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Abstract— Optimal rate allocation in a networked control The main contribution of this paper is a novel method
system with limited communication resources is instrumerdl for optimal rate allocation for state estimation of a linear
to achieve satisfactory overall performance. In this paper a system over a noisy channel. By resorting to an approxi-

practical rate allocation technique for state estimation n linear Hi based hioh-rat fization th bl
dynamic systems over an erroneous channel is proposed. TheMaton based on high-raté quantzation theory, we are able

method consists of two steps(i) the overall distortion is expressed t0 derive a computationally feasible scheme that minimizes
as a function of rates at all time instants by means of high-ree  the overall distortion over a finite time horizon. The remgt
quantization theory, and (ii) a constrained optimization problem  rate allocation is not necessarily evenly distributed cieal
to minimize the overall distortion is solved by using Lagrarge .o nqiderations on integer rate constraints and the aogurac

duality. Monte Carlo simulations illustrate the proposed sheme, . - . . .
which is shown to have good performance when compared to of the high-rate approximation are discussed and illustrat

arbitrarily selected rate allocations. through numerical examples.
The problem we are addressing here is related to classical
l. INTRODUCTION rate allocation problems in communications [6], [7]. To qua

Networked control systems based on limited sensor atify the relation between rate and performance, we resort to
actuator information have attracted increasing atterdiaiing high-rate quantization theory [6], [8], [9]. We also cohtrie to
the past decade. In these systems, it is important to encodt allocation based on high-rate theory by studying agéne
the sensor measurements before sending them to the centrallass of quantizers, while previous work has often focused o
by using a few bits, because of the limited information thdhe special case of optimized quantizers. For example if [10
can be transmitted. However, the distortion introducedHhsy tthe problem is studied in the context of transform codesyehe
encoding should not reduce the performance of the controllthe objective function is convex, and the optimal solutian ¢
Hence, optimizing the rate allocation is essential to owere be derived in a closed-form. However, in our setting we will
the limited communication resources and to achieve a bettdow that the overall distortion is a non-convex function of
performance. the rates, which makes more difficult the computation of the

The optimization of the encoder—controller mappings toptimal solution.
improve the performance of control over finite-rate chasnel The rest of the paper is organized as follows. In Section I,
with or without transmission errors, has been addressed tine overall system is described and the rate allocationl@nob
e.g., [1], [2], [3]- How to assign bits among the elements a§ formulated. Thereafter, some useful results on higa-rat
the state vector of the plant, while imposing a constrairnthen quantization theory are given in Section lll. In Section 1V,
number of bits over time, can be found in e.g., [4], [5]. Indbe we solve the rate constrained optimization problem by means
works, it has been often assumed that bits (rates) are eveafyLagrangian duality. Then, Section V is devoted to the
distributed to sensor measurements. However, owing to theactical issues such as the non-negativity and integeraat
non-stationarity of the state observations, an even digidn of the rates. Finally, numerical simulations are carried iou
of bits to sensor measurements is often not efficient f@ection VI to demonstrate performance of the proposed bit-
networked control. Hence, it is natural to expect consiolera rate allocation scheme.
gains by employing a non-uniform rate allocation.

How to achieve the optimal rate allocation in control sys-
tems is a challenging task. The main obstacle to optimize theThe goal of this work is to arrive at a practical rate allocati
rates is the lack of tractable distortion functions, whice wscheme for state estimation of a dynamic system over an
need to use as an objective function for the rate optiminati@’roneous channel. We consider a scalar system, for which
problem. Furthermore, such a problem is often non-convé€ plant is governed by the equation
and non-linear, which implies that it is difficult to compute
the optimal solution in practice. In this paper, given these
difficulties, we focus on the special case of optimizing theer wherex,w € R. The initial statexp and the process noiseare
allocation forstate estimatioras a first fundamental step inmutually independent. They aré.d. zero-mean Gaussian with
solving the rate allocation problem for state feedback rmint variancescrxz0 and a2, respectively. The state measurement

Il. PROBLEM FORMULATION

X+1=ax+w, a>0, (1)



is encoded and transmitted to a decoder unit through an efR="? is specified by the channel and the coding scheme.
neous channel. The encoder is time-varying and memoryleNste that our criterion is motivated by the closed-loop coint

e., it takes only the current state as the input, scenario [3], with a finite horizof .
i = (% {0 LR 1} @) According to (1), the statg can be expressed in terms of
t=f( : the initial statexp and the process noise§ ! asx =a'xo+

The rate R is a non-negative integer. The index will Et Lat-1sy,. Sincexg andvO are ii.d. zero-mean Gaussian
be mapped into a binary codeword before being fed to distributed, consequentbﬁ is also zero mean Gaussian with
binary channel. The mapping from an index to a codeword tise variances? = a?o; +Zt&%) (at 5) 0. We will use the
commonly referred to as tHadex assignmer(tA). Unlike in  distribution of the state(t in the next section.
the error-free scenario where all IA's perform equally wall
the presence of channel errors, different IA's have a diffier
impact on the system performance. Finding the optimal IA It should be observed that the state does not depend
is a combinatorial problem which is known to be NP-har@in the communication over the erroneous link. Especialy,
[11]. In this paper, we therefore average out the dependerigenot affected by the rate allocation, and the instantaseou
on a specific IA by randomization. At each transmission, @stortion functions are separable. Hence, the major ehgé
random assignment is generated and revealed to the encdi@srin deriving a useful expression of the mean-squareat err
and decoder. Previous works that assumed a random IA(MSE) for the instantaneous distortion (5). In general,sit i
facilitate analysis include [12]. hard to formulate closed-form expressions, even in the chse
Throughout the paper, the overadrroneous channels simple uniform quantizers. In order to proceed, we theeefor
composed by the combination of the random IA and a binaf§sort to approximations based digh-rate theory[6]. For
symmetric channel (BSC). The channel is completely specifighis reason, some useful results are reviewed briefly in this
by the symbol transition probabilities; @¢|it). At the bit section. For further details, we refer the reader to [12] and
level, the channel is characterized by the crossover pitityab [13]. Roughly speaking, the high-rate assumption requtfres
€ =P:(0/1) = P;(1]0) of the BSC, while the overall symbol PDF of the source to be approximately constant within a
error probability R(jt|it) is determined by botte and the quantization cell. Let @ denote the PDF of the source,
randomized IA, according to zero-mean with vananca , following [13], at high-rate, the

o MSE E 2 be ted by th
[ aR), i £, {(x —d)?} can be approximated by the expression,
Pr(tlit) = 1 c ()

- -haR), =i E{(x~ &)’} ~2Ra(R)of + ha(R) /y%(y)dy
(cf., [12]), wherea (R) = (1 — (1—&)R) /(2R — 1) is obtained (7
by averaging over all possible index assignments. As redeal + _¢t /At
by (3), for this channel, all symbol errors are equally ptiba
Clearly, the error-free channel is a special case with 0. The constanG is the volume of a unit sphere, so that for a
At the receiver side, the decoder takigsas the input, and scalar quantizers = 2. The functionA(x) is referred to as
producegd, an estimate of the state, the quantizer point density functiohis function is used to
d = Di(jo) € R @) specify a quantizer in terms of the density of the reconsitvac
tUt ’ points. Resembling a probability density function, it hottiat
where D; is a deterministic function. The estimate can A;(x) >0, for all x, and [ A;(x)dx = 1. Finally, the parameter
take on one of 2 values. Note that an encoder—decoddr< ¢ < 2R specifies the number of codewords the encoder
pair is functionally equivalent to guantizer Throughout this will chose. If the error probabilitg is large, in order to protect
paper,a bit-rate allocationis the entire sequencB'~! = against channel error, a good encoder may only use a part of
{Ry,...,Rr_1} of rates, and the total rat®, is the sum the available codewords. In this paper, we consider only the
of all the instantaneous rates. Letdenote the instantaneousencoder—decoders for whigh = 2.
distortion at timet, where Jis Essentially, we are in need of a useful expression to describ
the relation between the MSE and the r&e We propose a
+=E {(X‘ B d‘)z}‘ () further simplification of (7), in particular,Ra(R)~1—(1—
Next, we specify the problem studied in this paper. £)R, and we rewrite (7) and introdudg(, t, R;) as follows:

Problem 1. Given the plant(1), the channel(3), and the  E{(x—t)?} ~ (B ki, R) 2 B(1—(1-&)R)+k2 R,
encoder—controller pai(2) and (4), find RT~1 that minimizes a2 N
the distortion(6), subject to a total rate constraint, namely, = Ox T / YAy, k=G / M

Ill. HIGH-RATE APPROXIMATION OF THEMSE

(8)

min SLod, StYR <R, (6) whereG2 G 2/3. Such an expression of the distortidnis
rather general for a large variety of quantizers, described
term of the point density function, and derived under thénhig
The performance measure in (6) represents an overall estite assumption. For practical sources and quantizers]dsh
mation error, and its implicit relation to the rate allocati that 0< [} < and 0< k; < o, which is assumed throughout

where} is given by(5).



the paper. The distortion (8) has some useful propertiess tiaoblem 3. Find RT~1 which solves the problem,

will allow us to solve the rate allocation problem. Next, we CTo14 T-1

use a uniform quantizer to show the utility of (8). i 2izo % StFo R =Roy
Consider a uniform quantizer, for which the step Siz\?vheref][ is as given in(8)

O =2v /2% is a function of the quantizer range v, v] and 9 ’

the rateR;. The point density function is thek(x)=1/(2w). We solve the constrained optimization problem as shown in

If the source signal and the uniform quantizer have theheorem 1.

same support—v, v], a high-rate approximation of the MSE

distortion according to (8) is Theorem 1. Suppose Re R. The solution to Problem 3 is as

follows.
J=(a2+v/3) (1-(1-e)R) +42G2 R, (9) In case of an erroneous channel £ 0), it follows that

. 3 S gT-1 *T—1; ;
It is important to remark that the channel error probab#ity 1) I Rot=30 R, whereR Is a solution to

plays a significant role on the shape of the objective fumnctio 0 = B—JO(BO,K@RS),
J. Whene =0, & is monotonically decreasing with respect to

R. In fact, J is a convex function oR,, for all 0< k; <. On B (10)
the cher hand, f_or erroneous channels_é 0, convexity only 0 = g;rT:Ji (Br_1,kT_1,RE ),
applies for certain{ 3, k:} pairs. Regarding the general case
of an arbitrary{ 3,k } pair, (8) is a quasiconvex function, as thenR*T~1 also solves Problem 3.
shown in the following lemma. 2) If Riot < th;OlR{, V\4he1re R*T-1 is a solution to(10),
A then the solutiofR' ~+, 6} to the system of equations
Lemma 1. The distortion} =3 (1—(1—&)R)+-k 22, B, ke > utiory a } y quat
0, is quasiconvex and has a unique global minimum. 6 = _{%]%(EO,KO,RO),
Proof: Compute the derivative af with respect toR;, : (11)

03 2 6 = —2ru (Br-1,k1-1,Rr 1)

— (B kt,R) = —BIn(1—&)(1—&)R —2In(2)k 2R, IRr_1 ’ ’ ’

R Ra = 3 ¢R.
Since the first term—BiIn(1—¢)(1—¢)R, is strictly de- solves Problem 3, wher@ is the Lagrange multiplier.

creasing tO"zvade 0 aR grows, and the second termMy case of an error-free channet & 0), the solution is
—2In(2)k2~ 2R is strictly increasing towards 0 @& grows,

23} /R has at most one critical poif*, which solves
/ POl R=Rot Lo [ 8 ) t—0..T-1
a3 R R T 2 (ﬂTflK )T
ﬁ(ﬁt,mﬂ*):—ﬁtln(l—e)(l—e) —2In(2)k 277"t =0. t=0 At (12)
In the special case that =0, the critical point ISR = To prove Theorem 1, we use Lemma 2—-Lemma 5, as derived
o, because lilR—.»d}/dR =0. Compute the second ordefsybsequently.
derivative of} with respect toR;,
o A. Erroneous Channels
O—‘JZ[(BMKI, R)=—BIn?(1—¢)(1—&)R+4In?(2) k2 . We start with the general case theag 0. First, we note that
oK the unconstrainted problem for the erroneous scenario has a

The critical point is a global minimum, sinceunique minimum that is not necessarily achievedRat o,
limg_002}/0R? >0, and it reveals that for alR <R, as stated in the following lemma.

igg’?’:; islsstrsigtlftliynciae;srﬁ]asmg and for alk > Ry, Lemma 2. In the presence of channel erraer£ 0, Problem 2
b y 9. . has a global minimum, achieved BRt'" 1, which solves the
Next, we use Lemma 1 to solve the rate allocation problems, .
system of equationd.0).
V. RAT_E ALLOCATION F(?R STATE EST'MA.TE Proof: Compute the critical point, at which the gradient
Under the high-rate assumption, the distortipmnJ(S) can s a zero vector, and (10) follows immediately. According
be approximated by the expression (8), ik(B, ki,R). We to (10), the variableR*™ 1 are separable. Moreover, from
reformulate Problem 1 and solve the rate allocation probleremma 1 it follows thafk (3, ki, R) is a quasiconvex function
with respect to the instantaneous cost=J}(f,ki,R). In  and has one unique minimum. Therefore, the overall distorti
particular, the rate unconstrained and constrained opaimi ZtT:Bljt(BthtaRt) has a unique global minimum. u
tion problems based on (8) are formulated as the following Based on Lemma 2, we can state thaRif; > ZtT:Ble’
approximate versions of Problem 1. whereR*T-1 is a solution to (10)R*T~1 is simultaneously
Problem 2. Find RT-! which minimizesth:’olfl, where} is the squTt|oln to the constramed probl_em. On the other hand if
Rot < 3¢ R, whereR*T~1 is a solution to (10), we need to

as given in(8).
9 ® solve (11), as shown in the following lemma.



Lemma 3. The solution to(11) solves Problem 3. First, solved by means of the total bits constraint, and then

Proof: The proof is based on Lagrange dual theory. W?eUbStItuteRt mtq (13), (12.) _foIIows immediately. ) u
Now we are in the position to prove Theorem 1:

qote .that strpng duality holds, k_)ecguse the constraint Gs& p Proof of Theorem 1:The proof follows from Lemma 2—
tive linearly independent combination Bf, the Mangasarian- Lemma 5 -

Fromowitz constraint qualification applies [14]. Next, wénm Finally, consider the special case that the instantaneous

- o CT17 T 1p
imizes the Lagrangiam =3, 5 +6 (S0 R—Reat), where distortion can be written in the form

J is as given in (8). The straightforward calculation of the
derivatives ofr) with respect toR; and @ yields (11). [ | 3 =023(B,R,R) 2 a2(B(1—(1—e)R) + k2™,

In case of an erroneous channel, we do not have a closed- (14)
form solution to (11). The system of non-linear equatiorly (Lwheref3 andk are time-invariant. The instantaneous distortion
can be solved by numerical methods [15]. Below, we briefig a linear function of the variance of the source signal.
present a numerical methods based on Newton’s methdthis property is very useful to solve the control problem.

Define the system of non-linear equations, By applying Lemma 2 and Theorem 1 we can show that the
% unconstrainted rate allocation problem has a global mimimu
Zo = 5r(Bo:Ko,Ro)+6, at R = R*, which is the solution to the following equation,
75 B : 0=BIn(1l—g)(1—&)R +2In(2Rk2"X.  (15)
Zrqa = 2r1(Br gk 1,Rr1)+6 . .
T MRra (Br-1,kr-1,Rr-1)+6, If Rot> TR, with R* given by (15), therR*" ! also solves
Zr = %o R—Rot Problem 3, otherwise, we should solve the system of equation
Define the vector constructed by all unknown variables (11).
[Ry ... Rr_1 6], where ()’ denotes the matrix transpose. V. P
, g . PRACTICAL CONSIDERATIONS
We are looking for®d that givesZ(®) = 0. Netwon'’s method ) ) ) .
derives the solution iteratively, and the results of feand  In this section we deal with the assumption of Theorem 1

k—1)th iterations are related by the following equation,  that R is allowed to be real. In practice, of cours®, is
y geq . -
integer-valued and positive.

(k) =d(k—1)— J,;lz(tb(k— 1)), If Problem 2 and Problem 3 give negative rates, we set them
to zero, which is equivalent to excluding the corresponding
instantaneous distortions from the overall distortioneijwe
resolve Problem 2 and Problem 3 with respect to the new
overall distortion.

For error-free channels, we can show that the system ofthe proposed algorithms in Section IV result in real-valued
equations (11) has a closed-form solution, because whel, ates. As a simple approach, we round the solutions to the
BiIn(1—e)(1- €)% =0, for all t. Hence, Problem 2 has thepgarest integer. A more sophisticated rounding algoritam ¢
global minimum af = «, as shown below in Lemma 4. e formulated as a binary optimization problem, where the

Lemma 4. Whene — 0, Problem 2 is convex and the minimunfounded rateR; is related to the real-valued raR as,

is achieved at R= . R =b[R]+(1-h)|R], b € {0,1}, (16)

Proof: Whene = 0, the instantaneous distortion become : )
J = k2~ 2R Taking the first order derivative of the overall dis_\flhere ] and |- denotes the rounding upwards and down

. To1h . To14 wards to the nearest integer, respectively. We optimize the
tortion Ztiof‘;‘RW'th respect iR, we obtaind/oRs3 g} = rounding by finding the binary sequenbd ! which mini-
—2In(2)ks2=<"s. This function is monotonically increasing, . To173 /5 . :

X . 2R mizesy, ;% (R), subject to the total rate constraint. A solu-
and especially, lirg —. —2In(2)k 27~ = 0. Compute the sec- _; : : .
ond order derivatives, and the Hessian of the overall distor tion to the binary rounding problem can always be obtained by
S+ o4 is always positive definite, because all the elements 8Rplying exhaustive search or combinatorial algorithn.[1

the diagonal are positive. Therefore, the optimizatiorbpem V1. NUMERICAL EXPERIMENT

IS CONVeXx. The minimum is a_chleved I_ait_: . u In this section, numerical experiments are conducted to
Mqvmg on to_ the const_rame_d optimization problem, th9erify the performance of the proposed bit-rate allocation
solution to (11) is summarized in Lemma 5. algorithm. The system parameters are chosen in the interest

Lemma 5. Let £ = 0, the solution{R™ 1, 8} to the system of of demonstrating non-uniform rate allocations, in patacu
equations(11) is given by(12). a=0.5, T=10, Rgt =30, £ =0.005. The initial state and
] ) the process noise are.d. Gaussian with zero-mean and the
Proof: Based on (11), writd} as a function of, varianceso2 = 10 and 02 =0.1. A time-varying uniform
1 6 1 1 encoder—decoder is employed. The quantizer range is sggkcifi
R= _§|092W = 510 (2In(2)k) — 5 log, 6. by w =40, and the high-rate approximation (9) is used by
(13) assuming the distortion outside the range of the quantizer

whereJ: denotes the Jacobian matrix.

B. Error-Free Channels
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Fig. 1. Performance of various rate allocations. The x-&igssociated
to the allocation, whereas the y-axis is the the overallodisin. Notice that
allocations marked with a diamond do not satisfy the tota nstraint.

is negligible. In addition, the binary rounding algorithre-d
scribed in Section V is applied.

In Fig. 1, we compare the optimized allocation, denoted by

Here we see that, as increases, the optimized allocation
becomes more uniform and uses lower rates. It is also worth
mentioning that the random index assignment used in this
paper is neither efficient in protecting against channedrsyr
nor practical in implementation. In the next step, more &ffit
and practical coding—control scheme should be studied.

VIl. CONCLUSION

In this paper, we studied the bit allocation problem forestat
estimation of a dynamic system over erroneous channefd, Fir
we approximated the overall distortion function by means
of the high-rate approximation theory. Second, we showed
that the unconstrained optimization problem has a global
minimum, which solves the rate allocation problem if such
a global minimum does not violate the rate constraint. On the
other hand, if the global minimum violates the rate constrai
we solved the rate constrained optimization problem by mean
of Lagrangian duality for non-linear non-convex problems.
Finally, numerical simulations showed good performance of
the proposed scheme. Based on the result in this paper, We wil
in the next step solve the analogous problem of bit allooatio
for controlling a dynamic system.
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