A Construction Grammar Method for Disambiguating Swedish Compounds

Robert Östling
Department of Linguistics
Stockholm University
SE-106 91 Stockholm
robert@ling.su.se

Abstract
This study discusses the structure of Swedish compounds within the framework of Construction Grammar, and applies the result to Word Sense Disambiguation of compound components. A construction-based approach is shown to achieve significantly better results than a set of baselines.

1. Introduction
Construction Grammar is a family of related theories of language, which hold that human language is made up of constructions, pre-fabricated and often idiosyncratic chunks of language which are learned and re-used. Construction Grammar theories make no strict division between syntax/morphology and semantics/pragmatics, but constructions and the way in which they are combined depend on both form and function (Goldberg, 2003; Fried and Östman, 2004).

1.1 Constructions
At a very abstract level, a construction is a form-meaning pair. These can be defined at different levels, informally exemplified in Table 1. While the meaning of a construction as a rule motivates the meaning of constructions similar in form, as is the case with the constructions [noun]-s and eye together motivating eyes, the meaning of a construction is autonomous of its parts and can show various levels of compositionality, as can be seen in the highly non-compositional idiom catch [person’s] eye.

1.2 Swedish Compounds as Constructions
Swedish has a system of productive compounding, similar to German. Apart from the theoretical interest in classifying compounds, the infinite amount of potential compounds (and the extremely large amount actually used) makes compound analysis an important practical matter in Natural Language Processing (NLP).

Construction Grammar offers a way to classify compounds as generalizations at different levels, all of which may affect the interpretation of a given compound. Take for instance the compound plastpappa (literally plastic father). Together with compounds such as plastmormor (plastic grandmother) and plastförälder (plastic parent) it is motivated by a construction of the form plast-[relative], with a meaning similar to but with different connotations than styv-[relative] (step-[relative]).

This construction is motivated by the more basic and common construction of the form plast-[object], which is an object made of plastic, often with connotations of being a cheap copy of something. This in turn is motivated by an even more general construction, [material]-[object], which covers a wide variety of materials and objects.

2. Disambiguation in Compounds
The first problem when analyzing a Swedish compound is where to split it, a problem that is relatively easy to address by statistical methods (Sjöbergh and Kann, 2004; Sjöbergh and Kann, 2006).

Even if we know at which positions a Swedish compound string should be split, there are two more levels of ambiguity to deal with. Mossflora can be unambiguously split as moss-flora, but there are two different words that both use the compound form moss: mossa (moss, various plants) and moss (moss, bog). This is ambiguity not found outside compounds. Additionally, as in English, flora is polysemous and can refer to either plant life or a catalog of it.

2.1 Compound Splitting with SALDO
Using the SALDO semantic and morphological database of Swedish (Borin and Forsberg, 2009), it is fairly straightforward to split a compound into its syntactic components (SALDO lemmas, homographs with identical inflectional paradigms). Once the set of possible lemmas that make up a compound has been determined, it is trivial to look up the semantic components (SALDO lexemes) that can be represented using these lemmas.

In this study I am interested in determining which of the lexemes is used in a given compound, a task roughly equivalent to classical Word Sense Disambiguation tasks, but where the context is the other part of the compound rather than the surrounding text.
2.2 Identifying Constructions

Using a catalog of Swedish compound constructions, we could reduce the task of selecting the right lexeme in a compound to the task of identifying which constructions the compound is motivated by.

To find the set of constructions of the form -kyrka (church) in the sense of a building for worship, not in its other sense of a religious movement, we look at some of its most common instances: stenkyrka (stone church), träkyrka (wooden church), sockenkyrka (parish church), stadskyrka (city church). Within these few examples, we see two constructions: one describing churches made of a certain material, and one describing a certain area’s church.

I do not currently attempt to explicitly describe these constructions, but unknown compounds of the form -kyrka, for instance slottskyrka (castle church), are compared to examples in the training data by means of graph distance in SALDO’s semantic hierarchy. In this case, the training instances sockenkyrka and stadskyrka should ensure that slottskyrka fits nicely into this set of constructions.

The set of constructions of the form -kyrka using the other sense of kyrka (a religious movement) would generally not include opposite lexemes of the same categories (building materials, administrative areas), and the different lexemes corresponding to different senses of kyrka can be differentiated.

One disadvantage of not using any external context is that it becomes difficult to deal with certain compounds whole form match several constructions using different senses of the components. For instance, in the compound statskyrka (state church), state can be used in its geographical or its (correct) political sense, and church in its physical or its (correct) religious sense. The form statskyrka could therefore fit into either of the [geographical area]-[physical church] construction or the (correct) [political entity]-[religious movement] construction.

3. Results

Table 2 summarizes an experiment where 534 compounds that are ambiguous with respect to SALDO lexemes were disambiguated using four different methods:

- **Constructions**, select the lexemes that best match the construction sets described above, or the most frequent lexeme if no matching training examples are found.
- **Most frequent**, always select the most frequent lexeme using the given lemma.
- **Coherence**, select the lexeme pair where the components are the closest to each other according to the SALDO semantic hierarchy.

The training data is obtained from SALDO, which contains about 9 400 compounds (most of them ambiguous) where the lexemes of the parts are given, and from a set of about 180 000 unambiguous (with respect to SALDO lemmas and lexemes) compounds extracted automatically from a corpus. Without the unambiguous compounds in the training data, recall drops to about 69%, just barely above the baseline. This is an interesting result, since there is obviously no overlap between the ambiguous compound segments being disambiguated, and the unambiguous compound segments in this training set. Rather than training a classifier to tell which sense of a segment is intended based on the opposite segment, which would require large amounts of (expensive) disambiguated compounds, we can use large amounts of (free) unambiguous compounds to find compound constructions.

The test data set consists of 534 ambiguous compounds disambiguated by hand (and 442 unambiguous, which are trivial and not included in the statistics).

4. Summary and Future Work

Using a method based on Swedish compound constructions, recall on a compound component disambiguation task was enhanced from 66% (the best-performing most frequent sense baseline) to 73%. The only data sources used are SALDO (Borin and Forsberg, 2009) and an unannotated list of compounds.

Context is an important factor in any Word Sense Disambiguation task, and methods of using further context in tandem with the methods presented here should be explored.

Furthermore, experiments are planned to explicitly extract and build a database of compound constructions in Swedish.

5. References

