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Abstract—We show that polar codes asymptotically achieve We define the nested polar cod¥ N, A, B) of length N
the whole capacity-equivocation region for the wiretap chanel \where B ¢ A as follows. The codewords oP(N, A, B)
when the wiretapper’'s channel is degraded with respect to th are the same as the codewords fB(N,A). The nested

main channel, and the weak secrecy notion is used. Our coding . . e
scheme also achieves the capacity of the physically degratie structure is defined by partitioning’(N, A) as cosets of

receiver-orthogonal relay channel. We show simulation resits for P (N, B). Thus codewords iP(N, A, B) are given byz" =
moderate block length for the binary erasure wiretap channég  upGp © ua\sG 4\5, Whereu 4\ 5 determines which coset the

comparing polar codes and two edge type LDPC codes. codeword lies in. Note that each coset will be a polar code
l. INTRODUCTION with B¢ as the frozen set. The frozen bits are either 0 (if

_ ) i € A°) or they equal the corresponding bitsin, 5.
Polar codes were introduced by Arikan and were shown Let W and 1 be two symmetric binary input memoryless

. . ]r.]hannels. Let? be degraded with repect /. Denote the
Polar codes are block codes of length = 2™ with binary g P

: ned i D (@
input alphabett. Let G = RF®", whereR is the bit-reversal polgnzed channels as defined in (12% (re§2.)WN ) ar_1d
10 their Bhattacharyya parameters IZ)i, (resp.Zy’). We will

mapping defined in [1]F" = | ||, and ¥ denotes the yse the following Lemma which is Lemma 4.7 from [3]:

n" Kronecker power of”. Apply the linear transformatio | emma I.1. If IV is degraded with respect t& then 17"

to NV bits {u;};*, and send the result throug¥i independent ;g degraded with respect ") and Z{) > z¥.
copies of a binary input memoryless chanfigl(y|z). This N No= TN

gives anN-dimensional channelVy (y¥ |u)), and Arikan’s In Sections Il and 11l we use Lemma I.1 to show that nested
observation was that the channels seen by individual bigQlar codes are capacity achieving for the degraded wiretap
defined by channel and the physically degraded relay channel.
_ _ 1 To our knowledge this workis the first to consider polar
W](VZ) (Y ul ) = Z FWN(y{VIU{V), (1) codes for the (degraded) relay channel. Independent recent
ul  exN—i work concerning the wiretap channel includes [4] and [5].

Il. NESTEDPOLAR WIRETAP CODES

We consider the wiretap channel introduced by Wyner [6].
The sender, Alice, wants to transmit a mess&gehosen uni-
formly at random from the sef to the intended receiver, Bob,
while trying to keep the message secure from a wiretapper,
Eve. We assume that the input alphaleis binary, and Bob’s
output alphabetd’ and Eve’s output alphabet are discrete.
We assume that the main channel (given By x) and the
wiretapper’s channel (given b§z| x) are symmetric. We also
assume thal’;| x is stochastically degraded with respect to
v ‘ Py |x, i.e. there exists a probability distributioR;y- such
0 i€ A°or WS)(yfV’ﬁiilluizo) >1whenie A  thatPyx(zlz) =3, oy Pry (2]y) Py x (y|z).
;= Wy (Y ay ui=1) A codebook with block lengttV for the wiretap channel is
1 otherwise given by a set of disjoint subcodd€(s) ¢ XN }.cs, where
i i) S is the set of possible messages. To encode the message
can be upper bounded by, , ZJ(V)’ where ZJ(V) is the € S, Alice chooses one of the codewordgfS) uniformly
Bhattacharyya parameter for the chanm&f; [1]. It was ¢ random and transmits it. Bob uses a decadep’y — S
shown in [2] that for any3 < 1/2, to determine which message was sent.
A rate-equivocation paifR, R.) is said to be achievable if
Ve > 0 and for a sufficiently largeV, there exists a message

where I(W) is the symmetric capacity dfi’, which equals setS, subcodeC(s)}ses, and a decodep such that

the Shannon capacity for symmetric channels. Thus if we let il Sl>R_— P(o(YN) +£ S) < 4
An = {i: ZJ(\Z,) < 2-N"} the rate ofP(NV, Ay) approaches N og 5] © (e(7) #5) <e @
I(W) as N grows. Also the block error probabilitf?. using 1

SC decoding is upper bounded by NH(S|ZN) > R, — ¢, (5)

P, < N2V, 3)

polarize i.e asN growsWJ(\}) approaches either an error-free
channel or a completely noisy channel.

We define the polar codB(N, A) of length N as follows.
Given a subsetd of the bits, setu; = 0 for i € A°. We
call A€ the frozen set, and the bitgu;};c4c frozen bits.
The codewords are given by = u4G.4, whereG 4 is the
submatrix of G formed by rows with indices ind. The rate
of P(N,A) is |A|/N.

The block error probability using the successive candehat
(SC) decoding rule defined by

1 .
lim inf —|{i : 70 < 27Ny = (W), @)

n—oo

1This paper was originally submitted to this journal on Mafth, 2010.



whereH(S|Z") denotes the conditional entropy 6f given lim inf,, . %|AN| = Cw, so if |[By| < NCw we have
ZN. The set of achievable paifs?, R.) for this setting is Bn C Ay for largen, by the definition ofBy. Since|By| =
. (1) —NP
R.<R<Cy, 0<R.<Cy-—Cy, (6) N(Cw —R) < NCw, we haveZy <277 Vi€ By for
large enough. This impliesP, < >, Z\ < N2—N",
whereC), is the capacity of the main channel, afig is the We use Fano’s inequality to show tHa{ X V| Z, Sy) — 0:
capacity of the wiretapper’s channel [7]. o NN o , ,

In Theorem 1.1 we give a nested polar coding schemeh,{ri{)%fH(X 127, 5n) < Hﬂggf [H(P,) + Pe|Bn|] = 0.
[8] for the wiretap channel that achieves the whole rate- snlZY)
equivocation rate region. Let the wiretapper's channel gdrus we have shown thal*Z) > Cy — Oy —e > R —e
denoted byl and the main channel by/. We assume that [OF 7 large enough.

W andW are symmetric, s@y, = I(W) andCy = I(W). We now consider the case wheR < Cu — Cw.
The only difference from the analysis above is the term

Theorem II.1. Let (R, R.) satisfy (6). For alle > 0 there H(XN|ZN, Sx). Since |By| = N(Cy — R) > NCyw,
exists a nested polar code of length= 2" that satisfies (4) the code defined by (7) is not decodable. Instead, let
and (5) provideds is large enough. Biy = {i: 29 < 2-N"} By = By \ By, and rewrite (7)
Proof: Let § < 1/2, Ay = {i : Zz@ < 2-N"}, aSX" = TixGp,y ® TonGp,y ® SnGay\sy- Note that,
and let By be the subset ofdy of size N(Cy — R) Since hmm_f}HoO |BlN|/N_: Cw, this code is decoda_ble
whose members have the small€st’. Since (2) implies using SC giverzy. If Toy is u_nknov‘vn we can try all possible
liminf,, o [Ax|/N = Car > Car — R such a subset eXistscomblnatlons and come up wigt®2~ | equally likely solutions

- : - . Il solutions are equally likely sinc€y is chosen uniformly
if n is large enough. This defines our nested polar co&%
P(N,An,Bn), and the subcode§(sy) are the cosets of at random). Thust(X™|Z", Sy) should tend toH (T5y).

P(N,Bxn) We make this argument precise by boundifigX V| ZV, Sy)
To send the messagey, Alice generates the codeword 23 fOllOWs:
H(XN|ZN, Sn) = H(XN, Ton|ZV, S
XN =TnGpy ® SNGay\By ) (X N) ( o | N)

H(Ton|ZN, Sn) + H(XN|ZN, Sn, Ton)
<H(Ton) +H(XN|ZY, Sy, Ton)

where Ty is a binary vector of lengtiV(Cy; — R) chosen
uniformly at random.

From (3) the block error probability for Bob goes to zeravhere in the last step we have used the fact that con-
as n goes to infinity. The rate of the coding scheme iditioning reduces entropy. We can show that the second
+|An \ By |, which goes taCys — (Cyy — R) = R asn goes term goes to zero using Fano’s inequality as above. Since
to infinity, sincelim inf,, o |An|/N = Cps. Thus our coding lim inf,,_ o H(Ton) _ liminf,— o ‘Bf\;v' =Cy — R - Cw,
scheme satisfies (4). we getH(Sy|ZN)/N > R — ¢ for n large enough. [ |

To show (5) we look at the equivocation for Eve. We In Section Ill we show that the nested polar code scheme
first look at the case wher& > C); — Cy. We expand can be used to achieve capacity for the physically degraded
I(XN,Sxn; ZV) in two different ways and obtain receiver-orthogonal relay channel (PDRORC).

I(XN,Sn: ZN) = I(XN; ZV) + I(Sy; 2V | X ) [1l. NESTEDPOLAR RELAY CHANNEL CODES

= I(Sn: ZV) + I(XN; ZV|Sy).  (8) The PDROF\’_C is a three node cha_nnel with a sender, a relay,
and a destination [9]. The sender wishes to convey a message
Note that/(Sn; ZV|XN) = 0 asSy — XV — ZV is a to the destination with the aid of the relay. Let the inputha t
Markov chain. By (8) and noting(Sy; Z") = H(Sx) — sender and the relay be denoted Kyand X, respectively,
H(Sx|ZN), we write the equivocation rafd(Sy|ZV)/N as and let the corresponding alphabétsand X; be binary. We
denote the source to relay (SR) channel outputYpy the
H(Sn) + I(XY; Z2%|Sn) — I(XN; Z™) H(Sn) + source to destination (SD) channel output BY, and the

N N relay to destination (RD) channel output BY. We assume
=R—§(N) that the corresponding output alphabgts )’, and )" are
H(XN|Sy) H(XN|ZN,Sy)  I(XN;zN) discrete. The SR and SD channel transition probabilities ar
N - N - N given by Pyy,|x and the RD channel transition probability
jf:’ T is given by Py x,. Note that the receiver components are
=LmMm SOw .
HXN|ZN, Sy) orthogonal, i.e. Py 1y xx, = PY,‘_XPY,,‘X]. We fu_rther
> Cy — Cw — 0(N) — —’N, assume that the SD channel is physically degraded with cespe
N to the SR channel, i.&%y,|x = Py, xPy/y,, and that
whered(N) is the difference betweedy \ By|/N and R all the channelsPy|x, Py, x, and Py x, are symmetric.
which goes to zero as — oc. The capacity of the PDRORC channel is given 6y =
We now look atH(X™|ZN,Sy). For a fixedSy = sy max,(u)p(e,) min {I(X;Y") + I(X;Y"), I(X;Y', Y1)} In

we see thatX? € C(sn). Let P! be the error probability the symmetric physically degraded case this simplifies to
of decogling this ch_e using an SC decoder. By Lemma |.&, = min {Csp + Crp,Csr}, whereCsp, Csg, andCrp
the setAy = {3 : Z](\?) < 2‘Nﬁ} is a subset ofdy. Also, are the capacities of the SD, SR, and RD channels respsrctivel



Theorem Ill.1. LetR < C. For all ¢ > 0 there exists a nested

polar code of ratel? and length(B +1)N = (B +1)2" such ¢ 0281
that the error probability at the destination is smaller tha & 0.24r
provided B and n are large enough. T 023t
Proof: We use a block-Markov coding scheme and tran.  § *%| —

P H = L e upper bound for R = 0.25 and e, = 0.25| |
mit B codewords of lengthV in B + 1 blocks. LetlV" and 2 0.21 Two Edge Type LDPC Gode
W denote the SR and SD channels respectively.Zg@t and 0.4 —©— Polar Code
Z](\? be the Bhattacharyya parameters of the correspondi 0.45 05 055

Cw

polarized channels.
First assume thaCsg < Csp + Crp. Let 8 < 1/2, Fig. 1. Equivocation rate versus,,. Codes designed folR = 0.25,
Ay = {i: Z](\;) < 2_Nﬁ}, and letBy = {i : Z](\;) < 2_Nﬁ}' em = 0.25, ew = 0.5, and block lengthV = 1024.
By Lemma 1.1, By C Ax. The source will transmit in check matrix for the subcode”(N, By)) in a nested coding
each block using the nested polar cdd@V, Ayx, By ). After scheme for the binary erasure channel. Then the equivatatio
receiving the whole codeword the relay decodes the bits an Eve is rankHéS)) — rank(Hg), where H¢ is the matrix
Ax. The probability that the relay makes an error wheformed from the columns ofH corresponding to erased
decoding can be made smaller thaf(3B) by choosingn codeword positions.
large enough. The relay then reencodes the bitdin\ By
and transmits them using a polar code of &y |—|By|)/N
in the next block. In general, in block the source trans- H(Sy|ZN) = H(XN|ZY) —H(XN|SN, ZY).  (9)
mits the " codeword while the relay transmits the bits i
th Nt ;
ot e A i et o sunkoun.The aboue cquton i 447 slions
the relay. This can tj)ve do]rre with error probability smallea" of which are (_equaIIy likely since the original codewords
: N are equally likely. In the same wali(X N |Sy, ZN) =

thane/(3B) providedn is large enough since the rate of th (s) . Ny (s)
relay to destination code tends €y — Csp < Crp asn ?an_(;?n)KHg ). This impliesH(Sy|Z™) = rankHg") ;
£)-

grows. Finally the destination decodes the source trarssonis . . .
th ) Fig. 1 shows the equivocation rate at Eve, and also the upper
from the (k — 1)™ block. It uses the bits from the relay ; .
transmission in block to determine which coset d?(N, By ) bound for &, as a function ofe,, for fixed & = 0.25 and
’ em = 0.25. It is interesting to note that even with a block

the codeword lies in. The rate (N, By ) approache€'sp .

so the destination can decode with block error probabiliﬁngth of only 1024 bits the curves are close to the upper
; und.

smaller thane/(3B). By the union bound the overall error V. ACKNOWLEDGEMENT

probability over all B blocks is then smaller thaa. The . ) . o

rate of the scheme i8|Ay|/N (B + 1) which can be made We ywsh to thank an anonymous reviewer for pointing out

arbitrarily close toCsx provided B andn are large enough 1€ existence of the related preprints [4] and [S].

Proof: The equivocation at Eve can be written as

"Fora specific receivedwe haveHgl'g‘f'chfL'Tc =0, where
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