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Abstract

As CPU chips integrate more processor cores, computer systems are evolving from
multi-core to many-core. How to utilize them fully and efficiently is a great chal-
lenge. With message passing and native support of concurrent programming, Erlang
is a convenient way of developing applications on these systems. The scalability of
applications is dependent on the performance of the underlying Erlang runtime system
or virtual machine (VM). This thesis presents a study on the scalability of the Erlang
VM on a many-core processor with 64 cores, TILEPro64. The purpose is to study
the implementation of parallel Erlang VM, investigate its performance, identify bot-
tlenecks and provide optimization suggestions. To achievethis goal, the VM is tested
with some benchmark programs. Then discovered problems areexamined more closely
with methods such as profiling and tracing. The results show that the current version
of Erlang VM achieves good scalability on the processor withmost benchmarks used.
The maximum speedup is from about 40 to 50 on 60 cores. Synchronization overhead
caused by contention is a major bottleneck of the system. Thescalability can be im-
proved by reducing lock contention. Another major problem is that the parallel version
of the virtual machine using one core is much slower than the sequential version with
a benchmark program containing a huge amount of message passing. Further analysis
indicates that synchronization latency induced by uncontended locks is one of the main
reasons. Low overhead locks, lock-free structures or algorithms are recommended for
improving the performance of the Erlang VM. Our evaluation result suggests Erlang is
ready to be used to develop applications on many-core systems.
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Chapter 1

Introduction

The number of processing units integrated into a single die or package is increasing.
We will see more and more general-purpose or even embedded processors with dozens,
hundreds, or even thousands of cores. The many-core era is approaching. A many-
core processor contains a large number of cores. Although the threshold is not definite,
usually a processor with more than 30 cores can be consideredas many-core. It requires
more efficient techniques than traditional processors. Forexample, an on-chip network
may be used to interconnect all cores on a chip.

1.1 Motivation and Purpose

How to fully utilize many-core systems imposes a great challenge on software de-
velopers. Programs have to be parallelized to run on different cores simultaneously.
Workload should be balanced on these cores. The access of common resources has
to be synchronized between different tasks, and the synchronization overhead must be
as low as possible. We need good programming models, tools, or languages to make
software development on many-core platforms easy and productive.

Erlang [2][3][4][5] is a language developed for programming concurrent, soft-real-
time1, distributed and fault-tolerant software systems. With native support of con-
current programming, Erlang provides an efficient way of software development on
many-core systems. In Erlang, programmers explicitly indicate pieces of work that can
be executed simultaneously by spawning light-weight Erlang processes. The sched-
ulers in the runtime system distribute workload carried by these processes to differ-
ent cores automatically. Erlang processes are synchronized by asynchronous message
passing only. When a process has finished some work, it sends messages to other pro-
cesses which are waiting for it. Programmers don’t have to think about locks, mutexes,
semaphores, and other synchronization primitives, since there is no shared memory.
All these error-prone and tedious synchronization mechanisms are hidden by the run-
time system. Shared memory and related synchronization methods are only used in the

1For a soft-real-time system, it is tolerable if some operations miss their deadlines
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Erlang VM to implement higher level features such as messagepassing. The scalability
of Erlang applications is dependent on the performance of the VM.

The objective of this project is to study the implementationof parallel Erlang VM,
evaluate its scalability2 on a many-core platform, identify bottlenecks and provide
some recommendations for improvement. The study also analyzes major parts of code
in the VM that are related to the performance on many-core processors, such as syn-
chronization primitives, memory management and scheduling algorithm. Techniques
currently in use are introduced, and better techniques are investigated. The study re-
sult could give insights about the readiness of the Erlang VMto support the software
development on many-core platforms.

1.2 Methodologies

A state-of-the-art processor TILEPro643 developed by Tilera is used in this project.
TILEPro64 is a typical general-purpose many-core CPU (Central Processing Unit) with
64 cores. It integrates on-chip networks [40] which are 8x8 meshes to interconnect the
cores, memory subsystem and other peripherals. The on-chipnetworks [12] provide
more bandwidth than traditional bus or crossbar interconnection, and are more scalable
when core count increases.

Some Erlang benchmark programs are utilized to evaluate theperformance of the
Erlang VM. Test results indicate the current version of Erlang VM achieves good scal-
ability on the TILEPro64 processor. Some benchmarks achieve maximum speedup4

from about 40 to 50 on 60 cores. There is also possibility for improvement by reducing
lock contentions. The major problem found during benchmarking is that the parallel
version of the VM using one core is much slower than the sequential version with a
benchmark program. Further analysis indicates that synchronization latency induced
by uncontended locks is one of the main causes. Low overhead locks, lock-free struc-
tures or algorithms are suggested to improve the performance of the Erlang VM.

1.3 Limitations

This project only investigates the scalability of the Erlang runtime system. Ideally,
performance should increase linearly as the number of coresincreases if an applica-
tion has enough parallelism. In other words, the execution time of a program should
decrease linearly as the core count increases. The metric for comparison of scalabil-
ity is speedup, which indicates the ratio of improvement comparing execution time on
multiple cores with that on a single core.

To evaluate the Erlang runtime system comprehensively, theperformance should
also be compared with other programming languages’, such asC and C++. But that
is not considered in this project, since the objective of this project is to investigate the
new problems that are introduced on many-core systems.

2In this context, scalability means the ability of a system toaccommodate an increasing number of cores.
3http://www.tilera.com/products/processors/TILEPRO64
4Performance gain of utilizing multiple cores
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Also, only the core part of the Erlang runtime system is analyzed. Erlang comes
with a set of development tools, libraries and databases, which is called OTP (Open
Telecom Platform) [38]. These features are not concerned. Moreover, we focus on the
execution of bytecode, and don’t study the execution of natively compiled code. The
networking and I/O (Input/Output) functions are not investigated too.

The benchmarks used are not real applications. They are synthetic benchmarks or
micro-benchmarks. As a result, the conclusions made from this project may not reflect
the actual performance of the Erlang VM very precisely. It isbetter benchmarked
with a standard benchmark suite, which contains a diverse set of workloads. But there
is no such suite for Erlang yet. Furthermore, to investigatethe scalability on many-
core systems, sequential benchmarks are not used since their performance cannot be
improved with multiple cores. Even with parallel applications, if they don’t contain
enough parallelism or their performance is mainly constrained by other factors, such
as network bandwidth, they are not used in this project.

Erlang/OTP is an evolving platform. The runtime system is optimized constantly
by its maintainers. In this project, the release R13B04 is used, and therefore all the
description and results stated hereafter are based on this version. We also focus on
SMP (Symmetric MultiProcessing) VM which is the parallel version of the Erlang
VM. The newer R14B released near the end of this project has similar performance
on many-core processors except optimized readers-writer lock5. In addition, the test
and analysis are based on the Linux operating systems (OS) unless otherwise specified.
The SMP Linux OS used is specially built by Tilera for TILEPro64 with kernel version
2.6.26.7-MDE-2.1.0-rc.94454, and the compiler istile-ccwith version 2.1.0-rc.94454.

1.4 Thesis Outline

The thesis is organized as follows. In Chapter 2, backgroundof Erlang, TILEPro64
processor and speedup calculation is described. Some related work and the contribu-
tions of this thesis are also introduced. Chapter 3 presentsstudy result of the imple-
mentation of the Erlang VM in more details. Emphasis is givento aspects that have
a great impact on many-core performance, such as message passing, synchronization
primitives, memory management and scheduling. In Chapter 4, evaluation results are
described and analyzed. Then some optimization suggestions are given. Chapter 5
concludes the thesis and makes recommendations for future research.

5A lock that can be acquired by either multiple readers or one writer
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Chapter 2

Background

2.1 The Erlang System

2.1.1 Introduction

Erlang is a general-purpose, concurrent, and functional programming language devel-
oped by Engineers from Ericsson in 1980s. It was invented to provide a better way
of programming telecom applications [4]. Telecom systems are highly concurrent,
distributed and soft real-time systems. They are inherently concurrent. For example
each telephone call is an independent transaction except interacting with other support
functions such as billing occasionally, and there are a hugenumber of such transac-
tions ongoing simultaneously in a system. Telecom applications are also intrinsically
distributed. A phone call is served by many network elementsthat are physically dis-
tributed in different locations. Even in the same equipment, different phone calls may
be processed by different boards. In telecom software, manyoperations have timing
requirements. Furthermore, telecom systems have to be robust and fault-tolerant. The
average downtime of a telecom system should be less than a fewminutes per year.

Today, these requirements are applicable to many other applications, such as servers,
financial systems and distributed databases [8]. As a result, Erlang gains more popu-
larity in these areas. Interest in Erlang also increases forits suitability of software
development on multi-core processors. With its support of light-weight concurrency,
it is very convenient to develop parallel applications. Moreover, the message passing
paradigm provides a higher level abstraction of synchronization mechanism than locks.
As the core count increases, cache coherence will be expensive, and shared memory
synchronization cost will increase dramatically due to lock contention [18]. Although
lock contention can be reduced by some techniques such as data partitioning, it is not
sustainable in many-core era. Regarding a many-core processor as a distributed system,
in which a node consists of a core or a group of cores, and performing synchronization
between nodes by message passing might be more suitable whenthe number of cores is
very large [6]. Erlang applications can be ported to many-core systems without change
if parallelism is sufficiently exposed at the beginning.

Erlang is also a high level declarative language. Declarative languages are expres-
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sive. Programs developed in Erlang are usually more concisethan their counterparts
implemented in other traditional languages, such as C and C++, and it also takes less
time to develop [32]. Shorter time to market can be achieved.In addition, the resulting
code is more readable and maintainable.

While Erlang is productive, it is not a solution for all needs, and it is by no means
trivial to write correct and efficient Erlang programs. It isnot suitable for some applica-
tion domains, such as number-crunching applications and graphics-intensive systems.
Ordinary Erlang applications are compiled to bytecode and then interpreted or executed
by the virtual machine which is also called emulator. Bytecode is an intermediate repre-
sentation of a program. It can be considered that the source code is compiled according
to an intermediate instruction set1 that is implemented by the virtual machine and dif-
ferent from the one implemented by the underlying real processor. The bytecode is
translated into the instructions that can be run on the real machine by the emulator.
Because of this extra translation step, applications running on a VM are usually slower
than their counterparts that are directly compiled into machine code. If more speed
is required, Erlang applications can be compiled into native machine code with HiPE
(High Performance Erlang System) compiler [21][22][35]. But if an application is
time critical and compute-intensive, and its execution time should be reduced as much
as possible, such as some scientific programs, Erlang is not always a good choice [10]
and a fast low-level language may be better. In one word, Erlang should be used in the
right place.

2.1.2 Erlang Features

In general, Erlang has the following features2:

• Concurrency - A separate task, or piece of work, can be encapsulated into an Er-
lang process. It is fast to create, suspend or terminate an Erlang process. Erlang
process is much more light-weight than OS process3 or thread4. An Erlang sys-
tem may have hundreds of thousands of or even millions of concurrent processes.
A process’ memory area can vary dynamically according to requirements. Each
process has a separate memory area, and there is no shared memory. As a result,
a process cannot corrupt another process’ memory. Asynchronous message pass-
ing is the only way of inter-process communication providedby the language.
Message sending is non-blocking. A process continues execution after sending
a message. A process waiting for a message is suspended if there is no matching
message in its mailbox, or message queue, and will be informed when a new
message comes.

• Robustness - Erlang supports a catch/throw-style exception detection and recov-
ery mechanism. A process can also register to receive a notification message
if another process terminates even it is executing on a different machine in a

1The set of instructions implemented by a processor
2http://www.erlang.org/white_paper.html
3A process is an instance of a program that is being executed.
4A thread is a part of a process that can be executed concurrently and scheduled by operating system

separately.

10



network. With this feature, processes can be supervised by others. If a process
crashes, it can be restarted by its supervisor.

• Hot code replacement - Due to the high availability requirement of a telecom
system, It cannot be halted when upgrading. Erlang providesa way of replac-
ing running code without stopping the system. The runtime system maintains a
global table containing the addresses for all the loaded modules. The addresses
are updated when new modules replace old ones. Future calls invoke functions
in the new modules. The old code is phased out. Two versions ofa module can
run simultaneously in a system.

• Distribution - Erlang applications can be executed in a distributed environment.
An instance of Erlang virtual machine is called anode. Multiple nodes can be
run on one machine or several machines which may have different hardware
architectures or operating systems. Processes can be spawned to nodes on other
machines, and messages can be passed between different nodes exactly as on one
node.

• Soft real-time - Erlang supports developing soft real-timeapplications with re-
sponse time demands in the order of milliseconds.

• Memory management - Memory is managed by the virtual machineautomat-
ically. It is not allocated and deallocated explicitly by a programmer. Every
process’ memory area is garbage collected5 separately. When a process termi-
nates, its memory is simply reclaimed. This results in a short garbage collection
time and less disturbance to the whole system. Also a better real-time property
can be achieved. If the memory of all processes is garbage collected at the same
time, without a sophisticated memory collector that can do incremental garbage
collection [36] the system will be stopped for a long time.

In addition to the above main features, Erlang is a dynamically typed language. There
is no need to declare variables before they are used. A variable is bound to a value when
it first occurs, and the value cannot be changed later, which is called single assignment.
All variables are local to the functions in which they are bound. Global variables don’t
exist. There is an exception that data associated with a key can be stored in the process
dictionary and retrieved in the life time of that process before they are erased. It behaves
like a global variable. The value associated with a key can also be changed. Using the
process dictionary is not encouraged, since the resulting program is hard to debug and
maintain. Erlang provides some way of sharing data, such as the ETS (Erlang Term
Storage) table [15] and the Mnesia database [31].

Erlang’s basic data types arenumber, atom, function type, binary, reference, pro-
cess identifier, andport identifier. Numbersincludeintegersandfloats. An integercan
be arbitrarily large. A large number that doesn’t fit into a word is represented with arbi-
trary number of words, which is calledbignum. The precision of a floating-point value
is the same as that of a 64-bit double precision number definedin the IEEE 754–1985

5Garbage collection is to reclaim the memory occupied by dataobjects that are no long in use. It may
compact the remaining data by moving them closer.
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standard.Atomsare constant literals. It is like enumeration types in otherlanguages.
In the Erlang VM there is a global table storing actual valuesor literals of all the atoms
used in the system, and atoms are indices to the table in fact.There is no separate
Booleantype. Instead, the atomstrueandfalseare used with Boolean operators. Since
Erlang is a functional programming language, afunctioncan be considered as a type of
data. Functions can be passed as arguments to other functions, or can be results of other
functions. They also can be stored in composite data structures such astuplesandlists,
or sent in messages. Abinary is a reference to a chunk of raw, untyped memory, or a
stream of ones or zeros. It is an efficient way of storing or transferring large amounts of
data. Because other data types are heavily tagged [2][33], which means in the internal
representations there are extra tags indicating the types of data objects. For example,
each integer has a tag. With binary, less tag overhead is introduced. A binary can be
manipulated on bit level. It’s a good way to implement messages or packets of com-
munication protocols like HTTP.Referencesare unique values generated on a node,
and can be used to label and identify messages.Processandport identifiersrepresent
different processes and ports.

Erlangportsare used to pass binary messages between Erlang nodes and external
programs which may be written in other programming languages, such as C and Java.
An external program runs in a separate OS process, and is connected to a port via
pipes6 on Linux. In an Erlang node, a port behaves like a process. Foreach port, there
is an Erlang process, named connected process, responsiblefor coordinating all the
messages passing through that port.

Erlang’s composite data types aretuples, lists and records. Tuplesand lists are
used to store a collection of items. Items are data values that can be of any valid Erlang
types. The difference between tuples and lists is that they are processed differently. We
can only extract particular elements from a tuple. But listscan be split and combined.
Especially, a non-empty list can be broken into ahead, the first element in the list, and
a tail, a list that contains all the remaining items.Charactersandstringsare not formal
data types in Erlang. They are represented by integers and lists of integers respectively.
Recordis similar to structure in C programming language. It is a data structure with a
fixed number offields. Fields have names and can be accessed by their names, while
in tuples, fields (items) are accessed by positions.

Erlang programs consist ofmodules, each of which contains a number of related
functions. Functions can be called from other modules if they are explicitly exported.
A function can include severalclauses, and a clause is chosen to execute at runtime
by pattern matching according to the argument passed. Erlang doesn’t provide loop
constructs, so that loops are built with recursive functioncalls. To reduce stack con-
sumption, tail call optimization is implemented. A new stack frame is not allocated
when the last statement of a function is a call to itself.

The Erlang language is concise, but it has a large set of built-in functions (BIFs).
In particular, the OTP middleware provides a library of standard solutions for building
telecommunication applications, such as a real-time database, servers, state machines,
and communication protocols.

6Pipe is used to communicate with a process by reading from or writing to associated file descriptors.
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2.1.3 Erlang’s Concurrency primitives

Spawn, “!” (send), andreceiveare Erlang’s primitives for concurrent programming.
These primitives allow a process to spawn new processes, andcommunicate with other
processes through asynchronous message passing. When spawning a process, node
name, module name, function name, and arguments to the function are passed to the
built-in functionspawn(). A process identifier is returned if the spawning is successful.
Messages are sent with thePid ! Messageconstruct, in whichPid is a process identifier,
andMessageis a value of any valid Erlang data type. Thereceivestatement is used to
retrieve a message from a process’ message queue, which has the following form:

r e c e i v e
P a t t e r n 1 when Guard1−> e x p r e s s i o n s 1 ;
P a t t e r n 2 when Guard2−> e x p r e s s i o n s 2 ;
Other −> e x p r e s s i o n s o t h e r

a f t e r % o p t i o n a l c l a u s e
Timeout −> e x p r e s s i o n s t i m e o u t

end

In the statement,afterclause (timeout mechanism),otherclause andguardsare op-
tional. When areceivestatement of a process is executed, the VM checks each message
in the message queue of the process to see whether it is matching one of the patterns.
The patterns are matched sequentially. If a pattern is matching and the corresponding
guard, which is a test, succeeds, the expressions follow that pattern are evaluated, and
the following patterns are not matched any more. When there is no message in the
queue or no matching message, the process is suspended and scheduled out. A sus-
pended process waiting for a message becomes runnable if it receives a new message,
and is appended to the run queue of the scheduler which the process is associated with.
Then when the process is selected to execute, the new messageis matched to the pat-
terns in the receive statement again. It is possible that thenew message doesn’t match
any patterns, and the process is suspended once more. Sometimes, the last patternother
is set to match all messages, and if a message doesn’t match any previous patterns, the
expressions following the last pattern will be executed andthe message is removed
from the message queue.

When there is anafterclause and the process is suspended waiting for a message, it
will be woken up after Timeout milliseconds if it doesn’t receive a matching message
during that time and then the corresponding expressions areexecuted.

2.2 TILEPro64 Processor

Figure 2.1 is the block diagram of TILEPro64 processor. A TILEPro64 CPU integrates
64 identical processor cores ortiles interconnected by Tilera’s iMesh on-chip networks.
There are six independent networks for different purposes.It also integrates memory
and some I/O controllers. Each tile is a complete processor with L1 (Level 1), L2
caches and a switch connecting the tile to the 8X8 meshes, as shown in Figure 2.2. A
full operating system can run on each tile independently. Inthis project, we run a single
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Figure 2.1: TILEPro64 Processor Block Diagram
(Downloaded from Tilera website)

Figure 2.2: TILEPro64 Tile Block Diagram
(Downloaded from Tilera website)

SMP Linux OS on multiple tiles, and the processor used runs at700 MHz frequency
with 4 GB (GigaByte) main memory.

2.2.1 Cache Coherence

A cacheis a memory component between processor and main memory for reducing
average memory access time. Usually a processor is much faster than the main memory
which is typically a DRAM (Dynamic Random Access Memory). Particularly, the
interval between the moments a memory access request is issued and the requested
memory can be used by a processor, i.e. memory access latency, is relatively large. The
cache is faster and smaller than the main memory. It stores memory blocks recently
accessed by processors. If an instruction or data requestedby a processor can be found
in the cache later, which is a cache hit, the access is much faster than fetching it from
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the main memory every time. But if there is a cache miss the instruction or data still
has to be retrieved from the main memory. Data are transferred between the cache and
the main memory as blocks with a fixed size and stored in cache lines. If a part of a
memory block is requested by a processor and its cache doesn’t have a valid copy of
that block, the whole block is copied from the main memory. Also, when a part of
a memory block stored in a cache is modified and has to be written back to the main
memory, the whole block is transferred.

The memory address used by an OS process is virtual address. Different processes
may use the same virtual addresses, but they are mapped into different areas in the
main memory except for some shared objects. In addition, memory space is divided
into many equally sized blocks known aspages. Besides instruction and data caches,
there are also caches for buffering information about the mapping between virtual ad-
dresses and physical addresses of the memory pages, which are called TLBs (Transla-
tion Lookaside Buffer).

System performance is improved with cache by exploring the principle of locality.
Many programs exhibit good spatial locality and temporal locality. Spatial locality
means if a memory location is accessed (referenced), it is very likely that its nearby
locations will be accessed in the near future. For instance,instructions in a program
are usually executed sequentially except when branch instructions are encountered.
Temporal locality means if a memory location is referenced,it is very likely that this
location will be referenced again in the near future. For example, instructions in a loop
are executed repeatedly.

The cache subsystem is critical for providing high performance. Multiple levels of
caches can be included in a computer system. In each tile of a TILEPro64 processor,
an L1 instruction cache is 16 KB (KiloByte) and direct-mapped, with cache line size
64 bytes. For a direct-mapped cache, each memory block can only be cached in one
cache line according to its physical address. Each L1 data cache is 8 KB and two-way
associative with cache line size 16 bytes. For a two-way set associative cache, each
memory block can be cached at any cache line of a set consisting of two lines. Each
L2 cache is a unified cache containing data and instructions.It is 64 KB and four-
way associative with cache line size 64 bytes. Each L1 instruction or data TLB has 16
entries, and is fully associative. In a fully associative cache, a memory block can be
placed in any cache line.

The TILEPro64 processor provides hardware cache coherence[18] (while it could
be disabled). The data stored in different caches are consistent, which means they can’t
contain different values for the same data. L1 cache is private to every tile, while all
the L2 caches form a common and distributed L3 cache (4 Megabyte). Each cache line
has a home tile. Ifhash-for-homefeature is enabled, cache lines in a memory page are
homed at different tiles according to a hash function, and otherwise they are homed at
the same tile. By default, only stacks are not hashed-for-home. For a multithreaded
program, the stack of each thread is homed at the tile where the thread is running on.
When a processor core accesses a variable or a memory location, if it is not in the L1 or
L2 cache (cache miss) of the same tile, it will be fetched fromthe L2 cache of its home
tile which can be regarded as L3 cache. The L2 cache in the hometile is responsible
for data consistency.
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2.2.2 Processing Engine

TILEPro64 is a 32-bit VLIW (Very Long Instruction Word) processor. Two or Three
instructions can be combined into a 64-bit instruction bundle which is scheduled by
compiler. The processing engine in a tile has 3 pipelines, and therefore up to 3 instruc-
tions can be executed per cycle. The instruction bundles areissued to the pipelines in
order. The pipelines are not stalled on load (read) or store (write) cache misses. It keeps
executing subsequent instruction bundles until the data are actually required by another
instruction. That means if two instructions read or write todifferent memory locations,
they may finish execution or retire out of program order, while true memory dependen-
cies are enforced. This achieves better performance by overlapping cache miss latency
with useful work. When a cache miss happens, it will introduce high latency, since the
data has to be fetched from the caches with higher levels, main memory or even hard
disk, which are slower. Because the read and the write to different addresses can be
retired out of order, special cares have to be taken when developing parallel programs.
Memory fence instruction can be used to guarantee that all the memory operations be-
fore it are finished and visible to other tiles before the instructions that follow it are
executed.

2.2.3 Memory Consistency

Memory consistency model [18] specifies the orders in which memory operations espe-
cially data writes of a processor core are observed by other cores. TILEPro64 employs
a relaxed consistency model [37]. Memory store operations performed by a tile be-
come visible simultaneously to all other tiles, but the issuing tile may see the results
earlier than other tiles. Because the results can be bypassed to later instructions in the
execution pipelines of the issuing tile before they are transferred to the L2 cache in its
home tile. As a result, although data dependencies, such as RAW (Read After Write),
WAW (Write After Write) or WAR (Write After Read) to the same memory location,
are enforced on a single tile, other tiles may see them in different order. The order
can be established by the memory fence instruction. Anotherinstruction test-and-set is
atomic to all tiles.

The main memory is shared by all tiles. A traditional shared memory programming
model can be used to develop concurrent or parallel softwareapplications. It also sup-
ports message passing programming paradigm. Programmers can explicitly pass short
messages between tiles through one of the interconnection networks, User Dynamic
Network (UDN).

2.3 Many-core Speedup

Many-core speedup is the ratio

Speedup= Program execution time on one core
Program execution time on multiple cores

A program’s speedup can be calculated using Amdahl’s Law [18]. Amdahl’s Law
states that the performance improvement to be gained from using some faster mode of
execution is limited by the fraction of the time the faster mode can be used, that is
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Speedupoverall =
1

(1−Fractionenhanced)+
Fractionenhanced
Speedupenhanced

Fractionenhancedis the fraction of code can be enhanced by using multiple cores or
can be run in parallel. As a result, the overall speedup achievable is affected by the
ratio of the sequential and parallel portion of a program. Inthis project, since we don’t
investigate how much programs can be parallelized with Erlang, we are mainly inter-
ested in benchmark programs with high parallelism. Benchmarks with great sequential
portion complicate the problem. But pure parallel programsare rare. When measuring
execution time, we try to avoid the sequential part as much aspossible.

2.4 Related Work

Interest in suitability of software development with Erlang on multi-core processors
is increasing. For instance, Convey et al. [10] investigatethe relative merits of C++
and Erlang in the implementation of a parallel acoustic ray tracing algorithm. Marr et
al.[27] analyze virtual machine support for many-core architectures including Erlang.
But as far as we know, there are few literatures presenting researches on the scalability
of Erlang on multi-core or many-core systems more comprehensively.

Many parts of the Erlang VM implementation are investigatedin different litera-
tures. [2] gives an overview of initial Erlang implementation. [17] documents the first
attempt of building multithreaded Erlang VM, while the current implementation is not
quite like that one. Erlang process’ heap7 architecture, message passing and garbage
collection are introduced in [23]. Implementations of garbage collection schemes cur-
rently in use for process-local heap and binary heap are alsobriefly mentioned in [36].

2.5 Contributions

The major contribution of this thesis work is that we providesome insights about the
feasibility and readiness of software development on many-core platforms with Erlang.
We also expose the aspects of the Erlang VM that can be optimized, especially regard-
ing to the scalability on many-core systems. In addition, weintroduce many parts
of the Erlang VM implementation which may hinder performance from improving on
many-core systems in more details, such as synchronization, memory management,
message passing and scheduling. In particular, there was nodetailed description of the
scheduling algorithm of the parallel Erlang VM in literatures.

7Heap is an area for dynamically allocated memory. It is managed by C library functions like malloc and
free.
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Chapter 3

Erlang Runtime System

Currently BEAM1 is the standard virtual machine for Erlang, originating from Turbo
Erlang [16]. It is an efficient register-based abstract machine2. The first experimental
implementation of SMP (parallel) VM occurred in 1998 as a result of a master degree
project [17]. From 2006, the SMP VM is included in official releases.

The SMP Erlang VM is a multithreaded program. On Linux, it utilizes POSIX
thread (Pthread) libraries. Threads in an OS process share amemory space. An Erlang
scheduler is a thread that schedules and executes Erlang processes and ports. Thus it
is both a scheduler and a worker. Scheduling and execution ofprocesses and ports
are interleaved. There is a separate run queue for each scheduler storing the runnable
processes and ports associated with it. On many-core processors, the Erlang VM is
usually configured with one scheduler per core or one scheduler per hardware thread if
hardware multi-threading is supported.

The Erlang runtime system provides many features often associated with operating
systems, for instance, memory management, process scheduling and networking. In
the remainder of this chapter, we will introduce and analyzethe different parts of the
current SMP VM implementation (R13B04 as mentioned before)which are relevant to
the scalability on many-core processors, including process structure, message passing,
scheduling, synchronization and memory management.

3.1 Erlang Process Structure

Each Erlang process includes a process control block (PCB),a stack and a private heap.
A PCB is a data structure containing process management information, such as process
ID (IDentifier), position of stack and heap, argument registers and program counter.
Besides the heap, there might be some small heap fragments which are merged into the
main heap after each memory garbage collection. The heap fragments are used when
there is not enough free space in the heap and garbage collection cannot be performed
to get more free memory. For instance, when a process is sending a message to another

1Bogdans/Björn’s ERLANG Abstract Machine
2A model of a computer hardware or software system
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Figure 3.1: Heap Structure

process, if the receiving process doesn’t have enough heap space to accommodate the
incoming message, the sending process doesn’t invoke a garbage collection for the
receiving process in the SMP VM. In addition, binaries larger than 64 bytes are stored
in a common heap shared by all processes. ETS tables are also stored in a common
heap. Figure 3.1 illustrates these main memory areas (thereare also other memory
areas, such as for atom table).

As Figure 3.1 shows, the stack and heap of an Erlang process are located in the
same continuous memory area which is allocated and managed together. From the
standpoint of an OS process or thread, this area belongs to its heap, which means
the stack and heap of an Erlang process actually are stored inthe heap of its VM.
In the area, the heap starts at the lowest address and grows upwards, while the stack
starts at the highest address and grows downwards. Heap overflow can be detected by
examining the heap top and the stack top.

The heap is used to store some compound data structures such as tuples, lists or
big integers, while the stack is used to store simple data andreferences (or pointers) to
compound data in the heap. There are no pointers from the heapto the stack, which
eases garbage collection. Figure 3.2 shows an example of howlists and tuples are
stored in the stack and heap.

Erlang is a dynamically typed language. A variable is associated with a type at
runtime. Its data type cannot be determined at compile time.In the internal implemen-
tation of data, there are tags indicating the types. The two or six least significant bits of
a word, which is 32 bits on a 32-bit machine or 64 bits on a 64-bit machine, are used as
a tag. For a tuple, the value in the stack contains a pointer toan object in the heap. The
object is stored in a consecutive memory area. It contains all the elements which can
be of any valid Erlang types, even tuples or lists. It also includes a header indicating
the length of the tuple. A tuple’s elements can be located fast since it is an array.

On the other hand, a list is implemented as a linked list. There is no header indi-
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Figure 3.2: List and Tuple Layout

cating its length. Each element of a list is followed by a pointer to the next element
except the last element which is followed by a null pointer NIL. Two elements may be
separated by other data in the heap. Lists are used extensively in Erlang, because they
can be appended, joined or split. Figure 3.2 also shows the memory layout of a list,
List C, which has been constructed by appending List A to ListB. First all the elements
of List B were copied, and then the last pointer was modified and pointed to the first
element of List A. If List B is long, the operation would take along time to complete.
Thus it is better to append a long list to a short list. Proper list manipulation is essential
to write efficient Erlang applications. From the structure of a list, we also can see that
to get the size of a list, all the elements have to be traversed.

The structure of List C shows that there is some memory sharing between variables
in a process. But it is not between processes. If List C is sentin a message to another
process, the whole list has to be copied. The message in the receiving process cannot
have a pointer to list A in the sending process. In addition, if List A is sent to the same
receiving process later, the content of List A will be copiedagain. This will result in
more memory usage in the receiver than the sender.

An Erlang process starts with a small stack and heap in order to support a huge
number of processes in a system. The size is configurable and the default value is
233 words. In general, Erlang processes are expected to short-lived and have small
amounts of live data. When there is not enough free memory in the heap for a pro-
cess, it is garbage collected, and if less memory can be freedthan required it grows.
Each process’ heap is garbage collected independently. Thus when one scheduler is
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collecting garbage for a process, other schedulers can keepexecuting other processes.
The private heap architecture has high message passing overhead since messages are
copied from the senders’ heaps to receivers’ heaps. Howeverwith this architecture
garbage collection causes less disturbance to the system since every process is sepa-
rately garbage collected, and when a process exits, its memory is simply reclaimed.
Besides the default private heap architecture, the Erlang VM can also be compiled to
use a hybrid architecture [23]. In hybrid mode, private dataare stored in private heaps
while messages are stored in a common heap for all processes.Message copying is not
needed in that mode, and message passing has a constant time cost by passing pointers
to messages. The problems with the hybrid architecture are:the garbage collection of
the common message heap may stall all processes’ execution if the garbage collector
is not very sophisticated and the garbage collection time ishigher since the root set
contains all processes’ working data. It needs an incremental garbage collection mech-
anism [36]. Currently the hybrid heap version of the Erlang VM is experimental and
doesn’t work with SMP. It also lacks compiler support. The compiler has to predict
that which variables are likely to be sent as messages, and then assigns them to the
common heap.

3.2 Message Passing

Message passing between two processes on the same node is implemented by copying
the message residing on the heap of the sending process to theheap of the receiving
process. In the SMP VM, when sending a message, if the receiving process is executing
on another scheduler, its heap cannot accommodate the new message or another mes-
sage is being copied to it by another process, the sending process allocates a temporary
heap fragment for the receiving process to store the new message. The heap fragments
of a process are merged into its private heap during garbage collection. After copying,
a management data structure containing a pointer to the actual message is put at the
end of the receiving process’ message queue. Then the receiving process is woken up
and appended to a run queue if it is suspended. In the SMP VM, the message queue of
a process actually consists of two queues. Other processes send messages to the end of
its external or public queue. It is protected by locks to achieve mutual exclusion (see
Section 3.4). A process usually works on its private queue when retrieving messages
in order to reduce the overhead of lock acquisition. But if itcan’t find a matching mes-
sage in the private queue, the messages in the public queue are removed and appended
to the private queue. After that these messages are matched.The public queue is not
required in the sequential Erlang VM and there is only one queue.

If a process sends a message to itself, the message doesn’t need to be copied. Only
a new management data structure with a pointer to it is allocated. The management data
in the public queue of the process cannot contain pointers into its heap, since data in the
public queue are not in the root set of garbage collection. Asa result, the management
data pointing to a message in the heap is put to the private queue which is a part of
the root set, and otherwise the message would be lost during garbage collection. But
before the management data pointing into the heap is appended, earlier management
data in the public queues have to be merged into the private queue. The order in which

21



the messages arrive is always maintained. Messages in the heap fragments are always
reserved during garbage collection. The message queue of a process is a part of its
PCB and not stored in the heap.

A process executingreceivecommand checks its message queue for a message
which matches one of the specified patterns. If there is a matching message, the cor-
responding management data are removed from the queue, and related instructions are
executed. If there is no matching message, the process is suspended. When it is woken
up after receiving a new message and scheduled to run, the newmessage is examined
against the patterns. If it is not matching, the process is suspended again.

Since messages are sent by copying, Erlang messages are expected to be small.
This also applies to arguments passed to newly spawned processes. The arguments
cannot be placed in a memory location that is shared by different processes. They are
copied every time a process is spawned.

Message passing can affect the scalability of the Erlang VM on many-core proces-
sors. First, on many-core systems access to the external message queue of a process
has to be synchronized which introduces overhead. Second, the allocation and release
of memory for messages and their management data also require synchronization. All
the scheduler threads in a node acquire memory from a common memory space of an
OS process which needs to be protected. A memory block for a message or a manage-
ment data structure may be allocated from a memory pool whosememory can only be
assigned by the sending scheduler. But if the message or management data structure is
sent to a process on another scheduler, when the memory blockis deallocated and put
back to its original memory pool, synchronization is still required to prevent multiple
schedulers from releasing memory blocks to the pool simultaneously. Third, if many
processes can run in parallel, their messages can be sent in an order that is quite differ-
ent from the order in which they are sent on the sequential Erlang VM. When messages
arrive differently, the time spent on message matching can vary, which means the work-
load can change. As a result, the number or frequency of message passing in an Erlang
application has an influence on the scalability. It is also affected by how the messages
are sent and received.

3.3 Scheduling

There are four types of work that have to be scheduled, process, port, linked-in driver
and system-level activity. System-level tasks include checking I/O activities such as
user input on the Erlang terminal. Linked-in driver is another mechanism for integrat-
ing external programs written in other languages into Erlang. While with normal port
the external program is executed in a separate OS process, the external program written
as a linked-in driver is executed as a thread in the OS processof an Erlang node. It also
relies on a port to communicate with other Erlang processes.The following description
of scheduler is focused on scheduling processes.
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3.3.1 Overview

Erlang schedulers are based onreductioncounting as a method for measuring execution
time. A reduction is roughly equivalent to a function call. Since each function call may
take a different amount of time, the actual periods are not the same between different
reductions. When a process is scheduled to run, it is assigned a number of reductions
that it is allowed to execute (by default 2000 reductions in R13B04). The process can
execute until it consumes all its reduction quantum or pauses to wait for a message. A
process waiting for a message is rescheduled when a new message comes or a timer
expires. Rescheduled or new processes are put to the end of corresponding run queues.
Suspended (blocked) processes are not stored in the run queues.

There are four priorities for processes:maximum, high, normal and low. Each
scheduler has one queue for the maximum priority and anotherqueue for the high
priority. Processes with the normal and low priority share the same queue. Thus in the
run queueof a scheduler, there are three queues for processes. There is also a queue
for ports. The queue for each process priority or port is called priority queuein the
remainder of the report. In total, a scheduler’s run queue consists of four priority queues
storing all the processes and ports that are runnable. The number of processes and ports
in all priority queues of a run queue is regarded as run queue length. Processes in the
same priority queue are executed in round-robin order. Round-robin is a scheduling
algorithm that assigns equal time slice (here a number of reductions) to each process
in circular order, and the processes have the same priority to execute.

A scheduler chooses processes in the queue with the maximum priority to execute
until it is empty. Then it does the same for the queue with the high priority. When there
are no processes with the maximum or high priority, the processes with the normal
priority are executed. As low priority and normal priority processes are in the same
queue, the priority is realized by skipping a low priority process for a number of times
before executing it.

Another important task of schedulers is balancing workloadon multiple processors
or cores. Both work sharing and stealing [7] approaches are employed. In general,
the workload is checked and shared periodically and relatively infrequently. During a
period, work stealing is employed to further balance the workload. Every period one
of the schedulers will check the load condition on all schedulers (or run queues). It
determines the number of active schedulers for the next period based on the load of
the current period. It also computes migration limit, whichis the target number of
processes or ports, for each priority queue of a scheduler based upon the system load
and availability of the queue. Then it establishes migration paths indicating which
priority queues should push work to other queues and which priority queues should
pull work from other queues.

After the process and port migration relationships are settled, priority queues with
less work will pull processes or port from their counterparts during their scheduling
time slots, while priority queues with more work will push tasks to other queues.
Scheduling time slots are interleaved with time slots (or slices) for executing processes,
ports and other tasks. When a system is under loaded and some schedulers are inac-
tive, the work is mainly pushed by inactive schedulers. Inactive schedulers will become
standby after all their work is pushed out. But when a system in full load and all avail-
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able schedulers are active, the work is mainly pulled by schedulers which have less
workload.

If an active scheduler has no work left and it cannot pull workfrom another sched-
uler any more, it tries to steal work from other schedulers. If the stealing is not suc-
cessful and there are no system-level activities, the scheduler thread goes into waiting
state. It is in the state of waiting for either system-level activities or normal work. In
normal waiting state it spins on a variable for a while waiting to be woken by another
scheduler. If no other scheduler wakes it up, the scheduler thread is blocked on a con-
ditional variable (see Subsection 3.4.6). When a schedulerthread is blocked, it takes
longer time to wake it up. A scheduler with high workload willwake up another wait-
ing scheduler either spinning or blocked. The flowchart in Figure 3.3 shows the major
parts of the scheduling algorithm in the SMP VM. The balance checking and work
stealing are introduced in more details in the remainder of this section.

3.3.2 Number of Schedulers

The load of an Erlang system (a node) is checked during a scheduling slot of an ar-
bitrary scheduler when a counter in it reaches zero. The counter in each scheduler is
decreased every time when a number of reductions are executed by processes or ports
on that scheduler. The counter in the scheduler which checksbalance is reset to a value
(default value 2000*2000 in R13B04) after each check. As a result, the default period
between two balance checks is the time spent in executing 2000*2000 reductions by
the scheduler which does the balance checks. If a scheduler has executed 2000*2000
reductions and finds another scheduler is checking balance,it will skip the check, and
its counter is set to the maximum value of the integer type in C. Thus in every period
there is only one scheduler thread checking the load.

The number of scheduler threads can be configured when starting the Erlang VM.
By default it is equal to the number of logical processors in the system. A core or
hardware thread is a logical processor. There are also different options to bind these
threads to the logical processors. User can also set only a part of the scheduler threads
on-line or available when starting the Erlang VM, and by default all schedulers are
available. The number of on-line schedulers can be changed at runtime. When running,
some on-line schedulers may be put into inactive state according the workload in order
to reduce power consumption. The number of active schedulers is set during balance
checking. It can increase in the period between two consecutive balance checks if some
inactive schedulers are woken up due to high workload. Some of the active schedulers
may be out of work and in the waiting state.

As illustrated in Figure 3.4, the active run queues (or schedulers) are always the
ones with the smallest indices starting from 0 (1 for schedulers), and the run queues
which are not on-line have the largest indices. Off-line schedulers are suspended after
initialization.

The objectives of balance check are to find out the number of active schedulers,
establish process and port migration paths between different schedulers, and set the
target process or port number for each priority queue. The first step of balance checking
is to determine the number of active schedulers for the beginning of the next period
based on the workload of the current period. Then if all the on-line schedulers should
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Figure 3.3: Scheduling Algorithm
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Figure 3.4: Number of schedulers

be active, migration paths and limits are determined to share workload between priority
queues.

3.3.3 Number of Active Schedulers

There are two flags in the data structure for each run queue indicating whether it has
been in the waiting state during a whole balance check periodand the second half
period (1000*2000 reductions), which are out of work flag andhalf time out of work
flag. With these flags, the number of schedulers which are never in the waiting state
for the full period,Nf ull_shed, and the number of schedulers which are never in the
waiting state for the second half period,Nhal f_shed, can be counted. The number of
active schedulers for the beginning of the next period,Nactive_next, is determined with
the following formula.

Nactive_next=

{

Nonline if Nhal f_shed=Nonlineor multi-scheduling is unblocked

Nact_next2 otherwise
Nactive_next is set to the number of on-line schedulersNonline, if Nhal f_shed is equal

to Nonline. That means if all the on-line schedulers are not out of work for the whole
second half period, they will be kept active in the next period. Nactive_next is also equal
to Nonline if multi-scheduling feature is unblocked during the period. When multi-
scheduling is blocked, only the first scheduler is available.

When some on-line schedulers have been in the waiting state during the second
half period, and no multi-scheduling unblocking has happened in the whole period,
Nact_next2 in the previous formula is decided as follows.

Nact_next2 =











Nact_next_min if Nact_next3 < Nact_next_min

Nonline if Nact_next3 > Nonline

Nact_next3 otherwise
Nact_next2 cannot be larger thanNonline. In addition, there is a minimum value for it,

Nact_next_min. If Nhal f_shedis greater than 1,Nact_next_min is equal toNhal f_shed, otherwise
it is set to 1. That means the number of active schedulers at the beginning of the next
period is at least equal to the number of schedulers which keep working in the second
half of the current period.Nact_next3 is got with the following equation.
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Nact_next3 =











Nactive_current if Nactive_pbegin< Nactive_current

Nprev_rise else ifNact_next4 < Nprev_rise,and load decrease < 10%

Nact_next4 otherwise
As mentioned before, during a period of balance check some schedulers may be out

of work and in the state of waiting. They might be woken up by other schedulers with
high workload later. For an active scheduler that is waiting, its state is not changed to
inactive. There is another counter with each scheduler for waking up other schedulers.
Every time when a scheduler has more than one process or port in its run queue, the
counter will increase a number of reductions proportional to the run queue length, and
otherwise decrease a number of reductions. When the counterreaches a limit, another
scheduler is woken up. It tries to wake up a waiting active scheduler first, and then an
inactive scheduler. If an inactive scheduler is woken up, its state is changed to active.
Thus the number of active schedulers can increase in a periodbetween two consecutive
balance checks. The number of active schedulers can only decrease during balance
checking.

Nact_next3 is equal to the number of schedulers which are active currently, i.e. at
the moment of the balance checking,Nactive_current, if Nactive_current is greater than the
number of active scheduler at the beginning of the periodNactive_pbegin, which was
calculated during the previous round of balance check. In other words, if the number
of active schedulers has increased or some inactive schedulers have been woken up
during the period, the active schedulers stay in the active state. The increase of active
schedulers is also recorded for later use.

If the number of active schedulers doesn’t increase in the current period,Nact_next4

(introduced later) is compared to the number of active schedulers which was recorded at
the last time when the number increased,Nprev_rise. If it is smaller, the maximum value
of all run queues’ maximum length, and the sum of reductions executed by processes
and ports on all the run queues in the current period,redssheds, are compared with
the old values which were also recorded at the last time when the number of active
schedulers increased. If they are in the range of more than ninety percent,Nact_next3 is
set toNprev_rise. As a result, if the number of active schedulers is increasedin a period,
it is not going to be decreased very easily in later periods. However, it will decrease
when the maximum run queue length or total reductions of a period have fallen more
than ten percent.Nact_next4 is calculated with the following formula.

Nact_next4 =

{

⌊redssheds/periodblnchk⌋ if some schedulers haven’t waited

Nactive_pbegin−1 otherwise
If some schedulers haven’t been in the waiting state during the current period,

Nact_next4 is equal to the total reductions executed on all schedulersredsshedsdivided by
the balance check period (default value 2000*2000 reductions in R13B04)periodblnchk.
The division result is rounded down to the nearest integer. If all the schedulers are out
of work sometime in the period,Nact_next4 is equal to the number of active schedulers
at the beginning of this period minus one. As a result, if all the schedulers are waiting
for work, the number of active schedulers will decrement after each balance check.

From the above description, we can see the schedulers are easier to become active
than to become inactive in order to accommodate workload increase.
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3.3.4 Migration Path with Under Load

For each priority queue in a scheduler, there are migration flags showing whether it
should push work (emigration flag) or pull work (immigration flag). There are also
fields in its data structure indicating which scheduler’s priority queue with the same
priority it can push work to or pull work from, and the migration limits of itself and
its counterpart. The migration limits control the number ofprocesses or ports that can
be pulled or pushed, while they don’t limit the work stealing. When a scheduler pulls
processes or ports from another scheduler’s priority queue, it should stop if either the
limit of its own priority queue or the other’s is reached.

If the number of active schedulers for the next periodNactive_next is less than the
number of on-line schedulersNonline, for the Nactive_next active schedulers, migration
flags are cleared and active flags are set. They will not push orpull work in the next
period. For inactive schedulers, inactive flags are set and emigration flags are set for
every priority queue. As mentioned before, the active schedulers have smaller sched-
uler indices than inactive schedulers. For a priority queuein an inactive scheduler with
run queue indexindexinactive, the queue with the same priority in an active scheduler
whose run queue index equals to (indexinactivemoduloNactive_next) is chosen as the target
for process or port emigration (push).

In this case, the system is under loaded, and not all of the on-line schedulers will
be active in the beginning of the next period, while it is possible that all or some of
the inactive schedulers will be woken up in that period. The active schedulers will not
pull work in the next period but can steal it. An inactive scheduler can keep pushing
processes or ports until there is no work, and there is no migration limit for it. A
process or port is pushed when it is supposed to be added to an inactive scheduler’s run
queue. The push can occur when a new process or port is spawned(or created), or an
old process or port has finished its time slice of execution and is being put back to the
run queue.

3.3.5 Migration Limit

If Nactive_next is the same as the number of on-line schedulers, migration limit for each
priority queue of every run queue is calculated. Then migration paths are established
based on the migration limits and maximum length of each priority queue. The mi-
gration limit of them priority queue in a run queue with the indexn is calculated as
follows.

migration_limitm,n = ⌊(∑Nonline
n=1 maxlengthm,n)∗ (availm,n/∑Nonline

n=1 availm,n)⌋
In the equation,m can be maximum, high, normal, low, or port. Although normal

and low priority processes share the same queue, some of their control information,
such as migration limits and migration paths, is stored separately. We can imagine a
virtual low priority queue here.maxlengthm,n is the maximum queue length of them
priority in the run queue with the indexn recorded during the current period.availm,n

is the availability of them priority in the run queue with the indexn which will be
introduced later. The first term in the right of the above equation is a sum of maximum
length of all priority queues with the prioritym, and the second term is a ratio of a
priority queue’s availability to the sum of availability ofall the priority queues with
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priority m. Hence migration limit is a distribution of the sum of all themaximum run
queue length values according to each priority queue’s availability.

availm,n is calculated based on the reductions executed on them priority queue in
the run queuen, on the whole run queuen, and on all the run queues:

availm,n =

{

1 if run queue waited

availqm,n∗ (Nf ull_shed∗ f ullredsn)/ f ullredsall otherwise
For run queues that have been in the waiting state in the current period, the avail-

ability of every priority queueavailm,n is 100%. For other run queues, availability
is calculated in two steps. The first step is to calculateavailqm,n only based on the
reductions executed on a priority queue and on its run queue.

availqm,n =



















0 if redrqn = 0

1 else ifm= max, port

(redpn− redmax,n)/redpn else ifm= high

(redpn− redmax,n− redhigh,n)/redpn else ifm= normal, low
First if the sum of reductions spent on all the process priorities and port of a run

queue,redrqn, is zero, theavailqm,n of each priority queue of that run queue is 0. For
a scheduler whoseredrqn is not zero, the availability of its maximum priority or port
queue is 100%. The execution of ports is interleaved with theexecution of processes,
and therefore the execution of processes doesn’t affect theavailability of port execution.
In the above formula,redpn is the total reductions spent on all process priorities of the
run queuen, andredm,n is the reductions spent on processes with prioritymof that run
queue. High priority processes are always executed after maximum priority processes,
and normal and low priority processes are always executed after maximum and high
priority processes. Thus the calculation ofavailqm,n for a priority queue is intuitive.
The normal and the low priority processes are stored in the same queue and they have
the same availability.

In the second step, theavailqm,n is adjusted according to the total reductions spent
on all the run queues that are never out of work in the period toget availm,n. In
(Nf ull_shed∗ f ullredsn)/ f ullredsall, Nf ull_shed is the number of run queues (sched-
ulers) whose out of work flags are not set during the balance check period, as men-
tioned before.f ullredsall is the sum off ullredsn of all the run queues whose out of
work flags are not set.f ullredsnis calculated as follows:

f ullredsn = (∑t−7
i=t redchangei,n)/8

redchangei,n is a historical value of reductions spent on the run queue with the index
n. For exampleredchanget,n is the number of reductions executed in the current period
andredchanget−7,n is the number of reductions executed in the period that precedes
the current period 7 times. If in a period a run queue is out of work, the reduction
entry of that period,redchangei,n, in its history list is set to a fixed value (2000*2000
in R13B04), otherwise it is the sum of reductions actually spent on all the processes
and ports.

Figure 3.5 is a simple example of migration limit calculation. In Figure 3.5, we
assume there are only processes with the normal priority which is the usual case, and
each priority queue has the same availability. Then the calculation of migration limit is
a simple averaging operation.
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Figure 3.5: Migration Limit

3.3.6 Migration Path with Full Load

After migration limits are calculated, the next work is to establish migration paths.
A migration path indicates which priority queue to transfertasks for another priority
queue having longer maximum queue length than its migrationlimit. For each priority
queue of every run queue, its maximum queue length is subtracted by its migration
limit. If the result is positive, the queue is a candidate of work emigration (push). If
the result is negative, the queue has less work and is a candidate of pulling work from
another queue.

For each priority, the queues are sorted according to the subtraction results. A
migration path is set between the queue with the largest positive difference and the
queue with the least negative difference, and then between the queue with the second
largest positive difference and the queue with the second least negative difference, and
so on. The emigration (push) flag is set on a queue with a positive difference, and the
immigration (pull) flag is set on a queue with a negative difference. For a queue with
zero availability another flagevacuationis set. The target for emigration (push to) or
source for immigration (pull from) is also set, and there is only one target or source for
each queue. A queue is either pushing or pulling, but not both.

It is possible that the number of queues with positive differences is not equal to the
number of queues with negative differences. If there are more emigrating queues, the
emigration flags are set on the remaining emigrating queues.For these queues, their
target queues for emigration are chosen starting from the queue with the least nega-
tive difference. So there may be more than one queue pushing work to a queue. But
the pulling queue only has one source for immigration. If there are more immigrat-
ing queues, the immigration flags are set on the remaining immigrating queues. The
sources of immigration are chosen starting from the queue with the largest positive dif-
ference. Thus there may be more than one queue pulling work from a queue. But the
corresponding pushing queue only has one target for emigration.

Figure 3.6 is an example of migration paths. There are more pulling queues in the
figure. Both queues with the maximum length 7 and 4 pull work from the queue with
the maximum length 14, but only the queue with the length 4 is set as the emigration
target for the emigrating queue. Maximum queue length is a value recorded in a period,
and it doesn’t mean that the run queue has that number of processes or ports at the time
of balance check.
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Figure 3.6: Migration Path

After the migration paths are established, in every scheduling slot of a scheduler
if at least one of its priority queues has the immigration flagset, the scheduler tries to
pull one process or port for each priority queue with a set immigration flag. The times
of migration is limited by the migration limits set during balance checking as stated
before. The processes or ports are pulled from the head of source queues.

An active scheduler with the emigration flags set doesn’t push its tasks repeatedly.
The emigration flag is checked when a process or port is going to be added to a priority
queue. If it is set, the task is added to the end of the migration target’s queue instead
of the current queue. The emigration flag for that priority queue is cleared after one
process or port is pushed. Thus for a priority queue of an active scheduler, it pushes
work only once. Tasks are mainly pulled by priority queues which are the migration
destinations.

3.3.7 Work Stealing

If an active run queue is still empty after task pulling attempt and there is no other
work to do, it tries to steal a task from other schedulers. It tries to steal a task from an
inactive run queue first, and then an active run queue. When stealing from inactive run
queues it starts from the one with the index that is equal to:

indexvictim_rq = indexf irst_inactive_rq +(indexcurrent_rq)mod(Ninactive)
Ninactive is the total number of inactive run queues. When stealing from active run

queues, it starts at the next run queue with larger index thanthe current run queue. Thus
the stealing victims are distributed. When trying to steal from a run queue, the attempt
is made from the maximum priority queue to the normal and low priority queue, and
then the port queue. The stealing is successful and terminated if a process or port is
stolen. The process or port is stolen from the end of a queue.

3.3.8 Scheduling and Scalability

The performance of scheduling algorithm has a great impact on scalability. Most im-
portantly, if workload is not evenly distributed, the idealspeedup is not achievable.
Another drawback induced by scheduling for many-core systems is that the cache per-
formance may be worse. When processes are migrated from one processor core to
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another, their data and code should also be transferred to the caches associated with the
new core, and cache misses can occur before they are brought into the caches. But for
the sequential Erlang VM running on one core, there is no process migration.

From the above description of the scheduling algorithm in the Erlang VM, we can
see that it has the mechanism of distributing workload to multiple cores. It predicts
the workload and the availability of each Erlang scheduler for the next period based on
the data of the current period and previous periods. It puts some schedulers into the
inactive state to save power consumption when a system is notfully loaded. When it
is fully loaded, the scheduling algorithm tries to balance the workload periodically. It
actually attempts to balance the number of processes or ports for each priority queue as
the example in Figure 3.6 shows, since it is not possible to know the exact workload of
each process in advance. Assuming there are only processes with the normal priority
which is the usual case (excluding some Erlang system processes), the round-robin
algorithm also requires each process has equal chance to execute. On a homogeneous
many-core processor in which each core has the same processing power, there should
be the same number of processes on every core, and otherwise the processes on cores
with fewer processes will be assigned more time slices to execute than those on cores
with more processes.

In reality, the numbers of processes on different cores are difficult to be kept the
same with a variable workload. First, the migration limits are calculated based on the
maximum length for each priority queue observed during a period. The actual number
of processes at the end the period is very likely less than thesum of these maximum
values. Second, processes are pushed or pulled one by one. Ittakes an amount of time
before all the migration limits are reached. Third, the number of processes can change
in a period between two balance checks because of process spawning and termina-
tion. Inside the period, processes cannot be shared except stolen. But working stealing
occurs only when a scheduler is out of work. If a process on a scheduler spawns a
lot of new processes, the scheduler will have much more tasksbefore the next balance
check. Thus the properties of round-robin are not easily to be maintained on many-core
systems. However on a single core, they are still kept.

This feature can affect the execution time of an individual process, although it
has less effect on the total performance. For example, for anErlang application that
executes shorter than the period of balance check, it may keep every scheduler busy
because of work stealing, and achieve nearly ideal speedup if all the schedulers finish
their work at the same time. But a process in the application which is stolen by a
scheduler occupies the whole scheduler or core, and can finish execution much earlier.
Assuming there is a main process in the application and it spawns all other processes,
and there are much more processes than schedulers, the processes which are not stolen
are all on the same scheduler where the main process resides.They will finish execution
later. In other words, different processes in an Erlang application can achieves different
speedup on many-core systems. It has to be considered if the timing of an individual
process is important. The speedup for different processes in an Erlang application is
not guaranteed to be the same.

In addition, since schedulers in the waiting state have to bewoken up by other
schedulers, it also affects the speedup. The time for wakingup a scheduler is dependent
on the state of the scheduler and the workload of another scheduler which wakes it up.
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When a scheduler is out of work and in the waiting state, it spins on a variable first.
Another scheduler can wake it up quickly by changing the value of the variable. After
spinning on the variable for an amount of time, if no one wakesit up the waiting
scheduler thread will wait on a condition variable and be blocked. Longer time is
needed to wake up a blocked scheduler thread. The counter in ascheduler for waking
up other schedulers increases proportionally to the numberof processes or ports on the
scheduler. When there is more workload on a scheduler, it wakes up other schedulers
more frequently. The time spent in waking up idle schedulerswill make significant
impact if the work comes in bursts.

In general, regarding the overall performance of the ErlangVM on many-core sys-
tems, a balanced workload can be expected if there are a sufficient number of processes
or ports and the total execution time is long. For each individual process the speedup
can vary.

3.4 Synchronization

At present, most existing commercial multi-core or many-core computer systems are
with shared memory architectures. The main memory and/or a few levels of cache of a
system are shared by all cores. The most efficient way of communication in these sys-
tems is through shared memory. In Erlang, although shared memory is abstracted away
from Erlang application programmers, system developers still have to deal with the
shared memory to build an efficient Erlang virtual machine. Many high-level features
like message passing are based on shared memory. On TILEPro64, short messages can
be passed between tiles directly via one of the on-chip networks. This feature may be
utilized to build a different flavor of message passing or other functions. However it is
not guaranteed to be faster.

Access to shared memory has to be synchronized on processorswith multiple cores,
otherwise programs may not behave as they are expected [18].For example, when two
threads on two different cores try to increment a variable simultaneously, if the access
is not serialized they may read the same value, increment it,and write the same value
back. The value ends up with being increased by only once. Synchronization is a
necessity for developing shared memory multithreaded programs.

3.4.1 Overview

Synchronization introduces overhead since the progress ofexecution is delayed. First,
a lock (introduced later in this section) has to be acquired and later released every time
when a block of shared memory is accessed. This cost must be paid even when there is
no contention of lock attempts by different cores. The latency introduced by acquisition
and release of a lock can be different for different kinds of locks. It is affected by the
speed of the memory subsystem and contention. If the memory access latency of a
system is shorter, the lock overhead will also be smaller. When there is less lock
contention, the overhead is likely to be smaller. In particular, when there is only one
core, every attempt of lock acquisition is always successful, and the following release
and new acquisition attempts will be faster if the lock variable is kept in the cache. If
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there is a lot of contention, the memory copies of the lock variable in the caches of
the cores which contend for it will be invalidated frequently, and cache misses will be
large. This can produce an effect on scalability, since whencore count increases, the
contention tends to be higher.

Second, when contention occurs, threads fail to acquire a lock have to wait until it
is released by its current owner. Obviously if more threads wait, more time is wasted
which results in poorer speedup. The waiting time also depends on the time for releas-
ing the lock, and the time for executing the code protected bythe lock which is called a
critical section. The size of a critical section or lock grain should be appropriate. With
a small critical section, less shared memory is protected bya lock, and more locks may
be needed. Then more lock latency is introduced. However with a large critical section,
all threads which fail to acquire the lock protecting it haveto wait a long time before
the lock is free. Each contending thread experiences different waiting time since the
access to a lock is serialized and they claim the lock one after another.

Third, for some types of locks, when contention occurs, the OS processes or threads
which have failed will attempt to acquire the access again after the lock is released.
Extra overhead is introduced between the time when a lock is released and the time
when it is acquired again. Another issue arises when a short critical section is protected
by a lock of these types. All the cores which see that the lock is free will try to lock
it, although only one of them will succeed. When the criticalsection is short, the core
having the lock will finish the execution soon and then release the lock. But before the
lock release operation is performed by the memory subsystem, some lock acquisition
attempts issued earlier than it may not have been executed. They are accessing the
same lock variable, and usually these lock operations have to performed by the memory
subsystem before the unlock operation. In that case more overhead is introduced duo
to the delay of lock release operations.

In general, lock overhead can be divided into two parts. For an uncontended lock,
it still introduces latency. For a contended lock, there is extra serialization cost induced
by the contention. When there are more cores accessing some shared memory, the
possibility that they contend with each other is greater. More contention leads to more
waiting time which is wasted. As a result the total executiontime is longer and the
speedup is smaller. The penalty induced by contention can affect scalability greatly.
In many-core systems, synchronization overhead is a potential bottleneck if the con-
tention is high. Even with little contention, the lock latency should also be as small as
possible, otherwise the parallel version of a program will waste too much time on syn-
chronization comparing to its sequential counterpart. Basically we need low latency
and low contention locks.

There are many different types of synchronization method used in the Erlang virtual
machine. They can be roughly categorized into three classes: atomic primitives, locks,
and condition variables. There are also different kinds of locks, spin lock, mutex, and
readers-writer lock. Another synchronization method, thread gate, is built based on
mutex and condition variables. Other high-level lock functions are constructed on top
of these basic methods for synchronizing some specific data structures, such as run
queues and process table.

Atomic primitives are used for synchronizing simple variables in order to reduce
overhead, since they are lock-free and fast if they are directly built from atomic instruc-
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tions implemented by the hardware. The Erlang virtual machine also tries to reduce
lock contention by partitioning data structures. For instance, there is one run queue
for each scheduler. Each scheduler works on its own run queuemost of the time, and
hence the lock contention can be reduced. To achieve a good performance, memory
should be shared as less as possible.

3.4.2 Atomic Functions

User-level synchronization mechanisms usually rely on hardware primitives, i.e. as-
sembly instructions supported by hardware, which can atomically read and modify a
memory location [18]. If hardware provides these primitives, synchronizing some sim-
ple shared data, for instance an integer, with atomic operations is much faster than with
lock operations, because lock overhead is eliminated. Whenatomic instructions up-
dating the same memory location are issued simultaneously by several cores, they are
serialized by the memory subsystem. This is like lock contention which occurs when
multiple cores try to acquire a lock simultaneously. For simplicity, in this report all
the contention caused by different synchronization operations is called lock contention
sometimes.

The Erlang virtual machine utilizes many atomic functions,such asatomic incre-
ment, decrement, add, exchange, and compare exchange. There are native atomic
function implementations forx86/x86_64, SPARC32/SPARC64, andPowerPCarchi-
tectures, which means the functions are built with hardwareatomic instructions pro-
vided by these architectures. For example in x86/x86_64, ordinary increment, decre-
ment, add, exchange, and compare exchange instructions canbe turned into atomic
instructions by preceding them with the prefixlock [19].

There is also a native atomic function implementation for TILEPro64. Since there
are only two instructions,test-and-setand memory fence, for building atomic oper-
ations, these atomic functions are in fact not implemented with hardware primitives
but with locks. TILEPro64’s test-and-set instruction loads a 32-bit word from a mem-
ory location into a register and atomically writes the value1 into that location [37].
Since it only can write the value 1 into memory atomically, itis not possible to imple-
ment other atomic operations with it directly, for instancethe atomic increment. Other
atomic functions have to be built with locks.

The test-and-set instruction is suitable for building lockoperations where the value
0 means that the lock is free and the value 1 indicates that thelock is not available. A
processor core tries to acquire a lock, which is an integer, by writing the value 1 to the
memory location assigned for the lock and examining the previous value of the lock
returned in a register. If the previous value is 0, the core acquires the lock. If the value
is 1, then another core has already locked it, and the lock attempt fails. The core can
keep trying to acquire the lock, spinning around a loop untilit succeeds which happens
when the core having the lock releases it by writing the value0 to it. This mechanism
is calledspin lock.

Storing a value in each loop introduces much unnecessary memory traffic when
there are some other processor cores also trying to acquire the lock, because the value
modification has to be propagated to other processor cores. The scheme can be opti-
mized by utilizing the cache coherence feature of a processor. Instead of spinning on
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read and write operations, a processor core can spin on the read operation only [34]. If
the lock value is not changed by other core which owns the lock, it will keep reading
the copy of the lock value stored in its cache without extra memory traffic on the net-
works interconnecting the processor cores and the memory subsystem. It continuously
reads the lock until it is changed or freed. After the lock value is changed, the core’s
copy of lock is invalidated, and updated because of cache coherence when a read miss
occurs. Then it races to acquire the lock again by writing thevalue 1 to the lock. It
goes back to wait if the lock is acquired by another core.

If there are a lot of cores contending for a lock, lock contention can be reduced
by introducing exponential back-off [1]. A core that failedto acquire the lock for the
first time has to delay for a while before the next attempt. Thedelay is exponentially
increased each time when it fails. The first attempt is not delayed in order to achieve
low lock latency when there is no contention.

Atomic operations can be built upon spin locks if there are not appropriate hard-
ware primitives, however they are not truly atomic, since a programmer can bypass the
locks and modify the memory directly which breaks the atomicity. To obtain atomicity,
memory access can be guarded by spin locks. Before modifyingthe memory, a lock
has to be acquired avoiding multiple cores accessing it simultaneously. As the mem-
ory address space is large, there will be lots of lock contention if all the addresses are
protected by a single lock. Yet it is also impractical to assign every memory address a
lock. A lock table is usually used, which is the case in the implementation of atomic
operations on TILEPro64 processor. On TILEPro64, the lock table resides in kernel
space. Each lock or unlock operation has to cross into kernelmode3. It can produce
substantial overhead. For a lock table, there is a trade-offwith its size. Larger table
introduces lower lock contention, but more memory consumption. How memory ad-
dresses are mapped into the lock elements protecting them ina lock table also affect
the performance. Usually a hash function is used.

On TILEPro64, atomic functions used by the Erlang VM are implemented with
C library API (Application Programming Interface) functions inatomic.h. These API
functions are in turn built on other functions, such as atomic update and compare ex-
change. Atomic update and compare exchange functions invoke software interrupts,
and cause corresponding system calls to be executed. These system calls implement
atomic update or compare exchange based on spin locks with exponential back-off.

For other architectures without native atomic implementations, the Erlang VM im-
plements its own atomic functions with Pthread spin lock functions. If it cannot find
the Pthread spin lock implementation, Pthread mutex is usedinstead.

3.4.3 Spin Lock

Lock functions in Erlang VM are also built with atomic assembly instructions and
Pthread routines. On Windows, Windows thread functions areused. Because this
project investigates the performance of the Erlang VM on Linux, windows implemen-
tation is omitted in the following description.

3In kernel mode, a processor can execute any valid instructions and has unrestricted access to the hard-
ware resources including memory. It is usually reserved forthe operating system.
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There are native spin lock implementations for x86/x86_64,SPARC32/SPARC64,
and PowerPC architectures which are built with atomic instructions. The mechanism is
similar as stated in the previous subsection, except that itdoesn’t employ exponential
back-off. This may introduce large overhead if lock contention is high. Other methods
to reduce lock contention are essential. The Erlang VM implements spin lock functions
with Pthread spin lock or mutex functions for the architectures that it doesn’t implement
a native one. There is no native spin lock implementation forTILEPro64. It uses
Pthread spin lock instead. The Pthread spin lock implementation on TILEPro64 is
efficient, and implemented with test-and-set and exponential back-off.

Spin lock is efficient if the lock is held for a short period of time. Since it doesn’t
block the thread when lock contention occurs, the latency tolock it is low after it
is released. There is re-scheduling and context switching overhead when a thread is
blocked. Before a blocked thread is re-scheduled, the operating system scheduler may
schedule other threads to run. Context switch consume time and have penalty of TLB
invalidation. However if a lock is usually held for a long duration, spin lock is not a
good choice. It wastes time that could be utilized by other threads. It increases the
possibility that a thread holding the lock is preempted by the scheduler, and the threads
scheduled to run later try to acquire the lock. That would waste even more time.

Simple spin locks without other technics like exponential-backoff don’t scale well
the number of cores is large. Each core that sees a free lock which it is waiting for will
try to perform a lock operation. That will introduce a lot of contention and extra traffic
on memory subsystems. With the exponential-backoff technic, there are fewer cores
contending for a lock at any time, and therefore less extra memory traffic is produced.
Queuing lock(or ticket lock) [29] is another technic to improve the performance of
spin locks. For a queuing lock, a thread that fails to claim itwill keep checking a
separate variable. When its turn comes, it is informed by changing the variable that
it spins on. The queuing lock can provide fairness by granting the lock according to
the order when the lock requests are issued. It introduces less overhead when core
count is large or contention is high, because unlike normal spin lock, when a queuing
lock is released no waiting threads make acquisition attempts again, and the ownership
is simply transferred to another waiting thread. Queuing locks require more memory
since each core needs a separate variable.

3.4.4 Mutual Exclusive Lock

Mutual exclusive lock (mutex) is used to avoid the simultaneous use of common re-
source by multiple processor cores. Only one process or thread can access the memory
or run code protected by a mutex lock. Mutex lock functions inthe Erlang VM are
implemented with Pthread mutex. Pthread mutex is not like spin lock, because it will
block a thread when its lock attempt fails. To improve performance, Pthread mutex
allows the thread to spin on the lock for a while in user mode4 before calling kernel to
queue up and block its execution [14][13]. Pthread mutex needs to maintain the con-
text information for each thread. Thus it has high overhead especially when it has to go

4In user mode, the executing code cannot access hardware directly and run some privileged instructions.
It is only allowed to reference a part of the whole memory space.

37



into kernel mode when contention occurs. It is relatively slow when a blocked thread
is re-scheduled after the lock becomes free. It has an advantage that when a thread
fails to acquire a lock it is blocked and its remaining time slice can be utilized by other
threads. Since Pthread mutex locks can cooperate with the scheduler in an operating
system, the thread which has failed may yield its time slice to the thread holding the
lock. Pthread mutext locks are better to be used to protect critical sections that take
longer time to execute than the time spent in blocking and re-scheduling a thread.

3.4.5 Readers-Writer Lock

Readers-writer locks also control access to shared resources. It allows multiple threads
to read the shared memory concurrently. But if a thread needsto write the memory,
it should acquire an exclusive lock. Since there might be many readers and the writer
cannot grab the lock if it is acquired by one reader, it can cause write-starvation. To
avoid write-starvation, writers usually have higher priority which means when a writer
is waiting for the lock, a new lock request from a reader is notgranted.

There are two types of readers-writer lock functions used inthe Erlang virtual ma-
chine. The first one is a wrapper5 of Pthread read-write lock implementation or con-
structed on top of Pthread mutex and condition variables if there is no Pthread read-
write lock implementation. The second one is low-weight which is built with atomic
instructions, or Pthread spin lock for some architectures that the VM doesn’t imple-
ment a native one. But if Pthread spin lock functions also don’t exist, the second type
is implemented with the first type.

When using Pthread mutex and condition variables to build a readers-writer lock,
the lock is a data structure consisting of the number of readers, waiting readers and
waiting writers, condition variables for readers and for writers, and a mutex lock. A
reader acquires the readers-writer lock when there are no waiting writers after it has
acquired the mutex lock. The mutex lock is released after a reader has acquired the
readers-writer lock, and therefore another reader can try to acquire the readers-writer
lock later. If there are some writers waiting to acquire the readers-writer lock, the
reader waits on the condition variable for readers, which will be broadcast by a writer
unlocking the readers-writer lock when it is ready for the readers to acquire. After the
condition variable is signaled, a reader continues the lockattempt. A writer acquires
the readers-writer lock after it has acquired the mutex lock, and when there are no
readers holding it and no earlier waiting writers. The mutexlock keeps locked if a
writer is holding the readers-writer lock, in order to prevent other writers and readers
from obtaining the lock. If there are some readers holding the readers-writer lock, the
writer waits on the condition variable for writers, which will be signaled by the last
reader unlocking the readers-writer lock.

The readers-writer lock is a data structure containing a spin lock and a counter if it
is implemented with Pthread spin lock. The modification of the counter is protected by
the spin lock. After acquiring the spin lock, a writer tries to acquire the readers-writer
lock by setting the 31th bit, the highest significant bit of anunsigned integer, to the
value 1. If all other bits are 0, which means there is no readerholding the lock, the

5A wrapper function is a different interface for another function. It mainly calls that function.
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writer gains the lock, otherwise it retries. The first writer, which locks the spin lock
and finds all the readers have released the readers-writer lock, acquires it. A reader
acquires the readers-writer lock when the bit 31 is not set after it has acquired the spin
lock, and then increments the counter, otherwise it waits until the bit 31 is cleared. The
31th bit of the counter is a flag indicating whether there is a waiting writer.

The method to implement readers-writer lock functions withatomic instructions is
similar as when they are implemented with Pthread spin lock,except that the lock is
an integer. When the lock is greater than 0, there are some readers holding the lock. If
it is an extremely small negative value, it is acquired by a writer. A reader atomically
increases the value of the lock by one. It acquires the lock ifits old value is not negative.
A writer tries to acquire the lock by atomically adding it with a small negative value.
If the previous value of the lock is 0, it succeeds.

3.4.6 Condition Variables and Thread Gate

The Erlang virtual machine’s condition variable functionsare wrappers of Pthread con-
dition variable functions. While other locks control access to shared data, condition
variables provide a method for threads to synchronize basedon the value of the data.
By calling the functionpthread_cond_wait(), a thread waits on a condition variable
and is blocked until the condition variable is signaled by another thread calling func-
tion pthread_cond_signal()or pthread_cond_broadcast(). With condition variables, a
thread doesn’t waste time in polling the condition to check if it happens.

Thread gate controls the progress of threads waiting on a gate. The gate is a data
structure consisting of a Pthread mutex lock, a condition variable, and a variable show-
ing the number of threads allowed passing the gate. A thread waits on the gate by in-
voking thepthread_cond_wait()routine. The gate is opened by another thread calling
pthread_cond_signal(), or pthread_cond_broadcast()if the number of threads allowed
to pass is more than 1. After a thread passed a gate, the numberof threads allowed to
pass is decremented.

3.4.7 Lock Functions for Specific Data Structures

A lot of approaches are employed to reduce synchronization overhead in the Erlang
VM. Many critical data structures are divided or partitioned. For example, there is one
separate run queue for every scheduler, storing the processes and ports for that sched-
uler. In each data structure, there may be different locks toprotect different fields.
These methods reduce lock contention by making the locks more fine-grained. Special
lock functions are built based on basic synchronization functions described in the pre-
vious subsections for some data structures to meet their special requirements. There
are specific lock functions for run queue, process, port, anddriver etc. Most of these
functions are tailored for different data structures basedon basic functions with little
modification. The locks for the process data structure are a bit more complex.
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3.4.8 Process Lock

The data structure for an Erlang process is protected by several locks. Accessing some
fields needs to acquire only one lock, while accessing some others needs to acquire
multiple locks. These locks represented by bits are combined into an integer flag. Lock
order is implemented to avoid deadlock. Each lock has a sequence number equals to
its position in the lock flag. A lock with a smaller sequence number is locked before a
lock with a larger sequence number. Then when locks with the same sequence number
on different processes are going to be locked, They are locked starting from the process
with the lowest process ID to the process with the highest process ID.

At the beginning, the process lock function tries to grab allthe locks needed, which
are specified when the function is invoked, at once. This is implemented withatomic
compare exchangeoperation, which updates a memory location with new value ifthe
old value at the memory location equals an expected old valueand returns the actual old
value, otherwise the memory value is not changed and the operation fails. The function
spins around a loop that atomically compares and exchanges the value of the lock
flag with expected new value that it would be when the needed locks are successfully
acquired, until the operation succeeds. Then by checking the old value of the lock flag,
it knows whether one of the locks that it tries to acquire was locked by another thread
before the atomic compare exchange operation. If there is nosuch lock, all the needed
locks are acquired by the function.

If some required locks are already locked by other threads, then the lock function
tries to lock a part of the locks that are free at the same time.Since it should enforce
the lock order, the lock function finds the free lock with the highest sequence number
in the required lock set, and meanwhile all other locks in theset with lower numbers
are also free. After that it tries to acquire these locks simultaneously with the atomic
compare exchange operation again. This procedure repeats until all the locks in the set
are acquired or the times of repetition has exceeded a predefined threshold. In each
iteration, the locks that it tries to lock can change, because during the period some
locks which are released by other threads can be collected.

On condition that the above procedure repeats certain timesand there are still locks
that cannot be claimed, the function tries to acquire as manylocks as possible one at
a time in order. It is implemented withatomic bitwise oroperation similar as with
atomic compare exchange. It stops at the first lock that cannot be acquired. Then the
lock request is put into a FIFO (First In First Out) queue associated with a process that
owns the lock which it tries to acquire. The requesting scheduler thread is blocked by
waiting on a thread gate.

When a scheduler thread releases a lock, it will dequeue one lock request from the
head of the lock request queue related to the released lock and transfer the lock to it.
The unlock function also tries to acquire all the other locksleft for the dequeued lock
request one by one. If not all the remaining locks can be acquired, the lock request is
again put into another lock queue. However if the unlock function finds that a dequeued
lock request has grabbed all the needed locks, it will open the thread gate for the thread
which issued the request.
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3.4.9 Synchronization and Scalability

Building synchronization functions and using them are complex and tricky. Synchro-
nization routines are usually developed by system softwaredevelopers and used by
other application programmers, while in Erlang only virtual machine developers build
and use them. Erlang application developers don’t need to use these low-level syn-
chronization mechanisms such atomic primitives, locks andcondition variables, at all.
They work with message passing as the only way of synchronization between different
processes or ports.

Software development with locks is difficult. It is hard to make the programs work
properly, and they are also hard to test and maintain. In particular, a lot of efforts have
to be made to avoid deadlock. Although synchronizing by message passing is not guar-
anteed to be deadlock-free, it provides a higher level of abstraction. We can consider
the synchronization mechanisms on a higher level. It is easier to think about the mes-
sage interaction needed for each application and verify itscorrectness. Nevertheless on
shared memory machines, the most efficient way of implementing all those high-level
features provided by Erlang like message passing is using shared memory. Thus to a
great extent, the scalability of the Erlang VM is dependent on the performance of the
synchronization methods.

Synchronization functions are used everywhere in the Erlang VM whenever there
are shared data and their access needs to be serialized, for example when processes are
migrated between different run queues and when messages aresent between different
processes. Some data structures are global that each has only one instance in a system,
and they are accessed by all the schedulers. For instance, there is one global process
table for an Erlang node containing the PCBs of all the processes. For global data, if
they are accessed frequently the lock contention will be high, resulting in poor perfor-
mance. Other data are divided and consist of several instances, such as run queues and
memory allocators. Data partitioning can reduce the lock contention since most of the
time each thread only accesses on a subset of the data.

There are many factors related to synchronization that can affect the scalability of
the Erlang VM on many-core systems. First, the scalability is dependent on the char-
acteristics of each Erlang application. For example, if an application spends most of
its time in passing messages between processes, the locks protecting these messages
will introduce big overhead to the total execution time. It will not scale well if the con-
tention is large. Furthermore, the performance of different applications can be limited
by different locks. For instance, for an application in which many processes generate a
lot of other processes the lock guarding the process table may become a major bottle-
neck, while for an application with a large number of messages, its performance may
limited by the locks protecting the passing of messages.

Second, as mentioned in the above subsections, the scalability is also dependent on
the types of locks used and where they are used. Every type of locks has its special
properties. For each critical section or a block of shared data, a suitable lock (or atomic
primitive) has to be chosen according to its execution time,the contention rate, and the
number of cores.

Many different types of locks are utilized in the Erlang VM tofit different data.
New technics are continuously employed to make it more scalable. Due to the complex
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Allocator type Description

temp_alloc Allocator for temporary allocations
eheap_alloc Allocator for Erlang heap data
binary_alloc Allocator for Erlang binary data

ets_alloc Allocator for ETS data
driver_alloc Allocator for driver data

sl_alloc Allocator for memory blocks that are expected to be short-lived
ll_alloc Allocator for memory blocks that are expected to be long-lived
fix_alloc Fast allocator for some data with fixed size based on ll_alloc
std_alloc Allocator used for most memory blocks not allocated by aboveallocators
sys_alloc Usually default malloc implementation of the OS

mseg_alloc Memory segment allocator that caches deallocated segments

Table 3.1: Allocators

nature of the locks and their pervasive use in the VM, it is quite likely that there are
many things that still need to be improved. Synchronizationoverhead is a potential
bottleneck, especially for applications that can make manyschedulers in the VM access
some shared data frequently and simultaneously. Whenever there is significant lock
contention, the ideal speedup is hard to achieve.

3.5 Memory Management

The amount of memory that is used by the Erlang virtual machine changes dynamically.
When a process is spawned, new memory has to be allocated for its stack and heap,
and a slot in the preallocated process table is assigned for its process control block.
A process’ heap can also grow and shrink according to the memory demand. When a
message is passed, memory is allocated for it and for its management data structure. If
a process exits, its memory is reclaimed by the VM.

Since memory is not deallocated by programmers explicitly,the VM is responsi-
ble for collecting memory that is not used anymore by a process. When a process’
heap doesn’t have enough space to accommodate new data, it isgarbage collected. It
expands if the garbage collection couldn’t free enough freememory.

3.5.1 Overview

The Erlang VM contains an internal memory allocator library, erts_alloc6, for allocat-
ing memory blocks dynamically at runtime. Currently there are 11 types of allocators
as shown in Table 3.1. Eight of them, excludingfix_alloc, sys_allocandmseg_alloc,
belong to an internal framework calledalloc_util. The purpose of having multiple types
of allocators is to reduce memory fragmentation by separating different kinds of mem-
ory blocks, and reduce time spent in finding suitable memory blocks that are frequently
allocated.

6http://www.erlang.org/doc/man/erts_alloc.html
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sys_allocandmseg_allocallocators acquire memory from the OS by callingsbrk()
or mmap()functions. They are the foundations of other allocators. Other allocators
manage their own memory pools allocated by thesys_allocand mseg_allocalloca-
tors. Different types of allocators use different structures to organize their free memory
blocks, such as binary search tree and linked list.

Thesys_allocandfix_allocallocators are always enabled. Themseg_allocalloca-
tor is enabled if the system has themmap()implementation and other allocators using
it are enabled. Otheralloc_util allocators can be enabled or disable by users.sys_alloc
is the default replacement if a type of allocator is disabled. The number of allocator
instances for eachalloc_util type can also be set according to the number of scheduler
threads. There can be one instance per scheduler thread for some alloc_util types. One
allocator instance per scheduler thread reduces lock contention, but also introduces
more memory consumption. It should be configured based on thecharacteristics of a
specific application. If the application uses a lot of memoryor there is a lot of mes-
sage passing, one allocator instance per scheduler may benefit the performance. For
a compute-intensive application, fewer allocator instances may result in less memory
footprint7 and better performance. Figure 3.7 shows the relationship between different
types of allocators. For simplicity, only onealloc_utilallocator instance is illustrated in
the graph. The remainder of this section will introduce these allocators in more details.

In the Erlang VM, different garbage collection mechanisms [24] are applied on dif-
ferent heap areas. A copying generational garbage collector is used for process heaps.
The common binary heap is garbage collected with reference counting. Each binary
data contains a counter indicating the number of processes with references (pointers)
pointing to it. It is reclaimed when the counter reaches zero. The common heap for
ETS tables is not recycled automatically. Instead, programmers need to delete the ta-
bles manually. However, a table is linked to the process thatcreated it, and when the
process exits the table is deleted by the VM. The table for storing atom values is also
not garbage collected and it cannot be deleted. It keeps growing when new atom values
are used.

3.5.2 sys_alloc

On Linux, this type of allocator is a wrapper ofmalloc [25] implementation of GNU
C library by default. The Erlang VM also implements its ownmalloc functions for
some operating systems if their native implementations don’t performance well. It is
anaddress order best fitallocator based on Red-Black binary search tree [11].Best fit
means the allocator tries to find a memory block that is equal to the size required, and
if there is no such free block, a block with larger and the closest size is selected. For
address order best fit, when there are multiple free blocks with the required size,the
block with the lowest address is chosen.

Memory blocks are acquired from the OS via the system callsbrk()when there are
no suitable free blocks. A process’ virtual memory space is divided into different seg-

7The amount of main memory used by a program while it is running
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Figure 3.7: Relationship of allocators
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Figure 3.8: A Red-Black tree

ments, such as text8, stack, data9, BSS10 and heap.sbrk()increments the heap segment
by a user specified size. As the heap segment incremented bysbrk() is consecutive, a
memory block cannot be freed to the OS before other blocks that were allocated later
than it are freed. Memory blocks acquired by the system callmmap()don’t have this
limitation, and therefore the Erlang VM also provides themseg_allocallocator based
on mmap(). The Erlang VM’s implementation ofmallocdoesn’t call sbrk() to shrink
the segment size, and hence the allocator doesn’t return memory to the OS.

The performance of an allocator is affected by how the free memory blocks are
organized. Themalloc implementation of the Erlang virtual machine links the free
memory blocks as a balanced binary search tree, Red-Black tree. This kind of trees
guarantee that search, insert, and delete operations take O(log2n) time in the worst
case, where n is the number of nodes in the tree.

A Red-Black tree is a binary search tree with one extra bit pernode indicating its
color which is eitherred or black. If a child or the parent of a node doesn’t exist, it is
regarded pointing to a dummy external node. It satisfies the following properties: every
node is either red or black; the root is black; the leaves (external nodes) are black; if
a node is red, both its children are black; all paths from a node to its descent leaves
contain the same number of black nodes. Figure 3.8 is an example of Red-Black tree,
in which external nodes are omitted.

Each node contains pointers to its left and right children, and its parent. It also con-
tains a key field. In the free memory pool of an allocator, a memory block corresponds
to a node in the tree with its memory size and/or address as itskey. All the keys in
the left subtree of a node are not greater than the key of that node, and all the keys in
the right subtree of a node are not less than the key of that node. If there are two free
memory blocks with the same size, the Erlang VM’smalloc implementation puts the
one with lower memory address to the left subtree of the othernode.

Searching for a block for memory allocation from a free blocktree is simple. Start-
ing from the root node, if the size of the current node, i.e. a memory block, is less than
the required, its right subtree is checked afterwards, otherwise this node is marked as

8A segment contains program code.
9A data segment contains initialized global and static variables.

10A data segment contains uninitialized global variables andstatic variables that are initialized to zero by
default.
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a candidate and its left subtree is checked for a more suitable one. This procedure will
continue until a leaf node is reached. The last marked candidate node is theaddress
order best fitnode.

How the selected node is removed from the free memory block tree is dependent on
the number of its child nodes. If it has no child (excluding any dummy external nodes),
it is removed from the tree directly. If it has only one child node, it is removed, and its
parent node is connected with the child node. When the selected node has two children,
it is replaced by its successor which doesn’t have a left child, and the successor’s right
child is connected to the successor’s parent node. A node’s successor has the smallest
key that is greater than the node’s if all the keys are distinct. If a node has a right child,
its successor is the leftmost node of its right subtree. Thusin the case of node deletion,
the successor doesn’t have a left child because it is the leftmost.

Then if the removed node or its successor replacing it is black, the properties of
Red-Black tree may be violated, and as a result a procedure torestore the properties is
needed which can be found in [11].

When a memory block is deallocated, it is inserted into the free block tree. Before
the insertion, if the block with the memory address immediately before or after the
deallocated block is also free, they are merged after the preceding or tailing block is
unlinked from the free tree to reduce memory fragmentation.Then the merged block
is inserted back to the tree. There is a flag in each block header indicating whether the
preceding block is free.

The process of looking for the position to insert is also simple. Staring from the
root node, if the size of the merged block or deallocated block without merging is
less than the size of the current node or equal to the size of the current node but with
lower address, it is inserted as the left child of the currentnode if the current node
doesn’t have a left child (excluding the external node), andthe current node’s left child
is checked if there is one already. If the size is greater thanthe size of the current node
or equal to the size of the current node but with higher address, it is inserted as the
right child of the current node if the current node doesn’t have one, and otherwise the
current node’s right node is checked. The blocks are inserted as leaves (excluding the
dummy external nodes).

A newly inserted block is set as red if it is not the root node. If its parent is a
red node, the properties of Red-Black tree are violated. Theprocedure to restore the
properties can be found in [11].

3.5.3 mseg_alloc

An mseg_allocallocator acquires memory blocks or segments from the OS viathe sys-
tem callmmap(). It also releases memory to the OS usingmunmap(). Before releasing
deallocated memory segments, they are cached for a while to save time for later allo-
cation. The cache is a linked list with fixed size. A segment isremoved from the end
of the cache periodically. When allocating a memory segment, the cache is checked
for a best fit one before acquiring a new one from the OS, which reduces the number
of system calls.

mmap()is a POSIX system call that maps files or devices to memory. TheErlang
VM utilizes anonymous mapping that maps a certain area of virtual memory backed
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by swap space11 instead of a file if it is supported by the OS. If it is not, the virtual
memory is mapped to a special file/dev/zero.

3.5.4 alloc_util allocators

An alloc_util allocator manages multiple memory carriers as a pool for allocation. A
carrier is a segment of memory either allocated bymseg_allocor sys_alloc. A single-
block carrierstores one block, and amulti-block carriercontains several blocks. When
allocating, if the required block size is larger than a threshold parameter, a single-block
carrier is assigned, otherwise it is placed in a multi-blockcarrier. Usually there is a
main multi-block carrier that is never deallocated for eachallocator. Thus if there is
one instance per scheduler for somealloc_util allocator types, the allocator instances
acquire memory from the OS even when they are not used.

There is a total limit for the number of carriers that are allocated by themseg_alloc
allocator. When the limit is reached, new carriers will be allocated by thesys_alloc
allocator. For each type of thealloc_utilallocators, there are also limits for single-block
carriers and multi-block carriers that themesg_allocallocator can allocate. For every
allocator if these limits are not reached, new carriers are acquired from themseg_alloc
allocator.

If a memory block being allocated should be placed in a single-block carrier, the
mseg_allocor sys_allocallocator is called to allocate a memory segment for the car-
rier. When a block in a single-block carrier is deallocated,the carrier is freed by the
mseg_allocallocator if it was allocated by it, and otherwise it is freedby thesys_alloc
allocator. There is no free block list for single-block carrier.

When allocating a block that should be placed in a multi-block carrier, the free
blocks in currently allocated multi-block carriers are searched before allocating a new
carrier. If a free block found in a multi-block carrier is larger than the required size and
has extra capacity to make a new free block, it is split. When ablock is deallocated, it is
coalesced with the preceding and/or following block to reduce memory fragmentation
if both or one of them is also free. A multi-block carrier is released by themseg_alloc
or sys_allocallocator when the whole carrier is free. The free blocks in multi-block
carriers are managed according to the allocation strategy that analloc_util allocator
uses. There are four allocation strategies:best fit, address order best fit, good fit,
andA fit. Address order best fitis similar as the one used in the Erlang VM’s own
implementation ofmalloc.

Thebest fitstrategy is also implemented with a balanced binary search tree, but it
is slightly different with the one used in theaddress order best fit. All the nodes in a
tree have distinct keys, i.e. memory sizes. If some memory blocks have the same size
as that of a node in the tree, they are linked as a list, and the node contains an extra
pointer pointing to the list.

A deallocated block is inserted at the head of the list if there is a node in the tree with
the same size, while allocation starts from the tail of the list. This can reduce allocation
time when lists are not long, because if a tree node is removedit may take extra time to

11An area on hard disk holds some data temporarily for main memory when it doesn’t have enough space.
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Figure 3.9: A Red-Black tree with lists

Figure 3.10: Buckets

find its successor and restore the Red-Black properties. Figure 3.9 is a simply example
of the structure described above (the key values are not realistic memory block sizes).

Good fitis a special algorithm implemented in the Erlang VM. The freeblocks are
organized as segregated free lists or buckets. Each free list stores blocks with sizes in
a specific range, as illustrated in Figure 3.10 (block sizes are not realistic).

When a block of a multi-block carrier is deallocated, it is linked as the head of a list
according to its size. When allocating a block, the bucket that covers the required size
is searched first if it is not empty. If the search fails and there is a non-empty bucket
covering larger size, that bucket will be searched. The second search always succeeds,
because all the blocks in the bucket are larger than required. The search in each bucket
is limited by the maximum search depth which is small, by default 3. The algorithm
tries to find a best fit from the limited number of blocks starting from the list head. All
the insert, delete and search operations take O(1) time which means it is not dependent
on the number of nodes and sizes of lists.

An A fit allocator manages only one free memory block list. A free block is inserted
at the head of the list if it is larger than the old head block, otherwise after it. Thus the
block at the head is always the largest. When allocating, only the first block in the free
list is checked. If the first block is smaller than required, anew carrier is created. The
time for block insert, delete and search operations is constant. This allocation strategy
is fast, but doesn’t use memory efficiently. It is only used bytemporary allocator.
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A util_alloc allocator has data structures to store its configurations, for instance the
memory carriers it manages, parameters controlling the sizes of carriers, and allocation
strategy it uses. These parameters are chosen to meet specific requirements of different
applications, and can be customized by users.

3.5.5 fix_alloc

A fix_allocallocator manages memory pools allocated byll_alloc that are never deal-
located. There are different pools for some different data structures with fixed size that
are allocated frequently, such as processor structure, atom structure, and module struc-
ture. Every time afix_allocallocator acquires memory that can serve a certain number
of requests for a specific data structure if the free memory has run out. The free blocks
for a data structure are linked as a list. When there is a memory allocation request, the
memory block at the head of the related list is handed out. It is a very fast allocator.

3.5.6 Process Heap Garbage Collection

In the Erlang VM copying generational garbage collector is used for process heaps. A
generational garbage collector classifies memory objects into different generations. In
the Erlang VM there are two generations, young and old. The collector is based on the
observation that the most recently created objects are alsothe most likely to become
unused quickly. By avoiding processing objects with longerlife repeatedly the garbage
collection time can be reduced. The young generation is garbage collected more fre-
quently than the old generation. In the Erlang VM, for each process garbage collection
is performed when there is not enough free space in the heap tostore new data. When
a process terminates, its memory is simply reclaimed without garbage collection since
the heap is private for every process. The garbage collectoris a Cheney-type [9] stop-
and-copy collector with two types of collection, minor collection and major collection.
When collecting garbage, the process is stopped. During minor collection only the
young generation is garbage collected, while during major collection, all the genera-
tions are collected. Major collection is performed after a number of minor collections,
or after that a minor collection couldn’t free up enough space as required. The garbage
collection algorithm is described as follows.

Besides the ordinary heap, a process may also have a heap storing the data of the old
generation. The ordinary heap contains the data of the younggeneration. Data objects
that have survived two or three minor collections are promoted to the old generation.
That is controlled by a mark, high water mark, in the young heap. The data objects
with lower addresses than the high water mark are older younggeneration, while the
data objects above the mark are younger young generation. The data objects below the
mark have survived at least one minor collection or major collection.

During a minor collection a new heap is allocated to store thedata of the younger
young generation that can survive the collection. Its size is determined by compar-
ing the size of the young heap and heap fragments associated with the process being
garbage collected to a table. Entry values in the table grow in a Fibonacci sequence
starting from 34, and when the values are greater than 1.3 million they grow proportion-
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ally. So the size of the new heap may grow in order to reduce garbage collection times.
Data in the heap fragments are copied to the new heap without garbage collection.

Root set, from which what data are working can be derived, includes the stack,
process dictionary, argument registers, messages that arenot attached, and some other
elements in the process structure (PCB) which are not immediate values. Working data
referenced by the root set in the young heap are copied to the old heap if their addresses
are under the high water mark (older young generation), otherwise they are copied to
the new heap, and the references in the root set are updated pointing to old or new heap.
After that some references in the new or old heap may still point to data in the young
heap. Thus memory objects in the young heap referenced by data in the new heap or
older young data in the old heap are copied to the new or old heap according to their
original positions.

The young heap is freed after all the working data are moved, and the new heap
becomes new young heap, or new ordinary heap for the process.During a minor col-
lection, the old generation data in the old heap which were stored during previous
collections are not touched. This reduces garbage collection time. After a minor col-
lection, the high water mark is set to the start of the new young heap if there were older
young generation data during the collection, and otherwiseit is set to the new young
heap’s top. The working data copied to the new heap is compacted which means they
are stored in a consecutive memory area starting from the heap start to the heap top.
Figure 3.11 is a simple example of the memory movement in a minor collection (Heap
fragments and stack are omitted).

During a major collection data both in the current heap (young generation) and the
old heap referenced by the root set are copied to the new heap.Then the data in the new
heap are checked to get the remaining working data, which areindirectly referenced by
the root set, from the current and the old heaps. After that the current heap and the old
heap are freed, and the new heap becomes new current heap of the process. Figure 3.12
is a simple example of the memory movement in a major collection (Heap fragments
are omitted and stack).

3.5.7 Memory and Scalability

Modern processors are usually much faster than the main memory. To address the prob-
lem, a hierarchy of memory is introduced in computer systems. A memory subsystem
can include registers, multiple levels of caches, main memory, and a swap space on a
hard disk. From the registers to the swap space, their speedups decrease, while their
sizes increase. A slow memory subsystem can be a bottleneck for the whole system.

For a multithreaded program like the Erlang virtual machine, all the threads share
the same virtual address space. When allocating memory for different threads simulta-
neously, synchronization mechanisms are needed. The contention and latency induced
by synchronization may reduce the scalability of the program significantly if it contains
a lot of memory allocation. Thus on the Erlang virtual machine, scalability is dependent
on the characteristics of each application. If an application requires frequent memory
allocation, it may scale poorly.

The number of instances for a type of allocator can also affect the scalability, since
when there are more instances it is less likely that contention occurs. If there is one
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Figure 3.11: Memory movement in minor collection

Figure 3.12: Memory movement in major collection
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instance for each scheduler, every scheduler can allocate memory from a separate al-
locator instance. Synchronization is still required if memory blocks can be transferred
between schedulers and a scheduler has to deallocate a memory block that was al-
located by it, such as the memory blocks for messages in the Erlang VM. When a
memory block is deallocated, usually it is not returned backto the OS immediately, but
is put into a pool of free memory blocks associated with the allocator which allocated
the block earlier. The memory blocks in the pool are organized in a form like tree,
bucket or list. If several threads can insert and remove memory blocks from the pool
simultaneously, synchronization is needed to protect the structure of free blocks.

The time to allocate or deallocate a memory block is dependent on its position
in the free memory pool. For example in a tree if the block suitable for a memory
allocation request is at the bottom of the tree it will take a longer time to find it. When
there are more instances for a type of allocator, the tree depth can be smaller since free
memory blocks are distributed to more pools. It can result infaster memory allocation
or deallocation time.
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Chapter 4

Evaluation and Analysis

4.1 Experimental Methodology

The performance of an Erlang application is dependent on theconfiguration of the
Erlang runtime system. The VM can be fine-tuned for differentapplications. There
are many parameters that can be adjusted. For instance, since the default process heap
size is small, if an application consumes a large amount of memory, there will be
many garbage collections. If a larger initial heap size is used, the number of garbage
collections can be reduced and the performance is improved.

In this project, we don’t attempt to fine-tune the performance for each applica-
tion. Most of the time, we test with the default setup except scheduler binding and
multi-allocator features. Each Erlang scheduler is bound to a different core in the
tests. A bound thread cannot be moved to different cores by the scheduler of the OS,
which can prevent two Erlang scheduler threads from being assigned to the same core
by the OS scheduler. Somealloc_util memory allocator types can be configured one
instance per scheduler for each type. For some memory-intensive applications, one
instance per scheduler can reduce lock contention during memory allocation. But it
introduces more memory consumption, and may decrease the performance for some
other compute-intensive applications. The default configuration is that there is one in-
stance per scheduler for eachalloc_util allocator type excepttemp_allocandll_alloc,
when the scheduler count is less than or equal to 16. We set it to one instance per
scheduler even when the number of schedulers is greater than16 for some benchmarks
that can benefit from it.

There are two versions of Erlang Virtual Machine, SMP (parallel) and non-SMP
(sequential). Usually, the parallel VM with one scheduler is slower than the sequential
VM because of synchronization overhead and other differences in the structure of the
program. Speedup is normally calculated against the performance of a sequential ver-
sion of the same program, which isabsolute speedup. In our test, we also userelative
speedup, the speedup computed comparing to execute time on the parallel VM with
one scheduler.

TILEPro64 is used as a platform for performance evaluation.Some other computer
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systems with different processors are also used when there is a need to compare perfor-
mance differences. All the experiment results described inthe remainder of the chapter
are measured on TILEPro64 unless otherwise specified. Before presenting the evalua-
tion results, there is a short discussion of the metric that is used as the average value of
execution time observations, description of tools and an introduction of benchmarks.

4.1.1 Variability of Execution Time

Performance analysis is a non-trivial task. Contradictoryconclusions might be drawn
by changing a seemingly innocuous aspect of the experimental setup [30]. The vari-
ation of execution time for native programs with the same input are significant on
multi-core architectures [28], and it is likely to be more severe on many-core proces-
sors. Since Erlang applications are run on a virtual machine, there are more factors that
can cause the execution time to vary.

The execution time can be affected by other programs runningconcurrently with
the program that we are measuring. This effect can be reducedby closing other unre-
lated applications. But there are still some background tasks executed by the operating
system. When there are many background tasks in a period, long execution time is
observed, and when there are few background tasks, the execution time is shorter.

This imposes a great challenge on the performance analysis of many-core systems,
especially scalability. For instance, if we want to comparethe execution time on 56
cores with that on 60 cores the difference is only about 1/15 ideally, and it is worse if
the execution time on 59 cores is compared with that on 60 cores. The execution time
on 60 cores should be large enough so that we can isolate the impact of other tasks, and
otherwise we need a huge number of tests to make a reliable conclusion. If the execu-
tion time on 60 cores is large, it is likely to take a very long time to execute on 1 core.
When a benchmark is configured to run a long time, its size likememory consumption
may be bloated, and it doesn’t represent an ordinary condition. For example, the num-
ber of processes in a benchmark might be increased to make it run longer. With more
processes, more memory is used. The system may be working in an extreme condition
that there is poor cache performance because of large memoryfootprint.

The variation of execution time can also be affected by the cache memory system.
All the Erlang modules are loaded before they are run. If an application is run for the
second time it is likely to be faster, because its instructions and data were brought to
the cache when it was run for the first time. To avoid this effect, after each test run
the Erlang VM is exited and re-launched during our test. Another alternative way is to
run an application several times and record the time spent oneach test run except the
first one. The first test run warms up the caches. We use the former method because
for many benchmarks each test run may take several hours whenit is executed on one
core. The latter approach is more time-consuming.

On many-core systems, shared memory is protected by locks. Lock contention can
introduce variation on the execution time depending on where the contention occurs
and how many cores are contending. Variable time can be spenton lock operations.
Erlang processes are synchronized by message passing. Depending on when messages
are received, the execution time can vary. When receiving a message, if there is no
matching message in its mailbox, a process will be suspended. When a matching mes-
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sage is at the head of the mailbox, it is processed immediately. The whole mailbox has
to be traversed if the only matching message is at the bottom of the mailbox. When
there are many cores, the arrival time of messages is likely to vary.

There are also many other factors that cause the variation ofexecution time. We
are not going to investigate all the causes of variation in this project. But because of
variability we need a proper metric to represent the averagevalue of execution time
spent on a number of test runs.

In practice we observe non-negligible variation of execution time for Erlang pro-
grams. To get more reliable results, every benchmark is tested several times with the
same input. The average of the observed values is usually represented by arithmetic
mean which is obtained by taking the sum of all observations and dividing the sum
by the number of observations. The mean is easily affected byoutliers which are ex-
tremely small or large values in a sample. We notice that single outlier can make a
considerable change in the mean execution time especially when the number of cores
is very large. Thus we use sample median instead. Sample median is the middle value
when the observations are arranged from the smallest value to the largest value. When
the number of observations is even, median is the mean value of the two middle ob-
servations. Median is resistant to outliers. It is more representative than mean if the
observed values are skewed or their distribution is biased [20]. Sample median is also
recommended in [28] to report execution time for multi-coreprograms, and the stan-
dard SPEC benchmark suites use median.

4.1.2 Factors Affecting Speedup

There are many factors that either benefit or limit the speedup of the Erlang virtual
machine on the many-core processor TILEPro64.

The pros for speedup on the many-core processor are as follows.

• The programs can be executed in parallel.

• When there are more schedulers, more private L1 caches can beutilized since
they are bound to different tiles/cores. In the other words,an L1 data or instruc-
tion cache serves fewer Erlang processes. The hit rate on L1 caches is likely to
increase. Erlang processes with the same priority are executed in round-robin
order. If a data cache cannot hold the stacks and heaps for allprocesses, when a
process is executed its data which were brought into the cache during its previous
time slice might be taken out and have to be brought back from main memory.
A memory block is taken out when a new bock is going to be storedin the same
cache line.

If the benefit of more L1 caches prevails, the speedup can be greater than the number
of cores used, i.e. super linear.

The cons for speedup are:

• Many programs include sequential part that cannot be run in parallel.

• It is possible that a benchmark doesn’t have enough parallelism to fully utilize
all cores, particularly when the core count is large.
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• The workload might be not evenly distributed to all cores by schedulers.

• Erlang processes can be migrated to other cores because of workload balancing.
This might introduce more cache misses, since after every migration, the code,
stack and heap of the process have to be transferred to the newtile.

• By default the heap of an OS process is hashed-for-home. Whenthere is only one
scheduler, it uses L2 caches of all tiles which form a common L3 cache. With
multiple schedulers, they all share the L3 cache. Since all the schedulers run si-
multaneously, more memory is needed or accessed at any time.The performance
of the L3 cache is likely to be worse because of contention.

• Synchronization cost is another important contributor of slowdown. When there
is only one scheduler, the locks are not contended and synchronization cost is
the pure overhead of locks. If there are many schedulers, they may contend for
locks and extra penalty for contentions is introduced [18].

The above pros and cons are the main factors that can affect the speedup. There are
definitely other factors that can affect the speedup, for instance contention on the inter-
connection networks.

4.1.3 Methods

To analyze the performance of Erlang applications, we need both tools for measuring
the Erlang VM and the Erlang code running on the VM. The performance of memory
subsystem especially the cache system can be measured with system level profiling
tools, such as Oprofile for TILEPro64, CodeAnalyst for AMD processors and VTune
for Intel processors. A profiler gathers information, such as frequency and duration of
function calls and memory system usage, as a program executes.

The lock contention times and duration can be measured with lock profiler or lock
counter which is a tool in Erlang/OTP. The time duration spent on a lock is accumu-
lated by the profiler. Thus it cannot provide accurate information about how much time
is spent on a lock for each individual scheduler thread. MostErlang profilers are in-
trusive in that they have big impact on the performance of theapplications that they
are profiling. For instance, a profiler may lock some data structures to atomically get a
sample.

The balance of workload can be indirectly investigated by checking the migration
of processes and the state of schedulers with tracing and other profiling tools. For
example, when there is no work, a scheduler thread is in waiting state or even blocked.

4.1.4 Benchmark Programs

Most benchmark programs used in this project are provided bythe Erlang/OTP team.
A short description for each benchmark is as follows.

• Mandelbrot Set Calculation - The program calculates Mandelbrot set. Complex
valuec is in Mandelbrot set if when starting fromZ0 = 0 and applying the equa-
tion Zn+1 = Z2

n + c repeatedly, the absolute value ofZn never exceeds a certain

56



number. In practice, the number of iteration is limited, andit is 255 in this
benchmark. The benchmark takes two arguments, size of imagein pixels and
number of processes running Mandelbrot set calculation. Each pixel represents
a complex value, or a point in the complex plain. Every process checks whether
each pixel is in the Mandelbrot set for a different image independently. It is an
embarrassingly parallel workload. There is no dependency or communication
between processes doing the calculation, except that the main process spawns
these processes and waits for them to finish sequentially. This benchmark is
compute-intensive and has little memory footprint.

• Big Bang - Big Bang spawns N processes, each of which sends a ping message to
every other process, and replies if a ping message is received. The ping message
is a tuple consisting of the atomping as the first element and the process ID
of the sending process as the second element. The response isa message that
is similar to the ping message except the first element is the atom pong. The
messages are very short. Besides sending and replying messages, the processes
don’t do any useful work other than call a built-in function to get their process
IDs. All the processes are interdependent. A process finishes its work after all
its ping messages are replied. But some other processes may finish later. As a
result it has to keep replying ping messages from other processes.

• Erlang Hackbench - Hackbench is a benchmark for testing the Linux scheduler.
It simulates a chat room, in which each client sends a messageto each server
in the same group. The program creates N groups of processes.In a group,
there are 20 listener processes and 20 writer processes. Each of the 20 writers
writes 100 messages to each listener. Processes in different groups are indepen-
dent. Erlang’s version of Hackbench is similar except with adjustable message
number.

• Random - The main process of the benchmark spawns a number of processes
which is specified by user. Each process randomly generates 100000 integers
and appends them to a list. Then the list is sorted and split into two lists. After
that the first element of the second list which is a middle value of the original list
is returned to the main process. This benchmark has big memory footprint.

4.2 Results and Analysis

4.2.1 Mandelbrot Set Calculation

The Mandelbrot set calculation benchmark contains a balanced workload. In fact, it is
not a parallel workload but several sequential computations done in parallel. For a true
parallel workload, all the processes should operate on separate parts of an image rather
than on separate images. This benchmark is a compute-intensive program which is not
in the typical domain that Erlang is used. Erlang is designedfor applications with a lot
of communications and concurrency. This benchmark is used because it is very likely
to show the best scalability of the Erlang VM. Thus the resultof this benchmark is
closely investigated in the remainder of this subsection.
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Figure 4.1: Speedup of Mandelbrot Set Calculation 250-600 on TILEPro64

Figure 4.1 shows the absolute and relative speedup of the Mandelbrot set bench-
mark executed on the parallel Erlang VM with different numbers of schedulers. The
x axis is the number of schedulers, and the y axis is the speedup. Speedup(non-smp)
is the speedup computed by comparing the execution time on a number of cores with
the SMP VM to the execution time on one core with the non-SMP orsequential VM,
which is the absolute speedup.Speedup(smp)is the speedup when the base is execution
time on one core (scheduler) with the SMP VM. The sample size is 2, which means
every point in the graph is an average of 2 test runs. Image size is 250 * 250 pixels.
600 Erlang processes are spawned to execute independently (600 images).

With 250*250 pixels per image and 600 processes, this benchmark scales very well.
It achieves speedup more than 50 at 60 cores. Each process in the benchmark is inde-
pendent and has the same workload. The result indicates the scheduling algorithm of
the Erlang VM achieves good performance with processes thathave evenly distributed
load.

Figure 4.2 shows the relative speedup of the benchmark with 100*100 pixels per
image, 240 processes and 250*250 pixels per image, 180 processes. The sample size is
10, or every point in the graph is the median value of 10 observations. The scalability
is not as good as the previous one. The speedup at 60 cores is about 43.

The median values of the execution time on 1 core and 60 cores are shown in Table
4.1. The time in the second row is for the SMP VM with 1 scheduler. Comparing the
workload of 180 processes to that of 600 processes with 250*250 pixels per image,
the ratio of is about 0.3 ideally since every process has the same workload. The actual
execution time with 180 processes on 60 cores to that with 250processes is 0.343, while
the proportion of execution time on 1 core is about 0.3 which is linear to the change of
workload. Thus the performance deteriorates when the number of schedulers increases
with 180 processes.

Figure 4.3 is a snapshot of the profiling result from the Erlang concurrency profiling
tool Percept for the Mandelbrot set calculation benchmark with 240 processes and
100*100 pixels per image on the SMP VM with 1 scheduler. The green area in a bar
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Figure 4.2: Speedup of Mandelbrot Set Calculation on TILEPro64

Schedulers 250-600 (s) 250-180 (s) 100-240 (s)

1 6123.783 1836.562 394.031
60 120.728 41.379 9.107

Table 4.1: Execution Time of Mandelbrot Set Calculation

means the corresponding process is runnable (or running), while the white area means
the process is suspended, for example due to waiting for a message. The upper part of
the graph shows how many processes are runnable (or running)at an instant of time.
The bottom part shows the status of each process. The first process in the graph is
the main process that spawns all other processes doing the calculation and waits for
them to finish. On 1 scheduler, all processes finish their worknearly at the same time
(actually their last time slices are finished sequentially).

The profiling result from Percept on 60 schedulers with 240 processes and 100*100
pixels per image is shown in Figure 4.4. The result indicatesthat some processes finish

Figure 4.3: Mandelbrot Set Calculation 100-240 on 1 scheduler
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Figure 4.4: Mandelbrot Set Calculation 100-240 on 60 schedulers

execution much earlier than others. We can see steps in the graph. In each step, about
59 processes finish their execution. At the end, there are fewprocesses, which are
much fewer than 60, left to be finished.

By examining tracing result, we find that when running the benchmark with 240
process and 100*100 pixels per image on 60 cores the execution time is too short (about
9 seconds) to trigger the workload balancing mechanism as stated in section 3.3. As a
result, the schedulers except the one that the main process resides at only can steal the
processes. A scheduler steals a process when it is out of work. It steals another process
only after the old one has completed its execution. Thus a stolen process occupies the
whole scheduler or core, and finishes execution much faster than the processes that are
not stolen since those processes share the same core.

Although this doesn’t affect the total execution time much,stolen processes behave
like having a higher priority than the processes that are notstolen. It breaks the fairness
provided by the round-robin algorithm. The period of balance check is the time taken
by a scheduler to execute 2000*2000 reductions by default. It is more reasonable that
the period reduces as the number of schedulers increases, since when there are more
cores more work can be executed in a period. It may have a low limit because if the
period of balance check decreases less time is spent in executing useful work. There is
a trade-off between the work balance and efficiency.

Figure 4.5 shows the number of schedulers which are not in waiting state starting
from the time when the first worker process that does the Mandelbrot set calculation is
spawned by the main process. It gives the reason why the scalability with 240 processes
is not as good as with 600 processes, because not all the schedulers are working for the
whole time. At the beginning all the schedulers except the one that executes the main
process are in the waiting state. The waiting schedulers arewoken up one by one. This
also causes processes to be finished at very different time. Since the total execution
time is short, the slowly ramping up of the number of schedulers has big impact on
the total performance, while it has less effect with 600 processes. By calculating the
area under the line representing the number of schedulers inFigure 4.5, then dividing
it by 60, we can roughly get the performance increase when allschedulers are active
at the beginning, which is 1.185. Multiplying it with the actual speedup of 43.267, the

60



Figure 4.5: Number of scheduler 100-240

Figure 4.6: Number of Scheduler 250-180

result is 51.225. That is similar to the performance when there are 600 processes and
250*250 pixels per image.

As shown in Figure 4.6 with 180 processes and 250*250 pixels,the execution time
is longer and the time of waking up schedulers has less effecton the total performance.
But this benchmark has fewer processes and more work per process, and therefore the
tail is longer.

The threshold for waking up a scheduler is configurable when compiling the VM,
by default 50*2000 reductions. The counter in a scheduler for waking up other sched-
ulers is increased in a scheduling slot proportional to the length of the run queue and
the actual reductions executed between the current scheduling time slot and the previ-
ous one. Thus the schedulers are mainly woken up by the scheduler where the main
process spawns other processes. This benchmark will achieve a better performance if
the configured threshold is lower. Thus it is not a big issue. The benchmark doesn’t
scale well because it doesn’t have enough workload.

The ideal speedup is 60 and it is 17.1% higher than 51.225. Therest of the time
is likely spent because of lock contention or cache performance deterioration. Figure
4.7 shows the lock profiling result. The lock profiler is a specially compiled VM. It is
intrusive and introduces big overhead to count the lock conflicts. The execution time
increases from 9.107 seconds to 36.144 seconds, which is 2.969 times larger.

In the result, a lock namedgc_infostands out. This lock protects shared variables
storing statistical data about the times of garbage collection performed and the total size
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Figure 4.7: Lock Conflicts Mandelbrot Set Calculation 100-240

of memory reclaimed. The lock is global and all the schedulers contend for the lock
when they are going to update the information. There are manygarbage collections,
because the benchmark includes many arithmetic operationswhich are not allowed to
allocate heap fragments and when there is insufficient heap memory for storing calcu-
lation result a garbage collection is performed.

In Erlang, variables are immutable. A statement likex = x+1 which is legal in
the C programming language is not allowed in Erlang, since the value ofx cannot be
changed. As a result, in this benchmark for each pixel every intermediateZn requires
a new variable to store its value. If a pixel is not in the Mandelbrot set, the equation
mentioned in Subsection 4.1.4 has to be applied 255 times, and each time a new vari-
able is used which is a complex value. For an image with 100*100 pixels, there are
10000 pixels. Thus a process needs a lot of memory to store these variables. The size
is much larger than a process’ initial heap size. Every time when the heap is full, a
garbage collection is performed. The garbage collection can free nearly all the space
of the heap, because all the variables are only used once. As soon asZn is calculated,
Zn−1is not required any more, and becomes garbage. Memory usage of a process’ heap
keeps growing when new intermediate variables are generated. After a garbage collec-
tion, it becomes almost empty. The procedure repeats until the process finishes all the
calculations. This interesting phenomenon suggests that an algorithm that is compute-
intensive if implemented with some other languages can turninto memory-intensive or
garbage-collection-intensive if it is implemented with Erlang.

The lock profiler counts the number of lock acquisition triesand collisions, and
also measures the waiting time spent on each instance of a lock class. Thetime in
Figure 4.7 is an accumulation of all waiting time spent on different scheduler threads
for that type of locks. Thegc_info lock type has only one instance. It has a high
collision rate 99.5414% because it is global. 4156.2056% ofthe total execution time
is consumed because of collisions of this lock, which means for 60 schedulers, the
average is about 69.27%. This result doesn’t provide us accurate information about the
extra time spent on locks when the benchmark is run on a normalVM. But it indicates
the lock protecting the updating of garbage collection statistical information may have
big impact on the total performance, and the performance canbe improved by reducing
the lock contention or lock overhead. Thegc_infolock is implemented with a spin lock
which on TILEPro64 is based on Pthread spin lock. Replacing it with the queuing lock
might improve the performance when the number of schedulers(cores) is high.
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Schedulers 1 60

Bundles / cycle 0.600 0.547
Instruction cache stall / cycle 0.078 0.083

Data cache stall / cycle 0.063 0.099
L1 data cache load miss rate 0.012 0.029

L2/L3 data cache load miss rate 0.112 0.123
L1 data cache store miss rate 0.022 0.065

L2/L3 data cache store miss rate 0.069 0.032
Data TLB miss rate 0.0001 0

Conditional branch mispredict rate 0.334 0.302
Indirect branch mispredict rate 0.594 0.601

Table 4.2: Profiling Result

Table 4.2 shows the profiling result of the benchmark with 100*100 pixels per
image and 240 processes from the system profiler, a customized version of Oprofile for
Tilera processors. The instruction bundles executed (retired) per cycle with 1 scheduler
is about 1.097 times as many as with 60 schedulers. With 60 schedulers, the stall of
execution pipeline due to instruction and data memory operations is also larger. It also
has higher L1 data cache load and store miss rates, but lower L2/L3 data cache store
miss rate. This is very likely caused by lock contention. Forexample, the spin lock
protecting the updating of garbage collection information. The critical section, which
includes modification of two global variables, is very short, and therefore the lock
owner releases the lock quickly. When the lock is released, many threads will contend
for the lock. They use atomic test-and-set instruction to read the old value and write a
value one to it. Each write (store) operation will cause the copies of the lock in other
tiles’ L1 caches to be invalidated. As a result, the miss rateon L1 caches increases. All
store operations writes through new values to the L3 cache, and therefore the L3 cache
usually contains the newly written values. Lock contentionincreases the number of
stores to the L3 cache. Since the hit rate of the lock is high, the total hit rate increases.

The benchmarking result of the Mandelbrot set benchmark indicates the Erlang VM
achieves good scalability with proper workload, which is about 50 on 60 cores. It may
be improved if lock contention cost can be reduced, particularly the one protecting
updating of garbage collection information. We also suggest the period of balance
check should be decreased when the number of cores increases.

4.2.2 Big Bang

The Big Bang benchmark has been tested on a simulated system.It is simulated on
Simics, a full system simulator. The simulated system has 128 UltraSPARC T1[26]
compatible processor cores running at 75 MHz with the operating system 64-bit Solaris
10. Memory system is not simulated, and memory access time iszero. The benchmark
is tested on this platform to gain an insight into how the Erlang VM will scale if there
is no memory access latency.
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Figure 4.8: Speedup of Big Bang with 1000 Processes on Simulated System

Figure 4.8 is the speedup of Big Bang with 1000 processes on the simulated sys-
tem. The sample size is only 1, since simulation is very time-consuming. Without
averaging, the points vary a lot. Figure 4.8 indicates the Erlang VM scales well with
the benchmark Big Bang when there is no memory access latency. The speedup is
nearly linear even when the core count is between 64 and 128. It suggests the schedul-
ing algorithm of the Erlang VM achieves very good performance with processes that
have similar workload when there is no memory access latency.

The speedup fluctuates more rapidly when the number of cores increases. The
execution time of this benchmark is much dependent on the time when messages arrive
at the processes. The times of context switching are different if the messages arrive at
different time, since a process will be suspended if it has towait for a message. With
more schedulers or cores, the arrival of messages is likely to vary among different test
runs.

Figure 4.9: Speedup of Big Bang on TILEPro64
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Figure 4.9 shows the relative speedup of Big Bang with the sample size 10 on the
TILEPro64 board. Among the different process sizes, the onewith 800 processes is
the best. It achieves the speedup 46.6 at 60 cores. With 1000 processes, the speedup
is 46.5 which is very close to the previous one. With 500 processes, the speedup is
the worst. The reason is that its execution time is very short(only 1.47 seconds on 60
cores) and it suffers from the time spent on waking up schedulers.

The workloads with 700 (2.98 seconds on 60 cores) and 800 processes (3.69 sec-
onds on 60 cores) are also low. Their execution time is sensitive to cache effect and
other influence like running of background tasks. Thus we canobserve super linear
speedup sometimes. For example, the speedup is super linearwith 800 processes on
16 cores and 32 cores. With 700 processes, the speedup jumps on 48 cores. The actual
relative speedup for every test run exhibits high variability as shown in Figure 4.10.
In the chart, speedup is computed by dividing the execution time of each run to the
median value of execution time on one core (scheduler). We can see that at 60 cores
the speedup varies rapidly from 36 to 49. This variability decreases when the number
of processes or workload increases in general.

Figure 4.10: Speedup of Each Test Run of Big Bang with 800 Processes on TILEPro64

The performance with the number of processes more than 800 ismore represen-
tative. When the process count is more than 1000, the scalability decreases which is
caused by more synchronization between processes and more memory footprint.

This benchmark seems to be with balanced workload. But actually the workload
can vary. This is due to the implementation of message passing. For this benchmark,
the workload tends to be less on one scheduler. On one scheduler each process is
executed in order. The messages are also sent in a more properorder, and they are
processed faster. For example if there are 1000 processes, the 1000th process will re-
ceive all pong messages from other processes in the order in which all the processes
are spawned. When retrieving, the pong messages are always sequentially matched in
the mailbox which reduces the time of message queue traversal. If there are multiple
schedulers, the messages are interleaved and the arrival time of messages is more vari-
able. Table 4.3 shows the numbers of reductions executed with different numbers of
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No. of procs Reds 1 sched Reds 60 sched Ratio

800 3277560 3414532 1.042
1000 4857191 5252380 1.081
1200 6693462 7386494 1.104

Table 4.3: Number of Reductions with Big Bang

Figure 4.11: Lock Conflicts Big Bang 800

processes and schedulers excluding the main process. Although reductions are not di-
rectly proportional to execution time, we can still get someestimation. From the result,
we can see one of the factors limiting the speedup for this benchmark, or maybe this
kind of benchmarks with message passing, is that the workload increases as the number
of core increases. When there are more processes, messages and synchronization, the
workload increases greater.

Comparing the performance of Big Bang with 1000 processes onTILEPro64 to
that on the simulated system, the speedup is worse. That is quite reasonable because
memory subsystem do have effect on the scalability. At leastmemory latency is a factor
that affects the overhead of locks. The speedup is about 52 at60 cores on the simulated
system, while 46.5 on TILEPro64. But the sample size on the simulated system is
small, and two systems have different architectures. Hencethis comparison might not
be very meaningful.

Figure 4.11 shows the lock profiling result for Big Bang with 800 processes on 60
cores. The accumulated lock collision time of the lock typealcu_allocatoris about
227% of the total execution time, which is about 3.78% per core. The actual effect of
lock contention may be much higher than the average value. Itdepends on how the
total lock contention time is divided among schedulers. It is better if the profiler could
provide such information.

Among all alcu_allocator locks, the locks protecting some allocators for short-
lived data (sl_alloc) and Erlang heaps including heap fragments (eheap_alloc) have
high collision time as shown in Figure 4.12.

This benchmark contains a lot of message passing. When sending a message, two
memory blocks have to be allocated, one for the actual message and another for the
data structure containing management information for the message. The message is
first tried to be copied to the heap of the receiving process. If the receiving process is
executing on another scheduler, or another process is coping message to the receiving
process, the new message cannot be copied to the heap, and instead a heap fragment
is allocated. The heap fragment is allocated with aneheap_allocallocator. There
may be oneeheap_allocallocator per scheduler which is configurable. If there is one
eheap_allocallocator per scheduler, a scheduler always allocates heapmemory from
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Figure 4.12: Memory Allocator Locks

the allocator associated with it. Aneheap_allocallocator is not used for message pass-
ing only. It also allocates memory for new main heaps during garbage collections.
Heap fragments can also be used with other purposes. After a message sent to another
process is retrieved, the process’ scheduler calls the corresponding deallocation func-
tion of the sameeheap_allocallocator which allocated the memory for the message to
deallocated the heap fragment. This can cause contention for the lock protecting the
memory allocator when the sending process and receiving processes are on different
schedulers.

There is a message queue for each process that stores the management data for all
the received messages that have not been processed or retrieved by the process. The
management data have a fixed size. Every scheduler keeps a preallocated list of free
blocks to accelerate the allocation for this type of data. When the list is used up, mem-
ory blocks are allocated with ansl_allocallocator for new message management data.
The management data are short-lived since when receiving processes have retrieved the
related messages they are not needed any more. These preallocated lists andsl_alloc
allocators are also protected by locks.

Thealcu_allocatorlocks are built with Pthread mutex locks. Replacing them with
some light-weight locks like queuing locks might improve the performance. Another
approach is to reduce the number of collisions. The Erlang/OTP team is going to
implement a feature called delayed deallocation, in which amessage sender will be
responsible for deallocating the message after the receiving process has processed it.
Only one scheduler will allocate and deallocate the memory for a message. This opti-
mization can reduce the lock contention. But it may also increase the memory footprint
since the messages are not deallocated immediately.

4.2.3 Erlang Hackbench on TILEPro64

Figure 4.13 is the speedup of Erlang Hackbench when there are700 groups and each
writer writes 500 messages to each listener in the same group. The sample size is 10.

The relative speedup is also about 43 on 60 cores. For this benchmark, running on
the SMP Erlang VM with one scheduler (1437.163 seconds) is much slower than on
the non-SMP VM (662.499 seconds). Table 4.4 shows the execution time of Erlang
Hackbench on different platforms with different inputs.

The server in the table has two quad-core AMD Opteron 2376 CPUs with 16 GB
RAM. The Laptop has an Intel Core2 Duo T5750 CPU with 4 GB RAM. The Simics
row presents the performance on the simulated system as mentioned in the previous
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Figure 4.13: Speedup of Hackbench 700 - 500 on TILEPro64

Platform Program T (smp 1) T (non-smp) Ratio

TILEPro64 EHB100-1000 436.768 185.351 2.36
A server with
64-bit Ubuntu

9.04 Linux

EHB100-1000 25.866 19.3 1.34

A laptop with
32-bit

Fedora 11 Linux

EHB100-1000 35.989 16.892 2.13

A laptop with
64-bit

Fedora 11 Linux

EHB100-1000 32.678 16.921 1.93

Simics EHB100-1000 1141.786 774.827 1.47
TILEPro64 EHB700-1000 3023.59 1341.09 2.25
TILEPro64 EHB700-500 1437.163 662.499 2.17

Table 4.4: Execution time on different platforms
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VM SMP with 1 scheduler Non-SMP

Instructions 32-bit 39909 28911
Instructions 64-bit 36028 27548

Time 32-bit 36.431 17.124
Time 64-bit 32.724 16.749

Table 4.5: Execution time and number of instructions

subsection. The performance of the parallel Erlang VM on theserver is much better
than on the TILEPro64 board. This may be due to that Opteron has a better single
core performance, bigger caches and more atomic instructions for building efficient
synchronization functions.

From the table we can see the ratios are lower on 64-bit operating systems. Table
4.5 shows the executed (retired) instructions measured with system profiler VTune for
the two version of Erlang VM running Erlang Hackbench with 100 processes and 1000
messages on the same laptop with different versions of Fedora 11. The corresponding
execution time of each test run is also included. They are close to the average values
in Table 4.4. The sampling rate is 1000 samples per second. The result shows fewer
instructions are executed on the 64-bit OS, especially withthe SMP VM. Thus it is
not very useful to compare the performance between on 32-bitand 64-bit systems.
There are fewer instructions retired on 64-bit systems, because a 64-bit instruction can
process more data in a cycle. The Erlang VM tries to store morebits in a 64-bit register
whenever it is possible. But in average 64-bit Erlang VM is slower than 32-bit VM,
since the memory consumption is larger. Not all two 32-bit variables can be combined
into one 64-bit variable and processed simultaneous.

We have further investigated the performance of Erlang Hackbench with 100 groups
and 1000 messages on the laptop with an Intel CPU, since the profiler VTune works
better and provides more information. As shown in Table 4.4,with 32-bit OS the ex-
ecution time on the SMP VM with one scheduler is about 2.13 times as much as that
on the non-SMP VM. Our further profiling result from VTune indicates about 32% of
the extra time is spent on the Pthread library, in which Pthread mutex lock takes 90%
of the time.

The other extra time is mainly spent on message passing part and the main func-
tion of each sheduler thread. These parts also contain othersynchronization primitives
other than the Pthread mutex lock, including atomic primitives and native spin locks
etc. Most of these synchronization primitives are inline functions that cannot be sepa-
rated with other functions by the profiler. To evaluate the time spent on these synchro-
nization primitives, a VM is built without function inlining. On the VM without inline
functions, 30.4% of the time is spent on atomic primitives and other lock functions.
The percentage on the normal VM might be lower, since with function inlining the
time spent on atomic and lock functions are lower. An inline function can reduce the
overhead of calling it. Other functions are also not inlined, and thus this result is more
or less significant.

Combing the results of Pthread mutex lock and other synchronization functions
implemented in the VM, it suggests that about 60 percent of the extra time is synchro-
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Figure 4.14: Lock Conflicts Hackbench 700-500

nization overhead. With only one scheduler, there is no lockcontention, and thus this
overhead doesn’t include any penalty of lock conflicts. Moreover the program structure
is different between the sequential VM and the parallel VM. To run on a many-core
system correctly and efficiently, the parallel VM needs moretechnics. For example,
with the parallel VM, a message is first sent to the external public queue of the receiv-
ing process’ message queue, and later it is merged into the private queue before being
retrieved. But with the sequential VM, there is no public queue for each process.

This benchmark includes a large amount of message passing. As a result the over-
head of locks related to message passing makes tremendous impact on the total perfor-
mance. With 700 groups and 500 messages, each of the 20 writers sends 500 messages
to each of the 20 listeners. There are more than 150 million messages in total. Profil-
ing result indicates the locks protecting each preallocated list for allocation of message
management data as mentioned in the previous subsection contribute a lot to the total
execution time along with locks for other memory allocators. The list is used to accel-
erate memory allocation by assigning one of the blocks in thelist to a new request. But
in this benchmark, there are too many messages and the list quickly runs out. When
new requests arrive, the locks are still acquired to check whether there are free blocks.

The performance can be improved if the lists are checked before acquiring the
lock. If there is no free space in a list, the acquiring of lockis skipped, and memory is
allocated by an allocator for short-lived data. If there arefree blocks in a list, the cor-
responding lock is acquired. After that the list has to be checked again to see whether
there is still some free space since before the lock is successfully acquired the free
blocks might be allocated to other threads. The free blocks in a list is allocated only
by its owner thread, and other threads return free blocks to the list after messages are
retrieved and their management data are deallocated. This feature might be explored to
utilize some lock free algorithm instead of lock [39].

The lock profiling result for Erlang Hackbench with 700 groups and 500 messages
on the VM with 60 schedulers is shown in figure 4.14. It also mainly suffers perfor-
mance loss from contention of memory allocator locks since it contains much message
passing. The lock for process table,proc_tab, has a high collision rate. The process
table includes the PCBs of all processes, which is a global data structure. The lock
is acquired when spawning (creating) a process. In Big Bang there is only one main
process spawning other processes and hence there are fewer collisions on this lock.
Each group leader process in this benchmark spawns other processes for its group, and
as a result there is much contention for the lock. The contention can be reduced if the
process table can be partitioned, for example one table per scheduler. The process table
lock is also implemented with a Pthread mutex lock.

The process index lock,pix_lock, is used to protect a number of processes in the
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Figure 4.15: Speedup of Random on TILEPro64

process table. It is implemented with the Pthread spin lock on TILEPro64. Each run
queue is protected by arun_queuelock. For example when a new process is added to
a run queue the related lock has to be acquired. The lock is based on Pthread mutex
lock. Using some light-weight locks might reduce the overhead for these locks.

4.2.4 Random

Figure 4.15 shows the test result of the Random benchmark with 180 processes. The
benchmark scales poorly. There is nearly no performance improvement after the num-
ber of cores is greater than 10.

This benchmark is extremely memory intensive. Each processrandomly generates
a list of 100000 integers, sorts it and splits it. For a small integer it takes four bytes on
a 32-bit machine. Each element of a list includes a pointer which is also four bytes on a
32-bit machine. Thus the list is about 800 KB for small integers (big integers in Erlang
can be arbitrarily long), and there are 180 lists which is about 140 MB. When there are
60 schedulers, 60 processes can run simultaneously with about 46 MB lists. Much more
memory may be needed to store some intermediate results for the list manipulation.
Each L1 cache in a tile on TILEPro64 is only 8 KB, and L2 unified cache containing
data and instructions is 64 KB. The common L3 cache formed from L2 cache is 4 MB
(64 *64 KB). Since hash-for-home feature is enabled for mostmemory area except
stacks, all the L2 caches are utilized even when there is onlyone scheduler.

When sorting a list, the whole list has to be traversed and a new list is generated.
The splitting also needs to traverse the first half of the list. Table 4.6 indicates the
benchmark has bad data cache performance.

The lock counting result in Figure 4.16 shows that there is very high contention of
locks for memory allocators, which is much higher than for Big Bang or even Erlang
Hackbench. Reducing the lock contention can improve the performance.
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Schedulers 1 60

Bundles / cycle 0.546 0.477
Instruction cache stall / cycle 0.072 0.077

Data cache stall / cycle 0.114 0.195
L1 data cache load miss rate 0.040 0.052

L2/L3 data cache load miss rate 0.281 0.213
L1 data cache store miss rate 0.271 0.273

L2/L3 data cache store miss rate 0.147 0.147
Data TLB miss rate 0.0009 0.0006

Conditional branch mispredict rate 0.294 0.290
Indirect branch mispredict rate 0.778 0.775

Table 4.6: Profiling Result of Random 180

Figure 4.16: Lock Conflicts of Random 180

4.3 Summary

The test results indicate that the Erlang virtual machine scales well on TILEPro64 with
normal workload except for an extremely memory intensive benchmark. The scala-
bility is dependent on the characteristics of each application and its input. Maximum
speedup of about 40 to 50 on 60 cores is observed in the tests.

The scheduling algorithm is good enough to balance the workload on different
cores. The only observed little problem is that when the workload is small and work
stealing is the sole method of workload distribution, a stolen process occupies the
whole core and behaves like having higher priority, since a scheduler only steals a
process when its run queue is empty. We suggest the period of balance check should be
reduced when the number of cores increases to achieve more fairness. Moreover when
the workload is low, the speedup may be smaller due to the timespent in waking up
idle schedulers if they are not working at the beginning.

Synchronization overhead caused by contention is a major bottleneck. The scal-
ability can be improved by reducing lock contention and the the overhead caused by
it. We find locks for memory allocators, garbage collection information, process table,
run queue and process index have to be optimized. We recommend using some more
light-weight locks, such as queuing lock, instead of Pthread mutex lock or simple spin
lock whenever it is possible.

Another major problem is that the parallel Erlang VM with onescheduler is much
slower than the sequential version when running Erlang Hackbench. Synchronization
latency induced by uncontended locks including atomic functions used in synchroniza-
tion is one of the main causes of the difference. We suggest implementing lock free
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algorithm and using locks with lower latency to reduce the overhead.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The upcoming many-core systems will impose a great challenge on software develop-
ers. Particularly, the programs developed with conventional languages such as C and
C++ will suffer greatly. They have to be rewritten to fully utilize the power of many-
core systems. Developing applications on many-core systems is not a trivial work.
Tasks running on different cores need to be synchronized. The traditional synchroniza-
tion methods, such as locks and semaphores, are tedious and error-prone. Great care
has to be taken to make the programs deadlock free.

Erlang’s message passing mechanism provides a higher levelabstract of synchro-
nization. Together with its native support of concurrency,Erlang provides an efficient
way of application development on many-core systems. Thereis nearly no difference
between developing applications for single core and for many-core systems. Program-
mers only have to find out more parallelism for every application. If an application
developed for single core systems has sufficient parallelism, it may utilize the power of
many-core systems without any change.

This degree project investigated the scalability of the Erlang runtime system which
supports the Erlang applications to make full use of many-core systems. Our test re-
sults indicate the Erlang VM achieves good scalability withmost benchmarks used on
a many-core processor, TILEPro64. Maximum speedup from about 40 to 50 on 60
cores is observed depending on the characteristics of the benchmarks. Workload can
be well balanced on different cores by the schedulers. A bottleneck of the system is
synchronization overhead caused by contention. The scalability can be improved by
reducing lock contention. We recommend using more light-weight locks whenever it
is possible. Another major problem is that the parallel VM with one scheduler is much
slower than the sequential VM when running a benchmark with ahuge amount of mes-
sage passing. Synchronization latency induced by uncontended locks is one of the main
causes of the difference. We suggest implementing lock freealgorithm to reduce the
lock overhead. Several parts of the Erlang VM implementation which can affect the
scalability on many-core systems were also studied in this project including scheduling
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algorithm, message passing, memory management, and synchronization primitives.
Our result suggests that Erlang is a suitable platform for developing applications on

many-core systems. It is ready to be used on these systems andcan effectively utilize
the power of many-core systems, although the performance ofthe VM could be further
improved.

5.2 Future Work

The results of this project suggest that building scalable memory allocators is very
important on a many-core processor with shared memory, especially for message pass-
ing. We can try to build a more scalable allocator and investigate the trade-off between
memory consumption and scalability. For message passing, the serialization caused by
locks can be reduced if the memory blocks for a message are allocated and deallocated
by the same scheduler thread. This approach requires that when a message is retrieved
by the receiving process, the memory for the message and its management data is not
deallocated immediately by the scheduler on which the receiving process resides. It
should be deallocated later by the scheduler which allocated them. We have to figure
out when and how to deallocate the memory for the sending scheduler.

The scalability of the Erlang VM can be improved by reducing lock contention
and the overhead associated with it. The most critical locksare those for memory
allocators. They are based upon Pthread mutex locks. We can investigate whether
they can be replaced with some lower overhead locks, such as queuing lock. This
also applies to other locks implemented with Pthread mutex locks. Native spin lock
implementations may also be improved by employing other techniques like exponential
back-off. Another more promising method is data partitioning, which has to be tailored
to each data structure. For example, the process table is a global data structure. Making
the table distributed on different schedulers and consistent globally can greatly reduce
the lock contention.

The lock profiler in Erlang/OTP only provides the accumulated collision time for
all schedulers on a lock. It doesn’t show the actual lock contention effect for each
separate scheduler. We can add another feature which accumulates waiting time on
each lock for every scheduler.

Reducing lock contention is not sustainable if the number ofcores keeps increasing.
We can try some new features provided by many-core systems toavoid using locks. For
example, one of the on-chip networks in TILEPro64 supports passing short messages
directly between tiles. This might be utilized to implementa new message passing
mechanism.
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