per scheduler for each type. For some memorysinteapplications, one
instance per scheduler can reduce lock contention duringaneallocation. But it
introduces more memory consumption, and may decrease tf@mance for some
other compute-intensive applications. The default coméigon is that there is one in-
stance per scheduler for eaghoc_util allocator type excepgemp_allocandll_alloc,
when the scheduler count is less than or equal to 16. We setoibé instance per
scheduler even when the number of schedulers is greatet &mm some benchmarks
that can benefit from it.

There are two versions of Erlang Virtual Machine, SMP (databnd non-SMP
(sequential). Usually, the parallel VM with one scheduseslower than the sequential
VM because of synchronization overhead and other diffexeit the structure of the
program. Speedup is normally calculated against the peeoce of a sequential ver-
sion of the same program, whichadsolute speedupn our test, we also uselative
speedupthe speedup computed comparing to execute time on thelgdard with
one scheduler.

TILEPro64 is used as a platform for performance evaluatBmme other computer
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systems with different processors are also used when thareeed to compare perfor-
mance differences. All the experiment results describéldememainder of the chapter
are measured on TILEPro64 unless otherwise specified. 8pfesenting the evalua-
tion results, there is a short discussion of the metric thased as the average value of
execution time observations, description of tools and &mduction of benchmarks.

4.1.1 Variability of Execution Time

Performance analysis is a non-trivial task. Contradictamyclusions might be drawn
by changing a seemingly innocuous aspect of the experitnsstizp [30]. The vari-
ation of execution time for native programs with the sameuirgre significant on
multi-core architectures [28], and it is likely to be moreee on many-core proces-
sors. Since Erlang applications are run on a virtual magclhireee are more factors that
can cause the execution time to vary.

The execution time can be affected by other programs runcomgurrently with
the program that we are measuring. This effect can be redwcetbsing other unre-
lated applications. But there are still some backgrourkstazecuted by the operating
system. When there are many background tasks in a period,de@cution time is
observed, and when there are few background tasks, theteetime is shorter.

This imposes a great challenge on the performance analysiary-core systems,
especially scalability. For instance, if we want to compidue execution time on 56
cores with that on 60 cores the difference is only about 1dgally, and it is worse if
the execution time on 59 cores is compared with that on 6(scdriee execution time
on 60 cores should be large enough so that we can isolate paetrof other tasks, and
otherwise we need a huge number of tests to make a reliabtdusion. If the execu-
tion time on 60 cores is large, it is likely to take a very loingé to execute on 1 core.
When a benchmark is configured to run a long time, its sizertikenory consumption
may be bloated, and it doesn’t represent an ordinary camditfor example, the num-
ber of processes in a benchmark might be increased to make libmger. With more
processes, more memory is used. The system may be workimgeixt@eme condition
that there is poor cache performance because of large mdowpyint.

The variation of execution time can also be affected by tltheanemory system.
All the Erlang modules are loaded before they are run. If giliegtion is run for the
second time it is likely to be faster, because its instrungtiand data were brought to
the cache when it was run for the first time. To avoid this effafter each test run
the Erlang VM is exited and re-launched during our test. Apotlternative way is to
run an application several times and record the time speptoh test run except the
first one. The first test run warms up the caches. We use theefamathod because
for many benchmarks each test run may take several hoursitvisezxecuted on one
core. The latter approach is more time-consuming.

On many-core systems, shared memory is protected by lodkk ¢ontention can
introduce variation on the execution time depending on wliee contention occurs
and how many cores are contending. Variable time can be gpeloick operations.
Erlang processes are synchronized by message passingidi@gpen when messages
are received, the execution time can vary. When receivingessage, if there is no
matching message in its mailbox, a process will be suspeibdn a matching mes-
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sage is at the head of the mailbox, it is processed immegidtbe whole mailbox has
to be traversed if the only matching message is at the botfameamailbox. When
there are many cores, the arrival time of messages is likehaty.

There are also many other factors that cause the variatiemafution time. We
are not going to investigate all the causes of variation is phoject. But because of
variability we need a proper metric to represent the avevadige of execution time
spent on a number of test runs.

In practice we observe non-negligible variation of exemutime for Erlang pro-
grams. To get more reliable results, every benchmark isdestveral times with the
same input. The average of the observed values is usuallgsepted by arithmetic
mean which is obtained by taking the sum of all observation dividing the sum
by the number of observations. The mean is easily affectenlitliers which are ex-
tremely small or large values in a sample. We notice thatlsingtlier can make a
considerable change in the mean execution time especiaiynihe number of cores
is very large. Thus we use sample median instead. Samplemisdihe middle value
when the observations are arranged from the smallest valine fargest value. When
the number of observations is even, median is the mean véliee édwo middle ob-
servations. Median is resistant to outliers. It is more espntative than mean if the
observed values are skewed or their distribution is bia8H Sample median is also
recommended in [28] to report execution time for multi-cpregrams, and the stan-
dard SPEC benchmark suites use median.

4.1.2 Factors Affecting Speedup

There are many factors that either benefit or limit the sppeafithe Erlang virtual
machine on the many-core processor TILEPro64.
The pros for speedup on the many-core processor are as $ollow

e The programs can be executed in parallel.

e When there are more schedulers, more private L1 caches catilibed since
they are bound to different tiles/cores. In the other woadsl, 1 data or instruc-
tion cache serves fewer Erlang processes. The hit rate oadHes is likely to
increase. Erlang processes with the same priority are &é@du round-robin
order. If a data cache cannot hold the stacks and heaps finoaksses, when a
process is executed its data which were brought into thesodiehing its previous
time slice might be taken out and have to be brought back fraim memory.
A memory block is taken out when a new bock is going to be storélde same
cache line.

If the benefit of more L1 caches prevails, the speedup candmagrthan the number
of cores used, i.e. super linear.
The cons for speedup are:

e Many programs include sequential part that cannot be ruaialiel.

e It is possible that a benchmark doesn’t have enough pasafigb fully utilize
all cores, particularly when the core count is large.
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e The workload might be not evenly distributed to all cores tlyesiulers.

e Erlang processes can be migrated to other cores becauselddamdbalancing.
This might introduce more cache misses, since after evegyation, the code,
stack and heap of the process have to be transferred to théleew

e By defaultthe heap of an OS process is hashed-for-home. Wiikemis only one
scheduler, it uses L2 caches of all tiles which form a comm®rtache. With
multiple schedulers, they all share the L3 cache. Sincdalsthedulers run si-
multaneously, more memory is needed or accessed at anyfmagerformance
of the L3 cache is likely to be worse because of contention.

e Synchronization cost is another important contributoriofvslown. When there
is only one scheduler, the locks are not contended and syniation cost is
the pure overhead of locks. If there are many schedulerg,niay contend for
locks and extra penalty for contentions is introduced [18].

The above pros and cons are the main factors that can affesptedup. There are
definitely other factors that can affect the speedup, fdaimse contention on the inter-
connection networks.

4.1.3 Methods

To analyze the performance of Erlang applications, we nethd tools for measuring
the Erlang VM and the Erlang code running on the VM. The penfomce of memory
subsystem especially the cache system can be measuredysfigmslevel profiling
tools, such as Oprofile for TILEPro64, CodeAnalyst for AMbpessors and VTune
for Intel processors. A profiler gathers information, susliraquency and duration of
function calls and memory system usage, as a program esecute

The lock contention times and duration can be measured wgthprofiler or lock
counter which is a tool in Erlang/OTP. The time duration $pena lock is accumu-
lated by the profiler. Thus it cannot provide accurate infation about how much time
is spent on a lock for each individual scheduler thread. NEwking profilers are in-
trusive in that they have big impact on the performance ofagglications that they
are profiling. For instance, a profiler may lock some datacttines to atomically get a
sample.

The balance of workload can be indirectly investigated bgcking the migration
of processes and the state of schedulers with tracing ared ptifiling tools. For
example, when there is no work, a scheduler thread is inngpdtiate or even blocked.

4.1.4 Benchmark Programs

Most benchmark programs used in this project are providetthi&yErlang/OTP team.
A short description for each benchmark is as follows.

e Mandelbrot Set Calculation - The program calculates Mdmdéket. Complex
valuec is in Mandelbrot set if when starting frody = 0 and applying the equa-
tion Z,, 1 = Z2 + c repeatedly, the absolute valuef never exceeds a certain
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number. In practice, the number of iteration is limited, ang 255 in this
benchmark. The benchmark takes two arguments, size of iinagieels and
number of processes running Mandelbrot set calculatioch pael represents
a complex value, or a point in the complex plain. Every preasecks whether
each pixel is in the Mandelbrot set for a different image petaently. It is an
embarrassingly parallel workload. There is no dependen@ommunication
between processes doing the calculation, except that tlire pnacess spawns
these processes and waits for them to finish sequentiallys @énchmark is
compute-intensive and has little memory footprint.

Big Bang - Big Bang spawns N processes, each of which sendgagssage to
every other process, and replies if a ping message is retéive ping message
is a tuple consisting of the atoping as the first element and the process ID
of the sending process as the second element. The respomsedssage that
is similar to the ping message except the first element is tihi pong The
messages are very short. Besides sending and replying gessslae processes
don’t do any useful work other than call a built-in functianget their process
IDs. All the processes are interdependent. A process figighavork after all
its ping messages are replied. But some other processes mety lfiter. As a
result it has to keep replying ping messages from other pease

Erlang Hackbench - Hackbench is a benchmark for testing thxischeduler.
It simulates a chat room, in which each client sends a medsagach server
in the same group. The program creates N groups of processes.group,
there are 20 listener processes and 20 writer processeh. oE#we 20 writers
writes 100 messages to each listener. Processes in diff@ups are indepen-
dent. Erlang’s version of Hackbench is similar except witlfuatable message
number.

Random - The main process of the benchmark spawns a numbeoadgses
which is specified by user. Each process randomly gener@@300 integers
and appends them to a list. Then the list is sorted and spdittwo lists. After

that the first element of the second list which is a middle salfithe original list

is returned to the main process. This benchmark has big myeioatprint.

4.2 Results and Analysis

4.2.1 Mandelbrot Set Calculation

The Mandelbrot set calculation benchmark contains a bathnorkload. In fact, it is
not a parallel workload but several sequential computatitome in parallel. For a true
parallel workload, all the processes should operate orrapparts of an image rather
than on separate images. This benchmark is a compute-ivggnegram which is not
in the typical domain that Erlang is used. Erlang is desigoedpplications with a lot
of communications and concurrency. This benchmark is useduse it is very likely
to show the best scalability of the Erlang VM. Thus the resfilthis benchmark is
closely investigated in the remainder of this subsection.
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Figure 4.1: Speedup of Mandelbrot Set Calculation 250-600lbEPro64

Figure 4.1 shows the absolute and relative speedup of thel®lamot set bench-
mark executed on the parallel Erlang VM with different numsbef schedulers. The
X axis is the number of schedulers, and the y axis is the speetheedup(non-smp)
is the speedup computed by comparing the execution time amdar of cores with
the SMP VM to the execution time on one core with the non-SMBeguential VM,
which is the absolute speeduppeedup(smiy the speedup when the base is execution
time on one core (scheduler) with the SMP VM. The sample sZ& which means
every point in the graph is an average of 2 test runs. Imaggeisi250 * 250 pixels.
600 Erlang processes are spawned to execute independifitlinfages).

With 250*250 pixels per image and 600 processes, this beadhscales very well.
It achieves speedup more than 50 at 60 cores. Each procésshenchmark is inde-
pendent and has the same workload. The result indicateshieelsgling algorithm of
the Erlang VM achieves good performance with processesthat evenly distributed
load.

Figure 4.2 shows the relative speedup of the benchmark V100 pixels per
image, 240 processes and 250*250 pixels per image, 180gmeseThe sample size is
10, or every point in the graph is the median value of 10 olaggms. The scalability
is not as good as the previous one. The speedup at 60 coramisdth

The median values of the execution time on 1 core and 60 coeeshawn in Table
4.1. The time in the second row is for the SMP VM with 1 scheduBmmparing the
workload of 180 processes to that of 600 processes with ZEDfixels per image,
the ratio of is about 0.3 ideally since every process hasaheesvorkload. The actual
execution time with 180 processes on 60 cores to that withp2atesses is 0.343, while
the proportion of execution time on 1 core is about 0.3 whidimiear to the change of
workload. Thus the performance deteriorates when the nuaiflsehedulers increases
with 180 processes.

Figure 4.3 is a snapshot of the profiling result from the Eglemncurrency profiling
tool Percept for the Mandelbrot set calculation benchmaith ®40 processes and
100*100 pixels per image on the SMP VM with 1 scheduler. Theegrarea in a bar
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Figure 4.2: Speedup of Mandelbrot Set Calculation on TIld6Rr

| Schedulerg 250-600 (s)| 250-180 (s)| 100-240 (s)
1 6123.783 | 1836.562 394.031
60 120.728 41.379 9.107

Table 4.1: Execution Time of Mandelbrot Set Calculation

means the corresponding process is runnable (or runnirg e white area means
the process is suspended, for example due to waiting for aages The upper part of
the graph shows how many processes are runnable (or ruratiag)instant of time.
The bottom part shows the status of each process. The firseggan the graph is
the main process that spawns all other processes doing fihdatmn and waits for
them to finish. On 1 scheduler, all processes finish their wedly at the same time
(actually their last time slices are finished sequentially)

The profiling result from Percept on 60 schedulers with 24@esses and 100*100
pixels per image is shown in Figure 4.4. The result indiciitassome processes finish
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Figure 4.3: Mandelbrot Set Calculation 100-240 on 1 schardul
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Figure 4.4: Mandelbrot Set Calculation 100-240 on 60 sclezgu

execution much earlier than others. We can see steps in &pd gin each step, about
59 processes finish their execution. At the end, there arepfewesses, which are
much fewer than 60, left to be finished.

By examining tracing result, we find that when running thedbenark with 240
process and 100*100 pixels per image on 60 cores the exadutie is too short (about
9 seconds) to trigger the workload balancing mechanismagadsin section 3.3. As a
result, the schedulers except the one that the main progsises at only can steal the
processes. A scheduler steals a process when it is out of Watkals another process
only after the old one has completed its execution. Thuslarsfrocess occupies the
whole scheduler or core, and finishes execution much fasarthe processes that are
not stolen since those processes share the same core.

Although this doesn't affect the total execution time mustblen processes behave
like having a higher priority than the processes that arestodén. It breaks the fairness
provided by the round-robin algorithm. The period of bakoheck is the time taken
by a scheduler to execute 2000*2000 reductions by defau#.nhore reasonable that
the period reduces as the number of schedulers increases,wghen there are more
cores more work can be executed in a period. It may have a toiv tiecause if the
period of balance check decreases less time is spent inteaxgoageful work. There is
a trade-off between the work balance and efficiency.

Figure 4.5 shows the number of schedulers which are not itingastate starting
from the time when the first worker process that does the Manakeset calculation is
spawned by the main process. It gives the reason why theddglavith 240 processes
is not as good as with 600 processes, because not all theudersedre working for the
whole time. At the beginning all the schedulers except theetbat executes the main
process are in the waiting state. The waiting scheduleraaken up one by one. This
also causes processes to be finished at very different tinmee $he total execution
time is short, the slowly ramping up of the number of scheduleas big impact on
the total performance, while it has less effect with 600 psses. By calculating the
area under the line representing the number of schedulétigime 4.5, then dividing
it by 60, we can roughly get the performance increase wheschitdulers are active
at the beginning, which is 1.185. Multiplying it with the aeat speedup of 43.267, the
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result is 51.225. That is similar to the performance whenetlage 600 processes and
250*250 pixels per image.

As shown in Figure 4.6 with 180 processes and 250*250 pikatsexecution time
is longer and the time of waking up schedulers has less affetite total performance.
But this benchmark has fewer processes and more work peegspand therefore the
tail is longer.

The threshold for waking up a scheduler is configurable wleenpiling the VM,
by default 50*2000 reductions. The counter in a schedulewfiking up other sched-
ulers is increased in a scheduling slot proportional to ¢mgth of the run queue and
the actual reductions executed between the current séhgdimhe slot and the previ-
ous one. Thus the schedulers are mainly woken up by the sieheduere the main
process spawns other processes. This benchmark will achibetter performance if
the configured threshold is lower. Thus it is not a big issuke fenchmark doesn’t
scale well because it doesn’t have enough workload.

The ideal speedup is 60 and it is 17.1% higher than 51.225.r@s$teof the time
is likely spent because of lock contention or cache perfoaaleterioration. Figure
4.7 shows the lock profiling result. The lock profiler is a Spi¢ compiled VM. It is
intrusive and introduces big overhead to count the lock agfl The execution time
increases from 9.107 seconds to 36.144 seconds, whichg8 firtBes larger.

In the result, a lock nameglc_infostands out. This lock protects shared variables
storing statistical data about the times of garbage catlegterformed and the total size
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3> lcnt:clear () ,mbrot:go(100,240),1lcnt:collect() .

36143.563
ok
4> lcnt:conflicts() .
lock id #tries #collisions <collisions [%] time [us] duration [%
gc_info 1 9362410 9319477 99.5414 1502993801 4156.2056
run_gqueue 60 98572 123 0.1248 4610 0.0127
proc_msgqg 268 1466 40 2.7285 531 0.0015
alcu_allocator 362 18740345 36 0.0002 197 0.0005
proc_link 268 1220 24 1.9672 122 0.0003
proc_main 268 36784 8 0.0217 114 0.0003
procisfatus 268 18834281 75 0.0004 55 0.0002

Figure 4.7: Lock Conflicts Mandelbrot Set Calculation 1812

of memory reclaimed. The lock is global and all the schedubentend for the lock
when they are going to update the information. There are nganlyage collections,
because the benchmark includes many arithmetic operatibith are not allowed to
allocate heap fragments and when there is insufficient heapary for storing calcu-
lation result a garbage collection is performed.

In Erlang, variables are immutable. A statement bike x+ 1 which is legal in
the C programming language is not allowed in Erlang, sineeviidue ofx cannot be
changed. As a result, in this benchmark for each pixel evegrinediateZ,, requires
a new variable to store its value. If a pixel is not in the Mdbdg set, the equation
mentioned in Subsection 4.1.4 has to be applied 255 timekseach time a new vari-
able is used which is a complex value. For an image with 100*1ii@els, there are
10000 pixels. Thus a process needs a lot of memory to stose treiables. The size
is much larger than a process’ initial heap size. Every tinnenvthe heap is full, a
garbage collection is performed. The garbage collectionfieze nearly all the space
of the heap, because all the variables are only used oncenoksasZ, is calculated,
Z,_1is not required any more, and becomes garbage. Memory usageacess’ heap
keeps growing when new intermediate variables are genkrafter a garbage collec-
tion, it becomes almost empty. The procedure repeats tetpptocess finishes all the
calculations. This interesting phenomenon suggests thalgmrithm that is compute-
intensive if implemented with some other languages canifiomemory-intensive or
garbage-collection-intensive if it is implemented witHafrg.

The lock profiler counts the number of lock acquisition tréawl collisions, and
also measures the waiting time spent on each instance ofkeclass. Theimein
Figure 4.7 is an accumulation of all waiting time spent orfiedént scheduler threads
for that type of locks. Thec_infolock type has only one instance. It has a high
collision rate 99.5414% because it is global. 4156.2056%hetotal execution time
is consumed because of collisions of this lock, which mean®0 schedulers, the
average is about 69.27%. This result doesn’t provide usrateinformation about the
extra time spent on locks when the benchmark is run on a ndriMaBut it indicates
the lock protecting the updating of garbage collectioristiatl information may have
big impact on the total performance, and the performancéeamproved by reducing
the lock contention or lock overhead. The _infolock is implemented with a spin lock
which on TILEPro64 is based on Pthread spin lock. Replatingh the queuing lock
might improve the performance when the number of sched(derss) is high.
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| Schedulers | 1 [ 60 |

Bundles / cycle 0.600 | 0.547
Instruction cache stall / cycle | 0.078 | 0.083
Data cache stall / cycle 0.063 | 0.099

L1 data cache load missrate | 0.012 | 0.029
L2/L3 data cache load missratg 0.112 | 0.123
L1 data cache store miss rate | 0.022 | 0.065
L2/L3 data cache store miss rat¢ 0.069 | 0.032
Data TLB miss rate 0.0001 0
Conditional branch mispredict rate 0.334 | 0.302
Indirect branch mispredict rate | 0.594 | 0.601

Table 4.2: Profiling Result

Table 4.2 shows the profiling result of the benchmark with*100 pixels per
image and 240 processes from the system profiler, a custdwezsion of Oprofile for
Tilera processors. The instruction bundles executedétper cycle with 1 scheduler
is about 1.097 times as many as with 60 schedulers. With 68dstérs, the stall of
execution pipeline due to instruction and data memory djprsiis also larger. It also
has higher L1 data cache load and store miss rates, but Ia2eBldata cache store
miss rate. This is very likely caused by lock contention. Example, the spin lock
protecting the updating of garbage collection informatidhe critical section, which
includes modification of two global variables, is very shamd therefore the lock
owner releases the lock quickly. When the lock is releaseaynthreads will contend
for the lock. They use atomic test-and-set instruction &mlrhe old value and write a
value one to it. Each write (store) operation will cause thpies of the lock in other
tiles’ L1 caches to be invalidated. As a result, the miss@atel caches increases. All
store operations writes through new values to the L3 cacttetterefore the L3 cache
usually contains the newly written values. Lock conteniimecreases the number of
stores to the L3 cache. Since the hit rate of the lock is higghtatal hit rate increases.

The benchmarking result of the Mandelbrot set benchmaikétels the Erlang VM
achieves good scalability with proper workload, which isatb0 on 60 cores. It may
be improved if lock contention cost can be reduced, paditylthe one protecting
updating of garbage collection information. We also sug¢fes period of balance
check should be decreased when the number of cores increases

4.2.2 BigBang

The Big Bang benchmark has been tested on a simulated sy#tésnsimulated on
Simics, a full system simulator. The simulated system ha&sUWgaSPARC T1[26]
compatible processor cores running at 75 MHz with the opegal/stem 64-bit Solaris
10. Memory system is not simulated, and memory access timerés The benchmark
is tested on this platform to gain an insight into how the Bgl&M will scale if there
is no memory access latency.
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Speedup of Big Bang on Simulated System
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Figure 4.8: Speedup of Big Bang with 1000 Processes on Siatystem

Figure 4.8 is the speedup of Big Bang with 1000 processes@sithulated sys-
tem. The sample size is only 1, since simulation is very teaesuming. Without
averaging, the points vary a lot. Figure 4.8 indicates tHarigr VM scales well with
the benchmark Big Bang when there is no memory access latéfuy speedup is
nearly linear even when the core count is between 64 and 188gg¢ests the schedul-
ing algorithm of the Erlang VM achieves very good performamndth processes that
have similar workload when there is no memory access latency

The speedup fluctuates more rapidly when the number of camedses. The
execution time of this benchmark is much dependent on thewhen messages arrive
at the processes. The times of context switching are diffef¢he messages arrive at
different time, since a process will be suspended if it hagai for a message. With
more schedulers or cores, the arrival of messages is likakty among different test
runs.

Relative Speedup of Big Bang on TILEPro64
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Figure 4.9: Speedup of Big Bang on TILEPro64
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Figure 4.9 shows the relative speedup of Big Bang with thepsausize 10 on the
TILEPro64 board. Among the different process sizes, thewitte 800 processes is
the best. It achieves the speedup 46.6 at 60 cores. With I@@@gses, the speedup
is 46.5 which is very close to the previous one. With 500 psees, the speedup is
the worst. The reason is that its execution time is very stooty 1.47 seconds on 60
cores) and it suffers from the time spent on waking up sclezdul

The workloads with 700 (2.98 seconds on 60 cores) and 80@pses (3.69 sec-
onds on 60 cores) are also low. Their execution time is deadih cache effect and
other influence like running of background tasks. Thus weataserve super linear
speedup sometimes. For example, the speedup is superwitha800 processes on
16 cores and 32 cores. With 700 processes, the speedup jurd@soores. The actual
relative speedup for every test run exhibits high varigbais shown in Figure 4.10.
In the chart, speedup is computed by dividing the executioe of each run to the
median value of execution time on one core (scheduler). Wesea that at 60 cores
the speedup varies rapidly from 36 to 49. This variabilitgrégases when the number
of processes or workload increases in general.
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Figure 4.10: Speedup of Each Test Run of Big Bang with 800é%%&s on TILEPro64

The performance with the number of processes more than 8d@iie represen-
tative. When the process count is more than 1000, the stigladecreases which is
caused by more synchronization between processes and reatermfootprint.

This benchmark seems to be with balanced workload. But tyetile workload
can vary. This is due to the implementation of message pasbior this benchmark,
the workload tends to be less on one scheduler. On one s@neshdh process is
executed in order. The messages are also sent in a more naeey and they are
processed faster. For example if there are 1000 procebses000th process will re-
ceive all pong messages from other processes in the ordenighwall the processes
are spawned. When retrieving, the pong messages are ale@ysrgially matched in
the mailbox which reduces the time of message queue trdvéisaere are multiple
schedulers, the messages are interleaved and the ameabfimessages is more vari-
able. Table 4.3 shows the numbers of reductions executéddiferent numbers of
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| No. of procs| Reds 1 sched Reds 60 sched Ratio |

800 3277560 3414532 1.042
1000 4857191 5252380 1.081
1200 6693462 7386494 1.104

Table 4.3: Number of Reductions with Big Bang

lock id #tries {#collisions «collisions [%] time [us] duration [%]
alcu_allocator 362 3097055 125556 4.0540 11986480 227.0106
run_gueue 60 1400750 19547 1.3955 183442 3.4742
pix_lock 256 2565919 24251 0.9451 175079 3.3158
proc_main 827 1940191 257536 13.2737 166707 3.1572

Figure 4.11: Lock Conflicts Big Bang 800

processes and schedulers excluding the main process.ugltireductions are not di-
rectly proportional to execution time, we can still get sas#mation. From the result,
we can see one of the factors limiting the speedup for thishmark, or maybe this
kind of benchmarks with message passing, is that the walkfaaeases as the number
of core increases. When there are more processes, messagasahronization, the
workload increases greater.

Comparing the performance of Big Bang with 1000 processe§IbEPro64 to
that on the simulated system, the speedup is worse. Thattésgasonable because
memory subsystem do have effect on the scalability. At le&shory latency is a factor
that affects the overhead of locks. The speedup is about@2aires on the simulated
system, while 46.5 on TILEPro64. But the sample size on theulsited system is
small, and two systems have different architectures. H#éris&comparison might not
be very meaningful.

Figure 4.11 shows the lock profiling result for Big Bang witb08processes on 60
cores. The accumulated lock collision time of the lock tgbeu_allocatoris about
227% of the total execution time, which is about 3.78% peecdihe actual effect of
lock contention may be much higher than the average valudegdéends on how the
total lock contention time is divided among schedulerss ligtter if the profiler could
provide such information.

Among all alcu_allocatorlocks, the locks protecting some allocators for short-
lived data 6l_allog and Erlang heaps including heap fragmemrtise@p_allor have
high collision time as shown in Figure 4.12.

This benchmark contains a lot of message passing. Whenrgeadnessage, two
memory blocks have to be allocated, one for the actual meszad another for the
data structure containing management information for tessage. The message is
first tried to be copied to the heap of the receiving procdshelreceiving process is
executing on another scheduler, or another process isgopissage to the receiving
process, the new message cannot be copied to the heap, teatliiasheap fragment
is allocated. The heap fragment is allocated withedveap_allocallocator. There
may be oneeheap_alloallocator per scheduler which is configurable. If there ie on
eheap_alloallocator per scheduler, a scheduler always allocates imeapory from
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6> lcnt:inspect (alcu_allocator).
lock id #tries #collisions <collisions [%] time [us] duration [%]

alcu_allocator sl_alloc 36482 1194 3.2728 1231433 23.3220
alcu_allocator sl _alloc 29096 816 2.8045 687720 13.0247
alcu_allocator sl_alloc 35580 1248 3.5076 469034 8.8830
alcu_allocator sl _alloc 36892 1246 3.3774 448906 8.5018
alcu_allocator eheap_alloc 7781 114 1.4651 339474 6.4293
alcu_allocator eheap_alloc 8681 79 0.9100 337887 6.3992
alcu_allocator sl _alloc 52854 2392 4.5257 301815 5.7160
alcu_allocator eheap_alloc 9465 120 1.2678 280754 5.3172

Figure 4.12: Memory Allocator Locks

the allocator associated with it. Agheap_allo@llocator is not used for message pass-
ing only. It also allocates memory for new main heaps duriaghgge collections.
Heap fragments can also be used with other purposes. Afteisaage sent to another
process is retrieved, the process’ scheduler calls thegponding deallocation func-
tion of the sameheap_alloallocator which allocated the memory for the message to
deallocated the heap fragment. This can cause contentidghddock protecting the
memory allocator when the sending process and receivingepses are on different
schedulers.

There is a message queue for each process that stores thgemamd data for all
the received messages that have not been processed oragtoie the process. The
management data have a fixed size. Every scheduler keepalbpaged list of free
blocks to accelerate the allocation for this type of dataeWfthe list is used up, mem-
ory blocks are allocated with at_allocallocator for new message management data.
The management data are short-lived since when receivaugpses have retrieved the
related messages they are not needed any more. These gagditists andl_alloc
allocators are also protected by locks.

Thealcu_allocatorlocks are built with Pthread mutex locks. Replacing thenmnwit
some light-weight locks like queuing locks might improve firerformance. Another
approach is to reduce the number of collisions. The Erlamg/@am is going to
implement a feature called delayed deallocation, in whichessage sender will be
responsible for deallocating the message after the rexpiocess has processed it.
Only one scheduler will allocate and deallocate the memanafmessage. This opti-
mization can reduce the lock contention. But it may alsogase the memory footprint
since the messages are not deallocated immediately.

4.2.3 Erlang Hackbench on TILEPro64

Figure 4.13 is the speedup of Erlang Hackbench when therédfrgroups and each
writer writes 500 messages to each listener in the same gidwgpsample size is 10.

The relative speedup is also about 43 on 60 cores. For thishbaark, running on
the SMP Erlang VM with one scheduler (1437.163 seconds) ishnslower than on
the non-SMP VM (662.499 seconds). Table 4.4 shows the ewectiine of Erlang
Hackbench on different platforms with different inputs.

The server in the table has two quad-core AMD Opteron 2376<Rith 16 GB
RAM. The Laptop has an Intel Core2 Duo T5750 CPU with 4 GB RAMeTSimics
row presents the performance on the simulated system asamedtin the previous
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Figure 4.13: Speedup of Hackbench 700 - 500 on TILEPro64

Platform | Program | T (smp1)| T (non-smp)| Ratio |
TILEPro64 EHB100-1000| 436.768 185.351 2.36
A server with EHB100-1000| 25.866 19.3 1.34
64-bit Ubuntu
9.04 Linux

A laptop with EHB100-1000| 35.989 16.892 2.13
32-bit
Fedora 11 Linux

A laptop with EHB100-1000| 32.678 16.921 1.93
64-bit
Fedora 11 Linux

Simics EHB100-1000{ 1141.786| 774.827 1.47

TILEPro64 EHB700-1000{ 3023.59 1341.09 2.25

TILEPro64 EHB700-500 | 1437.163| 662.499 2.17

Table 4.4: Execution time on different platforms
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| VM | SMP with 1 schedulef Non-SMP |

Instructions 32-bit 39909 28911
Instructions 64-bit 36028 27548
Time 32-bit 36.431 17.124
Time 64-bit 32.724 16.749

Table 4.5: Execution time and number of instructions

subsection. The performance of the parallel Erlang VM onsérer is much better
than on the TILEPro64 board. This may be due to that Optersnahiaetter single
core performance, bigger caches and more atomic instngcfir building efficient
synchronization functions.

From the table we can see the ratios are lower on 64-bit dpgraystems. Table
4.5 shows the executed (retired) instructions measurddsygtem profiler VTune for
the two version of Erlang VM running Erlang Hackbench wittDJ@ocesses and 1000
messages on the same laptop with different versions of Beldor The corresponding
execution time of each test run is also included. They argsecio the average values
in Table 4.4. The sampling rate is 1000 samples per seconel rédult shows fewer
instructions are executed on the 64-bit OS, especially Wi¢hSMP VM. Thus it is
not very useful to compare the performance between on 3arhit64-bit systems.
There are fewer instructions retired on 64-bit systemsabgse a 64-bit instruction can
process more data in a cycle. The Erlang VM tries to store oitsén a 64-bit register
whenever it is possible. But in average 64-bit Erlang VM @n&r than 32-bit VM,
since the memory consumption is larger. Not all two 32-bitalzles can be combined
into one 64-bit variable and processed simultaneous.

We have further investigated the performance of Erlang Hankh with 100 groups
and 1000 messages on the laptop with an Intel CPU, since tfigepVTune works
better and provides more information. As shown in Table with 32-bit OS the ex-
ecution time on the SMP VM with one scheduler is about 2.1&$ms much as that
on the non-SMP VM. Our further profiling result from VTune iodtes about 32% of
the extra time is spent on the Pthread library, in which Rttirautex lock takes 90%
of the time.

The other extra time is mainly spent on message passing pautha main func-
tion of each sheduler thread. These parts also contain syinehronization primitives
other than the Pthread mutex lock, including atomic privesiand native spin locks
etc. Most of these synchronization primitives are inlinedtions that cannot be sepa-
rated with other functions by the profiler. To evaluate theetispent on these synchro-
nization primitives, a VM is built without function inlinig. On the VM without inline
functions, 30.4% of the time is spent on atomic primitived ather lock functions.
The percentage on the normal VM might be lower, since witrcfiom inlining the
time spent on atomic and lock functions are lower. An inlinadtion can reduce the
overhead of calling it. Other functions are also not inlingiald thus this result is more
or less significant.

Combing the results of Pthread mutex lock and other syndékaton functions
implemented in the VM, it suggests that about 60 percentegéttira time is synchro-
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lock id #tries #collisions collisions [%] time [us] duration [%]

alcu_allocator 362 332978351 44481362 13.3586 477912510 421.4900
pix_lock 256 285264065 7267946 2.5478 48308089 42.6048
proc_tab 1 57400 30030 52.3171 33929521 29.9238

run_queue 60 21374675 457661 2.1411 30098576 26.5451
proc_msgq 28728 149896026 135586 0.0905 1906569 1.6815

Figure 4.14: Lock Conflicts Hackbench 700-500

nization overhead. With only one scheduler, there is no mokention, and thus this
overhead doesn'tinclude any penalty of lock conflicts. Mwer the program structure
is different between the sequential VM and the parallel VM.rlin on a many-core
system correctly and efficiently, the parallel VM needs me@hnics. For example,
with the parallel VM, a message is first sent to the externhlipgueue of the receiv-
ing process’ message queue, and later it is merged into Wete@queue before being
retrieved. But with the sequential VM, there is no public geiéor each process.

This benchmark includes a large amount of message passing résult the over-
head of locks related to message passing makes tremendpastion the total perfor-
mance. With 700 groups and 500 messages, each of the 20s/sdteds 500 messages
to each of the 20 listeners. There are more than 150 milliossages in total. Profil-
ing result indicates the locks protecting each preallatbséfor allocation of message
management data as mentioned in the previous subsectitrbcba a lot to the total
execution time along with locks for other memory allocatdrise list is used to accel-
erate memory allocation by assigning one of the blocks ifish&o a new request. But
in this benchmark, there are too many messages and the itkiyjouns out. When
new requests arrive, the locks are still acquired to cheaithdr there are free blocks.

The performance can be improved if the lists are checkedréefoquiring the
lock. If there is no free space in a list, the acquiring of liekkipped, and memory is
allocated by an allocator for short-lived data. If there faee blocks in a list, the cor-
responding lock is acquired. After that the list has to beckbd again to see whether
there is still some free space since before the lock is sefulfsacquired the free
blocks might be allocated to other threads. The free blockslist is allocated only
by its owner thread, and other threads return free blockisedist after messages are
retrieved and their management data are deallocated. détisrE might be explored to
utilize some lock free algorithm instead of lock [39].

The lock profiling result for Erlang Hackbench with 700 greimd 500 messages
on the VM with 60 schedulers is shown in figure 4.14. It alsontyasuffers perfor-
mance loss from contention of memory allocator locks sihcertains much message
passing. The lock for process tabfgoc_tah has a high collision rate. The process
table includes the PCBs of all processes, which is a global skaucture. The lock
is acquired when spawning (creating) a process. In Big Bhagetis only one main
process spawning other processes and hence there are falisorcs on this lock.
Each group leader process in this benchmark spawns otheegses for its group, and
as a result there is much contention for the lock. The coittercan be reduced if the
process table can be partitioned, for example one tablechedsiler. The process table
lock is also implemented with a Pthread mutex lock.

The process index lockix_lock is used to protect a number of processes in the
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Figure 4.15: Speedup of Random on TILEPro64

process table. It is implemented with the Pthread spin latRihEPro64. Each run
queue is protected byran_queudock. For example when a new process is added to
a run queue the related lock has to be acquired. The lock edbas Pthread mutex
lock. Using some light-weight locks might reduce the overhfor these locks.

4.2.4 Random

Figure 4.15 shows the test result of the Random benchmabrkd8® processes. The
benchmark scales poorly. There is nearly no performanceovmement after the num-
ber of cores is greater than 10.

This benchmark is extremely memory intensive. Each pro@essomly generates
a list of 100000 integers, sorts it and splits it. For a sma#ger it takes four bytes on
a 32-bit machine. Each element of a list includes a pointéchnis also four bytes on a
32-bit machine. Thus the list is about 800 KB for small integgig integers in Erlang
can be arbitrarily long), and there are 180 lists which is.alid0 MB. When there are
60 schedulers, 60 processes can run simultaneously witht 46d/B lists. Much more
memory may be needed to store some intermediate resulthddist manipulation.
Each L1 cache in a tile on TILEPro64 is only 8 KB, and L2 unifiegtite containing
data and instructions is 64 KB. The common L3 cache formeu &t@ cache is 4 MB
(64 *64 KB). Since hash-for-home feature is enabled for nmestory area except
stacks, all the L2 caches are utilized even when there isamdyscheduler.

When sorting a list, the whole list has to be traversed andnaliseis generated.
The splitting also needs to traverse the first half of the liEable 4.6 indicates the
benchmark has bad data cache performance.

The lock counting result in Figure 4.16 shows that there ig égh contention of
locks for memory allocators, which is much higher than fog Biang or even Erlang
Hackbench. Reducing the lock contention can improve thispaance.
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| Schedulers | 1 | 60 |

Bundles / cycle 0.546 | 0.477
Instruction cache stall / cycle | 0.072 | 0.077
Data cache stall / cycle 0.114 | 0.195

L1 data cache load missrate | 0.040 | 0.052
L2/L3 data cache load missratg 0.281 | 0.213
L1 data cache store missrate | 0.271 | 0.273
L2/L3 data cache store miss rat¢ 0.147 | 0.147
Data TLB miss rate 0.0009| 0.0006
Conditional branch mispredict rate 0.294 | 0.290
Indirect branch mispredict rate | 0.778 | 0.775

Table 4.6: Profiling Result of Random 180

lock id #tries #collisions collisions [%] time [us] duration [%]
alcu_allocator 98 85574 10877 12.7106 820825583 2579.6084
run_gueue 60 367549 587 0.1597 79587759 250.1204
pix_lock 256 1897 5 0.2636 381712 1.1996
gc_info 1 39436 931 2.3608 29647 0.0932

Figure 4.16: Lock Conflicts of Random 180

4.3 Summary

The test results indicate that the Erlang virtual machiaéesowvell on TILEPro64 with
normal workload except for an extremely memory intensivecbenark. The scala-
bility is dependent on the characteristics of each apptinadnd its input. Maximum
speedup of about 40 to 50 on 60 cores is observed in the tests.

The scheduling algorithm is good enough to balance the watkon different
cores. The only observed little problem is that when the Veatt is small and work
stealing is the sole method of workload distribution, aestoprocess occupies the
whole core and behaves like having higher priority, sincelzeduler only steals a
process when its run queue is empty. We suggest the periaafde check should be
reduced when the number of cores increases to achieve nioress. Moreover when
the workload is low, the speedup may be smaller due to the $jpeat in waking up
idle schedulers if they are not working at the beginning.

Synchronization overhead caused by contention is a majilebeck. The scal-
ability can be improved by reducing lock contention and thee averhead caused by
it. We find locks for memory allocators, garbage collectioformation, process table,
run queue and process index have to be optimized. We recochusémy some more
light-weight locks, such as queuing lock, instead of Ptimaaitex lock or simple spin
lock whenever it is possible.

Another major problem is that the parallel Erlang VM with aeheduler is much
slower than the sequential version when running Erlang bla&h. Synchronization
latency induced by uncontended locks including atomic fions used in synchroniza-
tion is one of the main causes of the difference. We suggqdementing lock free
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algorithm and using locks with lower latency to reduce therbead.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The upcoming many-core systems will impose a great chadlemgsoftware develop-
ers. Particularly, the programs developed with convemfitanguages such as C and
C++ will suffer greatly. They have to be rewritten to fullyilite the power of many-
core systems. Developing applications on many-core systemot a trivial work.
Tasks running on different cores need to be synchronizee trElditional synchroniza-
tion methods, such as locks and semaphores, are tediousrangmne. Great care
has to be taken to make the programs deadlock free.

Erlang’s message passing mechanism provides a higherdbsthct of synchro-
nization. Together with its native support of concurrerifiyang provides an efficient
way of application development on many-core systems. Tisarearly no difference
between developing applications for single core and fory¥more systems. Program-
mers only have to find out more parallelism for every appiiat If an application
developed for single core systems has sufficient paratieitemay utilize the power of
many-core systems without any change.

This degree project investigated the scalability of thekglruntime system which
supports the Erlang applications to make full use of manmgsgstems. Our test re-
sults indicate the Erlang VM achieves good scalability witbst benchmarks used on
a many-core processor, TILEPro64. Maximum speedup fronuta® to 50 on 60
cores is observed depending on the characteristics of thehbgarks. Workload can
be well balanced on different cores by the schedulers. Admattk of the system is
synchronization overhead caused by contention. The dtislatan be improved by
reducing lock contention. We recommend using more lighghtdocks whenever it
is possible. Another major problem is that the parallel VMhaine scheduler is much
slower than the sequential VM when running a benchmark withge amount of mes-
sage passing. Synchronization latency induced by uncdattiocks is one of the main
causes of the difference. We suggest implementing lockdlgarithm to reduce the
lock overhead. Several parts of the Erlang VM implementatitiich can affect the
scalability on many-core systems were also studied in tioiept including scheduling

74



algorithm, message passing, memory management, and synigdition primitives.

Our result suggests that Erlang is a suitable platform feelbping applications on
many-core systems. It is ready to be used on these systentaargffectively utilize
the power of many-core systems, although the performaniteedfM could be further
improved.

5.2 Future Work

The results of this project suggest that building scalabéenary allocators is very
important on a many-core processor with shared memoryceslyefor message pass-
ing. We can try to build a more scalable allocator and ingesé the trade-off between
memory consumption and scalability. For message pass$iegdrialization caused by
locks can be reduced if the memory blocks for a message aatdld and deallocated
by the same scheduler thread. This approach requires theat vimessage is retrieved
by the receiving process, the memory for the message anditgagement data is not
deallocated immediately by the scheduler on which the vetgiprocess resides. It
should be deallocated later by the scheduler which alldctem. We have to figure
out when and how to deallocate the memory for the sendingistéie

The scalability of the Erlang VM can be improved by reduciogkl contention
and the overhead associated with it. The most critical laksthose for memory
allocators. They are based upon Pthread mutex locks. Wenwvastigate whether
they can be replaced with some lower overhead locks, sucluasirgg lock. This
also applies to other locks implemented with Pthread muiekd. Native spin lock
implementations may also be improved by employing othémtipies like exponential
back-off. Another more promising method is data partitigniwhich has to be tailored
to each data structure. For example, the process tabledabalglata structure. Making
the table distributed on different schedulers and constigtebally can greatly reduce
the lock contention.

The lock profiler in Erlang/OTP only provides the accumudatellision time for
all schedulers on a lock. It doesn't show the actual lock eotibn effect for each
separate scheduler. We can add another feature which atateswaiting time on
each lock for every scheduler.

Reducing lock contention is not sustainable if the numbepoés keeps increasing.
We can try some new features provided by many-core systeawid using locks. For
example, one of the on-chip networks in TILEPro64 suppoassing short messages
directly between tiles. This might be utilized to implemenhew message passing
mechanism.
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