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Nested Polar Codes for Wiretap and Relay Channels
Mattias Andersson, Vishwambhar Rathi, Ragnar Thobaben, J¨org Kliewer, and Mikael Skoglund

Abstract—We show that polar codes asymptotically achieve
the whole capacity-equivocation region for the wiretap channel
when the wiretapper’s channel is degraded with respect to the
main channel, and the weak secrecy notion is used. Our coding
scheme also achieves the capacity of the physically degraded
receiver-orthogonal relay channel. We show simulation results for
moderate block length for the binary erasure wiretap channel,
comparing polar codes and two edge type LDPC codes.

I. I NTRODUCTION

Polar codes were introduced by Arikan and were shown
to be capacity achieving for a large class of channels [1].
Polar codes are block codes of lengthN = 2n with binary
input alphabetX . Let G = RF⊗n, whereR is the bit-reversal

mapping defined in [1],F =

[
1 0
1 1

]

, and F⊗n denotes the

nth Kronecker power ofF . Apply the linear transformationG
to N bits {ui}

N
i=1 and send the result throughN independent

copies of a binary input memoryless channelW (y|x). This
gives anN -dimensional channelWN (yN

1 |uN
1 ), and Arikan’s

observation was that the channels seen by individual bits,
defined by

W
(i)
N (yN

1 , ui−1
1 |ui) =

∑

uN
i+1

∈XN−i

1

2N−1
WN (yN

1 |uN
1 ), (1)

polarize, i.e asN growsW
(i)
N approaches either an error-free

channel or a completely noisy channel.
We define the polar codeP (N,A) of lengthN as follows.

Given a subsetA of the bits, setui = 0 for i ∈ AC . We
call AC the frozen set, and the bits{ui}i∈AC frozen bits.
The codewords are given byxN = uAGA, whereGA is the
submatrix ofG formed by rows with indices inA. The rate
of P (N,A) is |A|/N .

The block error probability using the successive cancellation
(SC) decoding rule defined by

ûi =







0 i ∈ AC or
W

(i)

N
(yN

1 ,û
i−1
1 |ui=0)

W
(i)

N
(yN

1 ,û
i−1
1 |ui=1)

≥ 1 when i ∈ A

1 otherwise

can be upper bounded by
∑

i∈A Z
(i)
N , where Z

(i)
N is the

Bhattacharyya parameter for the channelW
(i)
N [1]. It was

shown in [2] that for anyβ < 1/2,

lim inf
n→∞

1

N
|{i : Z

(i)
N < 2−Nβ

}| = I(W ), (2)

whereI(W ) is the symmetric capacity ofW , which equals
the Shannon capacity for symmetric channels. Thus if we let
AN = {i : Z

(i)
N < 2−Nβ

}, the rate ofP (N,AN ) approaches
I(W ) asN grows. Also the block error probabilityPe using
SC decoding is upper bounded by

Pe ≤ N2−Nβ

. (3)

We define the nested polar codeP (N,A,B) of length N
where B ⊂ A as follows. The codewords ofP (N,A,B)
are the same as the codewords forP (N,A). The nested
structure is defined by partitioningP (N,A) as cosets of
P (N,B). Thus codewords inP (N,A,B) are given byxN =
uBGB ⊕uA\BGA\B, whereuA\B determines which coset the
codeword lies in. Note that each coset will be a polar code
with BC as the frozen set. The frozen bitsui are either 0 (if
i ∈ AC) or they equal the corresponding bits inuA\B.

Let W andW̃ be two symmetric binary input memoryless
channels. LetW̃ be degraded with repect toW . Denote the
polarized channels as defined in (1) byW

(i)
N (resp.W̃ (i)

N ), and
their Bhattacharyya parameters byZ

(i)
N (resp.Z̃(i)

N ). We will
use the following Lemma which is Lemma 4.7 from [3]:

Lemma I.1. If W̃ is degraded with respect toW thenW̃
(i)
N

is degraded with respect toW (i)
N and Z̃

(i)
N ≥ Z

(i)
N .

In Sections II and III we use Lemma I.1 to show that nested
polar codes are capacity achieving for the degraded wiretap
channel and the physically degraded relay channel.

To our knowledge this work1 is the first to consider polar
codes for the (degraded) relay channel. Independent recent
work concerning the wiretap channel includes [4] and [5].

II. N ESTEDPOLAR WIRETAP CODES

We consider the wiretap channel introduced by Wyner [6].
The sender, Alice, wants to transmit a messageS chosen uni-
formly at random from the setS to the intended receiver, Bob,
while trying to keep the message secure from a wiretapper,
Eve. We assume that the input alphabetX is binary, and Bob’s
output alphabetsY and Eve’s output alphabetZ are discrete.
We assume that the main channel (given byPY |X ) and the
wiretapper’s channel (given byPZ|X ) are symmetric. We also
assume thatPZ|X is stochastically degraded with respect to
PY |X , i.e. there exists a probability distributionPZ|Y such
that PZ|X(z|x) =

∑

y∈Y PZ|Y (z|y)PY |X(y|x).
A codebook with block lengthN for the wiretap channel is

given by a set of disjoint subcodes{C(s) ⊂ XN}s∈S , where
S is the set of possible messages. To encode the message
s ∈ S, Alice chooses one of the codewords inC(S) uniformly
at random and transmits it. Bob uses a decoderφ : YN → S
to determine which message was sent.

A rate-equivocation pair(R, Re) is said to be achievable if
∀ǫ > 0 and for a sufficiently largeN , there exists a message
setS, subcodes{C(s)}s∈S , and a decoderφ such that

1

N
log |S| > R − ǫ, P (φ(Y N ) 6= S) < ǫ, (4)

1

N
H(S|ZN) > Re − ǫ, (5)

1This paper was originally submitted to this journal on March5th, 2010.
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whereH(S|ZN ) denotes the conditional entropy ofS given
ZN . The set of achievable pairs(R, Re) for this setting is

Re ≤ R ≤ CM , 0 ≤ Re ≤ CM − CW , (6)

whereCM is the capacity of the main channel, andCW is the
capacity of the wiretapper’s channel [7].

In Theorem II.1 we give a nested polar coding scheme
[8] for the wiretap channel that achieves the whole rate-
equivocation rate region. Let the wiretapper’s channel be
denoted byW̃ and the main channel byW . We assume that
W andW̃ are symmetric, soCM = I(W ) andCW = I(W̃ ).

Theorem II.1. Let (R, Re) satisfy (6). For all ǫ > 0 there
exists a nested polar code of lengthN = 2n that satisfies (4)
and (5) providedn is large enough.

Proof: Let β < 1/2, AN = {i : Z
(i)
N < 2−Nβ

},
and let BN be the subset ofAN of size N(CM − R)

whose members have the smallestZ̃
(i)
N . Since (2) implies

lim infn→∞ |AN |/N = CM ≥ CM − R such a subset exists
if n is large enough. This defines our nested polar code
P (N,AN ,BN ), and the subcodesC(sN ) are the cosets of
P (N,BN ).

To send the messagesN , Alice generates the codeword

XN = TNGBN
⊕ sNGAN\BN

, (7)

whereTN is a binary vector of lengthN(CM − R) chosen
uniformly at random.

From (3) the block error probability for Bob goes to zero
as n goes to infinity. The rate of the coding scheme is
1
N
|AN \BN |, which goes toCM − (CM − R) = R asn goes

to infinity, sincelim infn→∞ |AN |/N = CM . Thus our coding
scheme satisfies (4).

To show (5) we look at the equivocation for Eve. We
first look at the case whereR ≥ CM − CW . We expand
I(XN , SN ; ZN ) in two different ways and obtain

I(XN , SN ; ZN ) = I(XN ; ZN ) + I(SN ; ZN |XN)

= I(SN ; ZN) + I(XN ; ZN |SN ). (8)

Note thatI(SN ; ZN |XN) = 0 as SN → XN → ZN is a
Markov chain. By (8) and notingI(SN ; ZN) = H(SN ) −
H(SN |ZN), we write the equivocation rateH(SN |ZN)/N as

H(SN ) + I(XN ; ZN |SN) − I(XN ; ZN)

N
=

H(SN )

N
︸ ︷︷ ︸

=R−δ(N)

+

H(XN |SN )

N
︸ ︷︷ ︸

=CM−R

−
H(XN |ZN , SN )

N
−

I(XN ; ZN)

N
︸ ︷︷ ︸

≤CW

≥ CM − CW − δ(N) −
H(XN |ZN , SN )

N
,

whereδ(N) is the difference between|AN \ BN |/N and R
which goes to zero asn → ∞.

We now look atH(XN |ZN , SN ). For a fixedSN = sN

we see thatXN ∈ C(sN ). Let P ′
e be the error probability

of decoding this code using an SC decoder. By Lemma I.1,
the setÃN = {i : Z̃

(i)
N < 2−Nβ

} is a subset ofAN . Also,

lim infn→∞
1
N
|ÃN | = CW , so if |BN | ≤ NCW we have

BN ⊂ ÃN for largen, by the definition ofBN . Since|BN | =

N(CM − R) ≤ NCW , we haveZ̃
(i)
N < 2−Nβ

∀i ∈ BN for
large enoughn. This impliesP ′

e ≤
∑

i∈BN
Z̃

(i)
N ≤ N2−Nβ

.
We use Fano’s inequality to show thatH(XN |ZN , SN ) → 0:

lim inf
n→∞

H(XN |ZN , SN ) ≤ lim inf
n→∞

[H(P ′
e) + P ′

e|BN |] = 0.

Thus we have shown thatH(SN |ZN )
N

≥ CM −CW −ǫ ≥ Re−ǫ
for n large enough.

We now consider the case whenR < CM − CW .
The only difference from the analysis above is the term
H(XN |ZN , SN). Since |BN | = N(CM − R) > NCW ,
the code defined by (7) is not decodable. Instead, let
B1N = {i : Z̃

(i)
N < 2−Nβ

}, B2N = BN \ B1N , and rewrite (7)
as XN = T1NGB1N

⊕ T2NGB2N
⊕ SNGAN\BN

. Note that,
since lim infn→∞ |B1N |/N = CW , this code is decodable
using SC givenT2N . If T2N is unknown we can try all possible
combinations and come up with2|B2N | equally likely solutions
(all solutions are equally likely sinceTN is chosen uniformly
at random). ThusH(XN |ZN , SN ) should tend toH(T2N ).
We make this argument precise by boundingH(XN |ZN , SN )
as follows:

H(XN |ZN , SN) = H(XN , T2N |ZN , SN)

= H(T2N |ZN , SN ) + H(XN |ZN , SN , T2N )

≤ H(T2N ) + H(XN |ZN , SN , T2N )

where in the last step we have used the fact that con-
ditioning reduces entropy. We can show that the second
term goes to zero using Fano’s inequality as above. Since
lim infn→∞

H(T2N )
N

= lim infn→∞
|B2N |

N
= CM − R − CW ,

we getH(SN |ZN )/N ≥ R − ǫ for n large enough.
In Section III we show that the nested polar code scheme

can be used to achieve capacity for the physically degraded
receiver-orthogonal relay channel (PDRORC).

III. N ESTEDPOLAR RELAY CHANNEL CODES

The PDRORC is a three node channel with a sender, a relay,
and a destination [9]. The sender wishes to convey a message
to the destination with the aid of the relay. Let the input at the
sender and the relay be denoted byX and X1 respectively,
and let the corresponding alphabetsX andX1 be binary. We
denote the source to relay (SR) channel output byY1, the
source to destination (SD) channel output byY ′, and the
relay to destination (RD) channel output byY ′′. We assume
that the corresponding output alphabetsY1,Y

′, and Y ′′ are
discrete. The SR and SD channel transition probabilities are
given by PY ′Y1|X and the RD channel transition probability
is given by PY ′′|X1

. Note that the receiver components are
orthogonal, i.e.PY ′Y ′′|XX1

= PY ′|XPY ′′|X1
. We further

assume that the SD channel is physically degraded with respect
to the SR channel, i.ePY ′Y1|X = PY1|XPY ′|Y1

, and that
all the channelsPY ′|X , PY1|X , and PY ′′|X1

are symmetric.
The capacity of the PDRORC channel is given byC =
maxp(x)p(x1) min {I(X ; Y ′) + I(X1; Y

′′), I(X ; Y ′, Y1)}. In
the symmetric physically degraded case this simplifies to
C = min {CSD + CRD, CSR}, whereCSD, CSR, andCRD

are the capacities of the SD, SR, and RD channels respectively.
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Theorem III.1. LetR < C. For all ǫ > 0 there exists a nested
polar code of rateR and length(B +1)N = (B +1)2n such
that the error probability at the destination is smaller than ǫ
providedB and n are large enough.

Proof: We use a block-Markov coding scheme and trans-
mit B codewords of lengthN in B + 1 blocks. LetW and
W̃ denote the SR and SD channels respectively. LetZ

(i)
N and

Z̃
(i)
N be the Bhattacharyya parameters of the corresponding

polarized channels.
First assume thatCSR ≤ CSD + CRD. Let β < 1/2,

AN = {i : Z
(i)
N < 2−Nβ

}, and letBN = {i : Z̃
(i)
N < 2−Nβ

}.
By Lemma I.1, BN ⊂ AN . The source will transmit in
each block using the nested polar codeP (N,AN ,BN ). After
receiving the whole codeword the relay decodes the bits in
AN . The probability that the relay makes an error when
decoding can be made smaller thanǫ/(3B) by choosingn
large enough. The relay then reencodes the bits inAN \ BN

and transmits them using a polar code of rate(|AN |−|BN |)/N
in the next block. In general, in blockk the source trans-
mits the kth codeword while the relay transmits the bits in
AN \ BN from the (k − 1)th block. The destination first
decodes the bits inAN \ BN using the transmission from
the relay. This can be done with error probability smaller
than ǫ/(3B) providedn is large enough since the rate of the
relay to destination code tends toCSR − CSD ≤ CRD as n
grows. Finally the destination decodes the source transmission
from the (k − 1)th block. It uses the bits from the relay
transmission in blockk to determine which coset ofP (N,BN )
the codeword lies in. The rate ofP (N,BN ) approachesCSD

so the destination can decode with block error probability
smaller thanǫ/(3B). By the union bound the overall error
probability over all B blocks is then smaller thanǫ. The
rate of the scheme isB|AN |/N(B + 1) which can be made
arbitrarily close toCSR providedB and n are large enough
sincelim infn→∞ |AN |/N = CSR.

Now assume thatCSR > CSD + CRD. Let BN = {i :

Z̃
(i)
N < 2−Nβ

} and letAN be a subset of{i : Z
(i)
N < 2−Nβ

}
of sizeN(CSD + CRD) containingBN . Such a subset exists
providedn is large enough sinceCSR > CSD + CRD. The
analysis of the block error probability is the same as in the first
case, and the rate of the coding scheme isB|AN |/N(B + 1)
which approachesCSD + CRD whenn andB are large.

IV. SIMULATIONS

We show simulation results comparing Eve’s equivocation
for nested polar wiretap codes and two edge type LDPC codes
over a wiretap channel where both the main channel and the
wiretapper’s channel are binary erasure channels with erasure
probabilitiesem and ew respectively. The LDPC codes are
optimized using the methods in [10] and for the LDPC codes
the curve shows the ensemble average. The equivocation at
Eve is calculated using an extension of a result in [11]2:

Lemma IV.1. Let H be a parity check matrix for the overall
code (P (N,AN ) in the polar case) and letH(s) be a parity

2Note that the polar codesP (N,AN ) andP (N,BN ) are linear codes and
we therefore can calculate the corresponding parity check matrices.
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Fig. 1. Equivocation rate versusew. Codes designed forR = 0.25,
em = 0.25, ew = 0.5, and block lengthN = 1024.

check matrix for the subcode(P (N,BN )) in a nested coding
scheme for the binary erasure channel. Then the equivocation
at Eve is rank(H(s)

E ) − rank(HE), where HE is the matrix
formed from the columns ofH corresponding to erased
codeword positions.

Proof: The equivocation at Eve can be written as

H(SN |ZN) = H(XN |ZN ) − H(XN |SN , ZN). (9)

For a specific receivedz we haveHExT
E +HECxT

EC = 0, where
xT
E is unknown. The above equation has2N−rank(HE ) solutions,

all of which are equally likely since the original codewords
XN are equally likely. In the same wayH(XN |SN , ZN ) =

N − rank(H(s)
E ). This impliesH(SN |ZN) = rank(H(s)

E ) −
rank(HE).

Fig. 1 shows the equivocation rate at Eve, and also the upper
bound for Re as a function ofew for fixed R = 0.25 and
em = 0.25. It is interesting to note that even with a block
length of only 1024 bits the curves are close to the upper
bound.
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