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Abstract – We consider stand still detection for in-
door localization based on observations from a foot-
mounted inertial measurement unit (IMU). The main
contribution is a statistical framework for stand-still de-
tection, which is a fundamental step in zero velocity
update (ZUPT) to reduce the drift from cubic to lin-
ear in time. First, the observations are transformed
to a test statistic having non-central chi-square distri-
bution during zero velocity. Second, a hidden Markov
model is used to describe the mode switching between
stand still, walking, running, crawling and other possi-
ble movements. The resulting algorithm computes the
probability of being in each mode, and it is easily ex-
tendable to a dynamic navigation framework where map
information can be included. Results of first mode prob-
ability estimation, second map matching without ZUPT
and third step length estimation with ZUPT are pro-
vided.

Keywords: Indoor localization, stand still detection,
HMM, ZUPT

1 Introduction
The problem of indoor localization has received an in-

creasing amount of attention in the last couple of years
[1, 2, 3, 5, 4, 8]. The desire to accurately track the
position of first responders or military personel, or to
provide a positioning aid for civilians in shopping malls
and airports, has led to a transition from robot sensor
platforms to human ones.

To track a person, a variety of sensors can be used. A
foot or body mounted IMU with accelerometers, gyros
and magnetometers is simple and cheap and is therefore
a very common sensor. It is usually supported by a
range measuring radio device such as WiFi or UWB [8]
or is fused with preexisting maps for enhanced tracking
precision [8].

The IMUs used for indoor localization are small and
cheap and consequently perform quite poorly. There is
commonly a drift in the gyros causing the orientation
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Figure 1: Localization experiment without ZUPT. Red
dots are the position hypotheses and the blue dot and
line is the mean position and the heading measurement,
respectively. The lack of ZUPT means that we have a
large step length uncertainty, which causes the hypothe-
ses to spread all along the corridor.

estimate to be incorrect. Since the orientation is wrong,
the direction of down is wrong and a part of the gravita-
tional acceleration will instead be believed to originate
from the user moving the sensor. This error is dou-
ble integrated to estimate the sensor position, resulting
in a position error that grows cubically in time. This
rapidly causes very large positioning errors. The gyro
drift in a foot mounted IMU can be corrected if we can
detect that the foot is on the ground. Then the foot is
stationary and the gyro should be showing zero angular
velocity. Instead it is showing the drift which can be
estimated and then compensated for. This is known as
ZUPT and reduces the positioning error to being linear
in time [3].

Previously, stand still detection has been performed
ad hoc, usually by comparing the signal to a threshold.
In this work we put the stand still detection in a proba-
bilistic framework using test statistics with known dis-



tributions and a Hidden Markov Model (HMM). The
result is a probability of stand still at every time instant
which can be used for ZUPT in a filtering framework.

Figure 1 shows an illustrative example of a map aided
localization experiment without ZUPT. No stand still
detections results in very uncertain step length esti-
mates causing the position hypotheses to spread all
along the corridor.

2 Related Work
Most solutions to the stand still detection problem

use an averaged accelerometer or gyro value and com-
pare it to a threshold [1, 2, 3, 5]. The threshold is
chosen ad hoc and is normally quite low to minimize
false positives. Another approach is the moving vari-
ance used in [4] where the variance computed over a
sliding window is compared to a threshold.

Probabilistic zero velocity detection has previously
been proposed in [6] who used a hypothesis test to de-
termine if the foot was stationary or moving. The hy-
pothesis test was performed using a test statistic based
on a Generalized Likelihood Ratio Test (GLRT). The
pdf of the acceleration and/or the angular velocity dur-
ing the swing phase of the step, was approximated with
an unnormalized uniform distribution. The pdf during
stand still was based on the exponential of the norm
of the acceleration and/or the angular velocity, which
has an unknown distribution. The resulting test statis-
tic was a moving average of the norm of the acceler-
ation measurements and/or the angular velocity mea-
surements. This was compared to a threshold to deter-
mine if the foot was to be rendered stationary. Since
the test statistic has an unknown distribution the thres-
hold was chosen ad hoc, making the framework similar
to the ones in [1, 2, 3, 5].

The test statistics used in [6] are similar to the ones
used in this work since we both evaluate three differ-
ent ones where one is acceleration based, one is angular
velocity based and one is based on a combination of ac-
celeration and angular velocity. The acceleration based
test statistic differs though in that we have chosen one
which has a known distribution. This is also the case
in the combined test statistic. Our framework to deter-
mine the mode probabilities also differs.

3 Stand Still Detection
The sensor is an Xsens MT motion sensor sampling

at 100 Hz. The signals used are the accelerometers and
the gyros. An example of a walking sequence is shown
in Figure 2. The foot is stationary in the time instants
around 550, 660, 770, 870 and 980. During these phases
the norm of the accelerometer signals is the gravitation
constant with noise. Simultaneously, the norm of the
angular velocity signal is zero with some additive noise.
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Figure 2: Example of accelerometer data (where x, y
and z is blue, green and red) and gyro data (ωx, ωy

and ωz is blue, green and red, ωi is angular rotation
rate around axis i) during a walking sequence. The
foot is stationary around time instants 550, 660, 770,
870 and 980.

3.1 Sensor Models

The signal model is

yt =

[
ya
t (θ)

yω
t (θ)

]
+

[
va
t

vω
t

]
(1)

where ya
t and yω

t denote acceleration vector and an-
gular velocity vector, respectively. Further, θ denotes
the model dependence of the phase of the human step
sequence. Naturally, the model differs significantly be-
tween when the foot is at a stand still and when it is
swinging.

The measurements have additive Gaussian noise dis-
tributions va ∼ N(0,σ2

a) and vω ∼ N(0,σ2
ω). The

noise covariances are independent, resulting in σ2
ω =

σ2
ωI and σ2

a = σ2
aI, where I is the 3x3 identity matrix.

During stand still the sensor model can be described
as [

ya
t

yω
t

]
=

[
gu
0

]
+

[
va
t

vω
t

]
, (2)

where u is a gravitational direction vector and g is the
gravitational constant 9.81. When the foot is moving
the sensor model changes to[

ya
t

yω
t

]
=

[
gu + at
ωt

]
+

[
va
t

vω
t

]
(3)

where at and ωt have unknown distributions.

The problem is to safely distinguish between these
two modes, stand still and swing. It is most important
to minimize the stand still false positives, i.e. calling a
stand still when the foot is in midair.



3.2 Test Statistic

To be able to differentiate between the two modes,
test statistics with known distributions are computed.
Three different ones are evaluated, one using only the
accelerometer data, T a, one using only the angular ve-
locity data, Tω, and one using a combination of both
accelerometer and angular velocity data, T c.

3.2.1 Acceleration Magnitude Detector

The accelerometer magnitude detector test statistic
is computed as

T a
t =

‖ya
t ‖2

σ2
a

(4)

where T a ∼ χ2(3, λ) during stand still. It has a noncen-
tral chi-square distribution since ya

t has nonzero mean
when the foot is stationary. Its noncentrality parameter
λ = g2/σ2

a and 3 is the number of degrees of freedom.

3.2.2 Angular Rate Magnitude Detector

The angular velocity test statistic is

Tω
t =

‖yω
t ‖2

σ2
ω

(5)

where Tω ∼ χ2(3) during stand still since yω has zero
mean when the foot is stationary.

3.2.3 Combined Acceleration and Angular
Rate Detector

The last test statistic combines acceleration and an-
gular velocity to incorporate more information. It is
calculated as

T c
t =
‖ya

t ‖2

σ2
a

+
‖yω

t ‖2

σ2
ω

(6)

where T c ∼ χ2(6, λ) during stand still. λ is the same as
in (4) but the number of degrees of freedom has doubled
to 6.

3.3 Test Statistic Appearance during
Walking Sequence

A plot of the test statistics of the walking sequence
in Figure 2 can be seen in Figure 3. The stand still
events occuring around time instants 550, 660, 770, 870
and 980 are clearly visable. Figure 4 shows a zoom in
of the test statistic with the mean of the stand still
distribution marked with a dotted line. This reveals
some of the problems with using only acceleration for
stand still detection.

The test statistic T a has a movement distribution
that has a significant overlap of the stand still distribu-
tion, causing the test statistic to cross the mean of the
stand still distribution during the stride. This is shown
around time instants 530, 615, 630, 710, 750, 825 and
935. Simply calling a stand still when T a is close to the
mean of the stand still distribution will therefore cause
a lot of false positives.
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Figure 3: Test statistic from top to bottom; T a
t , Tω

t

and T c
t . The foot is stationary around time instants

550, 660, 770, 870 and 980.
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Figure 4: Zoom in of the test statistics with the mean of
the stand still distribution marked with a dotted line.
The foot is stationary around time instants 550, 660,
770, 870 and 980.

Tω has a distribution during movement that does not
have a significant overlap of the stand still distribution,
making Tω a safer test statistic than T a to use for stand
still detection. Still, there are two occasions during the
stride where the foot is quite stationary considering the
angular velocity; one just after the foot has been lifted,
in Figure 4 shown around time instants 600, 710, 815
and 920, and one just before set down shown at time
instants 525, 635, 745 and 960. These can result in false
positives.

The third test statistic T c combines the strengths of
T a and Tω. The bottom plot in Figure 4 shows that the
foot does not appear stationary during the stride when
you look at acceleration and angular velocity simulta-
neously. This results in a robust stand still detection.



4 Test Statistic Distribution Val-
idation

The test statistics must be validated to ensure that
the distribution of the test statistic under experimental
stand still is close to the theoretical stand still distri-
bution. We also estimate the distribution of the test
statistic under experimental movements to illustrate
the empirical probability density functions of stand still
and movement that need to be separated.

4.1 Acceleration Magnitude Detector

The distributions of the acceleration magnitude test
statistic T a is shown in Figure 5. The theoretical and
the empirical stand still distributions have similar mean
but slightly different covariances. One of the reasons
why the empirical density has a smaller covariance than
the theoretical one, could be that we have been a bit
too meticulous selecting the stand still data. Note also
the significant overlap of the probability distributions
of stand still and movement. That makes it difficult to
safely identify stand stills by only looking at T a.
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Figure 5: Theoretical stand still distribution of T a, em-
pirical estimate of stand still distribution of T a from
experimental data and empirical estimate of movement
distribution of T a from experimental data.

4.2 Angular Rate Magnitude Detector

The distributions of Tω is shown in Figure 6. Clearly,
the theoretical stand still distribution is very similar
to the empirical one, estimated by experimental data.
Also note the large separation in magnitude of the em-
pirical stand still and moving distributions. This en-
ables more robust stand still detection than the distri-
butions of T a.
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Figure 6: Theoretical stand still distribution of Tω, em-
pirical estimate of stand still distribution of Tω from
experimental data and empirical estimate of movement
distribution of Tω from experimental data.

4.3 Combined Acceleration and Angu-
lar Rate Detector

The combined test statistic naturally has distribu-
tions that look like combinations of the distributions of
T a and Tω. The empirical stand still distribution has
a similar mean but a slighly smaller covariance com-
pared to the theoretical distribution. The empirical
movement distribution does not overlap the stand still
distributions as much as for T a, enabling safer stand
still detection.
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Figure 7: Theoretical stand still distribution of T c, em-
pirical estimate of stand still distribution of T c from
experimental data and empirical estimate of movement
distribution of T c from experimental data.



5 Hidden Markov Model
To determine the probability of stand still, a Hidden

Markov Model (HMM) is used. It determines the prob-
ability of each mode using the test statistic, the prob-
ability density functions of the modes and the mode
transition probability matrix.

There are two modes; mode 1 when the foot is at a
stand still and mode 2 when the foot is moving. The
mode transition probability matrix states the proba-
bility of a mode switch which induces some dynamics
into the probability estimation. A lower mode transi-
tion probability requires a measurement with a higher
likelihood for the other mode to induce a switch.

The mode transition probability matrix is

Π =

[
0.95 0.05
0.05 0.95

]
(7)

which states that the probility of going from stand still
to moving or vice versa, is 5%. During normal walking
your right foot takes about one step per second which
results in roughly 2 mode transitions every 100 mea-
surements. The transition probabilities were chosen
slightly higher to incorporate also faster movements.

The mode probabilities at time t are calculated using
the recursion

µi
t = P (rt = i|yt)

∝ p(yt|rt = i)P (rt = i|yt−1)

= p(Tt|rt = i)

Nr∑
j=1

Πjiµ
j
t−1. (8)

Hence we have

µi
t =

p(Tt|rt = i)
∑Nr

j=1 Πjiµ
j
t−1∑Nr

l=1 p(Tt|rt = l)
∑Nr

j=1 Πjlµ
j
t−1

. (9)

The probability density function of movement used in
the HMM is an approximation that is set to resemble
the empirical movement density functions in Figures 5,
6 and 7. The HMM framework thus gives the probabil-
ity of movement and stand still for each time instant.
This framework can be extended to other modes like
running and crawling, simply by extending the mode
transition probability matrix by incorporating these
new modes and estimating the probability densities for
these movements too.

6 Experimental Results
The mode probabilities provided by the HMM of the

data sequence in Figure 2 is shown in Figure 8. All three
test statistics have been used to illustrate the difference
in stand still detection performance.

The acceleration based test statistic T a suffers from
false positives around some of the troublesome time in-
stants mentioned in Section 3.3; 615, 710, 750, 825 and
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Figure 8: Mode probabilities for the different test statis-
tics, evaluated on the data set in Figure 2. The foot is
stationary around time instants 550, 660, 770, 870 and
980.

935. The framework does not call it a stand still after
the first troublesome measurement, but after a couple
of measurements close to the stand still mean the HMM
assumes the foot is at rest.

The angular velocity based test statistic Tω gives a
distict detection of every foot stance. The stationary
moment is rather short but is often followed by a shorter
second stationary moment. Figure 4 shows that this is
because there is commonly a slight angular movement
halfway through the deemed stationary part. This sec-
ond stationary moment provides no new information
and only the first detection is necessary to perform
ZUPT. No false positives occur during the stride phase
of the step.

The combined test statistic T c provides very safe
stand still detections. A long interval when the foot
is at rest is deemed stationary and there are no false
positives.

A second data set is constituted of a running phase
followed by a walking phase, see Figure 9. The subject
is running up until around time instant 1000. The foot
is stationary around time instants 725, 810, 900, 1015
and 1130, the last two are during walking. The mode
probabilities provided by the HMM of this sequence is
shown in Figure 10. The same movement distribution
was used during this whole experiment.

T a does not provide any reliable stand still detec-
tions. The foot stances are detected, but a lot of false
positives are also present. This is not surprising con-
sidering the accelerometer data in Figure 9. The gyro
based Tω does not result in any stand still detections
at all during the running phase. This is a bit surprising
since the gyro data looks pretty comprehendable and is
probably because the IMU was fastened on the side of
the foot where only very short periods of low angular
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Figure 9: Example of accelerometer and gyro data dur-
ing a sequence containing running, 650 – 1000, followed
by walking, 1000 – 1150. The foot is stationary around
time instants 725, 810, 900, 1015 and 1130. The data
has the same color encoding as in Figure 2.

velocity are experienced.
The combined test statistic T c still provides quite

safe stand still detections. It picks up all the stand
still sequences revealed by acceleration but manages to
disregard the false ones using the angular velocity mea-
surements. Here, the combined test statistic has shown
to provide the most robust stand still detection.

Further walking experiments reveal the stand still de-
tection performance shown in Table 1. All 174 true
stationary phases were detected, but also some false
positives. The acceleration based test statistic has a
false positive between pretty much every step. Most
false positives of the T c statistic occur during sequences
when small movements are performed like when a door
is opened. During walking, Tω gives very few false pos-
itives and is the safest stand still detector.

T a Tω T c

Stand stills detected 174 174 174
False positives 169 2 15

Table 1: True detected stationary phases and false de-
tected stationary phases. 174 steps were taken.

6.1 Step Length Estimation

The foot mounted IMU has a coordinate system fol-
lowing the moving foot. In order to estimate the step
length, the orientation of the foot in world coordinates
is described by the unit quaternion q. This relates the
measured accelerations ya

t and angular velocities yω
t to

movements and heading changes in the world coordi-
nates. A filter with the states p and v for position and
velocity in world coordinates and q can now be used
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Figure 10: Mode probabilities for the different test
statistics during the running followed by walking se-
quence. The foot is stationary around time instants
725, 810, 900, 1015 and 1130.

to estimate the length of each step. For a thorough
description of the dynamical model, see [7].

A short experiment of 6 steps covering 5.0 meters
was performed to evaluate the step length estimation
performance. Stand still was detected using the gyro
based test statistic and ZUPT was performed. Fig-
ure 11 shows the estimated movement in world coordi-
nates. Total step length was estimated as 4.7 meters
rendering a step length estimation error of 6%.
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Figure 11: Movement estimation in world coordinates.
6 short steps were taken with a total length of 5.0 me-
ters.

7 Conclusions and Future Work
Three test statistics with known distributions have

been evaluated for stand still detection. The one based
on accelerometer data only, has been shown to provide



plenty of false detections. This is natural since there
is a significant overlap between the test statistic pdf
during stand still and the pdf during movements. The
gyro based has been shown to provide excellent stand
still detection capabilities during walking while the one
combining accelerometer and gyro data has been shown
to provide good stand still detection during both walk-
ing and running. In conjunction with a Hidden Markov
Model, the mode probabilities are readily calculated
and can be used for zero velocity updates.

Future work includes extending the HMM framework
to incorporate more modes and to merge the stand still
detection with our localization framework. We will also
look into whether the stationary phases detected using
T c are unnecessarily long for ZUPT. What we want
to detect is gyro drift when the gyro is stationary and
what we detect is when the combination of gyro and
accelerometer is stationary. It is not necessarily the
same thing. Further research is needed to decide when
to perform the zero velocity update based on T c.
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