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Abstract—This paper presents an extended target tracking
framework which uses polynomials in order to model extended
objects in the scene of interest from imagery sensor data. State
space models are proposed for the extended objects which enables
the use of Kalman filters in tracking. Different methodologies
of designing measurement equations are investigated. A general
target tracking algorithm that utilizes a specific data association
method for the extended targets is presented. The overall algo-
rithm must always use some form of prior information in order
to detect and initialize extended tracks from the point tracks in
the scene. This aspect of the problem is illustrated on a real life
example of road-map estimation from automotive radar reports
along with the results of the study.

Index Terms—Extended target tracking, polynomial, parabola,
errors in output, errors in variables, EIV, data association,
automotive radar, road map.

I. INTRODUCTION

THIS contribution relates to tracking applications where
a sensor platform observes objects in local coordinates

(x,y,z). We focus on the case of a moving sensor platform and
stationary objects, but the framework can be generalized to
any target tracking scenario. Some of these detected objects
are points, while others are extended objects. Tracking point
shaped objects have been the main focus in the tracking
literature for a long time [1], [2]. In particular in the computer
vision literature, tracking extended objects has become popular
during the last decades. The literature models extended objects
as closed contours, like simple geometrical shapes as rectan-
gles and ellipses, or arbitrary shapes as splines [3] and active
contours [4]. We propose to complement these models of
extended objects with detection and data association methods
for sensors providing point measurements. Letting x be the
longitudinal, y the lateral and z the vertical direction, possible
applications include the following three automotive and two
naval examples:
• Road curvature models y = f(x; θ) based on lane markers

detected by a vision sensor. Such models are needed in
all future collision avoidance systems, in particular lane
assist systems [5].

• Similar extended objects along the road side y = f(x; θ)
based on radar mainly. Such a model is a useful comple-
ment to the vision based road model above, or for au-
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tonomous vehicles driving in unstructured environments.
This is our application example in Section VI.

• Road inclination models z = f(x; θ) based on a combi-
nation of vision and radar with good azimuth resolution.
This can be used in look-ahead control [6] for fuel
efficient cruise controllers.

• Shore models x = f(y; θ) based on a radar to describe
the shape of islands and parts of the coastline. This
can be used in robust navigation systems based on map
matching, see for instance the extended approach in [7],
[8].

• Vertical shape models z = f(y; θ) based on a camera
describing the altitude variations, for instance, of an
island as seen from the sensor platform. Applications are
similar to the previous point.

The common theme in these examples is that the model
is parameterized in a given model class (we will study
polynomials), and that both the input and output are observed
variables, leading to an errors in variables (EIV) [9] problem.
This is, to the best of the authors knowledge, an original
approach to describe extended objects. We derive a modified
measurement update for the EIV model, and demonstrate its
increased accuracy compared to the straightforward errors
in output (EIO) approximation for filtering applications. The
detection procedure requires some form of prior information
on the shape of the extended object because many different
models can suit the same set of measurements.

This paper is outlined as follows. We begin with an
overview of the related literature in Section II. Connections
to several different fields of research are pointed out and
this makes this section fairly long. However, the subsequent
sections are organized such that the uninterested reader can
skip this section without causing a loss of understanding
for the the rest of the paper. A basic problem formulation
of point and extended target tracking using polynomials as
extended objects is given in Section III. The state space
representations that we are going to use in extended target
tracking are introduced in Section IV. Our general algorithm
for tracking point and extended targets is summarized in
Section V. Section VI introduces the practical application. We
apply the ideas presented in earlier sections to the road map
estimation problem utilizing the automotive radar reports. The
experiments done and the results obtained are presented in
Section VI-C. The paper is concluded in Section VII.

II. RELATED LITERATURE

Extended target tracking has been studied in the literature
for some years and we give a brief overview in Section II-A.
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Section II-B summarizes a couple of estimation methods
proposed earlier for curves and contours. One of our proposed
solutions is stated to be related to an estimation framework
called as errors in variables problem and some references
for this are given in Section II-C. Finally, different solutions
related to our motivating application example of road edge
estimation are discussed in Section II-D.

A. Extended Target Tracking

A target is denoted extended whenever the target extent
is larger than the sensor resolution, i.e., it is large enough
to give rise to more than one measurement per time step.
Common methods used to track extended objects are very
similar to the ones used for tracking a group of targets moving
in formation, see e.g., [10]. The bibliography [11] provides
a comprehensive overview of existing literature in the area
of group and cluster tracking. One conventional method is
to model the target as a set of point features in a target
reference frame, each of which may contribute at most one
sensor measurement [12]. The exact location of a feature in the
target reference frame is often assumed uncertain. The motion
of an extended target is modeled through the process model
in terms of the translation and rotation of the target reference
frame relative to a world coordinate frame, see e.g., [13].
As is the case most of the time, not all measurements arise
from features belonging to targets and some are due to false
detections (clutter). The association hypotheses are derived
through some data association algorithm. In [14] a method
is proposed where the association hypotheses are included
in the state vector and the output of the tracking filter is a
joint posterior density function of the state vector and the
association hypotheses.

Instead of modeling the target as a number of point fea-
tures, the target may be represented by a spatial probability
distribution. It is more likely that a measurement comes from
a region of high spatial density than from a sparse region. In
[15], [16] it is assumed that the number of received target and
clutter measurements are Poisson distributed, hence several
measurements may originate from the same target. Each target
related measurement is an independent sample from the spatial
distribution. The spatial distribution is preferable where the
point source models are poor representations of reality, that
is, in the cases where the measurement generation is diffuse.
In [17] a similar approach is presented, but since raw data is
considered, no data association hypotheses are needed.

In many papers dealing with the shape of a target it is
assumed that the sensor is also able to measure one or more
dimensions of the target’s extent. A high-resolution radar
sensor may provide measurements of a targets down-range
extent, i.e., the extension of the objects along the line-of-sight.
The information of the target’s extent is incorporated in the
tracking filter aiding the tracking process to maintain track
on the target when it is close to other objects. An elliptical
target model, to represent an extended target or a group of
targets, is proposed in [18]. The idea is improved in [19] with
a solution based on EKF, in [20] based on UKF and in [21]
with a solution based on a Monte Carlo algorithm.

B. Contours and Curves

Modeling of extended targets in this work is very similar to
active contours [4] and snakes [22], which model the outline
of an object based on 2 dimensional image data, studied
extensively in computer vision. The active contour models
are also polynomials represented by B-splines. Moreover, the
probabilistic processing of active contours from image data
pioneered mainly by Blake and Isard [4] uses similar estima-
tion framework like Kalman or particle filters. The underlying
low-level processing involved, on the other hand, assumes
reasonably the existence of image data from which features
(like Harris corners) or feature maps (like Harris measures etc.)
can be extracted. The so-called Condensation algorithm [23],
for example, searches for suitable sets of features in the image
data (or in the feature map) iteratively for each of its different
hypotheses (particles) in the calculation of the likelihoods.
In this respect, the active contour framework would be an
important candidate for doing tracking with the raw sensor
data without any thresholding which is named as “track-
before-detect” in the target tracking literature. The approach
presented in this work carries the distinction of working only
with a single set of features provided most of the time by
thresholding of the raw sensor data (like conventional target
tracking) and hence is mainly aimed at applications where the
users (of the sensors) either are unable to reach or do not have
the computation power to work with the raw sensor data.

The mapping of the boundaries of complex objects is also
achieved in [24] using splinegon techniques and a range sensor
such as e.g., laser mounted on moving vehicles.

C. Errors In Variables

The use of “noisy” measurements as model parameters in
this work makes this paper directly related to the errors in
variables framework, where some of the independent variables
are contaminated by noise. Such a case is common in the field
of system identification [25] when not only the system outputs,
but also the inputs are measured imperfectly. Examples of such
EIV representations can be found in [9] and a representative
solution is proposed in [26], [27]. The Kalman filter cannot be
directly applied to such EIV processes as discussed in [26],
[28]. Nevertheless, an extension of the Kalman filter, where
the state and the output are optimally estimated in the presence
of state and output noise is proposed in [29]. The EIV problem
is also closely related to the total least squares methodology,
which is well described in the papers [30]–[32], in the survey
paper [33] and in the textbook [34].

D. Application

An important part of this contribution is the application of
the ideas to the real world example of road map estimation
using automotive radar sensor reports. In this context, the point
and extended targets existing in the scene would represent e.g.,
lamp posts and guardrails along the road, respectively. Our
earlier work [35] contains the findings from similar tracking
scenarios. This also connects our work to the approaches
presented in the literature for the problem of road edge
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estimation. The third order approximation of the two sided (left
and right) “clothoid model” has been used in connection with
Kalman filters in [36] and [37] for laser scanner measurements
and radar measurements, respectively. In [38] two road edge
models are proposed, one of which is very similar to the model
proposed in [37], and used a constrained quadratic program
to solve for the parameters. A linear model represented by its
midpoint and orientation (one for each side of the road) is
utilized by [39] with lidar sensing for tracking road-curbs.
Later, the results of [39] were enhanced in [40] with the
addition of image sensors. A similar extended Kalman filtering
based solution is given in [41], where a circular road edge
modeling framework is used. Recently, the particle filters (also
referred to as condensation in image and video processing)
have been applied to the road edge estimation problem in [42]
with an hyperbolic road model.

III. PROBLEM FORMULATION

The examples mentioned in Section I all involve 2-
dimensional extended objects, modeled by any configuration
of two local coordinates (x, y or z). In the following parts of
the paper, we describe all models in the x-y-plane without any
loss of generality, i.e., the coordinates are easily exchanged to
describe objects in any other space.

Suppose we are given the sensor measurements in batches
of Cartesian x and y coordinates as follows:{

z
(i)
k ,

[
x(i) y(i)

]T
k

}Nzk

i=1
(1)

for discrete time instants k = 1, . . . ,K. In many cases in
reality (e.g., radar, laser and stereo vision) and in the practical
application considered in this work, the sensor provides range
r and azimuth angle ψ given as{

z̄
(i)
k ,

[
r(i) ψ(i)

]T
k

}Nzk

i=1
. (2)

In such a case we assume that some suitable standard polar
to Cartesian conversion algorithm is used to convert these
measurements into the form (1).

The measurements z are noisy point measurements origi-
nating from one of the following sources
• Point sources with state vector

xP ,
[
x y

]T
, (3)

which represents the true Cartesian position of the source.
• Extended sources which are represented by an nth order

polynomial given as

y = a0 + a1x + a2x
2 + . . .+ anx

n (4)

in the range [xstart, xend] where xa ,
[
a0 a1 · · · an

]T
are the polynomial coefficients and

[
x y

]T
are planar

Cartesian coordinates. Note that the coordinate y is a
function of x and that the direction of the coordinate
frame is chosen dependent on the application in mind.
The state vector is defined as

xL ,
[
xa xstart xend

]T
. (5)

• False detections

The state models considered in this contribution are described,
in general, by the state space equations

xk+1 = f(xk,uk) + wk, (6a)
yk = h(xk,uk) + ek, (6b)

where x, u and y denotes the state, the input signal, and the
output signal, while w ∼ N (0, Q) and e ∼ N (0, R) are the
process and measurement noise, respectively. The use of an
input signal is explained in Section IV-A. The time index is
denoted with k.

One of the main contributions of our work is the specific
state space representation we propose for extended targets
which is presented in Section IV. A polynomial is generally
difficult to handle in a filter, since the noisy measurements are
distributed arbitrarily along the polynomial. In this respect,
the measurement model (6b) contains parts of the actual
measurement vector as parameters. For the sake of simplicity,
the tracked objects are assumed stationary, resulting in very
simple motion models (6a). However, the motion or process
model may easily be substituted and chosen arbitrarily to best
fit its purpose.

The aim is to obtain posterior estimates of the point sources
{x(i)

P,k|k}
NP

i=1 and the extended sources {x(i)
L,k|k}

NL

i=1 given all the

measurements
{
{z(i)` }

Nz`
i=1

}k
`=1

recursively in time.

IV. STATE SPACE REPRESENTATION FOR AN EXTENDED
OBJECT

This section first investigates the measurement model to
be used with extended sources in Section IV-A and then
makes short remarks about the state dynamics equation for
polynomials in Section IV-B.

A. Measurement Model

This section describes how a point measurement z relates to
the state xL of an extended object. For this purpose, we derive
a measurement model in the form (6b), which describes the
relation between the state variables xL, defined in (5), and
output signals y and input signals u. Notice that, for the sake
of simplicity, we also drop the subscripts k specifying the time
stamps of the quantities.

The general convention in modeling is to make the defini-
tions

y , z, u , ∅, (7)

where ∅ denotes the empty set meaning that there is no input.
In this setting, it is extremely difficult, if not impossible, to
find a measurement model connecting the outputs y to the
states xL in the form of (6b). Therefore, we are forced to use
other selections for y and u. Here, we make the selection

y , y, u , x. (8)

Although being quite a simple selection, this choice results
in a rather convenient linear measurement model in the state
partition xa,

y = Ha(u)xa + ea, (9)
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where Ha(u) =
[
1 x x2 · · · xn

]T
. It is the selection

in (8) rather than (7) that allows us to use the standard
methods in target tracking with clever modifications. Such
a selection as (8) is also in accordance with the errors in
variables representations where measurement noise are present
in both the outputs and inputs, i.e., the observation z can be
partitioned according to

z =

[
u
y

]
. (10)

We express the measurement vector given in (1) in terms
of a noise free variable z0 which is corrupted by additive
measurement noise z̃ according to

z = z0 + z̃, z̃ ∼ N (0,Σc), (11)

where the covariance Σc can be decomposed as

Σc =

[
Σx Σxy

Σxy Σy

]
. (12)

Note that, in the case the sensor provides measurements only in
polar coordinates (2), one has to convert both the measurement
z̄ and the measurement noise covariance

Σp = diag(σ2
r , σ

2
ψ) (13)

into Cartesian coordinates, which is a rather standard pro-
cedure. Note that, in such a case, the resulting Cartesian
measurement covariance Σc is, in general, not necessarily
diagonal and hence Σxy of (12) might be non-zero.

Since the model (9) is conditionally linear given the mea-
surements, the Kalman filter measurement update formulas can
be used to incorporate the information in z into the extended
source state xL. An important question in this regard is what
would be the measurement covariance of the measurement
noise term ea in (9). This problem can be tackled in two
ways.

1) Errors in Output (EIO) scheme: Although the input
terms defined in (8) are measured quantities (and hence
affected by the measurement noise), and therefore the model
parameters Ha(u) are uncertain, in a range of practical ap-
plications where parameters are obtained from measurements,
such errors are neglected. Thus, the first scheme we present
here neglects all the errors in Ha(u). In this case, it can easily
be seen that

ea = ỹ (14)

and therefore the covariance Σa of ea is

Σa = Σy. (15)

This type of approach was also used in our previous work [35]
which presented earlier versions of the findings in this paper.

2) Errors in Variables (EIV) scheme: Neglecting the errors
in the model parameters Ha(u) can cause overconfidence
in the estimates of recursive filters and can actually make
data association difficult in tracking applications (by causing
too small gates). We, in this second scheme, use a simple
methodology to take the uncertainties in Ha(u) into account
in line with EIV framework. Assuming that the elements of the

noise free quantity z0 satisfy the polynomial equation exactly,
we get

y − ỹ = Ha(u− ũ)xa, (16a)

y − ỹ =
[
1 x− x̃ (x− x̃)2 · · · (x− x̃)n

]
xa, (16b)

which can be approximated using a first order Taylor expan-
sion resulting in

y ≈ Ha(u)xa − H̃a(u)x̃xa + ỹ (17a)

= Ha(u)xa + h̃a(xa,u)

[
x̃
ỹ

]
, (17b)

with

Ha(u) =
[
1 x x2 · · · xn

]
, (17c)

H̃a(u) =
[
0 1 2x · · · nxn−1

]
, (17d)

h̃a(xa,u) =
[
−a1 − 2a2x− · · · − nanxn−1 1

]
. (17e)

Hence, the noise term ea of (9) is given by

ea = ỹ − H̃ax̃xa = h̃a(xa,u)

[
x̃
ỹ

]
(18)

and its covariance is given by

Σa = E(eae
T

a) = Σy + H̃axaΣxx
T

aH̃
T

a − 2H̃axaΣxy

= h̃a(xa,u)Σch̃
T

a(xa,u). (19)

Note that the EIV covariance Σa depends on the state variable
xa.

3) Example: An example is used to compare the perfor-
mances of the EIO and the EIV schemes. A second order
polynomial with the true states

xa =
[
a0 a1 a2

]T
=
[
−20 −0.5 0.008

]T
(20)

is used and 100 uniformly distributed measurements are ex-
tracted in the range x = [0, 200]. The measurements are given
on polar form as in (2) and zero mean Gaussian measurement
noise with covariance as in (13) is added using the parameters

Sensor 1: σr1 = 0.5, σψ1 = 0.05, (21a)
Sensor 2: σr2 = 10, σψ2 = 0.05, (21b)
Sensor 3: σr3 = 10, σψ3 = 0.005, (21c)

to simulate different type of sensors. Sensor 1 represents a
sensor with better range than bearing accuracy, whereas the
opposite holds for sensor 3. Sensor 2 has about the same
range and bearing accuracies. The true polynomial and the
measurements are shown in Fig. 1. The measurements are
transformed into Cartesian coordinates. The following batch
methods (Nzk = 100, K = 1) are applied to estimate the
states
• Least squares (LS EIO) estimator,
• Weighted least squares (WLS EIO) with EIO covariance,
• Weighted least squares (WLS EIV) with EIV covariance.

The state xa used in (19) is estimated through a least
squares solution in advance.

Furthermore, the states are estimated recursively (Nzk = 1,
K = 100) using
• Kalman filter (KF EIO) with EIO covariance,
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Fig. 1. The true polynomial and the extracted measurements are shown.
Covariance ellipses are drawn for a few measurements to show the direction
of the uncertainties.

• Kalman filter (KF EIV) with EIV covariance. The pre-
dicted state estimate x̂a,k|k−1 is used in (19) to derive
Ra,k.

• Unscented Kalman filter (UKF EIV) with sigma points
derived by augmenting the state vector with the noise
terms

z̃ =
[
ũ ỹ

]T
, z̃ ∼ N (0,Σc), (22)

to consider the error in all directions (as in the EIV case),
and to deal with the nonlinear transformations of the noise
terms.

The covariance of the process noise is set to zero, i.e., Q = 0,
since the target is not moving. The initial conditions of the
state estimate are selected as

x̂a,0 =
[
0 0 0

]T
, (23a)

Pa,0 =

(
σ2
a

κ
diag(xa)

)2

, (23b)

where κ = 3 and σ2
a = 8. Note that every estimate’s initial

uncertainty is set to be a scaled version of its true value
in (23b).

The RMSE values for 1000 Monte Carlo simulations are
given in Table I. The RMSE of the EIV schemes is clearly
lower than the other methods, especially for sensor 1 and 3
with non-symmetric measurement noise. This result justifies
the extra computations required for calculating the EIV co-
variance. There is only a small difference in the performance
between the KF EIV and the UKF EIV for the second order
polynomial. This is a clear indication of that the simple Taylor
series approximation used in deriving the EIV covariance is
accurate enough.

Remark 1 (Robustness): We use only Gaussian noise repre-
sentations in this paper which would directly connect our work
to the (implicit) minimization of LS-type cost functions which
are known to be non-robust against outliers. The algorithms we
are going to propose for estimation are going to be protected,
to some extent, against this by classical techniques like gating

TABLE I
RMSE VALUES FOR THE EXTENDED OBJECT IN FIGURE 1. THE SENSOR

CONFIGURATIONS ARE DEFINED IN (21)

Sensor LS WLS WLS KF KF UKF
EIO EIO EIV EIO EIV EIV

1
a0 5.10 0.55 0.45 0.55 0.48 0.49
a1 0.18 0.034 0.024 0.034 0.029 0.029
a2 · 10−3 1.06 0.29 0.24 0.29 0.31 0.32

2
a0 4.90 3.54 3.35 2.90 2.44 2.36
a1 0.20 0.11 0.099 0.10 0.11 0.10
a2 · 10−3 1.21 0.77 0.66 0.78 0.83 0.80

3
a0 2.53 30.51 3.51 30.47 4.81 4.35
a1 0.068 0.45 0.072 0.45 0.12 0.12
a2 · 10−3 0.39 1.27 0.40 1.26 0.62 0.60

[1], [2]. Extra robustness features can be accommodated by the
use of Huber [43] and `1 norms etc. in the estimation which
were considered to be outside the scope of this paper. �

4) Complete Measurement Model for an Extended Object:
Up to this point, we have only considered how the observation
z relates to the state component xa. It remains to discuss
the relation between the observation and the start xstart and
the end points xend of the polynomial. The measurement
information must only be used to update these components
of the state if the new observations of the extended source
lie outside the range of the polynomial. We can define the
following (measurement dependent) measurement matrix for
this purpose:

Hse =


[
1 0

]
if x ≤ xstart,k|k−1[

0 1
]

if x ≥ xend,k|k−1[
0 0

]
otherwise.

(24)

The complete measurement model of an extended object
can now be summarized by

z = HLxL + e, e ∼ N (0, RL(xL)), (25a)

with

HL =

[
01×n Hse

Ha 01×2

]
, (25b)

RL(xL) = blkdiag(Σx,Σa(xL)). (25c)

Put in words, if the x-component of a new measurement is
closer to the sensor than the start point of the line xstart it is
considered in the measurement equation (24) and can used to
update this state variable. Analogously, if a new measurement
is more distant than the end point of the line xend it is
considered in (24). Further, if a measurements is in between
the start and end point of the line, the measurement model is
zero in (24) and there is no relation between this measurement
and the state variables xstart or xend.

B. Process Model

Any model as e.g., the standard constant velocity or coordi-
nated turn model may be used for the targets. For simplicity it
is assumed that the targets are stationary in this contribution,
thus the process model on the form (6a) is linear and may be
written

xk+1 = Fxk + wk. (26)
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To increase the flexibility of the extended object an assumption
about the dynamic behavior of its size is made. The size of the
extended object is modeled to shrink with a factor 0.9 < λ < 1
according to

xstart,k+1 = xstart,k + λ(xend,k − xstart,k), (27a)
xend,k+1 = xend,k − λ(xend,k − xstart,k), (27b)

leading to the following process model for the polynomial

FL =

In×n 0n×2

02×n 1− λ λ
λ 1− λ

 . (28)

This shrinking behavior for the polynomials allows for auto-
matic adjustment of the start and end points of the polynomials
according to the incoming measurements.

Some dynamics is included into the process model of the
polynomials for the start and the end point components of the
state, xstart and xend.

V. MULTI-TARGET TRACKING ALGORITHM

In this section, we describe the target tracking algorithm
we use to track polynomial shaped extended objects and point
objects at the same time. Suppose at time k − 1, we have
NP,k−1 estimated point objects whose states and covariances
are given by {x̂(i)

P,k−1|k−1, P
(i)
P,k−1|k−1}

NP,k−1

i=1 and NL,k−1 es-
timated extended objects whose states and covariances are
given by {x̂(j)

L,k−1|k−1, P
(j)
L,k−1|k−1}

NL,k−1

j=1 . Basically, the task
of the tracking algorithm is to obtain the updated states
and the covariances {x̂(i)

P,k|k, P
(i)
P,k|k}

NP,k

i=1 , {x̂(j)
L,k|k, P

(j)
L,k|k}

NL,k

j=1

when the set of Nzk measurements given by {z(m)
k }Nzk

m=1 is
obtained. Notice that the number of these updated summary
statistics kept in the algorithm can change with appearance or
disappearance of the objects in the environment. Hence, the
number of each type of objects must also be estimated by the
tracking algorithm.

We, in this work, consider a conventional multi-target
tracking algorithm that uses a specific track initiation and
deletion logic for handling the variable number of objects
to track. Each cycle of estimation starts with the classical
(association) hypotheses reduction technique “gating” which
is followed by a data association process which determines the
measurement to (point or extended) track associations. When
the measurement to track associations are known, the current
tracks are updated with their associated measurement. In this
measurement update step, the results of Section IV-A are used
for updating the extended object states and covariances. After
the updates are completed one has to do track handling. This
operation deals with
• Extended object generations from established point tar-

gets. This part of the tracking algorithm must depend
heavily upon the problem under investigation and hence
the prior information that one has about the possible
extended objects because the mapping from a number
of points to a number of polynomials is not unique.

• Track deletion. This operation deletes the old tracks that
have not been associated to any measurements for a
significant amount of time.

Below, in separate subsections, we investigate the steps of the
tracking algorithm we propose in more detail.

A. Gating and Data Association

Each of the Nzk observations z
(m)
k , m = 1, . . . , Nzk from

the sensor measurements can be associated to one of the
existing point tracks x

(i)
P , the extended tracks x

(j)
L or a new

point track is initiated. The number of association events
(hypotheses) is extremely large. The classical technique to
reduce the number of these hypotheses is called gating, see
e.g., [44]. In this section we show how to apply gating and
to make a nearest-neighbor type data association based on
likelihood ratio tests. Other more complicated data associa-
tion methods like multiple hypothesis tracking, according to
e.g., [45], or joint probabilistic data association, as described
by e.g., [44], can also be used in this framework with appro-
priate modifications for the extended sources. However, these
are quite complicated and computationally costly approaches
and the nearest neighbor type algorithm has been found to
give sufficiently good performance for our application. The
gating and the data association are performed according to the
following calculations. The likelihood `m,i that the observation
z(m) corresponds to the ith point track P(i) is given by

`m,i =

{
N (z

(m)
k ; ẑ

(i)
P,k|k−1, S

(i)
P,k|k−1), if z(m)

k ∈ G(i)P

0, otherwise
(29)

where ẑ
(i)
P,k|k−1 is the predicted measurement of the point Pi

according to the model (39) and S
(i)
P,k|k−1 is its covariance

(innovation covariance) in the Kalman filter. The gate G(i)P is
defined as the region

G(i)P ,

{
z

∣∣∣∣ (z− ẑ
(i)
P,k|k−1

)T (
S
(i)
P,k|k−1

)−1
×
(
z− ẑ

(i)
P,k|k−1

)
≤ δP

}
(30)

where δP is the gating threshold.
The likelihood `m,j that the observation m belongs to the

jth line is given by

`m,j =

{
N
(
y
L,(m)
k ; ŷ

(j)
L,k|k−1, S

(j)
L,k|k−1

)
, if zL,(m)

k ∈ GLj
0, otherwise

(31)
where ŷ

(j)
L,k|k−1 is the predicted output of the measurement

model (9) and S
(j)
L,k|k−1 is its covariance, both for the state

estimates x̂
(j)
L . The quantity zL,(m) is representing the orig-

inal measurement transformed into the line’s corresponding
coordinate frame and y

L,(m)
k is the y component of it. The

gate GLj is defined as

GLj ,

{
z =

[
u
y

] ∣∣∣∣∣
(
y − ŷ

(j)
L,k|k−1

)2
S
(j)
L,k|k−1

≤ δL,

x
(j)
start,k|k−1 − δs < u < x

(j)
end,k|k−1 + δe

}
. (32)
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and the innovation covariance is given by

S
(j)
L,k|k−1 = Ha(u)P

(j)
a,k|k−1Ha(u)T + Σ

(j)
a,k|k−1, (33)

where P (j)
a,k|k−1 is the state covariance of x(j)

a,k|k−1.
Having calculated the likelihood values, two matrices of

likelihood values are formed, one matrix ΓP ∈ RNz×NP with
the combinations of observations and points, according to
(29), and one matrix ΓL ∈ RNz×NL with the combinations
of observations and lines, according to (31).

The association procedure using ΓP and ΓL must be quite
unconventional because in conventional multi-target tracking,
one of the well-known assumptions is that at most a single
measurement can originate from a target. However, obviously,
in our problem polynomials can result in multiple measure-
ments. On the other hand, we still have the assumptions that no
two measurements may originate from the same point source
and no two sources may give rise to the same measurements.

Our association mechanism which uses nearest neighbor
type ideas with likelihood ratio tests is summarized as fol-
lows: First find the the maximum value of ΓP and call the
corresponding point state imax and measurement mmax. Then,
find the maximum value of the mth row, corresponding to
measurement mmax of matrix ΓL and call the corresponding
polynomial state jmax. The likelihood ratio denoted by Λ(z(m))
is now given by

Λ(z(m)) ,

√
`m,imax

`m,jmax

, (34)

where we take the square root of the point likelihood for unit
matching, since the unit of (29) is (distance)−2 and the unit of
(31) is (distance)−1. The corresponding likelihood ratio test
is

Λ(z(m))
H0

≷
H1

η (35)

where H0 and H1 correspond to hypotheses that the mea-
surement z(m) is associated to the point x

(imax)
P and to the

line x
(jmax)
L , respectively. The threshold η is to be selected

experimentally. More theory about likelihood ratio tests is
given by e.g., [46]. When this test is performed, if the
measurement z(m) is associated to a point source Pi, then
the values in the mth row of the two matrices as well as
the ith column of the point likelihood matrix must be set to
zero to exclude the measurement and the point source from
further association. However, if z(m) is associated to line Lj ,
then only the values in the mth rows of the two matrices
are set to zero because the line Lj can still be associated
to other measurements. The procedure is repeated until all
measurements with non-zero likelihood have been associated
to either a point or a line. A new point track is to be initiated
if the observations could not be associated to an existing state.
This is true when a measurement is not in the gate of a non-
associated point or an extended source.

B. Track Handling

Initially, our algorithm tries to generate point tracks from
all incoming measurements, using any standard initialization

logic. When the point tracks are established, at the end of
each estimation cycle, the point track positions are examined
and decisions are made on the existence of any extended
sources. This process must be quite application dependent
and it requires prior information on the possible forms of the
polynomials to be extracted. For the purpose of giving some
examples of such prior information, we go back to the five
motivating application examples in Section I in the same order
and list possible available prior information in each case.
• The model class of road curvatures is determined in road

construction standards, and prior values may be based on
the ego vehicle’s motion.

• Extended objects along the road side may be based
on prior knowledge of the road curvature. An example
application with such details is presented in Section VI.

• The class of road inclination models are based on road
construction standards and initial values may be based on
maps or GPS data, to be improved in the tracking filter.

• A prior for the shore model is given by digital sea charts.
• The altitude of an island is initiated roughly based on the

topographic information of a sea chart or as a standard
model for islands in a given archipelago.

If some extended sources are detected in the detection process,
states and covariances for this extended sources are calculated
from the corresponding point tracks which are removed from
the point track list after this procedure. The created extended
source states and covariances, from then on, are treated as
extended tracks.

When the environment changes some tracks might expire
and get no measurements. When this happens, such tracks
(point or extended) must be removed from the track list. For
this purpose, for each track we keep a counter that holds
the number of time instants that the corresponding track has
not been associated to any measurement. When this counter
exceeds a threshold, the corresponding track is removed from
the track list.

VI. APPLICATION EXAMPLE AND USE OF PRIOR
INFORMATION

As an application of the ideas presented, we consider the
road map estimation problem. A good road map is important
for collision avoidance systems, path planing and trajectory
control. Measurements from an automotive radar mounted on
a moving vehicle which we refer to as the ego vehicle are
used in this example which makes it possible to map the road
and its surrounding infrastructure even if the line markings
are bad or missing. We consider that we have the 2D world
coordinate frame shown as W whose origin is denoted by OW .
The state vector of the vehicle at least consists in the position
and heading angle, i.e.,

xE ,
[
xWEW yWEW ψE

]T
(36)

with respect to the world coordinate frame W .
In our scenario, radar echoes typically stem from delineators

or guardrails, which we would like to track as points or
polynomials, respectively, with the framework presented in
Section V. We use the polynomial model (4) with n = 2
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for our extended sources. This model has also been used for
sequentially estimating similar parameters for the road’s white
lane markings in [47].

In the formulations of the previous sections, the extended
sources are modeled as polynomials in the common x-y
(world) coordinates of the problem. This can be considered
as a significant limitation for the applications because in real
scenes the curves to be tracked might not satisfy such polyno-
mial equations in the common x-y coordinates of the problem.
Here, this restriction is overcome by equipping each detected
extended target with its own Cartesian x-y coordinates. Each
extended object with state x

(j)
L has an associated coordinate

frame denoted by L(j). The position of the origin and the
orientation of this coordinate frame is given as

ξ
(j)
L ,

[
xW
L(j)W

yW
L(j)W

ψL(j)

]T
(37)

with respect to the world reference frame W where the
superscripts are suppressed in the vector ξ(j)L for simplicity.

The measurements from the sensor mounted on the vehicle
are obtained in polar coordinates (as in (2)) and need to be
transformed first into the Cartesian coordinates of the sensor’s
frame Es and then into the extended source’s coordinate
frame in order to be used. The measurement, expressed in the
extended sources coordinate frame L in Cartesian coordinates
is given by

zL = T LEs(zEs ,xE, ξL), (38)

where the transformation T LEs is described in the Appendix.
Note that the measurement zL, which fits into the framework
discussed in Section IV-A, is now not only affected by the
original measurement zEs , but also by the position of the ego
vehicle, given by the state variable xE, and the origin and
orientation of the lanes coordinate frame ξL. We refer to the
Appendix for details about the covariance calculation for zL

involving the transformation (38).

A. State Space Model

The state space model of the extended objects was thor-
oughly described in Section IV and is not repeated here. The
process model for the points on the form (6a) is linear and
since the points are stationary, the process matrix FP is the
identity matrix. The polar measurements (2) are related to the
Cartesian point states (3), i.e., xP =

[
xWPW yWPW

]T
, through

the measurement model according to

z̄k =

√(xWPW − xWEsW

)2
+
(
yWPW − yWEsW

)2
arctan

yWPW

xWPW

− ψEs

+ ek, (39)

where
[
xWEsW

yWEsW

]T
and ψEs

are the mounting position
and orientation of the sensor. The measurement noise is
assumed Gaussian e ∼ N (0,Σp).

B. Using Prior Information in Extended Track Generation

An extended track is initiated from tracked points under the
assumption that a number of points form a line parallel to the
road. In this section we are returning to the track handling

discussion started in Section V-B, in order to make the initial-
ization procedure for extended sources more concrete. A prior
information of the road’s shape, or more specifically the lane’s
shape, in the vehicle coordinate frame is used for generating
extended tracks from point tracks. The prior information is
obtained by a lane tracking filter that estimates the parameters
of the following lane polynomial

yE = lE + ψREx
E +

c0
2

(xE)2, (40)

where xE and yE are expressed in the ego vehicle’s coordinate
frame E. The lane tracker we use is described in [47] and
it is based on a ego vehicle motion model which estimates
the lane given measurements from a camera, an inertia sensor
and the motion of other vehicles tracked by the radar. This
implies that the camera easily can be removed and that the
prior solely is based on the motion model of the ego vehicle
and other moving or stationary objects tracked by the radar.
The parameters in (40) can be interpreted as physical sizes.
The angle between the longitudinal axis of the vehicle and
the road lane is ψRE . It is assumed that this angle is small
and hence the approximation sinψRE ≈ ψRE is used. The
curvature parameter is denoted by c0 and the offset between
the ego vehicle and the white lane is denoted by lE .

All point state estimates x̂Pi are transformed into the ego
vehicles coordinate frame since the priors’s geometry (40)
is given in this frame. We consider hypothetical parabolas
passing through each point x̂Pk parallel to the prior (40), i.e.,
the parameters ψRE and c0 are just inherited from the lane
tracker and the lateral distance lPk is given by

lPk = ŷEPk − ψRE x̂
E
Pk
− c0

2

(
x̂EPk
)2
. (41)

The likelihood `PiPk that a point xPi is on the hypothetical
line of point Pk is then given by

`PiPk =

{
N
(
εPiPk ; 0, PEPk,(2,2)

)
, if x̂EPi ∈ GPk

0, otherwise,
(42)

where the lateral distance between the point Pi and the
proposed new line of point Pk is given by

εik = ŷEPi − ŷEPk , (43)

with
ŷEPk = lPk + ψRE x̂

E
Pi

+
c0
2

(
x̂EPi
)2
. (44)

The notation PEPk,(2,2) refers to the lower-right element, i.e.,
the variance in the diagonal corresponding to yE . The gate
GPk is defined as

GPk ,

{[
x
y

] ∣∣∣∣∣
(
y − ŷEPk

)2
PE
Pk,(2,2)

≤ δL,−δs < x− x̂EPk < δe

}
. (45)

From all combinations of likelihoods we form a symmetric
matrix ΓI . The columns of ΓI are summed and the maximum
value corresponding to column km is chosen. If this column
contains more than a certain number κ of non-zero rows a
parabola is formed from these points. The new line’s states
xa are estimated by solving a least square problem using
the corresponding points. The states xstart and xend are the
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minimum and maximum x-coordinate value of the points,
respectively. All elements in column km and rows im are set
to zero and the procedure is repeated until no column contains
more than κ non-zero elements.

C. Experiments and Results

Let us start by showing the information given by an ordinary
automotive ACC radar, for the traffic situation shown in
Fig. 2a. The ego vehicle, indicated by a green circle, is
situated at the (0, 0)-position in Fig. 2b, and the red dots are
the radar reflections, or stationary observations, at one time
sample. The smaller magenta colored dots are former radar
reflections, obtained at earlier time samples. Fig. 2c shows
the estimated points and lines for the same scenario using
the KF EIV method presented in this contribution. The mean
values of the states are indicated by solid black lines or blue
points. Furthermore, the state variance, by means of the 90%
confidence interval, is illustrated by gray lines or cyan colored
ellipses, respectively. The estimate of the lane markings (40),
illustrated by the gray dashed lines and derived according to
the method presented in [47], is shown here as a comparison.
We also show the tracked vehicle in front of the ego vehicle
illustrated by a blue square.

In Fig. 3a we see a traffic scenario with a freeway exit.
The corresponding bird’s eye view is shown in Fig. 3b. The
rightmost line indicates the guardrail to the right of the exit,
the middle line is the guardrail starting at the exit sign. The
radar measurements are indicated with red dots, the confirmed
point targets with blue dots and the unconfirmed points with
cyan colored dots.

Our last example shows a situation from a rural road, see
Fig. 3c and 3d. Here the road edges are not as distinct as on
the freeway and the amount of clutter is higher. This leads to
parallel lines with larger covariance representing the guardrail,
trees etc. Appearance of many lines may already be confusing
and only the mean values of the lines are plotted for sake of
clarity.

These results are only snapshots from different traffic sit-
uations. To show a more rigorous result of our approach the
shape of the estimated lines is compared with the recorded
driven trajectory from a 3 min drive on a freeway. The
recorded positions 100 m in front of the car are used to
estimate a polynomial with parameters a1 and a2 at each time
step k. It is then compared with the estimated parameters â1
and â2 of the extended objects (lines) according to the mean
absolute error

MAE =
1

K

K∑
k=1

 1

NL,k

NL,k∑
j=1

||â(j)1 − a1||

 (46)

for a1 and similarly for a2. The polynomials are transformed
to be represented in the same coordinate frame. The ego
vehicle is equipped with a vision system which measures
the white lanes using computer vision and represents them
according to (40). The vision based parameters ψRE and
c0/2 are also compared with the trajectory as in (46) and
all results are shown in Table II. Here, of course, the vision
system produces better results since the driven trajectory
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Fig. 2. A traffic situation is shown in Fig. (a). Fig. (b) shows the radar
measurements, and Fig. (c) the resulting tracked points and lines. The circle
in the origin is the ego vehicle, the square is the tracked vehicle in front and
the dashed gray lines illustrate the tracked road curvature.

TABLE II
MAE VALUES FOR THE ESTIMATED LINES BASED ON RADAR

MEASUREMENTS AND THE LANE ESTIMATE GIVEN BY THE COMPUTER
VISION, BOTH WITH RESPECT TO THE DRIVEN TRAJECTORY.

Parameter Radar Vision
a1 ( · 10−3) 8.22 6.93
a2 ( · 10−3) 0.16 0.10

should be parallel with the lane markings and the objects along
the road, e.g., the guardrails, might not always be parallel.
However, the table shows that our radar based approach is
realistic and its performance is comparable to that of the
vision based algorithm enabling the possibility of fusion with
complementary information or providing estimates when other
approaches fail.
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(d)

Fig. 3. Freeway exit with guardrails, the camera view is shown in Fig. (a)
and the bird’s eye view with the estimated states in Fig. (b). A traffic scenario
from a rural road, with guardrails on both sides of a bridge is shown in Fig. (c)
and (d).

VII. CONCLUSION

In this contribution we have considered the use of polyno-
mials in extended target tracking. State space representations
that enable the use of Kalman filters for the polynomial shaped
extended objects are introduced. We have also described a

multi-target tracking algorithm which is as general as possible.
The loss of generality of the algorithm we presented lies in
that the detection and initialization of the extended tracks from
point tracks would always require some application dependent
prior information. In the real world application example we
have presented, we tried to be as illustrative as possible about
the use of this prior information.

The approach has been evaluated on real and relevant
data from both freeways and rural roads in Sweden. The
results are not perfect, but surprisingly good at times, and
of course contain much more information than just the raw
measurements. Furthermore, the standard state representation
of the objects should not be underestimated since it is compact
and easy to send on a vehicle CAN-bus.

Some promising future investigations include the use of
non-thresholded radar data in a track-before-detect type of
curve estimation and better representation of curves in terms
of intrinsic coordinates.
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APPENDIX
DERIVATION OF THE CARTESIAN COVARIANCE IN THE

APPLICATION EXAMPLE

The need for a transformation from the sensor’s frame Es
into the extended source’s coordinate frame L was accentuated
in (38) and described here in detail. The transformation
T LEs(zEs ,xE, ξL) is given by

zL = RLE
(
REEszEs + dEEsE

)
+RLW (dWEW −dWLW ), (47)

where the displacement vector dEEsE
is the mounting position

of the sensor in the vehicles coordinate frame, the rotation
matrix REEs describes the mounting orientation of the sensor
in the vehicle and zEs is the Cartesian measurement given by
the sensor.

The covariance is derived by first extracting the noise term
from the stochastic variables according to

x̂E = xE + x̃E, x̃E ∼ N (0, PE) (48a)

ξ̂L = ξL + ξ̃L, ξ̃L ∼ N (0, PξL) (48b)

for the ego vehicle’s state variable xE and the origin of the
line’s coordinate frame ξL. The noise term of the sensor
measurement z̃Es was defined in (11). Equation (47) can now
be rewritten according to

zL = R̂LE
(
REEs ẑEs + dEEsE

)
+ R̂LW (d̂WEW − d̂WLW )

+ R̂LEREEs z̃Es +A2x̃E +A3ξ̃L, (49a)
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where the rotation matrices are given by

A2 ,

[
cos ψ̂L sin ψ̂L −yEs cos ψ̂EL − xEs sin ψ̂EL
− sin ψ̂L cos ψ̂L xEs cos ψ̂EL − yEs sin ψ̂EL

]
,

(49b)

A3 ,

[
− cos ψ̂L − sin ψ̂L a

(1,3)
3

sin ψ̂L − cos ψ̂L a
(2,3)
3

]
, (49c)

and where

a
(1,3)
3 = yEs cos ψ̂EL + (yWEW − yWLW ) cos ψ̂L

+ xEs sin ψ̂EL − (xWEW − xWLW ) sin ψ̂L, (49d)

a
(2,3)
3 = −xEs cos ψ̂EL − (xWEW − xWLW ) cos ψ̂L

+ yEs sin ψ̂EL − (yWEW − yWLW ) sin ψ̂L. (49e)

To summarize these calculations the covariance of zL is given
by

ΣLc = R̂LEsΣEs
c (R̂LEs)T +A2PEA

T

2 +A3PξLA
T

3 (50)

where ΣEs
c is the Cartesian measurement covariance, PE is the

state covariance of the ego vehicles pose and PξL is the line
state covariance corresponding to the position and orientation
of the line’s coordinate frame.
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