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Abstract— Optimal rate allocation in a networked control
system with limited communication resources is instrumental
to achieve satisfactory overall performance. In this paper, a
practical rate allocation technique for state estimation in linear
dynamic systems over an erroneous channel is proposed. The
method consists of two steps:(i) the overall distortion is expressed
as a function of rates at all time instants by means of high-rate
quantization theory, and (ii) a constrained optimization problem
to minimize the overall distortion is solved by using Lagrange
duality. Monte Carlo simulations illustrate the proposed scheme,
which is shown to have good performance when compared to
arbitrarily selected rate allocations.

I. INTRODUCTION

Networked control systems based on limited sensor and
actuator information have attracted increasing attentionduring
the past decade. In these systems, it is important to encode
the sensor measurements before sending them to the controller
by using a few bits, because of the limited information that
can be transmitted. However, the distortion introduced by the
encoding should not reduce the performance of the controller.
Hence, optimizing the rate allocation is essential to overcome
the limited communication resources and to achieve a better
performance.

The optimization of the encoder–controller mappings to
improve the performance of control over finite-rate channels,
with or without transmission errors, has been addressed in,
e.g., [1], [2], [3]. How to assign bits among the elements of
the state vector of the plant, while imposing a constraint onthe
number of bits over time, can be found in e.g., [4], [5]. In these
works, it has been often assumed that bits (rates) are evenly
distributed to sensor measurements. However, owing to the
non-stationarity of the state observations, an even distribution
of bits to sensor measurements is often not efficient for
networked control. Hence, it is natural to expect considerable
gains by employing a non-uniform rate allocation.

How to achieve the optimal rate allocation in control sys-
tems is a challenging task. The main obstacle to optimize the
rates is the lack of tractable distortion functions, which we
need to use as an objective function for the rate optimization
problem. Furthermore, such a problem is often non-convex
and non-linear, which implies that it is difficult to compute
the optimal solution in practice. In this paper, given these
difficulties, we focus on the special case of optimizing the rate
allocation forstate estimationas a first fundamental step in
solving the rate allocation problem for state feedback control.

The main contribution of this paper is a novel method
for optimal rate allocation for state estimation of a linear
system over a noisy channel. By resorting to an approxi-
mation based on high-rate quantization theory, we are able
to derive a computationally feasible scheme that minimizes
the overall distortion over a finite time horizon. The resulting
rate allocation is not necessarily evenly distributed. Practical
considerations on integer rate constraints and the accuracy
of the high-rate approximation are discussed and illustrated
through numerical examples.

The problem we are addressing here is related to classical
rate allocation problems in communications [6], [7]. To quan-
tify the relation between rate and performance, we resort to
high-rate quantization theory [6], [8], [9]. We also contribute to
rate allocation based on high-rate theory by studying a general
class of quantizers, while previous work has often focused on
the special case of optimized quantizers. For example in [10],
the problem is studied in the context of transform codes, where
the objective function is convex, and the optimal solution can
be derived in a closed-form. However, in our setting we will
show that the overall distortion is a non-convex function of
the rates, which makes more difficult the computation of the
optimal solution.

The rest of the paper is organized as follows. In Section II,
the overall system is described and the rate allocation problem
is formulated. Thereafter, some useful results on high-rate
quantization theory are given in Section III. In Section IV,
we solve the rate constrained optimization problem by means
of Lagrangian duality. Then, Section V is devoted to the
practical issues such as the non-negativity and integer nature
of the rates. Finally, numerical simulations are carried out in
Section VI to demonstrate performance of the proposed bit-
rate allocation scheme.

II. PROBLEM FORMULATION

The goal of this work is to arrive at a practical rate allocation
scheme for state estimation of a dynamic system over an
erroneous channel. We consider a scalar system, for which
the plant is governed by the equation

xt+1 = axt +vt , a > 0, (1)

wherext ,vt ∈R. The initial statex0 and the process noisevt are
mutually independent. They are i.i.d. zero-mean Gaussian with
variancesσ2

x0
andσ2

v , respectively. The state measurementxt



is encoded and transmitted to a decoder unit through an erro-
neous channel. The encoder is time-varying and memoryless,
i.e., it takes only the current statext as the input,

it = ft(xt) ∈
{

0, . . . ,2Rt −1
}

. (2)

The rate Rt is a non-negative integer. The indexit will
be mapped into a binary codeword before being fed to a
binary channel. The mapping from an index to a codeword is
commonly referred to as theindex assignment(IA). Unlike in
the error-free scenario where all IA’s perform equally well, in
the presence of channel errors, different IA’s have a different
impact on the system performance. Finding the optimal IA
is a combinatorial problem which is known to be NP-hard
[11]. In this paper, we therefore average out the dependence
on a specific IA by randomization. At each transmission, a
random assignment is generated and revealed to the encoder
and decoder. Previous works that assumed a random IA to
facilitate analysis include [12].

Throughout the paper, the overallerroneous channelis
composed by the combination of the random IA and a binary
symmetric channel (BSC). The channel is completely specified
by the symbol transition probabilities Pr( jt | it). At the bit
level, the channel is characterized by the crossover probability
ε = Pr(0|1) = Pr(1|0) of the BSC, while the overall symbol
error probability Pr( jt |it) is determined by bothε and the
randomized IA, according to

Pr( jt | it) =

{

α (Rt) , jt 6= it ,
1− (2Rt −1)α (Rt) , jt = it ,

(3)

(cf., [12]), whereα (Rt)= (1− (1− ε)Rt)/(2Rt −1) is obtained
by averaging over all possible index assignments. As revealed
by (3), for this channel, all symbol errors are equally probable.
Clearly, the error-free channel is a special case withε = 0.

At the receiver side, the decoder takesjt as the input, and
producesdt , an estimate of the statext ,

dt = Dt( jt ) ∈ R, (4)

where Dt is a deterministic function. The estimatedt can
take on one of 2Rt values. Note that an encoder–decoder
pair is functionally equivalent to aquantizer. Throughout this
paper,a bit-rate allocation is the entire sequenceRT−1 =
{R0, . . . ,RT−1} of rates, and the total rate,Rtot, is the sum
of all the instantaneous rates. Let Jt denote the instantaneous
distortion at timet, where Jt is

Jt = E
{

(xt −dt)
2} . (5)

Next, we specify the problem studied in this paper.

Problem 1. Given the plant(1), the channel(3), and the
encoder–controller pair(2) and (4), find RT−1 that minimizes
the distortion(6), subject to a total rate constraint, namely,

min
RT−1

∑T−1
t=0 Jt , s. t.∑T−1

t=0 Rt ≤ Rtot, (6)

whereJt is given by(5).

The performance measure in (6) represents an overall esti-
mation error, and its implicit relation to the rate allocation

RT−1 is specified by the channel and the coding scheme.
Note that our criterion is motivated by the closed-loop control
scenario [3], with a finite horizonT.

According to (1), the statext can be expressed in terms of
the initial statex0 and the process noisesvt−1

0 as xt =atx0+

∑t−1
s=0at−1−svs. Sincex0 andvt−1

0 are i.i.d. zero-mean Gaussian
distributed, consequentlyxt is also zero-mean Gaussian with
the varianceσ2

xt
= a2tσ2

x0
+∑t−1

s=0

(

at−1−s
)2 σ2

v . We will use the
distribution of the statext in the next section.

III. H IGH-RATE APPROXIMATION OF THEMSE

It should be observed that the statext does not depend
on the communication over the erroneous link. Especially,xt

is not affected by the rate allocation, and the instantaneous
distortion functions are separable. Hence, the major challenge
lies in deriving a useful expression of the mean-squared error
(MSE) for the instantaneous distortion (5). In general, it is
hard to formulate closed-form expressions, even in the caseof
simple uniform quantizers. In order to proceed, we therefore
resort to approximations based onhigh-rate theory[6]. For
this reason, some useful results are reviewed briefly in this
section. For further details, we refer the reader to [12] and
[13]. Roughly speaking, the high-rate assumption requiresthe
PDF of the source to be approximately constant within a
quantization cell. Let Pxt denote the PDF of the source,xt ,
zero-mean with varianceσ2

xt
, following [13], at high-rate, the

MSE E
{

(xt −dt)
2
}

can be approximated by the expression,

E
{

(xt −dt)
2} ≈ 2Rt α(Rt)σ2

xt
+ ϕtα(Rt)

∫

y
y2λt(y)dy

+
G−2

3
ϕ−2

t

∫

x
λ−2

t (x)Pxt (x)dx.
(7)

The constantG is the volume of a unit sphere, so that for a
scalar quantizer,G = 2. The functionλt(x) is referred to as
the quantizer point density function. This function is used to
specify a quantizer in terms of the density of the reconstruction
points. Resembling a probability density function, it holds that
λt(x) ≥ 0, for all xt , and

∫

λt(x)dx = 1. Finally, the parameter
1≤ ϕt ≤ 2Rt specifies the number of codewords the encoder
will chose. If the error probabilityε is large, in order to protect
against channel error, a good encoder may only use a part of
the available codewords. In this paper, we consider only the
encoder–decoders for whichϕt = 2Rt .

Essentially, we are in need of a useful expression to describe
the relation between the MSE and the rateRt . We propose a
further simplification of (7), in particular, 2Rt α(Rt)≈ 1− (1−
ε)Rt , and we rewrite (7) and introduceĴt(βt ,κt ,Rt) as follows:

E
{

(xt−dt)
2} ≈ Ĵt(βt ,κt ,Rt) , βt(1−(1−ε)Rt )+κt2−2Rt ,

βt , σ2
xt
+

∫

y
y2λt(y)dy, κt , Ḡ

∫

x
λ−2

t (x)Pxt (x)dx, (8)

whereḠ,G−2/3. Such an expression of the distortionĴt is
rather general for a large variety of quantizers, describedin
term of the point density function, and derived under the high-
rate assumption. For practical sources and quantizers, it holds
that 0<βt <∞ and 0<κt <∞, which is assumed throughout



the paper. The distortion (8) has some useful properties that
will allow us to solve the rate allocation problem. Next, we
use a uniform quantizer to show the utility of (8).

Consider a uniform quantizer, for which the step size
∆t =2νt/2Rt is a function of the quantizer range[−νt ,νt ] and
the rateRt . The point density function is thenλt(x)=1/(2νt).
If the source signal and the uniform quantizer have the
same support[−νt ,νt ], a high-rate approximation of the MSE
distortion according to (8) is

Ĵt =
(

σ2
xt

+ ν2
t /3

)(

1− (1− ε)Rt
)

+4ν2
t Ḡ2−2Rt . (9)

It is important to remark that the channel error probabilityε
plays a significant role on the shape of the objective function
Ĵt . Whenε = 0, Ĵt is monotonically decreasing with respect to
Rt . In fact, Ĵt is a convex function ofRt , for all 0<κt <∞. On
the other hand, for erroneous channels,ε 6= 0, convexity only
applies for certain{βt ,κt} pairs. Regarding the general case
of an arbitrary{βt ,κt} pair, (8) is a quasiconvex function, as
shown in the following lemma.

Lemma 1. The distortion̂Jt =βt(1−(1−ε)Rt )+κt2−2Rt , βt ,κt >
0, is quasiconvex and has a unique global minimum.

Proof: Compute the derivative of̂Jt with respect toRt ,

∂ Ĵt

∂Rt
(βt ,κt ,Rt) = −βt ln(1− ε)(1− ε)Rt −2ln(2)κt2−2Rt .

Since the first term,−βt ln(1− ε)(1− ε)Rt , is strictly de-
creasing towards 0 asRt grows, and the second term
−2ln(2)κt2−2Rt is strictly increasing towards 0 asRt grows,
∂ Ĵt/∂Rt has at most one critical pointR⋆

t , which solves

∂ Ĵt

∂Rt
(βt ,κt ,R

⋆
t )=−βt ln(1−ε)(1−ε)R⋆

t −2ln(2)κt2−2R⋆
t =0.

In the special case thatε = 0, the critical point isR⋆
t =

∞, because limRt→∞ ∂ Ĵt/∂Rt = 0. Compute the second order
derivative ofĴt with respect toRt ,

∂ 2Ĵt

∂R2
t
(βt ,κt ,Rt)=−βt ln2 (1−ε)(1−ε)Rt +4ln2 (2)κt2

−2Rt .

The critical point is a global minimum, since
limRt→0 ∂ 2Ĵt/∂R2

t > 0, and it reveals that for allRt < R⋆
t ,

Ĵt(βt ,κt ,Rt) is strictly decreasing and for allRt > R⋆
t ,

Ĵt(βt ,κt ,Rt) is strictly increasing.
Next, we use Lemma 1 to solve the rate allocation problems.

IV. RATE ALLOCATION FOR STATE ESTIMATE

Under the high-rate assumption, the distortion Jt in (5) can
be approximated by the expression (8), i.e.,Ĵt(βt ,κt ,Rt). We
reformulate Problem 1 and solve the rate allocation problem
with respect to the instantaneous cost Jt = Ĵt(βt ,κt ,Rt). In
particular, the rate unconstrained and constrained optimiza-
tion problems based on (8) are formulated as the following
approximate versions of Problem 1.

Problem 2. Find RT−1 which minimizes∑T−1
t=0 Ĵt , whereĴt is

as given in(8).

Problem 3. Find RT−1 which solves the problem,

min
RT−1

∑T−1
t=0 Ĵt , s. t.∑T−1

t=0 Rt ≤ Rtot,

whereĴt is as given in(8).

We solve the constrained optimization problem as shown in
Theorem 1.

Theorem 1. Suppose Rt ∈R. The solution to Problem 3 is as
follows.
In case of an erroneous channel (ε 6= 0), it follows that

1) If Rtot≥∑T−1
t=0 R⋆

t , whereR⋆T−1 is a solution to














0 = ∂ Ĵ0
∂R0

(β0,κ0,R⋆
0),

...

0 =
∂ ĴT−1
∂RT−1

(βT−1,κT−1,R⋆
T−1),

(10)

thenR⋆T−1 also solves Problem 3.
2) If Rtot < ∑T−1

t=0 R⋆
t , where R⋆T−1 is a solution to(10),

then the solution{RT−1,θ} to the system of equations






















θ = − ∂ Ĵ0
∂R0

(β0,κ0,R0),
...

θ = −
∂ ĴT−1
∂RT−1

(βT−1,κT−1,RT−1),

Rtot = ∑T−1
t=0 Rt .

(11)

solves Problem 3, whereθ is the Lagrange multiplier.
In case of an error-free channel (ε = 0), the solution is

Rt =
Rtot

T
+

1
2

log2





κt
(

∏T−1
t=0 κt

)
1
T



, t = 0, . . . ,T −1.

(12)

To prove Theorem 1, we use Lemma 2–Lemma 5, as derived
subsequently.

A. Erroneous Channels

We start with the general case thatε 6= 0. First, we note that
the unconstrainted problem for the erroneous scenario has a
unique minimum that is not necessarily achieved atRt = ∞,
as stated in the following lemma.

Lemma 2. In the presence of channel errorε 6= 0, Problem 2
has a global minimum, achieved atR⋆T−1, which solves the
system of equations(10).

Proof: Compute the critical point, at which the gradient
is a zero vector, and (10) follows immediately. According
to (10), the variablesR⋆T−1 are separable. Moreover, from
Lemma 1 it follows that̂Jt(βt ,κt ,Rt) is a quasiconvex function
and has one unique minimum. Therefore, the overall distortion
∑T−1

t=0 Ĵt(βt ,κt ,Rt) has a unique global minimum.
Based on Lemma 2, we can state that ifRtot ≥ ∑T−1

t=0 R⋆
t ,

whereR⋆T−1 is a solution to (10),R⋆T−1 is simultaneously
the solution to the constrained problem. On the other hand if
Rtot < ∑T−1

t=0 R⋆
t , whereR⋆T−1 is a solution to (10), we need to

solve (11), as shown in the following lemma.



Lemma 3. The solution to(11) solves Problem 3.

Proof: The proof is based on Lagrange dual theory. We
note that strong duality holds, because the constraint is a posi-
tive linearly independent combination ofRt , the Mangasarian-
Fromowitz constraint qualification applies [14]. Next, we min-
imizes the Lagrangian,η =∑T−1

t=0 Ĵt +θ
(

∑T−1
t=0 Rt−Rtot

)

, where
Ĵt is as given in (8). The straightforward calculation of the
derivatives ofη with respect toRt andθ yields (11).

In case of an erroneous channel, we do not have a closed-
form solution to (11). The system of non-linear equations (11)
can be solved by numerical methods [15]. Below, we briefly
present a numerical methods based on Newton’s method.
Define the system of non-linear equations,

Z ,























Z0 = ∂ Ĵ0
∂R0

(β0,κ0,R0)+ θ ,
...

ZT−1 =
∂ ĴT−1
∂RT−1

(βT−1,κT−1,RT−1)+ θ ,

ZT = ∑T−1
t=0 Rt −Rtot.

Define the vector constructed by all unknown variablesΦ=
[R0 . . . RT−1 θ ]′, where (·)′ denotes the matrix transpose.
We are looking forΦ that givesZ(Φ) = 0. Netwon’s method
derives the solution iteratively, and the results of thekth and
(k−1)th iterations are related by the following equation,

Φ(k) = Φ(k−1)−J−1
F Z(Φ(k−1)),

whereJF denotes the Jacobian matrix.

B. Error-Free Channels

For error-free channels, we can show that the system of
equations (11) has a closed-form solution, because whenε = 0,
βt ln(1− ε)(1− ε)Rt = 0, for all t. Hence, Problem 2 has the
global minimum atRt = ∞, as shown below in Lemma 4.

Lemma 4. Whenε = 0, Problem 2 is convex and the minimum
is achieved at Rt = ∞.

Proof: Whenε = 0, the instantaneous distortion becomes
Ĵt = κt2−2Rt . Taking the first order derivative of the overall dis-
tortion ∑T−1

t=0 Ĵt with respect toRt , we obtain∂/∂Rs∑T−1
t=0 Ĵt =

−2ln(2)κs2−2Rs. This function is monotonically increasing,
and especially, limRt→∞−2ln(2)κt2−2Rt = 0. Compute the sec-
ond order derivatives, and the Hessian of the overall distortion
∑T−1

t=0 Ĵt is always positive definite, because all the elements on
the diagonal are positive. Therefore, the optimization problem
is convex. The minimum is achieved atR⋆

t = ∞.
Moving on to the constrained optimization problem, the

solution to (11) is summarized in Lemma 5.

Lemma 5. Let ε = 0, the solution{RT−1,θ} to the system of
equations(11) is given by(12).

Proof: Based on (11), writeRt as a function ofθ ,

Rt = −
1
2

log2
θ

2ln(2)κt
=

1
2

log2 (2ln(2)κt)−
1
2

log2 θ .

(13)

First, solveθ by means of the total bits constraint, and then
substituteRt into (13), (12) follows immediately.

Now we are in the position to prove Theorem 1:
Proof of Theorem 1:The proof follows from Lemma 2–

Lemma 5.
Finally, consider the special case that the instantaneous

distortion can be written in the form

Ĵt = σ2
xt

J̃t (β̃ , κ̃,Rt) , σ2
xt
(β̃ (1− (1− ε)Rt)+ κ̃2−2Rt),

(14)
whereβ̃ andκ̃ are time-invariant. The instantaneous distortion
is a linear function of the variance of the source signal.
This property is very useful to solve the control problem.
By applying Lemma 2 and Theorem 1 we can show that the
unconstrainted rate allocation problem has a global minimum
at Rt = R⋆, which is the solution to the following equation,

0 = β̃ ln(1− ε)(1− ε)R⋆
+2ln(2)κ̃2−2R⋆

. (15)

If Rtot ≥TR⋆, with R⋆ given by (15), thenR⋆T−1 also solves
Problem 3, otherwise, we should solve the system of equations
(11).

V. PRACTICAL CONSIDERATIONS

In this section we deal with the assumption of Theorem 1
that Rt is allowed to be real. In practice, of course,Rt is
integer-valued and positive.

If Problem 2 and Problem 3 give negative rates, we set them
to zero, which is equivalent to excluding the corresponding
instantaneous distortions from the overall distortion. Then, we
resolve Problem 2 and Problem 3 with respect to the new
overall distortion.

The proposed algorithms in Section IV result in real-valued
rates. As a simple approach, we round the solutions to the
nearest integer. A more sophisticated rounding algorithm can
be formulated as a binary optimization problem, where the
rounded rateR̃t is related to the real-valued rateRt as,

R̃t = bt⌈Rt⌉+(1−bt)⌊Rt⌋, bt ∈ {0,1}, (16)

where⌈·⌉ and ⌊·⌋ denotes the rounding upwards and down-
wards to the nearest integer, respectively. We optimize the
rounding by finding the binary sequencebT−1

0 which mini-
mizes∑T−1

t=0 Ĵt (R̃t), subject to the total rate constraint. A solu-
tion to the binary rounding problem can always be obtained by
applying exhaustive search or combinatorial algorithms [15].

VI. N UMERICAL EXPERIMENT

In this section, numerical experiments are conducted to
verify the performance of the proposed bit-rate allocation
algorithm. The system parameters are chosen in the interest
of demonstrating non-uniform rate allocations, in particular,
a= 0.5, T = 10, Rtot = 30, ε = 0.005. The initial state and
the process noise are i.i.d. Gaussian with zero-mean and the
variancesσ2

x0
= 10 and σ2

v = 0.1. A time-varying uniform
encoder–decoder is employed. The quantizer range is specified
by νt =4σxt , and the high-rate approximation (9) is used by
assuming the distortion outside the range of the quantizer
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Fig. 1. Performance of various rate allocations. The x-axisis associated
to the allocation, whereas the y-axis is the the overall distortion. Notice that
allocations marked with a diamond do not satisfy the total rate constraint.

is negligible. In addition, the binary rounding algorithm de-
scribed in Section V is applied.

In Fig. 1, we compare the optimized allocation, denoted by
RA14, which was obtained by the method proposed in this
paper, with 13 other allocations, denoted by RA1–RA13. In
particular, the allocation RA5 was achieved with our method
by solving the unconstrained rate allocation problem. Per-
formance in Fig. 1 is measured by the distortion (5). The
distortion is obtained by averaging over 50 IA’s and each IA
150 000 samples.

Regarding the optimized allocationRA14, Rt is rather evenly
distributed overt. Compared with the uniform allocationRA6,
which only differs 1 bit att = 0 and t = 9, we see that our
method gives an evident gain. The uniform allocationsRA1–
RA8 have a time-invariant rate,Rt , varying from 8-bits to 1-
bit. Among these allocations,RA8, for which R=1, has the
worst performance, whileRA5, for which Rt = 4, has better
performance. In fact, we can show thatβ̃t = β̃ , κ̃t = κ̃, and the
unconstrained global minimum is achieved atR⋆

t =4. This is
consistent with the simulation result thatRA5 is even superior
to allocations with higher total rates. In the presence of the
channel errors, more bits can sometimes do more harm than
good. However,RA5 does not satisfy the total rate constraint,
therefore, (11) is solved which yieldsRA14. It should be
mentioned that due to all simplifications and approximations,
a solution given by (11) is an approximation for Problem 1,
but our experiments showed that the resulting performance
degradation is often insignificant.

The allocationsRA9–RA13 represent the strategies when
more bits are assigned to the initial states. These allocations
are not suitable in the current example, because, as discussed
previously, the additional bits exceeding the critical point, R⋆=
4, do more harm than good. Finally, we have also applied the
rate allocation algorithm to two otherε values. Atε =0.001,
the optimized rate allocation isR9 = [5433333222], while at
ε =0.01, the optimized rate allocation isR9 = [3333333333].

Here we see that, asε increases, the optimized allocation
becomes more uniform and uses lower rates. It is also worth
mentioning that the random index assignment used in this
paper is neither efficient in protecting against channel errors,
nor practical in implementation. In the next step, more efficient
and practical coding–control scheme should be studied.

VII. CONCLUSION

In this paper, we studied the bit allocation problem for state
estimation of a dynamic system over erroneous channels. First,
we approximated the overall distortion function by means
of the high-rate approximation theory. Second, we showed
that the unconstrained optimization problem has a global
minimum, which solves the rate allocation problem if such
a global minimum does not violate the rate constraint. On the
other hand, if the global minimum violates the rate constraint,
we solved the rate constrained optimization problem by means
of Lagrangian duality for non-linear non-convex problems.
Finally, numerical simulations showed good performance of
the proposed scheme. Based on the result in this paper, we will
in the next step solve the analogous problem of bit allocation
for controlling a dynamic system.
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