

Sending and Receiving Data between Mobile
and Data Logger

Nanda Kishore Abbaraju

ELECTRICAL ENGINEERING

Postadress: Besöksadress: Telefon:

Box 1026 Gjuterigatan 5 036-10 10 00 (vx)
551 11 Jönköping

Informationsutbyte/överföring från
datalogger till mobiltelefon (via bluetooth)

 Nanda Kishore Abbaraju

Detta examensarbete är utfört vid Tekniska Högskolan i Jönköping inom
ämnesområdet elektroteknik. Arbetet är ett led i teknologie
magisterutbildningen med inriktning inbyggda elektronik- och datorsystem.
Författarna svarar själva för framförda åsikter, slutsatser och resultat.

Handledare: Joakim Staberg
Examinator: Youzhi-Xu

Omfattning: 20 poäng (D-nivå)

Datum:

Arkiveringsnummer:

i

Abstract

The goal of this project is to develop Mobile application using Bluetooth API

to communicate with Data Logger and to receive the data and display on the

screen. Special option should be created for the user to send the received data

to web server. Main issue of using Bluetooth is to replace cables and low cost.

The results show the temperature values for every received byte from Data

Logger on mobile screen. This thesis explains about Bluetooth, J2ME, java API

for Bluetooth and necessary infrastructure to develop mobile applications

using Bluetooth for communicating with Data Logger.

Sammanfattning

ii

Sammanfattning

Målet med detta examensarbete är att utveckla en mobil applikation där en

handburen enhet, i detta fall en mobiltelefon, använder ett Bluetooth API som

kommunicerar med en datalogger för att hämta temperaturdata och

visualisera på mobiltelefonens skärm. Från telefonen skall möjligheten finnas

att publicera informationen på en webbserver.

Orsaken till att Bluetooth används är dess möjligheter att skapa ett trådlöst

system till en låg kostnad. Informationen som visas på telefonens skärm är all

temperaturdata som hämtats från dataloggern vid ett tillfälle.

Examensarbetet behandlar; Bluetooth, J2ME, java, Bluetooth API och övriga

gränssnitt som krävs för att skapa denna typ av applikation.

Acknowledgements

iii

Acknowledgements

 I find myself overwhelmed in offering my parents all my thanks in dedicating this

thesis to them.

 First of all I would like to thank Joakim Staberg for giving me the opportunity to

work with this thesis. I would like to thank to my brother Praveen who has been a

great support all through this work. Also I would like to thank my parents

Satyanarayana and Kameswari for their patience, moral support and understanding

allowed me to complete this thesis.

 Thanks to Joakim Staberg and Evgueni rabotchi who helped me all the time of this

thesis.

Thanks to all my friends who were far away from me, still providing me the

confidence, encouragement throughout the thesis.

To each of the above I extend my deepest appreciation. Thank you for all your

support and guidance.

Key words

iv

Key words

Data Logger, Bluetooth, MIDlet, J2ME, RFCOMM.

Contents

v

Contents

1 Introduction .. 1

1.1 PURPOSE/OBJECTIVES ... 3
1.2 THESIS OUTLINE .. 3

2 A brief introduction to Bluetooth ... 4

2.1 BACKGROUND ... 4
2.2 BLUETOOTH ARCHITECTURE ... 5
2.3 PICONET .. 6
2.4 L2CAP (LOGICAL LINK CONTROL AND ADAPTATION PROTOCOL) LAYER 7
2.5 RFCOMM ... 8
2.5.2 MULTIPLE EMULATED SERIAL PORTS ... 9
2.5.3 LIMITATIONS OF USING RFCOMM .. 10
2.5.4 CLIENT CONNECTIONS USING RFCOMM PROFILE ... 10
2.6 DEVICE DISCOVERY ... 10
2.7 SERVICE DISCOVERY .. 11
2.8 BLUETOOTH PROFILES .. 12

3 Development tools .. 15

3.1 J2ME ... 16
3.1.1 CONFIGURATIONS AND PROFILES ... 17
3.1.2 CONNECTED LIMITED DEVICE CONFIGURATION (CLDC) .. 17
3.3 MIDLET .. ERROR! BOOKMARK
OT DEFI
ED.
3.3.1 MIDLETS DEPLOYMENT ... 21
3.3.2 LOCAL DEPLOYMENT ... 21
3.3.3 REMOTE DEPLOYMENT .. 21
3.3.4 OTA OVER THE AIR .. 22

4 Implementation .. 22

4.1 SOFTWARE TOOL ... 22
4.2 DATALOGGER ARCHITECTURE ... 23
4.3 SMARTPHONES .. 23
4.4 SENDING DATA TO WEB SERVER FROM MIDLETS ... 37

5 Demonstration and some test results .. 38

5.1 DEMOSTRATION .. 38
5.2 NETWORKING DISTANCE ... 40
5.3 CO-CHANNEL INTERFERENCE ... 43

6 Conclusion and discussions .. 45

References .. 46

Appendix 1 .. 47

Appendix 2 .. 48

List of Figures

vi

List of Figures

Figure 1.1 System construction and scenario of applications

Figure 2.1 Bluetooth protocol stack

Figure2.2 Pico net

Figure 2.3 Scatter net

Figure 2.4 L2CAP with protocol layers

Figure 2.5 RFCOMM Reference model

Figure 2.6 Multi Emulated serial Ports

Figure 3.1 Shows the J2ME architecture

Figure 3.2 CLDC position in J2ME architecture

Figure 3.3 Midlet architecture overview

Figure 3.4 Message Frame

Figure 4.1 Nokia N73

Figure 4.2 Screen displaying menu buttons

Figure 4.3 Mobile screen displaying stop command.

Figure 4.4 Screen displaying discovered devices

Figure 4.5 Waiting for permission to requests from Data Logger

Figure 4.6 Receiving communication connect with Data logger

Figure 4.7 Message Frame

Figure 4.8 Sequence diagram for communicating with data logger.

Figure 4.9 Screen displaying no of bytes Received from data logger

Figure 4.10 Mobile screen displaying permission to Temperature

Figure 4.11 Waiting for user connect to web server.

Figure 5.1 Received data from Data Logger

 Table 2.1 List of Bluetooth Profiles

 Table 4.1 List of mobile manufactures providing Bluetooth facality
 Table 4.2 Requests and Feedbacks of Data logger

 Table 5.1 Temperature values after converting input readout bytes

 Table 5.2 Results when Data Logger is placed in box.

 Table 5.3 Results when Data Logger placed in Fridge.

 Table 5.4 Results when Data Logger placed in open environment.

List of Abbreviations

vii

List of Abbreviations

 CLDC Connected Limited Device Configuration

 GCF Generic Connection Framework

 J2ME Java 2 Micro Edition

 L2CAP Logical Link Control and Adaption Protocol

 MIDP Mobile Information Device Profile

 SDDB Service Discovery Database

 GAP Generic Access Profile

 JABWT Java APIs for Bluetooth Wireless Technology

 MID Mobile Information Device

 RFCOMM Radio Frequency Communication

 SPP Serial Port Profile

 SDP Service Discovery Protocol

 UUID Universally Unique Identifier

 WTKs Wireless Toolkits

 HCL Host controller interface

introduction

1

1 Introduction

Wireless technologies are more popular in the world. Consumers are attracted

towards the wireless technologies. Day by day new wireless technologies are in the

market. For the period of the last few years the IEEE 802.11 technologies have in

progress to spread rapidly. The Bluetooth wireless technology is also spreading

quickly.

 Bluetooth chipsets are mostly used in mobile devices. Bluetooth technology is

spreading rapidly due to general needs of mobile phones. Concurrent exchange of data

can be done using Bluetooth. Bluetooth does away with wired cabled connections

such as serial, parallel, and USB. Bluetooth was developed for small data transfers

and for voice communications. This makes it an excellent for using in peripherals

devices such as wireless microphones, headsets, mice, keyboards and mobile

handsets.

Wi-Fi was generally developed to transmit large amounts of data. There are so many

ways were Bluetooth is used to enhance our daily lives. It is used for entertainment

value of playing games head to head in multiplayer.

Java enabled mobile phones have previously been on the market for a few years. Few
years ago java Application are not very sophisticated in the market. In software and

hardware industry, games are playing major role in the development of both hardware

and software due to this java games are targeting mobile devices.

Applications running on the Java platform access Bluetooth through the Java APIs for

Bluetooth Wireless Technology. As more Bluetooth-enabled devices enter into the

market, we can expect to see greater support for Java-based Bluetooth programming.

The J2ME Wireless Toolkit [8] supports JSR 82 which makes Bluetooth development

and testing much simpler. The toolkit not only includes the necessary APIs to compile

programs, it also lets us to test Bluetooth functionality without Bluetooth hardware.

Motivation of the project is to develop communication system to send and

receive data without wires. As Bluetooth is a wireless communication

technology and majority of Bluetooth chips are using in cell phones this

master thesis uses Bluetooth enabled cell phones to communicate with Data

Logger.

My main contribution in this project is to develop mobile application using

Bluetooth to communicate with Data Logger and receive data from Data

Logger and display it on screen and also to send the received data to web

server.

Introduction

Below Fig 1.1 is the system construction which showing that Data Logger has

Bluetooth enabled which communicates with Mobile which has Bluetooth

enable in it ,after communicating mobile receives data from Data Logger and

displays received data in Mobile screen. The received data is sent to web

server using GPRS. Data can also send to PC using RS232 or using Bluetooth

to display it in PC or can be send to web server through PC.

Figure 1.1 System construction and scenario of applications

In this project i used Bluetooth to communicate with Data Logger because

with a Bluetooth radio and antennae can communicate to each other with

little or no preparation but Wi-Fi and Zigbee which require adapters, routers,

gateways, access points and synchronized setup schemes to connect devices.

Wireless LAN is also another solution to communicate with Data Logger. Texas

Instruments developed mobile WLAN that are designed to meet handset

requirements such as low power modes to conserve battery life, reduced size to fit into

small handset designs, and low cost to enable mass market mobile WLAN-enabled

handsets. When compared to cost Bluetooth is less economic. ZigBee mobile devices

include mobile telephones and personal digital assistants with embedded ZigBee

technology or using a ZigBee SIM card. These devices act as a mobile terminal and

PC

 PC RS22
Telephone

channel to send

data to web

Bluetooth/WLA

Display

on

Mobile

screen

Embedded

Bluetooth

 Mobile Telephone

Introduction

3

as a sensor control device everyplace there is a ZigBee network or ZigBee access

point. Peer-to-Peer Small Data Sharing is available in ZigBee. Small files such as ring

tones, images, address book contacts can be shared easily between two ZigBee-

enabled mobile devices

1.1 Purpose/Objectives

The main objective of the project is to develop Bluetooth application for

mobile devices to communicate with Data Logger and receive data. The data

received should be displayed on screen and special option should be created

to send the received data from Data Logger in mobile to web server.

1.2 Thesis outline

Chapter 2 describes the theoretical background about the Bluetooth. Chapter

3 gives you brief description about J2ME and API’s which I used to develop

mobile application. Chapter 4 describes about implementation of sending and

receiving data between mobile and Data Logger and demonstrates the

complete procedure for getting the output. Chapter 5 shows the results and

chapter 6 follows conclusions from the results obtained.

4

2 A brief introduction to Bluetooth

2.1 Background

Bluetooth is a wireless communication protocol which is use for short

distances and in low power consumption devices. Bluetooth can be used to

communicate to two are more other Bluetooth capable devices. Bluetooth is

like any other communication protocol that we use every day like HTTP, FTP,

SMTP, or IMAP. Bluetooth is also like these protocols in that it has client-

server architecture. In Bluetooth the one who initiates the connection is the

master, and the ones who receive the connection are the slaves.

It was developed by the Swedish phone maker Ericsson in 1994. Bluetooth

communications operate in an unlicensed ISM band at 2.4 GHZ. Bluetooth is

capable of communicating up to 30 feet at 1 Mb/s in an Omni-directional

manner. It works like a radio. Bluetooth is far better to infrared because

infrared requires a distance of a few feet or less and requires a line of sight for

transmissions.

Bluetooth and 802.11b is created for two different goals. These both

technologies operate in same frequency band: 2.4GHz. The goal of wireless

LAN (802.11b) is to connect to two relatively large devices that have large of

power at high speeds. Wireless LAN (802.11b) is used to connect two laptops

within 300 feet at 11 Mb/s. Bluetooth is developed to connect smaller devices

like PDAs and mobile phones. Bluetooth is also intended to be used as cable

replacement technology. It is great to connect two PCs at moderate speed.

The Bluetooth standard was published by an industry known as the Bluetooth

SIG (special interest group). SIG is responsible for expansion of Bluetooth

standards .Sony Ericsson, Intel, IBM, Toshiba, Nokia, Microsoft, 3COM, and

Motorola are some of the companies involved in the SIG. Microsoft supports

Bluetooth in their Microsoft Windows Operating System (OS), hence,

Bluetooth software is made available to the vast majority of the desktop

software market. Both Nokia and Sony Ericsson consist of Bluetooth

technology in their latest cell phones.

Bluetooth supports list of application like audio, graphics, and video. For

example, audio devices can contain headsets, cordless and standard phones,

home stereos, and digital MP3 players.

5

2.2 Bluetooth architecture

Bluetooth is define as a layered protocol architecture consisting of core

protocols, cable replacement and telephony control protocols, and adopted

protocols. Bluetooth is both a hardware-based radio system and a software

stack that specifies the linkage between layers. The heart of the Bluetooth

specification is the Bluetooth protocol stack.

 Figure 2.1 Bluetooth protocol stack

The Bluetooth stack is made up of many layers, as shown in Fig 2.1. The HCI is

typically the layer separating hardware from software and is implemented in

Software and hardware/firmware. The layers below the HCI are regularly

implemented in hardware and the layers above the HCI are usually

implemented in software. Below u can find short description of each layer.

 Radio - modulate and demodulates data for transmission and reception on

air.

6

 Baseband - Concerned with connection establishment within a pioneer,

addressing, packet format, timing, and power control.

 Link manager protocol (LMP) Handles communication between and the

Bluetooth

 module

2.3 Piconet

A piconet is the usual form of a Bluetooth network and is made up of one master and

One or more slaves. The device initiating a Bluetooth connection automatically

becomes the master. A piconet can consist of one master and up to seven active

slaves. The master device is literally the master of the piconet. Slaves may only

transmit data when transmission time is granted by the master device, also slaves may

not communicate directly with each other, and all communication must be directed

through the master. Slaves synchronize their frequency hopping with the master using

the master's clock and Bluetooth address.

Figure2.2 Pico net

7

Pico nets take the form of a star network, with the master as the center node, shown in

Fig 2.2. Two piconets may exist within radio range of each other. Frequency hopping

is not synchronized between piconets, hence different piconets will randomly

Collide on the same frequency. When connecting two piconets the result will be a

scatternet.

Figure 2.3 scatter net

Fig 2.3 shows an example, with one intermediate node connecting the piconets. The

intermediate node must time-share, i.e. it must follow the frequency hopping in one

piconet at the time. This reduces the amount of time slots available for data transfer

between the intermediate node and a master; it will at least cut the transfer rate in half.

Hence communication between piconets cannot be expected to be reliable.

2.4 L2CAP (logical link Control and Adaptation Protocol)
layer

L2CAP takes data from high protocol layers and send it over low layers and it

passes packets either to HCI or in a host-less system, directly to LMP. L2CAP is

responsible for Multiplexing between different higher layer protocols, such as

RFCOMM and SDP. It allows many different applications to use a single ACL

link.

8

It utilities ACL connections. A separate control function is required to set up

and close down these connections. L2CAP transfers data, not audio. L2CAP

within protocol layers are shown in Fig 2.2

Figure 2.4 L2CAP with protocol layers

Establishing a connection: - To establish a link, a higher layer protocol sends a

request to the L2CAP layer to connect. If there is no ACL connection, then L2CAP

sends a request to the lower layer (HCL or LM) to connect. Once an ACL connection

is established across the lower layers, L2CAP packets can be sent across it. Once a

connection has been established and configured, it can be used to transfer data.

2.5 RFCOMM

2.5.1 General Description

 RFCOMM [1] protocol provides emulation of serial ports over the L2CAP. The

complete communication path involves two applications running on different

devices with a communication segment between them. Some capabilities and

limitations of RFCOMM are as follows. It provides multiple concurrent

connections by relying on L2CAP to handle multiplexing over single

connections. It provides connections to multiple devices.

 Many applications make use of the serial ports. The RFCOMM will make these

devices more flexible by supporting easy adaptation of Bluetooth

communication.

9

RFCOMM supports both direct communications between devices, acting as

endpoints, and device modem device communication. The RFCOMM also has built in

system for null modem emulation. In ordinary serial communication a baud rate is set.

This will not affect the actual throughput in the RFCOMM. However, if either device

is a modem type device or if data paring is done above the RFCOMM service

interface, the actual throughput will reflect the baud rate setting.

The RFCOMM layer is using the L2CAP layer, which provides flow control

mechanism. Therefore it is not necessary for the RFCOMM port to perform the flow

Control mechanism requested by the application.

Figure 2.5 RFCOMM Reference model

2.5.2 Multiple Emulated Serial Ports

 The RFCOMM layer can handle up to 60 emulated ports. Two Bluetooth units using

RFCOMM in their communication may open multiple emulated serial ports. These

emulated serial ports are multiplexed together by the RFCOMM layer.

10

Figure 2.6 Multi Emulated serial Ports

2.5.3 Limitations of using RFCOMM

• Two devices can share only one RFCOMM secession at a time.

RFCOMM protocol supports up to 60 simultaneous connections between two

Bluetooth devices.

• A Single Bluetooth device can have at most 30 active RFCOMM services.

• A device can support only one client connection to any given service at a time.

2.5.4 Client connections using RFCOMM profile

To establish a connection using serial port profile for J2ME client is simply

called as Connector. Open ().

 StreamConnectionURL = (Stream Connection) Connector. Open

(URL);

 After service discovery is completed we get Service Record object, from this we

get the URL which is used to connect device. Serial port client connection URL

looks like this

Btspp: //000123456789AB:3

 2.6 Device Discovery

Device discovery:

11

There are various factors affecting the Bluetooth device discovery time

1) As per the Bluetooth specifications [13], the device takes at least 10.24 seconds

for discovery.

2) In an error-prone environment, it is difficult to determine the maximum time

required for device discovery.

3) The device discovery time exceeds even more than normal when the two devices

are actively moving.

Device discovery is the first step which is used to discover nearby devices.

When we have discovered nearby devices we can find out which services they

offer. Discovery Agent and start inquiry method put the device into discovery

mode. To use the Bluetooth related method first we need to get reference to

local object by calling LocalDevice.getLocalDevice ().

Local Device object is used to obtain Discovery Agent object. Discovery Agent

object is used for Device Discovery and Service Discovery. When inquiry is

completed or canceled DiscoveryListener.INQUIRY_COMPLETED is invoked.

2.7 Service Discovery

Service Discovery:

Once the local device has found at least one remote device we can begin

searching services on the device of interest. The following services are

provided in java Bluetooth specification for service discovery. Discovery Agent,

Discovery Listener, Service Record, Data Element, and UUID [3]. Discovery

Agent provides methods to discover services on a Bluetooth server device,

and to initiate service –discover transactions.

 In order to find services on remote devices either select Service () or search

Services () is used

 Int transid= agent.searchServices (attributes, uuids, remoteDevice, this)

This is used to search services on a single remote Bluetooth device.

RemoteDevice is the reference to the reference to the remote device that we

want to search for services.

 Public void device Discovered (RemoteDevice remote Device, Device Class

cod)

12

This method is called when a remote Bluetooth device is found from an

inquiry. The RemoteDevice object is a reference to the Bluetooth device found

from the inquiry.

 Public void services Discovered (int transID, Service Record [] service

Record)

This method is called by the JVM when the services are discovered on the

remote device. The Trans ID and array of service Record are provided to this

method. Service Record object is used to get connectional of the remote

device.

2.8 Bluetooth profiles

 Code Version Profile Name

GAP

1.1 Generic Access Profile

SDAP 1.1 Service Discovery Application Profile

CTP 1.1 Cordless Telephony Profile

IP 1.1 Intercom Profile

SPP

1.1 Serial Port Profile

HS 1.1 Headset Profile

DNP 1.1 Dial-up Networking Profile

FP 1.1 Fax Profile

LAP

1.1 LAN (Local Area Network) Access

Profile

GOEP 1.1 Generic Object Exchange Profile

OPP 1.1 Object Push Profile

FTP 1.1 File Transfer Profile

SP 1.1 Synchronization Profile

 Table 2.1 List of Bluetooth Profiles

Generic Access Profile

The generic access profile defines the general procedures involved in discovery

devices and link management aspects of connecting to Bluetooth devices. It uses

features of the RFCOMM, L2CAP, Link Manager and Link Controller layers of the

Bluetooth stack.

Behaviors in standby and connection states are defined in the generic access profiles

to assure that connection always can be established. This profile describes how lower

layers are used along with higher layers.

13

Service Discovery Application Profile

The service discovery application profile defines the features and procedures for an

application in a Bluetooth device to discover and retrieve information about services

Located in other Bluetooth devices.

 It defines the protocols and procedures that shall be used by a service discovery

application on a device to locate services in other Bluetooth-enabled devices by using

the Bluetooth Service Discovery Protocol (SDP).

Cordless Telephony Profile

The cordless telephony profile defines how a mobile phone could used to access fixed

network telephony service via a base station. This profile is used for wireless

telephony at home or at small offices. The profile includes making calls via the base

station, making direct intercom calls between two terminals, and accessing

supplementary external networks.

 Intercom Profile

The intercom profile defines uses of mobile phones who establish direct speech links

between two devices. The direct link is established using telephony signaling over

Bluetooth. Mobile phones using direct links function as walkie-talkies.

Serial Port Profile

The serial port profile defines the requirements for Bluetooth devices necessary for

setting up emulated serial cable connection using RFCOMM between two peer

devices. This profile requires support for one-slot packets only. This means that data

rates up to 128 kbps can be used. Support for higher rates is optional. RFCOMM is

used to transport the user data, modem control signals and configuration commands.

Headset Profile

The headset profile defines the requirements for Bluetooth devices necessary to

support the headset use case. In the headset use case the headset can be used as the

Dial-up
etworking Profile

The dial-up networking profile defines the protocols and procedures that should be

used by devices implementing the usage model called Internet Bridge. This profile is

used when a cellular phone or modem is used as a wireless modem.

Fax Profile

The fax profile defines the protocols and procedures that should be used by devices

implementing the fax usage model. In the profile a cellular phone may be used as a

wireless fax.

14

LA
 Access Profile

The LAN access profile defines local area network access using the point-to-point

protocol, PPP, over RFCOMM. PPP is widely used to allow access to networks

supporting various networking protocols. The profile supports LAN access for a

single Bluetooth device, LAN access for multiple Bluetooth devices, and PC to PC

(using PPP networking over serial cable emulation).

Generic Object Exchange Profile

The Generic Object Exchange Profile provides the functionality needed to use the

Object Exchange (OBEX) Protocol over Bluetooth. It is used by Object push profile,

File transfer profile, synchronization profile. The profile defines methods for object

exchange.

Object Push Profile

The object push profile defines protocols and procedures used in the object push

usage model. The profile uses the generic object exchange profile. In the object push

usage model there are procedures to push an object to the inbox of another Bluetooth

device, to pull an object from another Bluetooth device, and to exchange objects with

another Bluetooth device. The object exchanged can e.g. be a business card.

File Transfer Profile

The file transfer profile defines protocols and procedures used in the file transfer

usage model. The profile uses the generic object exchange profile. In the file transfer

usage model there are procedures to browse an object store of another Bluetooth

device, transfer objects between two Bluetooth devices, and to manipulate objects on

another Bluetooth device. Objects could be files and folders on an object store like a

file system.

Synchronization Profile

The synchronization profile defines protocols and procedures used in the

synchronization usage model. The profile uses the generic object exchange profile.

The usage model supports exchanges of information, e.g. to synchronize calendars on

different devices.

15

3 Development tools

This chapter gives an overview of the J2ME technology. The J2ME architecture is

Described in general before the components in the J2ME technology are introduced.

J2ME applications are also discussed in general, and it is explained how they are

Made available to end users.

16

J2ME is designed for devices with limited memory, display, and processing

power including cellular phones, PDAs, and pagers. Core J2ME Technology &

MIDP covers everything to develop powerful applications for this rapidly

expanding wireless market.

Fig 3.1 shows the J2ME architecture

Fig 3.1 shows the J2ME architecture. Java 2 Standard Edition (J2SE) developers

Should be familiar with Java Virtual Machines (JVMs) and at least one host operating

System (OS). Profiles and configurations are introduced in J2ME and will be outlined

in Section 3.1.1.

The OS will vary on different mobile devices. Some devices run the Symbian OS

[18], others run some other OS developed by the manufacturer. It is therefore up to

The manufacturers to implement a JVM for their specific platform compliant with the

JVM Specification and Java Language Specification.

 3.1 J2ME

J2ME [11] (Java 2 Micro Edition) is an advanced technology in Java, developed

with the help of Java Community Process Program. J2ME is a reduced version

of the Java API and Java Virtual Machine that is designed to operate within the

limited resources available in the embedded computers and microcomputers.

Benefit of using J2ME [11] is compatibility with all java enabled devices.

Motorola, Nokia, Panasonic all have Java-enabled devices. A J2ME application

is a balance between local and server-side processing. The OS will vary on

different mobile devices. Some devices run the Symbian OS others run some

other OS developed by the manufacturer. It is therefore up to the

manufacturers to implement a JVM for their specific platform compliant with

the JVM Specification and Java Language Specification.

17

The Java 2 Platform, Micro Edition (J2ME) provides a robust, flexible environment

for applications running on consumer devices, such as mobile phones, PDAs, and TV

set-top, mobiles and MIDP is a set of APIs providing features such as user

interface, networking support and persistent storage and MIDP applications are called

MIDlets.

 3.1.1 Configurations and profiles

Mobile devices come with different form, features and functionalities, but

often use similar processors and have similar amounts of memory. Therefore

configurations were created, defining groups of products based on the

available processor power and memory of each device. A configuration

outlines the following:

 The Java programming language features supported

• The JVM features supported

• The basic Java libraries and Application Programming Interfaces (APIs)

supported

There are two standard configurations for the J2ME at this time, Connected

Device Configuration (CDC) and Connected Limited Device Configuration

(CLDC). The CDC is targeted toward powerful devices like Internet TVs and car

navigation systems. The CLDC [12] is targeted toward less powerful devices

like mobile phones and PDAs. The vast majority of Java enabled mobile

devices available to consumers today use CLDC. The CDC will therefore not be

discussed in this thesis. The interested reader can find more information about

CDC on Sun Microsystems' CDC product website [12] .

 A profile defines a set of APIs which reside on top of a configuration and

offers access to device specific capabilities. The Mobile Information Device

Profile (MIDP) is a profile to be used with the CLDC and provides a set of APIs

for use by mobile devices. These APIs include classes for user interface,

persistent storage and networking. Specifications, APIs and other J2ME related

information can be found on Sun Microsystems' J2ME website [12].

 3.1.2 Connected Limited Device Configuration (CLDC)

18

CLDC is a result of java communication process.CLDC [12] is core technology

designed to be the basis for one or more profiles. Fig 2.5 shows that CLDC is

core technology designed to be the basis for one or more profiles CLDC

defines a minimal subset of functionality from the J2SE platform. Hence, the

CLDC does not define device-specific functionality in any way but instead

defines the basic Java libraries and functionality available from the Kilo Virtual

Machine (KVM).

Figure 3.2 CLDC position in J2ME architecture

The CLDC does not support floating point numbers. Therefore no CLDC based

application can use floating point numbers. The CLDC APIs do not include the

Object. Finalize method so we cannot perform final cleanup operations on

object data before the object is garbage collected, While a Java virtual

machine supporting the CLDC implements multithreading, it cannot support

thread groups or daemon threads. CLDC does not define any optional

features.

 3.1.3 Generic Connection Framework (GCF)

GCF was originally defined to rely on the J2ME platform's Connected Limited

Device Configuration (CLDC), version 1.0. The GCF is used to create

connections such as datagram or stream connections. JABWT makes use of

the GCF when creating Bluetooth links. This way, the Java code used to create

a Bluetooth link is equivalent to the Java-code used to create other types of

communication links.

3.1.4 CLDC versions and requirements

19

Two versions of the CLDC have been defined, version 1.0 and version 1.1.

CLDC 1.1 adds a few new features over CLDC 1.0. Floating point support is the

most important feature added. Several minor bug fixes have also been added.

CLDC 1.1 is intended to be backwards compatible with version 1.0. The

minimum memory requirement has been raised from 160 KB in version 1.0 to

192 KB in version 1.1 due to the added floating point support.

 3.2 MIDP 2.0 (JSR 118)

MIDP 2.0 is a revised version of the MIDP 1.0 specification. MIDP 2.0 includes

new features such as an enhanced user interface, multimedia and game

functionality, greater connectivity, over-the-air (OTA) provisioning, and end-

to-end security. MIDP 2.0 is backward compatible with MIDP 1.0.

 MIDP 2.0 provides greater extensibility. In the course of the ABB Media

support has been added. ABB enables developers the ability to add tones,

tone sequences and WAV files even if the Mobile Media API (MMAPI) optional

package is not available.

Game API is added in MIDP 2.0 which provides standard foundation for

building game. MIDP game API includes game-specific functionality which

provides greater control over graphics and performance.

MIDP 2.0 adds support connectivity standards outside HTTP, such as HTTPS,

datagram, sockets, server sockets, and serial port communication.

When the device receives information from server, push registry makes

possible to activate the midlet. Using carrier networks we can develop even

driven applications.

MIDP 2.0 has the ability to deploy and update applications over the air (OTA).

The MIDP specification defines how MIDlet suites are discovered, installed,

updated and removed on mobile information devices. MIDP allow a service

provider to discover which MIDlet suites will work on a given device, and we

can get status reports from the device following installation, updates or

removal.

HTTPS and SSL/TLS protocol provides end-to-end security access over the IP

(Internet Protocol) network. The ability to set up secure connections is a

increase advance for MIDP programming. A wide range of application models

require encryption of data and may now utilize the security model of MIDP 2.0

based on open standards.

20

3.3 MIDlet

The Mobile Information Device Profile (MIDP) is a set of Java APIs targeted at

mobile information devices such as mobile phones and entry-level palmtop

devices. A MIDlet is a MIDP application. Midlet architecture overview is shown

in Fig 2.6

Figure 3.3 Midlet architecture overview

MIDlets are usually available through MIDlet suites. A MIDlet suite consists of

two files, a .jar and a .jad file. The Java ARchive (JAR) file contains compiled

classes in a compressed and preverified format. Several MIDlets may be

included in a MIDlet suite. Hence, the JAR file will contain all these MIDlet

classes. This enables multiple MIDlets to share resources, like common

libraries included in the MIDlet suite or data stored on the device. Because of

security constraints, a MIDlet may only access the resources associated with its

own MIDlet suite. This applies to all resources, such as libraries it may depend

on or data stored on the MID.

The Java Application Descriptor (JAD) file is a plain text file containing

information About a MIDlet suite.

21

3.3.1 MIDlets Deployment

To deploy MIDlet into mobile first generate JAD, JAR files using WTK.These

JAD, JAR files should be deployed in mobile. This can be done in three ways.

We can deploy MIDlets remotely and locally as well we can download

MIDlets referenced by URLs over the air and on Java™ 2 Platform, Micro

Edition (J2ME)-enabled devices.

• Remote deployment. Remotely deploy a MIDlet developed on the local

desktop.

• Local deployment. Download a MIDlet developed on the local desktop to the

J2ME-enabled device connected to it.

• Downloading a MIDlet referenced by a URL on a J2ME-enabled device.

• Downloading a MIDlet referenced by a URL over the air (OTA).

3.3.2 Local Deployment

If we have J2ME mobile phone ,we can download java applicaton loader (JAL)

from the manufacture web site. Connect the phone to the computer using a

data cable Locate JAD and JAR files and click download button from the JAL

to upload the application into the cell phone. Browse the application on the

cell to the place where we just downloaded. If we click on that application we

get install application option click yes to install.

3.3.3 Remote Deployment

In remote deployment first upload JAD and JAR files to web server .Change

theJAD files’s MIDlet –JAR-URL property to the URL of the JAR file. To test

weather the application deployed correctely or not open computer browser

and enter the URL of the JAD file.The WTKs default emulator should appear

and the application should run in it .

22

3.3.4 OTA over the air

OTA is one more type deployment of MIDlet’s from internet to wireless

devices over a wireless network. For downloading useful applications wireless

carriers use OTA to charge users.To download these applications we require to

use WAP browser to recognize downloadable MIDlets.

4 Implementation

This chapter explains implementation of mobile application.In this chapter I

clearly explained how mobile is communicated with datalogger and I clearly

explained what are the mobile screens and buttons which I developed and i

also shown figures which I developed to make the system work.This chapter

explain’s how to sended data to webserver.

4.1 Software tool

The source code was written in a NetBeans IDE 6.0[9]. NetBeans Mobility Pack 6.0

is very easy to write, test, and debug applications for Java technology enabled mobile

devices. It integrates support for the Mobile Information Device Profile (MIDP) 2.0,

the Connected, Limited Device Configuration (CLDC). It simplifies coding with

templates for MIDlet and MIDlet suites. Net Beans has its ability to show JavaDoc for

suggested methods during code completion. It solves device fragmentation problems

by enabling us to edit and compile custom configurations for each device. we can

easily integrate third-party emulators for a robust testing environment.

Features of NetBeans IDE 6.0

• Over-The-Air (OTA) Download Testing

• Support for J2ME MIDP 2.0 and CLDC 1.1 standards.

• Support for MIDP localization

• Integration with the J2ME Wireless Toolkit 2.2

23

4.2 Datalogger architecture

The chip which we used in Data logger is Free2move Bluetooth. Free2move
Bluetooth modules is an easy and efficient way to integrate Bluetooth functionality

into your Datalogger product. These modules are available with a number of different

firmware versions. The Wireless UART firmware is an embedded single processor

solution that implements the Serial Port Profile (SPP). Other firmware versions are

Headset, HCI, RFCOMM and the possibility to get customized standalone

applications implemented as an one chip solution.

4.3 Smartphones

During the work with this thesis one smartphone were used to test JABWT

applications, the Nokia N73. The processor in the N73 is an ARMv1024 at 200MHz

40 MB internal memory AND Up to 2GB miniSD Card.

During the work with this thesis JABWT applications were deployed to the 6600

using Bluetooth links. However, the N73 provide HTTP connectivity by both GSM

and GPRS, and includes both a WAP browser and the Opera web-browser. Java

applications can be downloaded from the Internet.

24

Figure 4.1 Nokia N73

Now a days all mobile manufactures are providing Bluetooth facality below

table representing list of mobiles which support bluetooth

Nokia Motorola Sony Ericsson

 E70

 N70

 N71

 N73

 N76

 N80

 N90

 N91

 N93

 N93i

 N95-1

 V500

 V525

 V535

 V545

 V550

 V600

 V600i

 V620

 V80

 W510

 Z6

 W850i

 W880i

 W900i

 W950i

 Z520i

 Z530i

 Z550i

 Z600

 Z608

 Z610i

 Z800

Table 4.1 List of mobile manufactures providing Bluetooth facility

This thesis involves in receiving data from Data Logger into the Mobile and

sending the received data to web server.In this thesis I Mobile will send

requests to Data Logger,Data Logger will respond by sending ACK requests .

The received data is in the form of bytes. Each byte contains temperature

value.

In this thesis I developed mobile application for communicating with

DataLogger and receiving data from this device.The received data is displayed

on mobile screeen and I developed another application to send this received

data to web server.Normal mobile phones has bluetooth inbuilt and has

applications to communicate and receive data from any device.But these

bluetooth applications cannot receive stream type of data.This application is

developed with high security that normal mobile application which has

capability to receive stream type application cannot communicate with

DataLogger.For every receiving data from DataLogger mobile application

should send ack request. For developing mobile programm midlet is the

starting point of programm.Whithout midlet no one can run a programm in

mobile.Below is the midlet code which looks like this.

import javax.microedition.midlet.*;

25

import javax.microedition.lcdui.*;

public class Mobile extends MIDlet {

 public void startApp() {

 }

 Public void pauseApp () {

 }

 Public void destroyApp (Boolean unconditional) {

 }

}

The first three methods, startApp (), pauseApp () and destroyApp () are

needed for any MIDlet [3]. They come from extending the MIDlet class. The

next method, command Action () comes from the Command Listener

interface. This is needed to catch command events. The MIDlet is extended to

support Bluetooth communication with Data Logger.

If the MIDlet application is launched in the mobile we get the screen Fig 3.1

displaying Exit, Back, and search commands. If search command is pressed it

will search for nearer Bluetooth devices and if Exit command is pressed MIDlet

will exit. Back command is pressed it will go back from the current event.

Figure 4.2 Screen displaying menu buttons

26

Device discovery:-

If search command is pressed class local device will get local device

information by calling getLocalDevice () and Local Device object is used to

obtain discovery agent by calling getDiscoveryAgent ()[6]. Discovery agent will

start inquiry for remote devices.

Local device= LocalDevice.getLocalDevice ();

Discovery agent = local.getDiscoveryAgent ();

The discovered devices are catched in device discovered method and the

discovered devices are stored in a vector. After devices are discovered the

screen will display the Bluetooth address of the discovered devices. Below is

the method where the discovered devices are catched and stored in vector.

The inquiry Completed () method is called when the inquiry ends.

If we want to stop the inquiry stop command is pressed. The inquiry

Completed () method is invoked if stop command is pressed. Below Fig 4.2

screen displaying stop command. After inquiry is stopped the screen will

display all the friendly Bluetooth addresses. We used this ’stop’ command

when the discovery process is taking time or when the required device is

found immediately.

27

Figure 4.3 Mobile screen displaying stop command.

Public void device Discovered (Remote Device remoteDevice, DeviceClass cod)

{

}

After inquiry is completed friendly names are displayed on the screen in Fig

3.2.

28

Figure 4.4 Screen displaying discovered devices

Now the screen is displaying all the discovered devices, after device discovery

is completed it is the time to find out which services are offered by the

discovered devices. This is accomplished by doing a service discovery on the

device of interest.

 The services Discovered () and

serviceSearchCompleted () methods will handle the events occuring when

services are found or the service discovery completes. From

servicesDiscovered () method we get service record which is used to find

connectionURL.

Public void services Discovered (int transID, Service Record [] service Record) {

}

After service search is completed Mobile will establish a client Bluetooth

connection using serial port profile.

29

Figure4.5 Waiting for permission to Figure 4.6 Receiving

communication

 Connect with Data logger requests from Data

Logger

 Now you can see the Mobile screen Fig 4.4 asking for permission whether to

create connection with Data Logger or not. If ’yes’ button is pressed Mobile

starts sending first request Req_HandShake to Data Logger In response to this

request we should get Feedback_HandShake_Done request from Data Logger.

Below you can see the input Requests.

Data Logger board cooperates with top level system by sending / receiving

messages. Each message is wrapped into frame structure.

30

Figure 4.7 Message Frame

Byte “Command “define message ID. Maximum amount of data in frame are

22 bytes.

Here is a sequence diagram Fig 4.6 for sending and receiving requests from

Data Logger. Requests and feedbacks values are defined in Table 3.1. After

receiving this request mobile will check whether the received request is

Feedback_HandShake_Done or not. If the received request is not equal to

Feedback_HandShake_Done mobile will stop sending requests to Data Logger.

If the received request is same mobile will send Req_Search_Data Logger. Data

Logger

Will reply by sending request ack request. Mobile will check whether the

request is Feedback_Search_Data Logger Done or Feedback Data

Logger_not_found.If received request is equal to Feedback Data

Logger_not_found mobile will stop communicating will mobile. If the received

request is equal to Feedback_Search_Data Logger Done it will send

Req_Read_ROM_data.

Upon receiving this Req_Read_ROM_data Data Logger will send

Feedback_Read_ROM_data_Done.The received request is of 13 bytes where 8

bytes contains unique ID number for Data Logger 13
th
 byte is tail byte can be

ignored, but need to read out. Mobile will check the

Feedback_Read_ROM_data_Done value. If the value is same mobile will send

another request Req_read_mission_counter. Upon

31

Figure 4.8 sequence diagram for communicating with data logger.

Receiving this request Data Logger will send Feedback_read_mission counter

done. Mobile will receive this request and check n1, n2 which is used to

calculate N.

Mobile/PC…. datalogge

r

Req_HandShak

e

Feedback_HandShake_Don

e

Req_Search_datalogge

r
Feedback_Search_datalogger_Done

OR
Feedback_Data

Loggers_not_found

Req_read_mission_counte

r

Feedback_read_mission_counter_Do

ne

Now we should read in loop all data from internal

NV RAM of Data Logger according counter, witch

has been received in previous command. Each

reading will give us 16 bytes of the data.

Req_Read_next_16bytes

Feedback_Read_next_16bytes_Don

e

Req_Read_ROM_data

Feedback_Read_ROM_data_Don

e

32

Where n1, n2 - values, used to calculate amount of the data in NV RAM of the

Data Logger.

N= n1+ 256*n2. if N >2048 only 2048 measurements need to be readout

and used!.

 n3: not used, but need to be readout;

 Tail byte: can be ignored, but need to be readout.

Depending on the N value mobile will decide how many requests should

send to Data Logger. The value of Req_Read_next_16bytes=0x7D, 0x7C, 4,

0x82, TA1, TA2, tail byte.

TA1, TA2 - define address of the data in NV RAM of the Data Logger, where

we should start next read cycle.

 Address= TA1+256*TA2;

Data storage in Data Logger start from the address 0x1000

Tail byte: Calculated as logical OR for 3 bytes: 0x82, TA1, TA2.

For fist sending Req_Read_next_16bytes request

TA1=0X00.

 TA2=0X10.

tail_byte=0x92.

 like this maximum measurements need to be read out is up to 0x2048. After

Data Logger receiving this request it will send

Feedback_Read_next_16bytes_Done. This request is of size 21 bytes in which

16 bytes contains data. These 16 bytes are used to calculate temperature.

33

Figure 4.9 Screen displaying number of bytes Received from data logger

Mobile Data Logger screen Fig 4.7 is displaying no of bytes received in

Feedback_Read_next_16bytes_Done which is sended by Data Logger.

34

 Requests &feedbacks

…………..name

 Requests and feedbacks

Req_HandShake

0x7D,0x7C,2,0x20,0x20

Feedback_HandShake_Done

0x7D,0x7C,2,0x20,0x20

Req_Search_Data Logger

0x7D,0x7C,2,0x38,0x38

Feedback_Search_DataLogger_D

oe

0x7D,0x7C,3,0x38,1,0x39

Feedback_Data

Logger_not_found

0x7E,0x7B,2,0xB0,0xC0

Req_Read_ROM_data

0x7E,0x7A,2,0x39,0x37

Feedback_Read_ROM_data_Don

e

0x7C,0x7C,0x0E,0x39,rom_1,rom_2.rom_3,rom_4,rom_

5,rom_6,rom_7,rom_8, tail_byte;

Where: rom_1 – rom_8 - 8 bytes unique ID number

for Data Logger,

 tail byte: can be ignored , but need to be

readout.

Req_read_mission_counter

0x7F,0x7D,2,0x5F,0x5F

Feedback_read_mission

counter_Done

0x7E,0x7C,5,0x5F,n1,n2.n3, tail byte;

Where: n1, n2 - values, used to calculate amount of

the data in NV RAM of the Data Logger.

N= n1+ 256*n2. if N >2048 only 2048

measurements need to be readout and used!.

 n3:not used, but need to be readout;

 Tail byte: can be ignored, but need to be

readout.

Req_Read_next_16bytes

0x7C,0x7A,4,0x92,TA1,TA2. tail_byte;

where: TA1, TA2 - define address of the data in NV

RAM of the Data Logger, where we should start next

read cycle,

 Address= TA1+256*TA2;

Data storage in Data Logger start from the address

0x1000

35

 tail byte: Calculated as logical OR for 3 bytes:

 0x32, TA1, TA2.

Feedback_Read_next_16bytes_D

one

0x7E,0x7A,4,0x56,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11

,b12,b13,b14,b15,b16, tail byte;

where: b1 –b16 : 16 measure results in special

format;

 Tail byte: can be ignored, but need to be

readout.

Table 4.2 Requests and Feedbacks of Data logger

All the bytes which are received from Data Logger are stored in buffer.

Here Readout Byte indicates the byte which received from Data Logger. All the

received bytes are converted into temperature and below is the screen Fig 4.8

which is displaying the Temperature.

36

Figure 4.10 Mobile screen displaying Figure 4.11 Waiting for user permission to

 Temperature connects to web server.

The received data can be sending to web server by pressing send button. Send button

can be seen in Fig 4.9. When send button is pressed the screen will display that

sending may result in charges if we press yes will be sent to web server.

37

4.4 Sending data to web server from MIDlets

We can send the received data from I button to users in three ways. By using GSM we
can send data to internet where we can display data. We can use Bluetooth and RS232

to send data to PC from pc we can send the data to web server to view in online.

Users can view the received data by using Wireless LAN which can be used to send

data to another device like PC. In this thesis i used GSM to send data to web server.

Midlets to interact with Jsp web pages first Http Connection interface should be done

to establish HTTP connections.

The Connected Limited Device Configuration (CLDC) provides a set of classes for

network connectivity, collectively known as the generic connection framework. This

is a platform independent framework which provides a hierarchy of connectivity

interfaces, the implementation os is provided by profiles such as the Mobile

Information Device Profile (MIDP).

The MIDP extends the CLDC generic connection framework by providing the Http

Connection framework to support HTTP. All MIDP implementations are required to

include support for HTTP, and this is mainly because HTTP can either be

implemented using IP-based protocols (such as TCP/IP) or non-IP protocols.

 Connections are produced using the open () method of the Connector class. If

successful, this method will return an object to implements one of the generic

connection interfaces. The following code is used to open HTTP connection

Http Connection connection= Connector. Open (url);

Once a connection is established, we should set some properties, and I/O

streams can be established to send and receive data. The following snippet of

code sets properties and establishes I/O streams.

HTTP properties

connection.setRequestMethod (HttpConnection.POST);

Creating I/O streams

InputStream is = connection.openInputStream();

 In this way we send and receive data from JSP page.

38

5 Demonstration and some test results

This chapter explains demonstration of MIDlets and test results for different

networking distances. Section 5.2 explains test results of networking distance

(radio range between mobile and data logger) and section 5.3 explains co

channel interference.

5.1 Demonstration

 When MIDlet is launched the screen displays with the name inventech

Bluetooth. When search button is pressed mobile will search for the remote

devices, after devices discovery is finished the screen is displayed with friendly

names of the founded remote devices. Now we will connect to the device of

interest, in this thesis we will connect to Data Logger device. It will search for

RFCOMM service on the Data Logger device, if it is having RFCOMM service it

will connect and opens the service to send and receive data. First mobile will

send first request to Data Logger like this both will communicate with sending

and receiving requests. Last request is send to Data Logger depends on how

much data we want to read out. For every received byte from Data Logger is

used to calculate Temperature Table [5.1] showing the temperature values for

every sending request. Fig 4.1 displaying the temperature value.

39

Figure5.1 Received data from Data Logger

 Address to send request (these are

the address in data logger)

TEMP.EQUIV. (°C)

0x0010 25°C

0x0015 24°C

40

0x1018 27°C

0x201F 26°C

0x5014 32°C

0x601E 31°C

0X8020 31°C

0X9021 29°C

0XA010 28°C

0XE01F 29°C

0XF030 26°C

Table 5.1 Temperature values after converting input readout bytes

5.2 networking distance

Bluetooth is capable of communicating up to 30 feet. Below are the results of

Networking distance (radio range between mobile and data logger) in

different radio propagation environment, such as, data logger is embedded in

box, Fridge, open environment.

1.

Environment 1: mobile communicating with Data Logger (Embedded in

box) from 5 feet.

Environment 2: mobile and Data Logger (Embedded in box) are placed

between the concrete wall.

Environment 3: mobile is communicating with Data Logger (Embedded in

box) from 20 feet.

41

Environmen

t

Distance

between

mobile and

Data Logger

(feet)

Device

search

with nokia

mobile

N73(sec)

Device search

with

developed

mobile

application

(sec)

Time taken to

receive data from

Data Logger(sec)

Environmen

t 1

5 14 12 12

Environmen

t 2

10 17 16 12

Environmen

t 3

20 16 14 13

Table 5.2: Results when Data Logger is embedded in wooden box.

2. Environment 1, Environment 2, Environment 3: mobile communicating

from open environment with Data Logger (Data Logger Placed in Fridge).

Environment

Distance

between

mobile and

Data Logger

(feet)

Device search

with nokia

mobile

N73(sec)

Device search

with

developed

mobile

application

(sec)

Time taken to

receive data

from Data

Logger(sec)

42

Environment

1

5 19 17 12

Environment

2

8 22 24 13

Environment

3

10 Not

discovered

Not

Discovered

Table 5.3: Results when Data Logger placed in Fridge (aluminium).

According to SIG In an error-prone environment, it is difficult to determine the

maximum time required for device discovery. The device discovery time

exceeds even more than normal when the two devices are actively moving. In

an error-prone environment there is possibility that the device may not be

discovered. Here the device is enclosed in closed fridge. After 10 feet the

device is not discovered.

3. Environment 1, Environment 2, Environment 3, Environment 4: mobile

communicating from open environment with Data Logger (Data Logger

Placed in open environment) i.e. both Bluetooth device are not in an error-

prone environment

.

Environment

Distance

between

mobile and

Data

Logger

(feet)

Device

search with

nokia

mobile

N73(sec)

Device search

with developed

mobile

application

(sec)

Time taken to

receive data

from Data

Logger(sec)

 Environment

1

5 11 13 12

Environment

2

10 13 13 12

Environment

3

20 13 14 13

Environment

4

30 15 14 12

Table 5.4: Results when Data Logger placed in open environment.

43

As I described earlier according to the Bluetooth specifications, the device

takes at least 10.24 seconds for discovery. As per the test results it can be seen

that for device discovery it is taken at least 10.24 seconds. Device discovery

time depends on environment conditions. From Table 2 we can clearly seen

that when the Data Logger embedded in box, mobile is taking time to

discover device. When Data Logger is placed in open environment mobile can

discover and communicate with Data Logger from 30 feet also but when it is

embedded in box mobile is not able to discover devices more than 10 feet.

Here I discovered Bluetooth devices with developed Mobile application and

with nokia mobile which has Bluetooth enabled in it. The results are similar

when I discovered with nokia mobile and developed mobile application using

Bluetooth.

From the above results we can see that to receive data from Data Logger it is

taking approx 12 to 13 sec. The data which we are receiving are temperature

values. Amount of data which we received from Data Logger depends on how

much data stored in Data Logger. Every time the amount of time to received

data is not fixed. To receive 1024 bytes from Data Logger approx mobile is

taking 12 to 13 sec this is because for every sending request from Mobile we

get 16 bytes of data. Communication time depends on’ sending request

receiving request verification’. For every received request mobile will check

whether the received request is correct or not.

There is one way to reduce whole communication time. One thing is while

discovering devices if we found our device in mobile screen and immediately

if we stop the inquiry process we can reduce device discovery time. Approx we

can reduce 5 sec or more than that. In this thesis I provided command option

with key name ’stop’. If we press this button we can stop the inquiry process.

Anyhow every time we don’t need to receive 1024 bytes so if we are receiving

50 bytes, receiving data time will be approx 2 sec. So whole communicating

time to discovery device and receiving data in this case is 7 sec.

5.3 co-channel interference

To check co-channel interference I made communication environment such

that at a time mobile is communicating with Data Logger and PC is

communicating with another mobile and both are sending and receiving data.

I found that developed mobile application is working efficiently and I did not

found data loss. Mobile is able to receive data correctly from Data Logger.

44

Conclusion and discussions

45

6 Conclusion and discussions

The developed mobile application can send and receive data from Data

Logger and can display on the mobile screen. Now it can send the received

data to web server using GPRS. Better command options are created for user.

Now the user can start discovering devices and can stop discovery in middle

by using ‘stop’ command. If the user wants to send the data to web server he

can use ‘send’ command and he can see the received data on mobile screen.

Now the developed application can discover devices with similar discover time

compared to Nokia mobile within built-in Bluetooth enable in it.

Bluetooth solution is better when compared to wires in terms of cost, power.

When using wires cost of R232 converter, cost of twisted wires, cost of labor

for installing sensors, cost of power, cost of switches etc comes into

consideration. For measuring temperature values we need one pc. But we can

get the temperature values and graph in mobile itself. When using Bluetooth

we don’t need to lay wires, Just mobile is enough which has Bluetooth

enabled in it to receive data and sensors cost comes into consideration. We

can get the temperature readings when power is not able at measuring time.

Benefits are more when using wireless over wired.

For future work Mobile application should be developed to program Data

Logger using Bluetooth and another Mobile application should be developed

to display graph for received temperature values. Communication time to

send and receive data should be decreased. Better screen should be

developed. Pictures should be displayed for discovered devices to distinguish

between mobile and pc devices.PIM Phone calendar should be developed for

programming new mission so that user can select date and time to start data

logger for measuring temperature and he should have facility to save some

entries. Any case of possibilities of errors should be handled.

References

46

References

[1]: http://www.palowireless.com/INFOTOOTH/tutorial/k1_gap.asp

[2]: http://www.bluetooth.org

[3]: B. Hopkins and R. Antony, Bluetooth for Java, First Edition, Apress, 2003.

[4]: http://datasheets.maxim-ic.com/en/ds/DS1921G.pdf

 [5]: http://java.sun.com/javame/reference/apis/jsr082/constant-

values.html#javax.bluetooth.DiscoveryListener.SERVICE_SEARCH_TERMINATED

 [6]: http://developers.sun.com/mobility/apis/articles/bluetoothcore/index.html

 [7]: http://wireless.klings.org

 [8]: http://java.sun.com/products/j2mewtoolkit/

[9]: http://www.netbeans.org

[10]: http://www.bluetooth.com

[11]: http://java.sun.com/j2me/

[12]: http://java.sun.com/products/cldc/

[13]: http://faculty.cs.byu.edu/~knutson/publications/IrDA_Assisted_BT_Discovery.pdf

Appendix

47

Appendix 1

 Device Types and Control signals of RFCOMM

 Basically two device types exist that RFCOMM must accommodate.

• Type 1 Devices are communication end points such as computers and printers.

• Type 2 Devices are those that are part of the communication segment; e.g.

modems.

Though RFCOMM does not make a distinction between these two device types in the

protocol, accommodating both types of devices impacts the RFCOMM protocol.

The information transferred between two RFCOMM entities has been defined to

support both type 1 and type 2 devices. Some information is only needed by type 2

devices while other information is intended to be used by both. In the protocol, no

distinction is made between type 1 and type 2. Since the device is not aware of the

type of the other device in the communication path, each must pass on all available

information specified by the protocol.

 Control Signals of RFCOMM

RFCOMM emulates the 9 circuits of an RS-232 interface. The circuits are listed

below.

Pin Circuit Name

102 Signal Common

103 Transmit Data (TD)

104 Received Data (RD)

105 Request to Send (RTS)

106 Clear to Send (CTS)

107 Data Set Ready (DSR)

108 Data Terminal Ready
(DTR)

109 Data Carrier Detect (CD)

125 Ring Indicator (RI)

Appendix

48

 Appendix 2

This figure illustrates the Java 2 Platform editions and their target markets, starting

from the high-end platforms on the left and moving towards low-end platforms on the

right. Basically, five target markets or broad device categories are identified. Servers

and enterprise computers are supported by Java 2 Enterprise Edition, and desktop and

personal computers by Java 2 Standard Edition. Java 2 Micro Edition is divided

broadly into two categories that focus on “high-end” and “low-end” consumer

devices. Java 2 Micro Edition is discussed in more detail later in this chapter. Finally,

the Java Card™ standard focuses on the smart card market.

Appendix

49

