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different case geometries and compare the results with LES and experimental data.
The first is two dimensional, constructed for flow separation at a sharp edge. The
second is three dimensional and flow separation occurs at a smooth surface. The
models tested are implemented in the open source CFD (Computational Fluid
Dynamics) program, OpenFOAM. OpenFOAM uses the finite volume method and the
SIMPLE algorithm as solution procedure. The main flow features evaluated is the
shape, position and size of the flow separation. Most of the models tested have
problems describing the complex dynamics of flow separation in these particular
cases. In addition to the simulations, the RANS k-epsilon turbulence model is 
presented and the RANS equations and the equation for the turbulent kinetic energy
are derived from the Navier-Stokes equations. The theory behind wall functions is
described and these equations together with the equations in the k-epsilon model are
compared with the equations implemented in OpenFOAM.
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1 Introduction

Computational prediction of flow separation from turbulent flows is a process of primary concern.
The physical phenomena that arise is a subject of interest for many engineering components and
systems. Streamlined car bodies, low-pressure turbine blades and highly loaded aircraft wings
are some examples of where flow separation can have significant influence in ability of the device
in question to perform effectively. Turbulent flows fluctuate on a broad range of time and length
scales. This makes the simulation of such flows difficult and it is often necessary to model the
turbulence in some way. RANS (Reynolds-average Navier-Stokes) are such model equations and
are used to describe the flow field in this work.

The main objective with this master’s thesis is to evaluate different RANS turbulence mod-
els. Three families of models have been tested; Linear eddy viscosity models, Reynolds stress
transport models and Non-linear eddy viscosity models.

For the evaluation, we have two different geometries. The first domain is a two dimensional
backward facing step, where the flow is separated due to the sharp edge of the step. (See figure
1.) Even though the geometry is simple it is not obvious where the re-attachment will take
place. When evaluating the result, we mainly focus on the re-attachement point of the flow and
the position of the recirculation region, arising from the separation. The simulations on this
geometry are carried out on different meshes with different types of boundary conditions and the
results are compared.

The second domain is a three dimensional hill, constructed to be very smooth without edges.
On this geometry, the fluid flow becomes detached from the surface and instead takes the form of
eddies and vortices. Despite the simple shape (see figure 11) of the hill, it is a challenging com-
putational problem and experiments indicate that the flow in the recirculation zone is complex
and strongly time-dependent.

On this second domain, the RANS turbulence models will be simulated using two different
types of meshes. We mainly evaluate the results with respect to the location and shape of the
separation zone and the velocity distribution in the near wake of the wall. Our results will be
compared to results from experiments made by Byun and Simpson [1] and LES simulations made
by Persson et al. [2]

In order to simulate the turbulent flow and separation, the open source program OpenFOAM
was used.

2 Theory of turbulence modelling

The text in the following chapter is based on the books Turbulent Flows by Stephen B. Pope, [3]
and Computational Methods for Fluid Dynamics by J. H. Ferziger and M. Perić, [4].

The fundamental basis of fluid dynamics are the Navier-Stokes equations. The incompressible
form of these equations and the incompressible continuity equation are described as

Dui

Dt
≡ ∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂ui

∂xj∂xj
(2.1)

and
∂uj

∂xj
= 0, (2.2)

where xi (i = 1, 2, 3) are the cartesian coordinates, in this report also written (x, y, z), ui are
the cartesian components of the velocity, t is the time, p is the pressure, ρ is the density and ν
is the dynamic viscosity, defined as the viscosity µ divided by ρ.
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Here and throughout this report, whenever the same index appears twice in any term, sum-
mation over the range of that index is implied. For example, the incompressible continuity
equation:

∂uj

∂xj
=

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0. (2.3)

2.1 The Reynolds equation

In the RANS (Reynolds averaged Navier-Stokes) approach to turbulence, all of the unsteadiness
in the flow is averaged out and regarded as part of the turbulence. The flow variables, in this
example one component of the velocity, are represented as the sum of two terms:

ui(xi, t) = ui(xi) + u′
i(xi, t), (2.4)

where

ui(xi) = lim
T→∞

1

T

∫ T

0

ui(xi, t)dt. (2.5)

Here T is the averaging interval and must be large compared to the typical time scale of the
fluctuations and u′

i is the fluctuation about the time averaged value.
If the flow is unsteady, time averaging cannot be used and it has to be replaced with ensemble

averaging. The concept of this is to imagine a set of flows in which all of the variables that can
be controlled (energy, boundary conditions etc.) are identical but the initial conditions are
generated randomly. This will give flows that differ considerably from one another. An average
over a large set of such flows is an ensemble average; In mathematical form written

ui(xi, t) =
1

N

N∑
n=1

uni(xi, t), (2.6)

where N is the number of members of the ensemble. The term Reynolds averaging refers to
any of the processes above and applying it to the incompressible continuity equation gives

∂uj

∂xj
= 0. (2.7)

Taking the mean of the incompressible momentum equation is not as straight forward because
of the nonlinearity of the convective term. Taking the mean of the left hand side of equation
(2.1) is written

Dui

Dt
=

∂ui

∂t
+

∂(uiuj)

∂xj
. (2.8)

Using decomposition (2.4) for the nonlinear term result in

uiuj = (ui + u′
i)(uj + u′

j)

= ui uj + u′
jui + u′

iuj + u′
iu

′
j

= uiuj + u′
jui + u′

iuj + u′
iu

′
j

= ui uj + u′
iu

′
j , (2.9)

since
u′
jui = u′

jui = 0. (2.10)

6



If we use the result from equation (2.9) together with equation (2.8) we get

Dui

Dt
=

∂ui

∂t
+ uj

∂ui

∂xj
+ ui

∂uj

∂xj
+

∂(u′
iu

′
j)

∂xj
. (2.11)

Since the mean velocity field is incompressible, (2.11) simplifies to

Dui

Dt
=

∂ui

∂t
+ uj

∂ui

∂xj
+

∂(u′
iu

′
j)

∂xj
. (2.12)

Taking the mean of the rest of the terms in the momentum equation is simple since the spatial
derivative commutes with the operation of taking average. The result is the Reynolds (or RANS )
equation.

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂ui

∂xj∂xj
−

∂u′
iu

′
j

∂xj
. (2.13)

Equation (2.13) can be rewritten as

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=

∂

∂xj

[
−pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− ρu′

iu
′
j

]
. (2.14)

The term in square brackets represents the sum of three stresses; pδij from the mean pressure

field, the viscous stress from momentum transfer at molecular level and the stress term −ρu′
iu

′
j ,

arising from the fluctuating velocity field. This term is called Reynolds stresses. (In this report,
u′
iu

′
j will also be referred to as Reynolds stresses.)
The Reynolds stresses are components of a symmetric second-order tensor. The diagonal

components are normal stresses and the off-diagonal components are shear stresses. The turbulent
kinetic energy, k is half the trace of the Reynolds stress tensor

k =
1

2
ρu′

iu
′
i (2.15)

and the isotropic stress is defined as 2
3kδij . Then the deviatoric part is

aij = u′
iu

′
j −

2

3
kδij . (2.16)

Because of the symmetry of the Reynolds stress tensor there are six independent elements of the
tensor and therefore six more unknowns. To close the system, i.e. get equal number of unknowns
and equations, we have to model the Reynolds stresses in some way.

2.2 The turbulent-viscosity hypothesis

The turbulent-viscosity hypotheses was introduced by Boussinesq in 1877 and is analogous to the
stress-rate-of-strain relation for a Newtonian fluid. According to the hypotheses the relationship
is

−u′
iu

′
j = νT

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
kδij , (2.17)

where the positive scalar field νT = νT (xi, t) is the turbulent viscosity. The turbulent-viscosity
hypothesis substituted into equation (2.13) is

∂ui

∂t
+ uj

∂ui

∂xj
=

∂

∂xj

[
νeff

(
∂ui

∂xj
+

∂uj

∂xi

)]
− 1

ρ

∂

∂xi
(p+

2

3
ρk), (2.18)
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where
νeff (xi, t) = ν + νT (xi, t), (2.19)

is the effective viscosity.
Equation (2.18) has the same appearance as the incompressible Navier-Stokes equation with

ui and νeff in place of ui and ν and with p+ 2
3ρk modifying the pressure. The advantage with

this model of is that it is fairly simple. Unfortunately, for many flows the accuracy of the model is
poor, [3]. This shows that the physics of turbulence is different from the physics of the molecular
processes that lead to the relation for the viscous stress in a Newtonian fluid. However, for simple
shear flows, where the mean velocity gradients and turbulence characteristics develop slowly, the
hypothesis is quite reasonable.

2.3 The energy cascade

Turbulence is considered to be composed of eddies of different sizes. The largest eddies of the
flow are unstable and break up, transferring their energy to smaller eddies. These smaller eddies
also break up and transfer energy to yet smaller eddies. This energy cascade continues until
the Reynolds number Re(l) ≡ u(l) l/ν is sufficiently small so that the eddy motion is stable
and molecular viscosity is effective in dissipating the kinetic energy. Here l and u(l) are the
characteristic length scale and velocity scale of these stable eddies.

This is of importance because it places the dissipation of energy at the end of the energy
cascading process. The rate of dissipation, denoted ϵ, is determined by the first process in the
sequence, which is the transfer of energy from the largest eddies. These eddies are characterized
by the lengthscale l0, the velocity scale u0, the time scale τ0 = l0/u0 and have energy of 1

2ρu
2
0.

Then the rate of transfer of energy can be supposed to scale as u2
0/τ0 = u3

0/l0. Consequently, ϵ
scales as u3

0/l0, independent of ν.

2.4 The equation for turbulent kinetic energy

In this section a differential equation describing the behavior of the turbulent kinetic energy, k,
is derived. Starting by multiplying the incompressible Navier-Stokes equations with ui and then
taking the average of the result yields

∂ui

∂t
ui + uj

∂ui

∂xj
ui = −1

ρ

∂p

∂xi
ui + ν ui∇2ui. (2.20)

Multiplying the Reynolds equation by ui gives

∂ui

∂t
ui + uj

∂ui

∂xj
ui = −

∂u′
iu

′
j

∂xj
ui −

1

ρ

∂p

∂xj
ui + νui∇2ui. (2.21)

Some rules due to averaging are

uiuj = uiuj + u′
iu

′
j (2.22)

∂ui

∂xj
=

∂ui

∂xj
(2.23)

∂ui

∂xj
ui =

∂ui

∂xj
ui +

∂u′
i

∂xj
u′
i (2.24)

uiujuk = u′
iu

′
ju

′
k + u′

iu
′
j uk + u′

ju
′
kui + u′

kuiuj + uiujuk. (2.25)
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Subtracting (2.21) from (2.20) we get

ρ
∂u′

i

∂t
u′
i + ρ

(
uj

∂ui

∂xj
ui − uj

∂ui

∂xj
ui

)
= − ∂p′

∂xi
u′
i + ν u′

i∇2u′
i + ρ

∂u′
iu

′
j

∂xj
ui. (2.26)

From the averaging rules we have

uj
∂ui

∂xj
ui − uj

∂ui

∂xj
ui = u′

i

∂u′
i

∂xj
uj +

∂u′
i

∂xj
u′
iu

′
j +

∂u′
i

∂xj
u′
jui + u′

ju
′
i

∂ui

∂xj
. (2.27)

Using equation (2.26), equation (2.27), the chain rule for derivatives and the incompressibility
of the mean velocity field, we end up with

ρ

(
∂u′

i

∂t
u′
i + u′

i

∂u′
i

∂xj
uj +

∂u′
i

∂xj
u′
iu

′
j +

∂u′
iu

′
j

∂xj
ui + u′

ju
′
i

∂ui

∂xj

)
= − ∂p′

∂xi
u′
i + ν u′

i∇2u′
i + ρ

∂u′
iu

′
j

∂xj
ui.

(2.28)
The fourth term on the left hand side and the last term on the right hand side are equal and
cancel out. Using the chain rule again we get

1

2

(
∂u′

iu
′
i

∂t
+ uj

∂u′
iu

′
i

∂xj
+

∂(u′
iu

′
iu

′
j)

∂xj

)
= −u′

ju
′
i

∂ui

∂xj
− 1

ρ

∂p′u′
i

∂xi
+ ν

∂

∂xj

(
1

2

∂(u′
iu

′
i)

∂xj

)
− ∂u′

i

∂xj

∂u′
i

∂xj
.

(2.29)
Using the definition of the turbulent kinetic energy according to equation (2.15) and the defintion
of the dissipation rate of turbulent energy1, given by

ϵ = ν
∂u′

i

∂xj

∂u′
i

∂xj
, (2.30)

we end up with

∂k

∂t
+ uj

∂k

∂xj
= − ∂

∂xj

(
1

2
u′
iu

′
iu

′
j +

1

ρ
u′
jp

′ − ν
∂k

∂xj

)
− u′

ju
′
i

∂ui

∂xj
− ϵ. (2.31)

The sum of the two terms on the left-hand side, the unsteady term and the convection, is the
material derivative of k that gives the rate of change of k following a fluid element. The first
term on the right-hand side is known as the turbulent transport and is regarded as the rate at
which turbulence energy is transported through the fluid by turbulent fluctuations. The second
term on the right-hand side is called pressure diffusion and is another form of turbulent transport
resulting from correlation of pressure and velocity fluctuations. The third term on the right-hand
side represents the diffusion of turbulence energy caused by the fluids natural molecular transport
process. The fourth term on the right-hand side is known as the production and represents the
rate at which kinetic energy is transferred from the mean flow to the turbulence. Finally, ϵ is
the dissipation rate of the turbulent kinetic energy.

2.5 Closure approximations

The left-hand side of equation (2.31) and the term representing the molecular diffusion are
exact while production, dissipation, turbulent transport and pressure diffusion involve unknown
correlations. To close the equation these terms have to be approximated. The standard way to

1Here it is assumed that the turbulence is homogeneous.
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approximate turbulent transport of scalar quantities is to use the gradient-diffusion hypothesis.
In analogy with molecular transport processes, we say that −u′

jϕ
′ ∼ µT

∂ϕ
∂xj

, where ϕ is some

conserved scalar, p or k for example. Thus,

1

2
u′
iu

′
iu

′
j +

1

ρ
u′
jp

′ = −νT
σk

∂k

∂xj
, (2.32)

where σk is the turbulent Prandtl number for kinetic energy and is generally taken to be equal to
unity. The gradient-diffusion approximation asserts that there is a flux of k down the gradient
of k. Mathematically, it ensures that the solutions are smooth and that a boundary condition
can be imposed on k everywhere on the boundary. Using this model for the turbulent transport
and the pressure diffusion and using equation (2.17) for the production term, we end up with
the following model transport equation for k:

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
+

[
νT

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
kδij

]
∂ui

∂xj
− ϵ. (2.33)

Since the mean velocity field is incompressible,

2

3
kδij

∂ui

∂xj
=

2

3
k
∂uj

∂xj
= 0, (2.34)

equation (2.33) reduces to

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
+ νT

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
− ϵ. (2.35)

According to section 2.3, the dissipation rate scales as u3
0/l0. Therefore it is reasonable to model

ϵ as
ϵ = CDk3/2/l(xi) (2.36)

where l(xi) is the length scale of the turbulence and CD is a closure constant.
In the turbulent-viscosity hypothesis, equation (2.17), the turbulent viscosity νT is introduced.

To close the system of equations it has to be specified. Based entirely on dimensional arguments,
the turbulent viscosity is given by

νT = k1/2l(xi). (2.37)

2.6 The k − ϵ model

To eliminate the need for specifying the turbulent length scale l(xi), in addition to the k-equation,
a transport equation for one more turbulence quantity can be used. This type of models is called
two-equation models and the standard one is the k−ϵ model. In this model, a transport equation
is solved for ϵ. The exact equation for ϵ can be derived in a similar manner as the k-equation,
but it is not a useful starting point for a model equation. As discussed earlier, this is because ϵ
is best viewed as the turbulent energy flow rate in the beginning of the energy cascade, which is
the transfer of energy from the largest eddies in the flow. In contrast, the exact equation for ϵ
belongs to processes in the dissipative range, in the end of the cascade. So the standard model
equation for ϵ is best viewed as being entirely empirical. The equation is

∂ϵ

∂t
+ uj

∂ϵ

∂xj
=

∂

∂xj

(
νT
σϵ

∂ϵ

∂xj

)
+ Cϵ1

ϵ

k

[
νT

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
kδij

]
∂ui

∂xj
− Cϵ2

ϵ2

k
. (2.38)
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Due to the incompressibility of the mean flow field, this expression simplifies to

∂ϵ

∂t
+ uj

∂ϵ

∂xj
=

∂

∂xj

(
νT
σϵ

∂ϵ

∂xj

)
+ Cϵ1

ϵ

k
νT

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
− Cϵ2

ϵ2

k
. (2.39)

The diffusion term in the ϵ equation has the same benefits as the analogous term in the k
equation.

Combining equation (2.36) and equation (2.37), the turbulent viscosity can be written as

νT = Cµk
2/ϵ, (2.40)

and therefore l(xi) is obtained from k and ϵ. Here Cµ is a model constant.
The equation for k and ϵ together with the specification of νT , form the k − ϵ turbulence

model. This model is said to be complete since it does not require specifications such as the
turbulent length scale l(xi).

The k - ϵ model consists of four components; two model equations are solved for k and ϵ.
The turbulent viscosity is defined by νT = Cµk

2/ϵ. The Reynolds stresses are found from the
turbulent-viscosity hypothesis and the Reynolds equations are solved for ui and p.

Standard values of the model constants of the k − ϵ turbulence model used in the model
equations are:

Cµ = 0.09, Cϵ1 = 1.44, Cϵ2 = 1.92, σk = 1.0, σϵ = 1.3, (2.41)

[3].

2.7 Shear stress near walls

The total shear stress is the sum of the viscous stress and the Reynolds stress. Right at the wall,
the no slip boundary condition ui(xi, t) = 0 implies that all Reynolds stresses are zero. Hence,
all the wall shear stress is due to the viscous contribution. This is in contrast to the situation in
free shear flows where the viscous stresses are everywhere negligible compared with the Reynolds
stresses. Therefore, close to walls the viscosity ν and the wall shear stress τw are important
parameters. From them, viscous scales are defined which are the appropriate velocity and length
scales in the near wall region. These are the friction velocity

uτ ≡
√

τw
ρ

(2.42)

and the viscous lengthscale

δν ≡ ν

√
ρ

τw
=

ν

uτ
. (2.43)

The distance from the wall measured in viscous lengths or wall units is defined as

y+ ≡ x2

δν
=

uτx2

ν
. (2.44)

Different regions in the near-wall flow are defined based on y+. In the viscous wall region
y+ < 50, the viscosity contributes to the shear stress. Outside this region, the effect of viscosity
is negligible. In the viscous sublayer y+ < 5, the Reynolds shear stress is negligible compared
with the viscous stress. [3]
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2.8 The log law

We now consider the flow through a rectangular duct of height h = 2δ, width b and length L.
The duct is long (L/δ >> 1) and has a large aspect ratio (b/δ >> 1). The mean flow is in
the x1-direction and the velocity statistics depend only on the x2 coordinate. Then the viscous
stress and the turbulence production are both determined by du

dx2
. Here u is the x1-component

of the mean velocity. On dimensional grounds we can write

du

dx2
=

uτ

x2
Φ

(
x2

δν
,
x2

δ

)
(2.45)

where Φ is some non-dimensional function. The idea behind the two paramters is that δν is the
appropriate length scale in the viscous wall region and δ is the appropriate one in the outer layer.
Close to the wall the function Φ should be entirely defined by the viscous scales, independent of

δ. Mathematically this implies that the function Φ
(

x2

δν
, x2

δ

)
tends asymtotically to a function of

x2

δν
only, as x2

δ tends to zero. Hence, equation (2.45) becomes

du

dx2
=

uτ

x2
Φ1

(
x2

δν

)
, for

x2

δ
<< 1, (2.46)

where

Φ1

(
x2

δν

)
= lim

x2/δ→0
Φ

(
x2

δν
,
x2

δ

)
(2.47)

Using equation(2.44) and the definition

u+ ≡ u

uτ
(2.48)

equation (2.46) becomes
du+

dy+
=

1

y+
Φ1(y

+). (2.49)

The integral of (2.49) is known as the law of the wall. As mentioned before, when y+ is large
the viscosity has little effect. Hence, the dependence of Φ1(

x2

δν
) on ν dissappears and the value

of Φ1 is constant, denoted by κ−1. Using this in equation (2.49) and integrating we end up with

u+ =
1

κ
ln y+ +B, (2.50)

where B is a constant. This relationship is known as the log law and κ is the von Kármán
constant. The log law holds for y+ > 30, x2

δ < 0.3. There are some variations in the values
ascribed to the log-law constants but generally they are within 5 % of

κ = 0.41, B = 5.2, (2.51)

[3].

2.9 Turbulence modelling near walls

The profiles of u and ϵ are steep near walls. To resolve them a substantial fraction of the
computational effort must be devoted to the near-wall region. The idea of the wall-function
approach is to apply the wall functions boundary conditions (WFBC) some distance away from
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the physical wall so that the turbulence-model equations are not solved close to the physical
wall. WFBC are applied at a location x2 = x2p in the log-law region where y+ is around 50.
The subscript ”p” indicates quantities evaluated at x2p, e.g. up, kp, ϵp. From direct numerical
simulations (DNS) on wall-bounded type flows described above, it is shown that there is balance
between production and dissipation in the region where y+ is around 50, [3]. It holds that

−ρu′
1u

′
2 = τw = ρu2

τ (2.52)

where the last step is according to definition (2.42). Since there is a balance between produc-
tion and dissipation and since we near walls can neglect all velocity gradients except ∂u

∂x2
, the

dissipation can be written

ϵ = P = −u′
1u

′
2

∂u

∂x2
=

u3
τ

κy
(2.53)

where the derivative with respect to x2 is taken from equation (2.50). On the other hand, in the
near-walls approximation and according to the turbulent-viscosity hypothesis we can write

−u′
1u

′
2 = u2

τ = νT
∂u

∂x2
=

Cµk
2

ϵ

uτ

κx2
. (2.54)

Finally, combining equation (2.53) and (2.54), we end up with the following expression for ϵ near
walls:

ϵp =
C

3/4
µ k

3/2
p

κx2p
. (2.55)

When this type of boundary condition is used for ϵ, Neumann boundary condition is applied
to k. The boundary conditions for the pressure and velocity fields are not changed.

The production term, P and y+ can also be calculated according to wall function theory to
be set in the near wall region. If, equation (2.54) and equation (2.53) are combined we can write

Pp = νT
C

1/4
µ k

1/2
p

κx2p

∂u(x2p)

∂x2
(2.56)

and

y+p =
C

1/4
µ k

1/2
p x2p

ν
. (2.57)
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3 Implementation of turbulence models in OpenFOAM

OpenFOAM is written in the object oriented programming language C++. In this section we
will briefly describe some functions, classes and objects frequently occuring in the pieces of code
that will follow in this chapter.

Each term in a partial differential equation (PDE) is represented in OpenFOAM code using
the classes of static functions finiteVolumeMethod and finiteVolumeCalculus, shortened by
a typedef to fvm and fvc, respectively. fvm and fvc contain static functions, representing
differential operators that discretise the terms in the PDE.

Equations, and terms of equations are declared as tmp<Type> where <Type> is either
<fvVectorMatrix> if the equation is a vector equation, like the momentum equation, or
<fvScalarMatrix> if the equation is a scalar equation, like the ϵ-equation. The names indicate
that the resulting discretized equations are stored as matrices. For more details, see [5].

3.1 The momentum equation

When using the incompressible solver simpleFoam in OpenFOAM, the implementation of the mo-
mentum equation can be found in the file UEqn.H. The equation is implemented as

// So lve the Momentum equat ion

tmp<fvVectorMatrix> UEqn
(

fvm : : div ( phi , U)
+ turbulence−>divDevReff (U)

) ;

UEqn ( ) . r e l a x ( ) ;

eqnResidual = so l v e
(

UEqn( ) == −f v c : : grad (p)
) . i n i t i a l R e s i d u a l ( ) ;

maxResidual = max( eqnResidual , maxResidual ) ;

Listing 1: The file UEqn.H.

The first term in the implementation of the momentum equation is translated into

∂

∂xj
(uiuj) = uj

∂ui

∂xj
+ ui

∂uj

∂xj
= uj

∂ui

∂xj
. (3.1)

The last step is due to the incompressibility of the mean flow field.
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The function divDevReff(), found in UEqn.H is defined in the file kEpsilon.C as

. . .
tmp<fvVectorMatrix> kEps i lon : : divDevReff ( vo lVec to rF i e ld& U) const
{

return
(
− fvm : : l a p l a c i a n ( nuEff ( ) , U)
− f v c : : d iv ( nuEff ( )* dev ( fvc : : grad (U) ( ) .T( ) ) )

) ;
}
. . .

Listing 2: definition of the function divDevReff().

Translated, the first term of the divDevReff is written

− ∂

∂xj

(
νeff

∂ui

∂xj

)
. (3.2)

The second term of the divDevReff is the divergence of the effective viscosity times the deviatoric
part of the transposed gradient of ui. This term is written

− ∂

∂xj

[
νeff

(
∂uj

∂xi
− 1

3

∂uk

∂xk
δij

)]
, (3.3)

which simplifies to

− ∂

∂xj

(
νeff

∂uj

∂xi

)
, (3.4)

due to incompressibility. Then the total divDevReff is

− ∂

∂xj

[
νeff

(
∂ui

∂xj
+

∂uj

∂xi

)]
. (3.5)

The last part of the implementation is the gradient of p. Translated into mathematics, the
equation that is implemented is

uj
∂ui

∂xj
− ∂

∂xj

[
νeff

(
∂ui

∂xj
+

∂uj

∂xi

)]
= − ∂p

∂xi
(3.6)

If this result is compared to (2.18) the difference between the implemented equation and the
equation according to theory is that there is no term with the time derivative of ui or any term
with k, the turbulent kinetic energy. The connection to previous time step in the implemented
equation is through the line

. . .
UEqn ( ) . r e l a x ( ) ;

. . .

Listing 3: The connection to previous time step.

in the file UEqn.H. The function relax() is used to scale the solution from the previous time
iteration before it is employed in the current iteration. The theory behind relaxation of the
solution is presented in section 4.3.

The k term is incorporated in the pressure term as p̃ = p+ 2
3k and the 1

ρ factor in front of the
pressure term in the RANS equations is dropped in OpenFOAM. So if the true mean pressure
field is sought for, one has to take this in consideration.
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3.2 The k-equation

The implementation of the incompressible k-equation in the file kEpsilon.C is

. . .
// Turbulent k i n e t i c energy equat ion

tmp<fvSca larMatr ix> kEqn
(

fvm : : ddt ( k )
+ fvm : : div ( phi , k )
− fvm : : Sp ( fvc : : d iv ( ph i ) , k )
− fvm : : l a p l a c i a n (DkEff ( ) , k )

==
G

− fvm : : Sp ( e p s i l o n /k , k )
) ;

kEqn ( ) . r e l a x ( ) ;
s o l v e (kEqn ) ;
bound ( k , k0 ) ;

. . .

Listing 4: Implementation of the k-equation.

The terms G and DkEff() are defined in the same file.

. . .
v o l S c a l a rF i e l d G( ”RASModel : :G” , nut *2*magSqr (symm( fvc : : grad (U ) ) ) ) ;
. . .
DkEff ( ) = nut + nu ( )
. . .

Listing 5: Definition of the production term and the function Dkeff().

The first term on the left hand side in the implementation of the k-equation is the time derivative
of k. The second term is the divergence of the velocity times k

∂(ujk)

∂xj
= k

∂uj

∂xj
+ uj

∂k

∂xj
. (3.7)

The third term is the source term and is written −k
∂uj

∂xj
. The last term of the left hand side is

written − ∂
∂xj

(
νeff

∂k
∂xj

)
. The G term is the production term and the OpenFOAM implementa-

tion of it is a bit difficult to understand. The symmetric part of the gradient of ui is

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (3.8)
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and the translation of the OpenFOAM code of G is therefore

G = 2νT

∣∣∣∣12
(
∂ui

∂xj
+

∂uj

∂xi

)∣∣∣∣2
=

νT
2

(
∂ui

∂xj

∂ui

∂xj
+

∂uj

∂xi

∂uj

∂xi
+ 2

∂ui

∂xj

∂uj

∂xi

)
= νT

∂ui

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3.9)

The last term in the implementation of the k-equation is just ϵ. Putting all the pieces together
we end up with

∂k

∂t
+ k

∂uj

∂xj
+ uj

∂k

∂xj
− k

∂uj

∂xj
− ∂

∂xj

(
νeff

∂k

∂xj

)
= νT

∂ui

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
− ϵ (3.10)

which simplifies to

∂k

∂t
+ uj

∂k

∂xj
− ∂

∂xj

(
νeff

∂k

∂xj

)
= νT

∂ui

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
− ϵ. (3.11)

Here
νeff = ν + νT . (3.12)

The only difference between this equation and equation (2.35) is that νT in the last term on the
left side is not divided by σk. But since σk = 1 in the k − ϵ model the equations are the same.
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3.3 The ϵ-equation

The implementation of the incompressible ϵ-equation in the file kEpsilon.C is

. . .
// Di s s i pa t i on equat ion

tmp<fvSca larMatr ix> epsEqn
(

fvm : : ddt ( e p s i l o n )
+ fvm : : div ( phi , e p s i l o n )
− fvm : : Sp ( fvc : : d iv ( ph i ) , e p s i l o n )
− fvm : : l a p l a c i a n ( Deps i l onEf f ( ) , e p s i l o n )

==
C1 *G* e p s i l o n / k

− fvm : : Sp (C2 * e p s i l o n /k , e p s i l o n )
) ;

epsEqn ( ) . r e l a x ( ) ;

epsEqn ( ) . boundaryManipulate ( e p s i l o n . boundaryField ( ) ) ;

s o l v e ( epsEqn ) ;
bound ( ep s i l on , e p s i l o n 0 ) ;

. . .

Listing 6: Implementation of the dissipation equation.

with DepsilonEff() defined in the same file as

. . .
Deps i l onEf f ( ) = nut /SigmaEps + nu ( )
. . .

and the production term G defined in the same way as in the k-equation. The terms are very
similar to the ones in the k-equation with ϵ instead of k. The translation of the OpenFOAM
code of the ϵ-equation is

∂ϵ

∂t
+ uj

∂ϵ

∂xj
− ∂

∂xj

(
(ν +

νT
σϵ

)
∂ϵ

∂xj

)
= C1

ϵ

k
νT

∂ui

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
− C2

ϵ2

k
. (3.13)

The difference between the implemented ϵ equation and equation (2.39) is that the viscosity is
added to νT

σϵ
in the last term on the left hand side in the above equation.

3.4 The turbulent viscosity νT

To have a complete turbulence model the turbulent viscosity νT must be defined. This is done
in kEpsilon.C.

. .
nut = Cmu * sqr ( k )/ ( e p s i l o n + ep s i l onSma l l ) ;
. . .

This implementation is the same as equation (2.40) except for the term epsilonSmall which is
added to avoid division by zero.
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3.5 Implementation of wall models

When wall functions boundary conditions are used, ϵ is calculated in a special way in the near
wall region, according to equation (2.55). This is implemented in OpenFOAM in the file epsilon-
WallFunctionFvPatchScalarField.C in the following way

. . .
// Set e p s i l o n and G

f o rA l l (nutw , f a c e I )
{

l a b e l f a c eC e l l I = patch ( ) . f a c eC e l l s ( ) [ f a c e I ] ;

s c a l a r yPlus = Cmu25*y [ f a c e I ]* s q r t ( k [ f a c eC e l l I ] )
/nuw [ f a c e I ] ;

e p s i l o n [ f a c eC e l l I ] = Cmu75*pow(k [ f a c eC e l l I ] , 1 . 5 )
/( kappa *y [ f a c e I ] ) ;

i f ( yPlus > yPlusLam)
{

G[ f a c eC e l l I ] =
(nutw [ f a c e I ] + nuw [ f a c e I ] )

*magGradUw [ f a c e I ]
*Cmu25* s q r t ( k [ f a c eC e l l I ] )
/( kappa *y [ f a c e I ] ) ;

}
else
{

G[ f a c eC e l l I ] = 0 . 0 ;
}

}
. . .

As we can see, the production term G is also updated according to wall function theory, but
only if yPlus is bigger than yPlusLam. MagGradUw, nuw, nutw, Cmu25 and Cmu75 are all
defined in epsilonWallFunctionFvPatchScalarField.C. Here faceI is the index for the face next to
the boundary and faceCellI is the index of the cell that have one face with index faceI. Cmu25

and Cmu75 have values C
1/4
µ and C

3/4
µ , respectively. The value of Cµ is set to be 0.09 according

to k− ϵ theory but can be changed. If the above piece of code is translated into mathematics we
find that ϵ and the production term are implemented as

ϵ =
C

3/4
µ k

3/2
p

κyp
(3.14)

and

G =
(νTw + νw)C

1/4
µ k1/2

κy
, (3.15)

respectively. The difference compared to theory is that in OpenFOAM the effective viscosity is
used when calculating the production term, rather than only the turbulent viscosity, according
to equation (2.56). the subscript ”w” indicates that the viscosity and turbulent viscosity are
calculated at the wall.
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4 Numerical solution method

4.1 The finite volume method (FVM)

The solution domain is subdivided into a finite number of small control volumes (polyhedra) and
the conservation equations are applied to each control volume. FVM uses the integral form of a
general convection-diffusion equation for a quantity as its starting point which is described as

d

dt

∫
V

ϕdV +

∫
S

ϕu · ndS =

∫
S

Γ(∇ϕ) · ndS +

∫
V

qdV (4.1)

where ϕ is some flow variable, k for example, V is a control volume, S its bounding surface, n
unit normal, Γ diffusion coefficient and q some external term.

The centroid of each control volume is assigned to be the computational node at which the
variable values are to be calculated. Interpolation is used to express variable values at the control
volume surface in terms of the centroid nodal values. Surface and volume integrals are approxi-
mated using suitable discretization methods. As a result, one obtains an algebraic equation for
each control volume, in which a number of neighbour nodal values appear. One advantage with
FVM is that it can handle complex geometries, however one disadvantage compared to other
computational methods is that methods of higher order than 2nd, are more difficult to develop
in 3D. A more detailed description of the Finite Volume Method can be found in chapter 4 of [4].

4.2 The SIMPLE algorithm

When the RANS approach for turbulence is used, a stationary problem arises. RANS and many
other methods for steady problems in computational fluid dynamics can be regarded as unsteady
problems until a steady state is reached. If an implicit method is used in time, the discretized
momentum equations at the new time step are non-linear. Due to this and that the underlying
differential equations are coupled, the equations system resulting from discretization cannot be
solved directly. Iterative solution methods are the only choice.

The momentum equations are usually solved sequentially for each component. The pressure
used in each iteration is obtained from the previous time step and therefore the computed veloc-
ities normally do not satisfy the discrete continuity equation. In order for the velocities to fulfill
this equation one must modify the pressure field. This can be done by solving a discrete Poisson
equation for the pressure.

After solving this new equation for the pressure the final velocity field at the new iteration
is calculated. This new velocity field satisfies the continuity equation, but the velocity and
pressure fields do not satisfy the momentum equations. Therefore, the procedure described
above is iterated until a velocity field is obtained that satisfies both the momentum and continuity
equations. These iterations, made to obtain a solution which satisfies all of the equations, are
called outer iterations.

Methods of this kind which first construct velocity fields that do not satisfy the continuity
equation and then correct them are known as projection methods. The SIMPLE algorithm is
such a method, and it is the solving procedure used in OpenFOAM for our computations. A
more detailed description of the SIMPLE algorithm can be found in chapter 7 of [4].
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4.3 Under-relaxation

It is often necessary to limit the change in each variable from one outer iteration to the next,
because a change in one variable changes the coefficients in the other equations, which may slow
or prevent convergence. This type of limiting of each variable is called under-relaxation. One
under-relaxation technique that is widely used is presented below.

On the n:th outer iteration, the algebraic equation for a generic variable ϕ, at point P , can
be written

APϕ
n
P +

∑
l

Alϕ
n
l = QP , (4.2)

where Q contains all the terms that do not depend explicitly on ϕn. Q and and the coefficients
Al may involve ϕn−1. This equation is linear and the system of equations in the whole solution
domain is assumed to be solved iteratively (inner iterations). If we allow ϕ to change by as much
as equation (4.2) requires in the early outer iterations, it could cause instability. Therefore, we
allow ϕn to change according to

ϕn = ϕn−1 + αϕ(ϕ
new − ϕn−1) (4.3)

where ϕnew is the result of equation (4.2) and the under-relaxation factor satisfies 0 < αϕ < 1.
Replacing ϕnew in equation (4.3) by

ϕnew
P =

QP −
∑

l Alϕ
n
l

AP
, (4.4)

leads to a modified equation at node P

A∗
Pϕ

n
P +

∑
l

Alϕ
n
l = Q∗

P , (4.5)

where A∗
P and Q∗

P are modified main diagonal matrix elements and source vector components
given by

A∗
P =

AP

αϕ
(4.6)

and

Q∗
P = QP +

1− αϕ

αϕ
APϕ

n−1
P . (4.7)

This kind of under-relaxation has a positive effect on many iterative solution methods since
the diagonal dominance of the matrix A is increased. Optimum under-relaxation is problem
dependent and the selection of under-relaxation factors is therefore largely empirical.

In OpenFOAM, under-relaxation factors are set for all flow variables and can also be changed
during run-time.

5 Different types of turbulence models used in our simu-
lations

In this work, we use three different types of turbulence models. They are presented below.
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5.1 Linear eddy viscosity models

Except the k − ϵ model presented in section 2.6, four other models that use the linear eddy
viscosity hypothesis are used.

The k−ω model use the turbulence frequency of the large eddies ω, to model the turbulence.
A variation to the standard k − ω model is the k − ω SST (shear stress transport) model.
This model can handle turbulence that is not close to local equilibrium. This occurs when the
production of turbulent energy departs significantly from the dissipation rate ϵ.

The RNG k− ϵ model includes a modification to the transport equation for ϵ stemming from
renormalization group theory.

The normal turbulent stresses are positive by definition. In the standard k − ϵ model, they
can become negative due to the definition of the turbulent viscosity. The realizable k − ϵ model
use certain mathematical constrains on the normal stresses to avoid this.

5.2 Reynolds stress transport models

These types of models determine the turbulent stresses directly by solving a transport equation
for each stress component. This requires the solution of six additional coupled equations, together
with an equation for ϵ. The LRR (Launder-Reece-Rodi) model used in this work is of this type.

5.3 Non-linear eddy viscosity models

These models relate the turbulent stresses to the time averaged velocity gradients algebraically
with higher order quadratic and cubic terms. This feature additional coefficients which can then
be calibrated to experimental data. Models of this type used in this work are the non linear k− ϵ
model and the Lien cubic k − ϵ model, [6].

6 The Pitz-Daily case

The Pitz-Daily case is a tutorial case in OpenFOAM. The background to this case is an experi-
ment that was carried out by Robert W. Pitz and John W. Daily. The aim of their experiment
was to study combustion of a fluid mixture of air and propane in a turbulent mixing layer. [7]
The main objective with the choice to study this case was because the case geometry is two-
dimensional, rather simple and it is obvious where the flow separation will occur. The objectives
with this study was to evaluate the different turbulence models with respect to the prediction
of the center of the developed recirculation area, the reattachement point and the amount of
turbulent kinetic energy produced in the turbulent area. The models were mainly tested on two
different types of meshes: The mesh that comes with the tutorial and one mesh constructed to
be used without WFBC. The meshes are described and discussed in section 6.1. The geometry
of the case is a backward facing step and it is the sharp edge of the step that gives rise to the
mixing layer and the recirculation zone. The outflow region is contracted but this is not of great
importance since the essential phenomenon of the flow occur earlier. The geometry can be seen
in figure 1.

A cartesian coordinate system is used for the simulations, and in the domain coordinates
(x1, x2), the velocity field is u = (u1, u2). The x1-axis is parallel to the floor of the domain,
pointing downstream. The x2-axis is normal to the floor, pointing upward and the origin is fixed
in the upper right corner of the step. The top and bottom patch of the domain is set to have
no slip boundary conditions, i.e. u = 0 at these boundaries. The inlet velocity is V∞ = 10 m/s,
pointing in the positive x1-direction.
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The Reynolds number of this flow, based on the inlet velocity V∞ = 10 m/s, the height of
the step, H = 0.0254 m and the kinematic viscosity of air, ν = 10−5 m2/s is Re = 25400.

Figure 1: The Pitz-Daily case geometry.

6.1 Different meshes

As for computational mesh, mainly two types were used. The mesh that comes with the tutorial
case, with a total of 12225 cells, was used when WFBC were applied. In OpenFOAM, the two
dimensional meshes are represented as three dimensional. The primary refinement of this mesh
is around the centre line to better resolve the shear layer there. From the simulation using the
standard k − ϵ model with WFBC, y+ varies from 0.7 up to 26. This mesh will in the following
be refered to as Mt1 since it comes with the tutorial.

The second mesh used for the Pitz-Daily simulations was designed to be used without WFBC
for the turbulent quantities. To resolve the steep profiles of k and ϵ near walls this mesh had to
be more refined near the upper and lower wall of the domain compared to the Mt1 mesh. In the
simulation using the standard k − ϵ model, the y+ value for this mesh is below 1, except at the
wall patches very close to the inlet. This mesh will in the following be refered to as Mr since it
is refined near physical walls.

In addition to these, two more meshes were generated and used when trying to demonstrate
mesh convergence for the Pitz-Daily case. These two meshes have the same distribution of cells
as the Mt1 mesh. The first has twice as many cells as the Mt1 mesh in each direction. This mesh
will in the following be refered to as Mt2. The second has twice as many cells as the Mt2 mesh
in each direction. This mesh will in the following be referred to as Mt3. For an overview of the
mesh characteristics, see table 1.

(a) (b)

(c) (d)

Figure 2: (a) The Mt1 mesh. (b) Zoomed in at the top boundary of the Mt1 mesh. Notice that
there is almost no refinement of the mesh in the x2 direction near the boundary. (c) The Mr

mesh. (d) Zoomed in at the top boundary of the Mr mesh. Notice the refinement of the mesh
in the x2 direction near the boundary.
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Types of meshes for the Pitz-Daily case
Mesh Number of cells Range of y+

Mt1 12225 0.7 < y+ < 26
Mr 75600 0.7 < y+ < 33
Mt2 48900 0.2 < y+ < 12
Mt3 195600 0.1 < y+ < 5

Table 1: Meshes used for the Pitz-Daily case.

6.2 Boundary conditions for turbulent quantities

6.2.1 The k−equation

All of the models used except the LRR model use the k−equation to describe the turbulence.
The values of k are set to a constant value on the inlet patch. k is computed according to
equation (2.15), where the inlet turbulence is assumed to be isotropic and the fluctuations are
estimated to be 5 % of the inlet velocity, V∞ = 10 m/s. Therefore, the value of k on the inlet is
0.375 m2/s2.

For the top and bottom patch, different boundary conditions were used depending upon
which mesh was used. When using WFBC, the Mt1 mesh was used. For k this is set to be
”kqRWallFunction” in OpenFOAM and simply acts as a Neumann boundary condition. For
simulations using the Mr mesh the value of k is set to the constant value of 0.375 m2/s2.

According to theory, k → 0 at the wall. But because of the ϵ/k term in the ϵ-equation and
since ϵ is finite at the wall, k = 0 could not be used. This could have been avoided by choosing
another turbulence model better suited for this type of boundary condition on k. But since the
computational work was done in parallel with the theoretical studies, all of the theory was not
taken into consideration when setting up the simulations. This type of boundary condition is
not explained in the OpenFOAM documentation either.

For the outlet patch, Neumann conditions were used for both meshes.

6.2.2 The ϵ−equation

All of the models except the k−ω and k−ω-SST use the ϵ−equation to describe the turbulence.
On the inlet patch, the value of ϵ is set to be 14.855 m2/s3, computed according to

ϵ =
C

3/4
µ k3/2

l
, (6.1)

where l is the turbulent length scale estimated to be 10 % of the inlet width and Cµ is specified
according to equation (2.41). [5]

For the top and bottom patch, different boundary conditions were used depending upon which
mesh was used. For the simulations using WFBC, the Mt1 mesh was used. For ϵ this is set to be
”epsilonWallFunction” and is calculated according to equation (2.55). For the simulations using
the Mr mesh, ϵ is set to the constant value of 14.855 m2/s3. For the outlet patch, Neumann
boundary conditions were used for both meshes.

6.2.3 The equation for the Reynolds stress tensor

For the LRR model, boundary conditions for the Reynols stress tensor have to be set up. As
described in section 2.1, the Reynolds stress tensor is symmetric and consists of six independent
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elements. Therefore, conditions for these six elements have to be set up. The inlet condition
for the Reynolds stress tensor is computed from the boundary conditions for k and ui. The
boundary conditions on the top and bottom patch is set to be ”kqRWallFunction” and for the
outlet Neumann boundary conditions were used.

6.2.4 The ω−equation

The k − ω and k − ω SST models use ω to describe the turbulence. The boundary values for
ω are calculated according to ω = ϵ/k from the values of k and ϵ presented in section 6.2.1 and
6.2.2. When using the mesh Mt1, ”omegaWallFunction” is used for the top and bottom patch.
It acts as the ”epsilonWallFuntion” but for ω instead of ϵ.

6.3 Mesh convergence for the Pitz-Daily case

A numerical method is said to be convergent if the solution of the discretized equations tends to
the exact solution of the differential equation as the grid spacing of the mesh tends to zero. For
non-linear problems like the Navier-Stokes equations, which are strongly influenced by boundary
conditions, the stability and convergence of a method are difficult to prove analytically. Therefore
convergence is usually checked using numerical experiments, i.e. repeating the calculation on a
series of successively refined grids. For sufficiently small cell sizes of the mesh we usually find that
the solution does converge to a grid-independent solution. The rate of convergence is governed
by the order of the principal truncation error component. [4] The terms in the momentum
equation of the Pitz-Daily case simulations are all discretized with second order methods except
the convection term, which is discretized with the first order Upwind scheme. Therefore, we
assume that the error in the solution will halve as the mesh spacing is halved. The solution
variable on the coarsest mesh is denoted Uh and the solution with halved mesh spacing (in both
x1 and x2 direction), is denoted Uh/2 (and so on for further halving of the mesh spacing.) In our
calculations, U is the u1 component of the velocity. Then the order of accuracy of the numerical
method is given by the formula

2q ≈
|Uh − Uh/2|
|Uh/2 − Uh/4|

, (6.2)

where q is the order of accuracy of the numerical scheme. As seen from equation (6.2), at least
three solutions are needed on successive refined meshes.

Figure 3: Lines through the Pitz-Daily domain where data are taken.

In order to investigate if there is a grid independent solution for the Pitz-Daily case we
simulated the k-ϵ turbulence model without using WFBC for the turbulent variables. This is
because WFBC can destroy the accuracy since it is dependent of the y+ value. The simulations
were carried out on three meshes and these are described in section 6.1. The accuracy q was
evaluated according to equation (6.2) along four different lines through the domain. The lines
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are shown in figure 3 and q for the different lines are shown in figure 4. As seen in this figure, q
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Figure 4: Order of accuracy ”q” for different values of x1/H.

varies a lot and are not around one as it should be according to theory. The peaks appear where
the velocity profiles cross, and the difference tends to zero. The velocity profiles are shown in
figure 5. For values of x2/H below zero, q is quite close to one, for some values of x1/H.

We also tried to estimate the accuracy by looking at how the x1/H coordinate of the center
of the recirculation zone changed when using finer meshes. The result for q we got when looking
at this single point was, q ≈ 1.47.

One way to get better results could be to compute q from simulations on further refined
meshes.
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Figure 5: u1/V∞ at x1/H = 1.9685 for three different meshes.
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6.4 Results from the Pitz-Daily case simulations

The models that converge to a stationary solution are shown in table 2. As convergence criterion,
the residuals had to be less than 10−5 for all variables except the pressure where the residuals
had to be less than 10−6 to consider having a converged solution.

Models tested on the Mt1 mesh
Description Comments
Standard k − ϵ model Convergence reached after ap-

proximately 3 000 iterations.
k − ω SST two-equation model Convergence reached after ap-

proximately 2 000 iterations.
LRR (Launder-Reece-Rodi)
Reynolds stress transport model

Convergence reached after ap-
proximately 4 500 iterations.

Renormalization group k − ϵ
model

Convergence reached after ap-
proximately 5 000 iterations.

k − ω two-equation model Convergence reached after ap-
proximately 2 000 iterations.

Lien cubic k − ϵ model Convergence reached after ap-
proximately 27 000 iterations.
Had to fine tune relaxation fac-
tors to get convergence.

Non-linear Shih k − ϵ model convergence reached after ap-
proximately 11 500 iterations.

Realizable k − ϵ model convergence reached after ap-
proximately 8 500 iterations.

Table 2: Models tested on the Mt1 mesh. All models were used with WFBC for the turbulent
variables.

6.5 Results from simulations on the Mt1 mesh with WFBC

All the models that converged manage to produce the recirculation zone that is expected due
to the sharp edge of the backward facing step. The x2/H coordinate for the center of the
recirculation zone is also more or less equal for the different models. However, this value is
strongly dependent of the height H of the step. The x1/H coordinate for the center of the
eddy vary between models and there are roughly three different regions where the center occurs.
Around x1/H = 2.8 for the k − ϵ, k − ω, k − ω SST and the LRR models, around x1/H = 3.6
for the realizable k − ϵ and RNG k − ϵ models and around x1/H = 6.8 for the Nonlinear k − ϵ
Shih and Lien cubic k− ϵ models. The maximum turbulent kinetic energy k also varies between
models. The Nonlinear k− ϵ Shih and the Lien cubic k − ϵ produce maximum turbulent kinetic
energy that is about half as big as all the other models. We collected numerical values from the
center of the recirculation region, reattachment point and maximum turbulent kinetic energy in
table 4. The recirculation region that appears together with the separation, re-attachment point
and the turbulent kinetic energy produced by all the models are shown in figure 6.
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Figure 6: Pitz-Daily results from the the models tested on the Mt1 mesh. The left figures show
streamlines and |u|/V∞. The right figures show k/V 2

∞.

6.6 Results from simulations on the Mr mesh, without WFBC

Both the models that converged manage to produce the recirculation zone that is expected
due to the sharp edge of the backward facing step. The x2/H coordinate for the center of the
recirculation zone differ more between the models on this mesh than on the Mt1 mesh. The x1/H
coordinate for the center of the recirculation zone is in the same region for the two models. The
center of the recirculation region, reattachment point and maximum turbulent kinetic energy
can be found in table 4.
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Models tested on the Mr mesh
Description Comments
Standard k − ϵ model Convergence reached after ap-

proximately 3 000 iterations.
Realizable k − ϵ model convergence reached after ap-

proximately 8 500 iterations.

Table 3: Models tested on the Mr mesh. Both models were used with fixed value boundary
conditions for the turbulent variables.

6.6.1 The k − ϵ model

The result from this model when simulating on the Mr mesh is a bit different compared with
the results on the Mt1 mesh. The recirculation region is smaller in the x1 direction and the
center of the eddy has moved backwards together with the re-attachment point. Now the flow
is re-attached around x1/H = 5.90 and the center of the eddy is located at (x1/H, x2/H) =
(2.61,−0.45). The separation, re-attachment point and the eddy that appear can be seen in
figure 7 (a). This model also produces more turbulent kinetic energy near the walls. The
turbulent kinetic energy is shown in figure 7 (b). A detailed picture of the ”peaks” of k can be
seen in figure 10.

6.6.2 The realizable k − ϵ model

As for the k − ϵ model, the result on the Mr mesh is different compared with the result on
the Mt1 mesh. The recirculation region is smaller in the x1 direction and the center of the
eddy has moved backwards together with the re-attachment point. Now the flow is re-attached
around x1/H = 6.22 and the center of the eddy is located at (x1/H, x2/H) = (2.49,−0.37).
The separation, re-attachment point and the eddy that appear can be seen in figure 7 (c). This
model also produces more turbulent kinetic energy near the walls. The turbulent kinetic energy
is shown in figure 7 (d). A detailed picture of the ”peaks” of k can be seen in figure 10.

Figure 7: Pitz-Daily results from the tested models on the Mr mesh. The left figures show
streamlines and |u|/V∞. The right figures show k/V 2

∞.

6.7 Solution of the realizable k − ϵ model on the Mt3 mesh

To have data to compare the solutions from the Mt1 mesh and the Mr mesh with, we ran the
realizable k− ϵ model on the Mt3 mesh, with WFBC. Compared with the solution of this model
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on the Mt1 mesh, the center of the recirculation region is moved back to occur at (x1/H, x2/H) =
(3.29,−0.44). The re-attachment point is the same as on the Mt1 mesh. The separation, re-
attachment point, turbulent kinetic energy and the recirculation region can be seen in figure 8.

(a) (b)

Figure 8: Results from realizable k-ϵ on the Mt3 mesh. (a) Streamlines of the velocity. Colour

represents |u|
V∞

. (b) The turbulent kinetic energy k, normalized by V 2
∞.

center of eddy re-attachment point max k
V 2
∞

Turbulence model x1/H x2/H x1/H
k − ϵ, Mt1 mesh 2.88 -0.46 6.75 0.053
k − ω, Mt1 mesh 2.68 -0.46 6.82 0.056
k − ω SST, Mt1 mesh 2.85 -0.46 7.12 0.052
RNG k − ϵ, Mt1 mesh 3.49 -0.46 7.66 0.048
realizable k − ϵ, Mt1 mesh 3.86 -0.45 7.82 0.051
Lien cubic k − ϵ, Mt1 mesh 6.75 -0.48 9.84 0.026
Nonlinear k − ϵ Shih, Mt1 mesh 6.82 -0.48 9.85 0.027
LRR, Mt1 mesh 2.91 -0.42 5.55 0.055
k − ϵ, Mr mesh 2.61 -0.45 5.90 0.54
realizable k − ϵ, Mr mesh 2.49 -0.37 6.22 0.16
realizable k − ϵ, Mt3 mesh 3.29 -0.44 7.82 0.052

Table 4: Center of recirculation zone, re-attachment points and maximum turbulent kinetic
energy for the Pitz-Daily case geometry.

6.8 Discussion and conclusions of the Pitz-Daily results

The objective with the Pitz-Daily case simulations was to compare the results from several RANS
models implemented in OpenFOAM. Most of the simulations were made on the mesh that comes
with the tutorial. On this mesh, all simulations were made together with WFBC. In addition
to these, Two models were run on another mesh, more refined close to the walls compared with
the tutorial mesh. This was done to better resolve the turbulent quantities near walls, without
using WFBC.

When comparing the results from the tutorial mesh using WFBC, the eight tested models
are sorted into three groups with respect to the location of the recirculation zone. The three
groups show significantly different prediction of the location of the center of recirculation zone
in the streamwise direction.
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Figure 9: Comparison of u1/V∞ from different RANS models. Data are taken along four lines
which can be seen in figure 3.
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Figure 10: Comparison of k/V 2
∞ from different RANS models. Data is for four different values

of x1/H. Data are taken along four lines which can be seen in figure 3.
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Better agreement between the results for the prediction of the recirculation zone from the
models might be achieved if the turbulent shear layer around x2/H = 0 is better resolved.

When looking at the produced turbulent kinetic energy, the models are sorted in to two
groups, with the non-linear models producing about half as much turbulent kinetic energy as the
other models.

The results from the Mr mesh could probably be improved by further refining the mesh near
the lower wall just before the backward facing step. Here, y+ is not below 1. This could also
explain the maximum turbulent kinetic energy produced in this region, which can not be seen
in the results from the Mt1 mesh.

These results could probably also be improved further by using turbulence models better
suited for this type of constant value boundary conditions of the turbulent variables.

We also tried to demonstrate mesh convergence for this case, but the results were not con-
vincing. One reason for this might be that the most refined mesh was still too coarse.

The best performing models on this geometry are the linear eddy viscosity models with
WFBC together with the Mt1 mesh.

7 The bump case

The objective with the choice to study this case was because we wanted a geometry that was more
computationally challenging than the Pitz-Daily case. Though the simple shape of the geometry,
the flow in the recirculation region is complex and the flow prediction is challenging. Another
aspect when choosing this case was because there are numerous results to compare with, both
from LES (Large Eddy Simulations) and LDV (Laser Doppler Velocimeter) experiment. The
geometry is a three-dimensional axisymmetric hill placed on the floor of a channel. The domain
is shown in figure 11.

Figure 11: The bump case geometry seen from the inlet boundary.

The shape of the hill is defined by

x2(r)

H
= − 1

6.04844

[
J0(Λ)I0

(
Λ
r

a

)
− I0(Λ)J0

(
Λ
r

a

)]
(7.1)
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where Λ = 3.1926, a = 2H, H = 0.078 m, is the height of the hill, a is the radius of the
circular base of the hill and r2 = x2

1 + x2
3. J0 and I0 are the Bessel function of the first kind

and the modified Bessel function of the first kind, respectively. A Cartesian coordinate system
was used for the simulations, and in the domain coordinates (x1, x2, x3), the velocity field is
u = (u1, u2, u3). The x1-axis is pointing downstream and the x2-axis is normal to the floor,
pointing upward. The origin is fixed straight below the top of the hill, with x2 = 0 corresponding
to the tunnel floor.

The top and bottom patch seen in figure 11 are wall boundaries and this implies the use of
no slip conditions, i.e. ui = 0 at these boundaries. The left, right and outlet patches are used
to limit the computational domain. Therefore homogeneous Neumann boundary conditions are
used for these boundaries, hence ∂u

∂n = 0.
The inlet has a maximum flow velocity of V∞ = 27.5 m/s. The velocity is not uniform, it is

a profile with lower velocities near the top and bottom wall and higher in the middle of the inlet
patch corresponding to a turbulent boundary layer with an approximate thickness of 0.3H. The
inlet velocity has only one non-zero component, that is in the x1-direction. The velocity profile
can be seen in figure 12.

For the pressure p, Neumann boundary conditions are used for all patches except the outlet.
Here, the pressure is set to be equal to zero.

0 5 10 15 20 25 30

0

0.2

0.4

x 2/H

u
1
 (m/s)

Inlet velocity profile

Figure 12: The bottom part of the velocity profile for the inlet patch of the computational
domain. Note that the velocity profile is symmetric and has the same appearance near the top
of the domain.

The Reynolds number for this case, based on V∞, the height of the hill, H and the kinematic
viscosity of air, ν = 1.65 · 10−5 m2/s, is Re = 1.3 · 105.

7.1 Previous Research

This particular case has been extensively investigated by a number of computational research
groups such as Garcia-Villalba et al. [8], Krajnović [9] and Bensow et al. [2]. Most of the
previous research and the references therein for this case have relied on other turbulence models
than RANS, such as DES (Detached Eddy Simulation), LES (Large Eddy Simulation) and hybrid
LES-RANS. This master thesis builds upon results from the project course ”Scientific Computing
Advanced Course” at Uppsala University where this case was investigated, [10]. The primary aim
of that project was to compare the performance of the different turbulence models implemented
in OpenFOAM when simulating on one single wall refined mesh. One objective of the present
work is to compare results from running RANS models on different meshes, both wall refined
meshes and meshes generated on the basis of wall functions theory. The theory behind wall
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functions is presented in section 2.9. Another objective of this work was to try some model that
didn’t manage to converge to a steady solution during the project course at Uppsala University.
One of those models isthe LRR Reynolds stress tensor model. We now try this turbulence model
with better suited initial conditions for the Reynolds stress tensor.

7.2 Boundary conditions for the turbulent quantities

All the turbulence models that we used for the bump case, except the LRR model use the
turbulent kinetic energy, k and the dissipation ϵ to describe the turbulence. The boundary
conditions for k and ϵ are set to a constant value on the inlet patch. The values are 0.756 m2/s2

and 1.08 m2/s3 respectively.
For the top and bump patch, wall functions boundary conditions were used. For k it is set to

be ”kqRWallFunction” and simply acts as a Neumann boundary condition. For ϵ it is set to be
”epsilonWallFunction” and is calculated according to equation (2.55). For the outlet, left and
right patches, Neumann boundary conditions were used.

The LRR model needs boundary conditions for the Reynolds stress tensor. On the top and
bump patch, it is set to be ”kqRWallFunction”. The inlet condition for the Reynolds stress
tensor is computed from the boundary conditions for k and ui. For the outlet, left and right
patches, Neumann boundary conditions were used.

7.3 Mesh generation

Since many of the different RANS models implemented in OpenFOAM were tested and compared
to LES and LDV data during the project in the course ”Scientific Computing Advanced Course”
[10], one of the objectives of this master’s thesis was to run some of the best performing RANS
models from this project course on meshes that are better suited for the RANS type turbulence
models.

The mesh used in the course at Uppsala University consists of about 106 computational cells.
It is a structured mesh that has been refined near the wall boundaries to better resolve the
boundary layers and the flow near these regions. The number of cells in x1, x2 and x3-direction
is 69 × 119 × 119 respectively. The y+ value for this mesh is in the range between 1.9 and 4.1
for the bump patch. This mesh will in the following be referred to as Mr1 since it is used with
the bump case geometry and is refined near the wall boundaries.

The next mesh that was constructed has the same distribution of cells as the Mr1 mesh. The
only difference is that it has more cells in the x2 direction, giving it better resolution in this
direction. The number of cells in x1, x2 and x3-direction is 69× 239× 119 respectively. The y+

value for this mesh is in the range between 0.8 and 2.2 for the bump patch. This mesh will in
the following be referred to as Mr2.

Two other meshes were also constructed. They were constructed with the wall functions
approach in mind, aiming for y+ ≈ 30 at the bump patch. The first has the same number and
distribution of cells in the x1 and x3 direction as the Mr1 mesh. But instead of being refined
near walls in the x2 direction, the cells are uniformly distributed. The number of cells in the x2

direction for this mesh is 89. The y+ value for this mesh is in the range between 37 and 112
for the bump patch. This mesh will in the following be refered to as Mu1 since it has uniform
distribution of cells in the x2 direction.

The second mesh also has uniform distribution of cells in the x2 direction. Compared to the
Mu1 mesh, this mesh has 109 cells in the x2 direction. The refinement in this direction was made
to lower the y+ value to be closer to 30, to better agree with the wall functions theory. This
mesh was also refined in the x1 direction, to better resolve the separated flow behind the hill.
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Types of meshes for the bump case
Mesh Number of cells Range of y+ for the

bump patch
Mr1 977109 1.9 < y+ < 4.1
Mr2 1962429 0.8 < y+ < 2.2
Mu1 730779 37 < y+ < 112
Mu2 1802969 25 < y+ < 95

Table 5: Meshes used for the bump case together with values of y+. The y+ values are from
simulations with the realizable k − ϵ model.

The refinement in this direction also improved the ratio between height and width of the cells.
The number of cells in x1, x2 and x3-direction for this mesh is 139× 109× 119 respectively. The
y+ value for this mesh is in the range between 25 and 95 for the bump patch. This mesh will in
the following be referred to as Mu2.

The two different types of meshes are shown in figure 13. For an overview of the mesh
characteristics, see table 5. The y+ value for the different meshes, computed from simulations
using the realizable k − ϵ model is visualized in figure 14.

(a) (b)

Figure 13: Two different types of meshes showing the cells on the surface of the hill and in the
plane x3 = 0. The positive x1 direction is to the right. (a) The Mr1 mesh. Notice the refinement
of the mesh in the x2 direction near the hill. (b) The Mu2 mesh. Notice the uniform distribution
of cells in the x2 direction. Also notice the refinement in the x1 direction compared to the Mr1

mesh.

7.4 Short description of the physical experiment

Results from the LDV measurements by Byun and Simpson [1] states that there is no separation
in front of the bump but that the flow decelerates there and then accelerates until the top of
the bump. The mean flow on the lee side is closly symmetric around the centerline and complex
vortical separation occurs downstream from the top and merge into large-scale turbulent eddies
with two large streamwise vorticies. The flow along the streamwise centerline at x1/H = 3.63 is
a downwashing reattachment flow. The LDV experiment shows, with resulting velocity vectors
in the plane of x3/H = 0, that the mean location of separation is at x1/H = 0.96. A more
detailed description of the results from the LDV experiment and comparison with our results is
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(a) (b)

(c) (d)

Figure 14: Plots of y+ for the different meshes, computed from simulations with the realizable
k − ϵ model. (a) The Mr1 mesh. (b) The Mr2 mesh. (c) The Mu1 mesh. (d) The Mu2 mesh.

discussed in 7.9.

7.5 Results from the bump case simulations

All of the simulations on the different meshes that converged capture the magnitude of the
velocity quite reasonably in front of and on top of the bump, compared to the physical solution.
However, behind the bump, separation of the flow is not found for all simulations. In general,
the biggest difference is seen when comparing the results from the different meshes. When
comparing the results from different turbulence models on the same mesh, the difference is small.
The separation region is bigger for the wall refined meshes Mr1 and Mr2, compared with the
separation region found when using the Mu1 and Mu2 meshes . A summary of the models tested
and on which mesh they were tested is shown in table 6. Comparisons to the LDV measurements
and LES data are found in section 7.9.

Different meshes
Turbulence Model MBr1 MBr2 MBu1 MBu2

realizable k − ϵ x x x x
RNG k − ϵ x x
LRR x x

Table 6: Tested turbulence models and meshes for the bump case.
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7.6 The realizable k − ϵ model

This model was simulated on all the meshes described in section 7.3. All the meshes manage to
capture the flow separation. However, the size of the wake differ. The wake produced by the
simulations on the Mr1 and Mr2 meshes are thicker and the flow separation start further up on
the leeward side of the hill. The flow is also re-attached further away, for larger values of x1/H.
Two vortices are produced on all the meshes, but they are much bigger on the Mr1 and Mr2

meshes. The turbulent energy produced on the two types of meshes also differ. For the Mu1 and
Mu2 meshes, the maximum turbulent kinetic energy is less than half compared with k produced
on the Mr1 and Mr2 meshes. This is consistent with the fact that there should be larger values
of the turbulent kinetic energy where there are big eddies.

7.6.1 Results from simulation on the Mr1 mesh

As seen in figure 15 (a), the flow layer near the bottom of the domain decelerates before the
hill and then accelerates on the top to finally decelerate again on the leeward side of the hill.
On this mesh, the realizable k − ϵ captures the flow separation. The flow separation occurs at
x1/H = 0.51 and is re-attached around x1/H ≈ 2.24. This can be seen in figure 15 Two vorticies
turn upp on the leeward side of the hill and are almost symmetrically placed around the plane
x3/H = 0. This is shown in figure 16 (a).

(a) (b)

Figure 15: Results from the realizable k − ϵ model on the Mr1 mesh. (a) The magnitude of the
velocity at x3/H=0. (b) The velocity field in the wake on the leeward side of the hill at x3/H=0.
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(a) (b)

Figure 16: Results from the realizable k − ϵ model on the Mr1 mesh. (a) Streamlines of the
velocity in x1-direction through the line from [0.125 0.02 0.15] to [0.125 0.02 -0.15]. (b) The
turbulent kinetic energy k, at x3/H=0.

7.6.2 Results from simulation on the Mr2 mesh

On this mesh, the realizable k − ϵ captures the flow separation. Flow separation occurs at
x1/H = 0.40 and is re-attached around x1/H = 2.32. This can be seen in figure 15. Thus, the
separation occurs earlier and the flow is re-attatched later compared to the result on the Mr1

mesh. The separation region is also thicker compared with the result on the Mr1 mesh. Two
vorticies turn upp on the leeward side of the hill and are almost symmetrically placed around
the plane x3/H = 0. This is shown in figure 16 (a).

(a) (b)

Figure 17: Results from the realizable k − ϵ model on the Mr2 mesh. (a) The magnitude of the
velocity at x3/H=0. (b) The velocity field in the wake on the leeward side of the hill at x3/H=0.

39



(a) (b)

Figure 18: Results from the realizable k − ϵ model on the Mr2 mesh. (a) Streamlines of the
velocity in x1-direction through the line from [0.125 0.03 0.15] to [0.125 0.03 -0.15]. (b) The
turbulent kinetic energy k, at x3/H=0.

7.6.3 Results from simulation on the Mu1 mesh

The separation region is captured on this mesh. However, the region is both thinner and smaller
in the x1-direction compared with the results from the Mr1 and Mr2 meshes. Flow separation
occurs at x1/H = 1.30 and is re-attached at x1/H = 1.88. This can be seen in figure 19. Two
small vorticies turn upp on the leeward side of the hill and are almost symmetrically placed
around the plane x3/H = 0. This is shown in figure 20 (a).

(a) (b)

Figure 19: Results from the realizable k − ϵ model on the Mu1 mesh. (a) The magnitude of the
velocity at x3/H=0. (b) The velocity field in the wake on the leeward side of the hill at x3/H=0.
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(a) (b)

Figure 20: Results from the realizable k − ϵ model on the Mu2 mesh. (a) Streamlines of the
velocity in x1-direction through the line from [0.125 0.01 0.15] to [0.125 0.01 -0.15]. (b) The
turbulent kinetic energy k, at x3/H=0.

7.6.4 Results from simulation on the Mu2 mesh

The separation region is captured on this mesh. However, as on the Mu1 mesh, the region is
thinner and smaller in x1-direction compared with the results from the Mr1 and Mr2 meshes.
Flow separation occurs at x1/H = 1.43 and is re-attached around x1/H = 1.68. This can be
seen in figure 21. Two small vorticies turn upp on the leeward side of the hill and are almost
symmetrically placed around the plane x3/H = 0. This is shown in figure 22 (a).

(a) (b)

Figure 21: Results from the realizable k − ϵ model on the Mu2 mesh. (a) The magnitude of the
velocity at x3/H=0. (b) The velocity field in the wake on the leeward side of the hill at x3/H=0.
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(a) (b)

Figure 22: Results from the realizable k − ϵ model on the Mu2 mesh. (a) Streamlines of the
velocity in x1-direction through the line from [0.125 0.01 0.15] to [0.125 0.01 -0.15]. (b) The
turbulent kinetic energy k, at x3/H=0.

7.7 The RNG k − ϵ model

This model was simulated on the Mr1 and Mu2 meshes. Separation of flow is only found on the
Mr1 mesh. The turbulent energy produced on the two meshes also differ. On the Mu2 mesh, the
maximum turbulent kinetic energy is found on top of the hill and not on the leeward side of the
hill, as on the Mr1 mesh.

7.7.1 Results from simulation on the Mr1 mesh

On this mesh, the RNG k − ϵ model captures the flow separation. Flow separation occurs at
x1/H = 0.80 and is re-attached around x1/H = 2.07. This can be seen in figure 23 Two vorticies
turn upp on the leeward side of the hill and are almost symmetrically placed around the plane
x3/H = 0. This is shown in figure 24 (a).

(a) (b)

Figure 23: Results from the RNG k−ϵmodel on theMr1 mesh. (a) The magnitude of the velocity
at x3/H=0. (b) The velocity field in the wake on the leeward side of the hill at x3/H=0.

7.7.2 Results from simulation on the Mu2 mesh

On this mesh, the RNG k − ϵ model does not capture any separation of flow and no vortices or
eddies are captured.
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(a) (b)

Figure 24: Results from the RNG k− ϵ model on the Mr1 mesh. (a) Streamlines of the velocity
in x1-direction through the line from [0.125 0.01 0.15] to [0.125 0.01 -0.15]. (b) The turbulent
kinetic energy k, at x3/H=0.

(a) (b)

Figure 25: Results from the RNG k−ϵmodel on theMu2 mesh. (a) The magnitude of the velocity
at x3/H=0. (b) The velocity field in the wake on the leeward side of the hill at x3/H=0. Notice
that there is no recirculation or separation of flow.

7.8 The LRR model

When testing this model during the project course [10], we did not manage to get a convergent,
steady solution. This model was simulated on the Mr1 and Mu2 meshes. Like the RNG k − ϵ
model, separation of flow is only found on the Mr1 mesh.

7.8.1 Results from simulation on the Mr1 mesh

On this mesh, the LRR model captures the flow separation. Flow separation occurs at x1/H =
0.77 and is re-attached around x1/H2.03. This can be seen in figure 27. Two vorticies turn upp
on the leeward side of the hill and are almost symmetrically placed around the plane x3/H = 0.
This is shown in figure 28 (a).

7.8.2 Results from simulation on the Mu2 mesh

43



(a) (b)

Figure 26: Results from the RNG k− ϵ model on the Mu2 mesh. (a) Streamlines of the velocity
in x1-direction through the line from [0.125 0.01 0.15] to [0.125 0.01 -0.15]. (b) The turbulent
kinetic energy k, at x3/H=0.

(a) (b)

Figure 27: Results from the LRR model on the Mr1 mesh. (a) The magnitude of the velocity at
x3/H=0. (b) The velocity field in the wake on the leeward side of the hill at x3/H=0.

7.9 Comparison to LES and LDV data

Results of the LDV investigations of the flow around the hill were reportedby Byun and Simplso
2005, [1]. From their result, the flow in the x3 = 0 plane, is separated at x1/H = 0.96. Note
that not all of our simulations have flow separation. The x1 coordinate for the separation and
re-attachement points for each simulation is shown in table 7. If we look at the results from the
LDV-experiment in the plane x1/H = 3.69, there are two vortices centred at x3/H = ±1.35.
Some similar results can be found from a couple of our simulations. Some of our simulations show
strange results with vortices near and around the center line x3 = 0. These results primarily
occur on the Mr1 and Mr1 meshes and are not found in the LDV-experiment. The results from
our simulations in the plane x1/H = 3.69 can be seen in figure 34, 35, 36 and 37. The line plots
in figure 32 and 33 show the x1 and x3 components of the velocity, respectively, at x1/H = 3.69.
Note that these plots show the velocity components behind the separation region. Therefore, u1

is positive for all x2/H values in each plot. However, there are still vortices in this region, but
they appear in the x1 plane. The lines where data are taken are shown in figure 31.

The results for the x1 component of the velocity from our simulations are quite similar with
the LDV and LES data except some differences around x3 = 0.

If we look at the x3 component there is a clear distinction between our results. The flow
directions of the eddies are opposite compared with the LDV and LES data, for the results from
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(a) (b)

Figure 28: Results from the LRR model on the Mr1 mesh. (a) Streamlines of the velocity in x1-
direction through the line from [0.125 0.01 0.15] to [0.125 0.01 -0.15]. (b) The turbulent kinetic
energy k, at x3/H=0.

(a) (b)

Figure 29: Results from the LRR model on the Mu2 mesh. (a) The magnitude of the velocity at
x3/H=0. (b) The velocity field in the wake on the leeward side of the hill at x3/H=0.

Model and mesh Separation point,
x1/H

Re-attachment
point, x1/H

LDV 0.96 2.0
realizable k − ϵ,Mr1 mesh 0.51 2.24
realizable k − ϵ,Mr2 mesh 0.40 2.32
realizable k − ϵ,Mu1 mesh 1.30 1.88
realizable k − ϵ,Mu2 mesh 1.43 1.68
RNG k − ϵ,Mr1 mesh 0.80 2.07
RNG k − ϵ,Mu2 mesh − −
LRR, Mr1 mesh 0.77 2.03
LRR, Mu2 mesh − −

Table 7: Table of separation and re-attachment points for different models and LDV experiment.
Note that no obvious re-attachment point is found in the LDV-experiment.

simulations on the Mr1 mesh. The results from the Mu2 mesh is consistent with the reference
data in the direction of flow.
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(a)

Figure 30: Results from the LRR model on the Mu2 mesh. (a) Streamlines of the velocity in x1-
direction through the line from [0.125 0.01 0.15] to [0.125 0.01 -0.15]. (b) The turbulent kinetic
energy k, at x3/H=0.

Figure 31: The plane x1/H = 3.69 and lines where data are taken for the plots in figure 32 and
33.

7.10 Discussion and conclusions of the bump results

The results from the bump case were analysed and compared to both experiment- and LES-data.
Simulations with RANS models were made on the bump geometry during a course at Uppsala
University [10]. One of the aims with this work was to see if the results from some of the best
performing models that was produced there, could be improved with better adjusted meshes.

Three different RANS models were tested on this case: the realizable k − ϵ model, the RNG
k−ϵmodel and the LRR Reynolds stress tensor model. Two new types of meshes were developed.
The first type, more refined near the surface of the hill, compared with the mesh used at Uppsala
University. This new mesh is the Mr2 mesh and the mesh used at Uppsala University is the Mr1

mesh. When analysing the results from Mr2 mesh, no improvement could be seen. Rather the
reverse, the shortcomings in the results from the work at Uppsala University became worse, with
a larger separation region. Only the realizable k − ϵ model was tested on this new mesh. The
second type of mesh was developed to be better suited when using WFBC. The primary aim with
this mesh was to get y+ > 30 near and around the separation region. Two meshes of this type
were developed, the Mu1 and Mu2 mesh. The results from this type of mesh is very different
compared to the results on the wall refined mesh. The results from both the LRR Reynolds
stress tensor model and the RNG k − ϵ model on the Mu2 mesh show no separation at all. A
very thin separation bubble is only found from the realizable k − ϵ model. Among the tested
models, the realizable k− ϵ model is also the one producing the thickest separation region on the
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Figure 32: Comparison of RANS models, LES and LDV. Data is for six different values of x3/H.
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Figure 33: Comparison of RANS models, LES and LDV. Data is for six different values of x3/H.
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Figure 34: Plot of the magnitude and vector field of u2 and u3 in the plane x1/H = 3.69. Results
are from the realizable k − ϵ model on the Mr1 and Mu2 meshes respectively. The view is from
behind the hill, in the negative x1 direction.

Mr1 mesh.
When comparing our results from the Mr1 mesh with experimental and LES data in the

plane x/H = 3.69 we find major differences. Our RANS results show a pair of counter-rotating
vorticies near the center line x3/H = 0 that do not appear in the LES and experimental results.
However, our results on the Mu2 mesh show none or very small eddies in this region. These
results can be seen in figure 34.

The meshes developed to be used together with WFBC are to coarse near the boundary to
be able to resolve the thin separation zone, which is the biggest dissadvantage with this type of
mesh. One the other hand, It produces results in the plane x1/H = 3.69 that coincide with the
LES and LDV results. This might be because the mesh is adjusted for the boundary conditions
used and the fact that the eddie motions occur far away from the wall; the coarseness of the
mesh is not an issue here.

Improvements for the bump results could be to use a mesh that produces y+ values below 1
together with constant boundary conditions for k and ϵ. This mesh should be refined enough to
resolve the gradients of the turbulent quantities near walls.

Other improvements could be to use a mesh that is very refined in the region behind the hill
where the separation occurs and less refined in regions where there is less turbulence. Using this
typ of mesh, one should use boundary conditions that switch between WFBC type and constant
values of k and ϵ, depending on the local value of y+. This approach could be useful since it
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Figure 35: Plot of the magnitude and vector field of u2 and u3 in the plane x1/H = 3.69. Results
are from the realizable k − ϵ model on the Mr2 and Mu1 meshes respectively. The view is from
behind the hill, in the negative x1 direction.

reduces the computational effort, having refined mesh only where it is necessary.
The best performing model on the bump geometry is the realizable k− ϵ model with WFBC

together with the Mu1 mesh. The results from this simulation coincide with the LES and LDV
results in the plane x1/H = 3.69, and the separation region is also captured, but is to small in
the streamwise direction.

8 Summary and general conclusions

In this work, the standard two equation k−ϵ turbulence model is presented. The RANS equations
and the equation for the turbulent kinetic energy are derived from the Navier-Stokes equations.
The theory of wall flow is also investigated together with turbulence modelling near walls. The
implementation of the k − ϵ model and the near walls turbulence modelling in OpenFOAM are

investigated. We found that the term − ∂
∂xj

(
(νT

σϵ
) ∂ϵ
∂xj

)
from the k−ϵ theory of [3] is implemented

a bit different, namely − ∂
∂xj

(
(ν + νT

σϵ
) ∂ϵ
∂xj

)
.

The RANS turbulence models were simulated on two different geometries and the result was
analysed.

The results from the RANS turbulence models in this work depend on the meshes and on the
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Figure 36: Plot of the magnitude and vector field of u2 and u3 in the plane x1/H = 3.69. Results
are from the LRR Reynolds stress tensor model on the Mr1 and Mu2 meshes respectively. The
view is from behind the hill, in the negative x1 direction.
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Figure 37: Plot of the magnitude and vector field of u2 and u3 in the plane x1/H = 3.69. Results
are from the RNG k−ϵ model on the Mr1 and Mu2 meshes respectively. The view is from behind
the hill, in the negative x1 direction.
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type of boundary conditions used for the turbulent quantities. More work to fully understand
which combination of mesh and type of boundary conditions to use could improve the results.
Which type of turbulence models to use when not using WFBC could also be interesting and
improve the results. Overall improvements could probably be achieved for both the cases if more
effort was put to design meshes.

My recomendation from this study is to use the realizable k− ϵ model together with WFBC
and a mesh that is suited for these types of boundary conditions.
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