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Abstract: This paper presents the growth and structure of ZnO nanorods on a  

sub-micrometer glass pipette and their application as an intracellular selective ion sensor. 

Highly oriented, vertical and aligned ZnO nanorods were grown on the tip of a borosilicate 

glass capillary (0.7 µm in diameter) by the low temperature aqueous chemical growth 

(ACG) technique. The relatively large surface-to-volume ratio of ZnO nanorods makes 

them attractive for electrochemical sensing. Transmission electron microscopy studies 

show that ZnO nanorods are single crystals and grow along the crystal’s c-axis. The ZnO 

nanorods were functionalized with a polymeric membrane for selective intracellular 

measurements of Na
+
. The membrane-coated ZnO nanorods exhibited a Na

+
-dependent 

electrochemical potential difference versus an Ag/AgCl reference micro-electrode within a 

wide concentration range from 0.5 mM to 100 mM. The fabrication of functionalized ZnO 

nanorods paves the way to sense a wide range of biochemical species at the  

intracellular level. 
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1. Introduction 

ZnO nanostructures receive growing attention for electronics, optics and photonics. Various ZnO 

nanostructures such as nanowires and nanorods, synthesized by diverse methods, show valuable 

properties [1-2]. Nanodevice functionality has been demonstrated with these one-dimensional (1D) 

semiconducting nanostructure materials in the form of electric field-effect switching [3], single 

electron transistors [4], biological and chemical sensing [5], and luminescence [6].  

The structure of ZnO can be described by alternating planes composed of tetrahedral coordinated 

O
2-

 and Zn
2+

 ions, stacked alternately along the c-axis [7] with ionicity of around 60%. ZnO is a 

piezoelectric, bio-safe and biocompatible material. It is a polar semiconductor with two 

crystallographic planes with opposite polarity and different surface relaxation energies. This leads to a 

higher growth rate along the c-axis. The oppositely charged ions produce positively charged  

Zn-(0001) and negatively charged O-(000-1) polar surfaces, resulting in a normal dipole moment and 

spontaneous polarization along the c-axis. The crystal structures formed by ZnO are wurtzite, zinc 

blende, and rocksalt. Due to the small dimensions combined with drastically increased contact surface 

and strong binding with biological and chemical reagents, ZnO nanowires and nanorods have the 

potential for important applications in biological and biochemical research. The diameter of these 

nanostructures is usually comparable to the size of the biological and chemical species being sensed, 

which promise excellent primary transducers for producing electrical signals. Especially when the 

diameter of ZnO nanostructures reaches a few nanometers, it is expected that their properties could be 

affected by the structure of the side surface.  

For applications, it is important to determine the surface structure of 1D ZnO nanostructures. 

Transmission electron microscopy (TEM) is a powerful tool for characterizing such nanostructures. It 

is important not only in determining the crystal and surface structure, but also the chemical  

composition [8]. One of the important potential applications of ZnO nanorods is its use in chemical 

sensors. Due to large surface-to-volume ratios, ZnO nanorods have been demonstrated as a candidate 

for highly sensitive, nanosized chemical sensors [9-10]. Recently, the electrical and chemical sensing 

properties of ZnO nanorods have been extensively investigated. Literature surveys reveal that ZnO 

nanorods are n-type semiconductors and their electrical transport depends on the adsorption/desorption 

nature of contacting chemical species [11-16].  

Sodium ions, Na
+
, are abundant in the extracellular space and have an important role in the 

excitability of nerve and muscle cells, and in water and salt homeostasis in biological systems [17-19]. 

While the intracellular concentration of Na
+
 is typically low in such environments, the role of 

intracellular Na
+
 has not been fully understood. However, during the last decade several studies have 

revealed that Na
+
 may act as a second messenger in different cell types. Na

+
 regulates different 

transporters and receptors in renal cells and neurons, and it regulates the activation of both Na
+
 and K

+
 

channels, thereby regulating the reabsorption of salt and water in the kidneys and neuronal  

excitability [20-25]. Na
+
 channels and the intracellular concentration of Na

+
 are important in the early 
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stages of apoptotic processes in cell lines, and Na
+
 may be involved in intracellular signaling during 

apoptosis [26-30]. 

Here, we describe the application of ZnO nanorods inside cells. The use of ZnO nanorods for 

intracellular detection of biological analytes, metallic ions, and clusters has been developed by our 

group. We have performed preliminary intracellular detection of most of the basic metallic ions, and 

glucose in oocytes and adipocyte cells [31,32]. The objective of this article is to characterize ZnO 

nanorods and present their application as an intracellular potentiometric selective ion sensor. 

Intracellular determination of Na
+
 is of great interest and ZnO nanorod technology has the potential for 

such measurements. We demonstrate a ZnO nanorod-based sensor suitable for intracellular selective Na
+
 

detection as well the optimization of its electrochemical properties. This sensor is based on ZnO 

nanorods grown on a Borosilicate glass capillary (sterile Femtotip® II with tip inner diameter of 0.5 µm 

and a tip outer diameter of 0.7 µm, and length of 49 mm) that is capable of penetrating a cell membrane.  

2. Results and Discussion 

The morphology of the as-grown high-density and aligned ZnO nanorods was investigated by field 

emission scanning electron microscopy (FESEM). Figure 1 shows typical FESEM images, at different 

magnifications, showing that the ZnO nanorods grown on the glass tip substrate have a rod-like shape 

with a hexagonal cross section and are primarily aligned along the surface perpendicular direction. 

Previous studies have shown that ZnO nanorods have the wurtzite structure (hexagonal) and grow 

along the c-axis direction [38]. 

Figure 1. Field emission scanning electron microscope images at different magnifications 

of the Ag-coated glass capillary without (A) and with (B–D) grown ZnO nanorods using 

low temperature aqueous chemical solution growth. 
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The typical diameter of the as-grown nanorods is in the range of 50 to 70 nm and the length is in the 

range of about 1 µm (figure 2(a)). Chemical composition microanalysis by energy dispersive X-Ray 

(EDX) demonstrates that the rods consist only of O and Zn without other metal impurities as catalysts 

(see figure2 (b)). The additional peak at 8 keV is Cu Kα from the copper grid. The high-resolution 

transmission electron microscopy (HRTEM) image and selected area electron diffraction (SAED) 

pattern are shown in figure 2 (c) with insert revealing that the nanorod long axis is along the [0001] 

direction. The rods contain some defects such as surface steps and stacking faults shown by arrows in 

figures 2 (d, e). 

Figure 2. (A, D, E) TEM images; (B) EDX analysis; and (C) SAED pattern from typical 

ZnO nanorods.  

rod axis

 

 

The selectivity was tested with 1 mM calcium (Ca
2+

), magnesium (Mg
2+

), or potassium (K
+
) added 

to a 1-mM NaCl solution. There was no observable effect on the Na
+
 response. However, introduction 

of K
+
 at high concentrations revealed that the sensor signal was clearly affected by K

+
 through slower 

response and lower stability. This implies that the sensor possesses good selectivity through the use of 

membrane containing ionophore at physiological concentrations.  

A simple potentiometric technique for determining the Na
+
 concentration in biological 

compartments was then developed and the experimental setup for intracellular measurements is 

presented in Figure 3.  
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Figure 3. Schematic diagram illustrating the setup for the measurement of the intracellular 

Na
+
 concentration. 

 

 

Microelectrodes with a tip diameter about 1 µm were used for the potentiometric measurement of 

the intracellular Na
+
 concentration. The electrochemical cell voltage (electromotive force) is changed 

when the composition of the test electrolyte is changed. These changes can be related to the 

concentration of ions in the test electrolyte via a calibration procedure shown in Figure 4. The actual 

electrochemical potential cell can be described by the diagram below: 

[Ag | ZnO | buffer || Cl
−
 |AgCl | Ag] (1) 

The response of the electrochemical potential difference of the ZnO nanorods to the changes in 

buffer electrolyte Na
+
 was measured with a range from 0.5 mM to 100 mM. This demonstrates that the 

Na
+
 dependence is linear and has sensitivity of to 72 mV/decade at around 23 °C (Figure 4). This 

linear dependence implies that such sensor configuration can provide a large dynamical range. 
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Figure 4. A calibration curve showing the electrochemical potential difference between the 

Na
+
-selective ZnO nanorod and the Ag/AgCl reference microelectrodes versus the  

Na
+
 concentration. 

 

 

We test these nanostructures for natural signal transduction elements when dealing with the 

detection of biological analytes, metallic ions, and clusters. Here, we note that ZnO is also a 

semiconducting material that is bio-safe and biocompatible and possesses excellent signal  

transmission properties. 

The functionalized microelectrodes were then used to measure the free concentration of intracellular 

Na
+
 in a single human adipocyte. The Na

+
 selective microelectrode was, mounted on a 

micromanipulator, and moved into a position at the same level as the cells. The ZnO-based and the 

reference microelectrodes were gently pushed through the cell membrane and into the cell (Figure 3). 

Once the ZnO nanorod and the Ag/AgCl reference microelectrodes were inside the cell, that is isolated 

from the surrounding buffer solution, an electrochemical potential difference signal was detected. The 

intracellular Na
+
 concentration was 11.5 mM, corresponding closely to the earlier reported intracellular 

concentrations reported in the literature [39]. In a similar experiment we used the nanosensor to 

measure the intracellular Na
+
 concentration in single frog oocytes using the same setup as for the 

adipocytes, the intracellular Na
+
 concentration in frog oocytes was 8 mM, which is close to what has 

been reported before in [40].  

Studying the solubility of ZnO nanorods in biofluids has important implications for its applications 

in biomedical science. Firstly, ZnO has the potential to be used for biosensors, where it requires a 

reasonable time to function in biological systems and perform a device function. Secondly, if the ZnO 

nanorods are left in the body or in a blood vessel, they will be dissolved by the biofluid into non-toxic 

ions that may be absorbed by the body and become part of the nutrition, as Zn ions are needed for the 

human body [41]. The ZnO nanorod based microelectrodes described here are designed for 

intracellular use. A first series of intracellular measurements has been successfully conducted [31-32].  



Materials 2010, 3                    

 

 

4663 

The viability of the cells depends on the size of the ZnO nanorods, time and heating effect due to 

the microscope. We can improve the viability of cells by controlling these parameters. 

3. Experimental Section 

3.1. Growth and characterization of ZnO nanostructures 

Well-controlled and aligned ZnO nanostructures were prepared by aqueous chemical growth 

(ACG), which is a common and cost-effective low-temperature technique. The growth procedure is as 

follows: the ZnO nanorods were grown on Ag coated tips of borosilicate glass capillaries in a solution 

of zinc nitrate hexahydrate [Zn(NO3)2·6H2O, 99.9% purity] and hexamethylenetetramine (C6H12N4, 

99.9% purity). The concentrations of both were fixed at 0.025 M. All the aqueous solutions were 

prepared in distilled water and we restrict the results to glass tip substrate. The glass capillaries 

substrates were immersed into the solution and tilted against the wall of the beaker. After that, the 

beaker was put into the oven at around 93 °C for different times to get aligned ZnO nanostructure. 

Then the substrate was removed from the solution and cleaned with de-ionized water. The as-grown 

ZnO nanorods on glass tip have been studied by FESEM at different magnifications. The ZnO nanorods 

were also characterized with HRTEM using a Tecnai G2 UT instrument operated at 200 kV with 0.19 

nm point resolution. The TEM specimen was made by scraping the nanorods onto a copper grid with 

carbon film. 

3.2. Immobilization of membrane and electrochemical measurements  

The composition of the polyvinyl chloride (PVC) membrane-based Na
+
 electrode is given as 1% 

Na
+
 ionophore ETH 227, 0.5% Sodium tetraphenylborate, 75% o-Nitrophenyl octyl ether, and 23.5% 

PVC. The solution of plastic membrane components is prepared in 5 mL tetrahydrofuran (THF). The 

ZnO nanorod layer on the silver-coated microelectrode was coated with ionophore-containing liquid 

polymeric membrane by a manual procedure. This ionophore exhibits the best result for potentiometric 

sensing of Na
+
 [33]. All chemicals were purchased from Sigma-Aldrich. The ZnO-coated 

microelectrode was dipped twice into the prepared solution. After each dip the electrodes were allowed 

to dry at room temperature. Finally to condition the microelectrode for selectivity of Na
+
, it was dipped 

into a 10 mM NaCl2 solution [34]. 

In a complete potentiometric cell, the Na
+
-selective microelectrode is used in conjunction with a 

reference microelectrode. The electrochemical potential between the Na
+
-selective and the Ag/AgCl 

reference microelectrodes was measured with Metrohm pH meter model 827. 

3.3. Cellular preparations  

Two types of cells were used for intracellular Na
+
 measurements; human adipocytes and frog 

oocytes. Primary human adipocytes (fat cells) were isolated by collagenase digestion of pieces of 

subcutaneous adipose tissue [35] obtained during elective surgery at the university hospital in 

Linköping, Sweden. Cells were incubated overnight before use as described in [36]. For the 

experiments, cells were transferred to a modified Krebs-Ringer solution buffered with 20 mM Hepes, 

pH 7.4, as detailed in [36]. A glass slide (5 cm length, 4 cm width, and 0.17 mm thickness) with 
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sparsely distributed fat cells was placed on the pre-warmed microscope stage set at 37 C. The  

Na
+
-selective and the reference microelectrodes, mounted on a micromanipulator, were gently 

manipulated a short way into the cell by using hydraulic fine adjustments, through the cell membrane. 

Oocytes were isolated from ovarian lobes cut off through a small abdominal incision from female 

Xenopus laevis frogs anesthetized in a bath with tricaine (procedure approved by the local Animal Care 

and Use Committee at Linköping University). Stage V and VI oocytes (approximately 1 mm in 

diameter) without spots and with clear delimitation between the animal and vegetal pole were selected. 

All details regarding preparation of oocytes and the solutions used are described in [37].  

4. Conclusions 

Highly oriented ZnO nanorods have been grown on the tip of a borosilicate glass capillary (0.7 µm 

in diameter) by a low-temperature ACG technique. The ZnO nanorods were characterized by HRTEM, 

which shows that the nanorods are single crystalline and structurally uniform with a diameter ranging 

from 50 to 70 nm and a length of up to 1 µm. The nanorods grow along the [0001] crystallographic 

direction. The biocompatibility and bio-safety of ZnO nanorods were utilized to develop an 

intracellular potentiometric selective Na
+ 

sensor. Successful invasive intracellular measurement using 

such ZnO nanorods is demonstrated. The ZnO nanorods were functionalized by covering them with the 

Na
+
-selective membrane. The potential difference between the Na

+
-selective and the reference 

microelectrodes was found to be linear over a wide concentration range of Na
+
 (0.5 mM to 100 mM). 

Human adipocytes and frog oocytes were used for intracellular measurements. The measured 

intracellular Na
+
 concentrations in single human adipocytes and frog oocytes were consistent with 

values found in the literature. The results from the electrochemical sensors indicate the potential and 

relevance of using ZnO nanorods in biological and biochemical environment monitoring. 
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