
BioMed Central

BMC Medical Informatics and
Decision Making

ss
Open AcceResearch article
Julius – a template based supplementary electronic health record
system
Rong Chen1, Gösta Enberg2 and Gunnar O Klein*1,3

Address: 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden, 2Department of Neurobiology, Care
Sciences and Society, Karolinska Institutet, Stockholm, Sweden and 3Department of Medicine, Karolinska Institutet, Stockholm, Sweden

Email: Rong Chen - rong.chen@cambio.se; Gösta Enberg - gosta.enberg@sll.se; Gunnar O Klein* - gunnar.klein@ki.se

* Corresponding author

Abstract
Background: EHR systems are widely used in hospitals and primary care centres but it is usually
difficult to share information and to collect patient data for clinical research. This is partly due to
the different proprietary information models and inconsistent data quality. Our objective was to
provide a more flexible solution enabling the clinicians to define which data to be recorded and
shared for both routine documentation and clinical studies. The data should be possible to reuse
through a common set of variable definitions providing a consistent nomenclature and validation of
data. Another objective was that the templates used for the data entry and presentation should be
possible to use in combination with the existing EHR systems.

Methods: We have designed and developed a template based system (called Julius) that was
integrated with existing EHR systems. The system is driven by the medical domain knowledge
defined by clinicians in the form of templates and variable definitions stored in a common data
repository. The system architecture consists of three layers. The presentation layer is purely web-
based, which facilitates integration with existing EHR products. The domain layer consists of the
template design system, a variable/clinical concept definition system, the transformation and
validation logic all implemented in Java. The data source layer utilizes an object relational mapping
tool and a relational database.

Results: The Julius system has been implemented, tested and deployed to three health care units
in Stockholm, Sweden. The initial responses from the pilot users were positive. The template
system facilitates patient data collection in many ways. The experience of using the template system
suggests that enabling the clinicians to be in control of the system, is a good way to add
supplementary functionality to the present EHR systems.

Conclusion: The approach of the template system in combination with various local EHR systems
can facilitate the sharing and reuse of validated clinical information from different health care units.
However, future system developments for these purposes should consider using the openEHR/
CEN models with shareable archetypes.

Published: 2 May 2007

BMC Medical Informatics and Decision Making 2007, 7:10 doi:10.1186/1472-6947-7-10

Received: 25 August 2006
Accepted: 2 May 2007

This article is available from: http://www.biomedcentral.com/1472-6947/7/10

© 2007 Chen et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17474997
http://www.biomedcentral.com/1472-6947/7/10
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
Background
Electronic health record (EHR) systems are widely used in
hospitals and primary care centres in the Stockholm
County Council. Essentially all primary care records and
recently almost all hospital medical records are stored
electronically in this region. However, within the region
there are over twenty-five different EHR systems in use.

Since different vendors are using both different proprie-
tary information models and different terminologies
when recording the (clinical) data, it's nearly impossible
to collect consistent and validated data into centralized
databases for further analysis. There are also more than 50
national quality registries in Sweden, collecting patient
data from health care units for quality control and clinical
research, which have similar problems with different
information models and terminologies.

One of these quality registries is the National Diabetes
Registry (NDR) which recommends the health care units
responsible for the care of diabetes patients, to report data
back to the central NDR server periodically or at least once
a year. The NDR service provides two ways to do this
reporting, a) through a web based graphic user interface or
b) through a system integration interface implemented as
web services. The required format includes a list of prede-
fined variables which needs to be mapped to the local var-
iables within EHR system, before transferring the data
automatically.

Since the integration to the NDR service is not fully sup-
ported by all of the EHR system, many clinicians have to
re-enter the data manually. This procedure increases both
the workload of the clinicians and the risks of introducing
input errors. As a consequence the data will sometimes
not be reported due to the lack of a more efficient routine.
Another aspect is that the different EHR systems also uti-
lize different validation rules for data entry, which means
that the quality of recorded data might be insufficient.

Nearly all existing EHR systems are built with an explicit
domain model– a common approach in current EHR soft-
ware development practice. This means that the hard
coded medical domain knowledge in the system results in
higher cost when new requirements in clinical documen-
tation routines occur. For example, clinicians who want to
record extra (new) data to improve clinical research will
have to ask the local EHR vendor to implement this new
feature. Apart from the waiting time for the implementa-
tion etc, they also may have to pay extra money for the
new feature. If a research program requires a large amount
of data to be collected from different clinical sites (using
different EHR systems), this make it much more difficult
to add a specific features so the collected data will be com-
parable. At present it is therefore difficult to collect data

regarding clinical observations and treatments in order to
facilitate clinical research and quality control utilizing the
current EHR systems.

The lack of integration between the different EHR systems
is not only an obstacle for a more effective clinical
research, but it is also a fact that may lead to a suboptimal
care for the individual patient, including potential safety
problems and an unnecessary waste of resources.

Methods
Design considerations
The new system should be able to record data both from
clinical routine documentation and experimental studies.
The system should be possible to integrate with the local
EHR systems in clinical environment, preferably using the
same Graphical User Interface (GUI) as the existing EHR
system. The users should not be forced to duplicate the
data that already might exist in the local EHR system. The
system should be flexible enough to allow certain author-
ized users to define what kind of (new) data items to be
recorded during either clinical routine documentation or
clinical trials based on expertise in the medical domain.
The users should also be able to specify the data type of
the variable to be captured and its valid range to minimize
the possibility of an erroneous entry.

Optionally the user should be able to link the defined
data item to an external terminology, which later can be
utilized for possible data aggregation and classification
purposes. All the definitions should be possible to main-
tain directly by the medical domain experts without any
involvement of the software developer(s).

More importantly, such definitions should be shared and
reused by other users than the original author for data
recording so that the semantics and quality of the data col-
lected from different health care units with various EHR
systems can be maintained.

System description
We have designed and developed a template based sup-
plementary EHR system called Julius, which allows the cli-
nicians to define data items they want to record and then
design the layout of a template that guides the clinical user
when recording the data. Templates and variables can be
defined during system runtime to adapt the system to
meet new requirements on data recording.

The system conceptually consists of three subsystems: the
Concept Data Service (CDS) where variables are defined,
the Template Data Service (TDS) for defining data entry
templates, and Patient Data Service (PDS) where the
patient data is stored and managed (Figure 1).
Page 2 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
These three subsystems are communicating using web
services. The system can be deployed according to differ-
ent operational strategies depending on the requirements
of the organisation. For instance the definition of varia-
bles and templates can be shared among different health
care units having separate Patient Data Services. However,
at least one instance of CDS must be online for TDS to
work properly; similarly at least one instance of TDS must
be online for PDS to run.

For the implementation in the Stockholm County Coun-
cil, it was decided to keep only one centrally managed
CDS, one TDS for each hospital and one PDS for each
health care unit.

Concept Data Service (CDS)
The CDS is the starting point for the medical domain
experts wanting to design a template. They can define the
data items corresponding to individual clinical concepts
within a clinical process, for which they want to record
data. For each concept, a variable definition is made and
can later be shared and re-used by several other templates
if needed.

The variable definition within the system consists of a) a
concise term describing the concept, b) a data type of the
value to be captured, c) a label for display and d) a
description in plain text format. The possible data types
are integer, decimal, date, text and pre-defined value sets.

System Architecture OverviewFigure 1
System Architecture Overview.
Page 3 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
An optional unit designator can be assigned to the varia-
ble if it is necessary to represent a quantity value.

External codes from standard terminologies can be linked
to a variable definition as a reference term usually done by
a specialist of the reference terminology. Depending on
the nature of the terminology, the reference term can be
used to perform things like classification (e.g. with ICD10
code) and aggregation (e.g. with SNOMED CT code) of
clinical data. Figure 2 shows the information model of the
core part of the CDS variable definition. All variable defi-
nitions will by default be inactive when first created by the
variable author, and not ready for use until the (new) def-
inition has been approved by a CDS administrator (med-
ical domain expert). This procedure was chosen in order
to ensure that all definitions maintain a good quality and
consistency. The administrator is also responsible to
ensure that new versions of variable definitions do not
cause problems in templates where they are already in use.
After the approval of the CDS administrator the definition
is activated and can be use by the various templates. A var-
iable definition can also at any time be deactivated for dif-
ferent reasons, such as maintenance. A deactivated
variable definition will in any case not be available for use
when composing a new template but can be used for dis-
playing previously entered data.

In order to find the appropriate variable definitions when
composing new templates, a dynamic category structure
was implemented in the CDS. All variables and value sets
are associated with a specific category, representing an
organization or clinical speciality. The users can easily
navigate to their own sub-category to manage their varia-
bles. A global search function is also available for the var-
iable definitions based on their attributes.

The user interface of the CDS is web based and accessible
through an ordinary web browser (Figure 3). Multiple
users can work at same time and all definitions are stored
centrally on the CDS server. Upon activation, the new var-
iable definitions become immediately available through
the web services interface. The definitions are expressed in
XML format, which itself is constrained by a predefined
XML Schema.

Template Data Service (TDS)
The TDS subsystem allows users to compose new tem-
plates or edit old ones that utilize the variable definitions
published by the CDS. The template definitions are later
used by the PDS subsystem to read and record the patient
data. A template consists of a list of groups, which in turn
consists of fields that refer to the variable definitions with
optional validation rules. Figure 4 shows the information
model of the core part of the TDS.

Users can within a template create groups to logically
organize the variables according to the specific character-
istics of the clinical concepts. The groups determine the
layout of the user interface for data entry and display. This
simple yet intuitive approach enables the clinical users
themselves to adjust the system to meet their specific
needs.

For example, a user can choose to enter data from labora-
tory results, clinical findings and treatment decisions into
three different groups with the names "Lab Result", "Diag-
nosis" and "Treatment" respectively. The groups can also
be modified to add new variable definitions or remove
existing variable definitions if required.

In the case of integer and decimal data type variables,
minimal and maximal values can be specified for valida-
tion purposes. It has to be noticed that the different vali-
dation rules and descriptions can be specified for the same
variable used in different templates. One advantage of this
specialisation in the templates is that the same variable
may have different limits in different contexts, e.g. the
limits of body weight certainly differ in the context of
adults and children. Furthermore, the template author can
provided textual description to overwrite the original
description supplied by the variable definition author. It
is expected that such descriptions would give helpful
information when data are being recorded, for instance
some explanation of the usage of a customized term. The
definition of a variable is thus more reusable than that of
a template.

As in the case for the variable definitions, templates are
authored, modified and activated through a web based
user interface (Figure 5) and all templates are published
through a web services interface (Figure 1). An XML
Schema is again used to specify the XML format used to
describe the templates.

Patient Data Service (PDS)
The PDS is managing the display, editing and storage of
the collected patient data. The PDS utilizes the template
definitions published by TDS and transform the template
into web forms ready for data entry. It also applies valida-
tions rules defined by both CDS and TDS when it receives
data submitted by the user. An easy navigation is provided
by the use of different groups of variables and a summa-
rized view of the data. The web based interface (Figure 6)
can be integrated with the major EHR systems deployed at
several hospitals and primary care centres.

The user doesn't need to leave the local EHR client inter-
face to be able to enter the interface of the system. A
browser window with the web forms are loaded directly
from the EHR system. The authentication and selection of
Page 4 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
the patient identity and relevant templates are automati-
cally taken care by the integration mechanism between
the Julius system and the local EHR client.

The data recorded through the web form are stored on the
(central) PDS server, which is prerequisite for reporting to
a number of national quality registries or exporting to
other secondary databases dedicated to clinical research.
Most of the data need to be collected are from multiple
departments and health care units, which already has dif-
ferent EHR clients from various vendors for daily routine
use. But none of the existing EHR products can offer such
dynamic configuration as this dedicated template system
to meet the changing requirement from clinical process
and research activities. More importantly, this template
system provides a way for participating members – hospi-
tals and health care units, to define, agree upon and share
terms and templates used for data recording, which leads
to more consistent, more reliable clinical data to be col-
lected. That was exactly the primary goal of this research.

Design and implementation
The system is designed according to modern system archi-
tecture with three principal layers [1]. The presentation
layer is purely web-based, which allows seamless integra-
tion with existing EHR products. The domain layer con-
sists of a template and term engine, transformation logic
and validation logic. The data source layer utilizes an
object relational mapping tool and a relational database.

The system is implemented in the JAVA programming lan-
guage with certain APIs from its enterprise extension J2EE.
The presentation layer is implemented in HTML and Java-
Script, which allows high portability among mainstream

web browsers. The user interface is the result of an XSLT
transformation on XML data generated by the domain
layer. The domain logic is organized as a domain model,
a small number of simple but coherent classes.

Several well-known open source tools and libraries are
used instead of other proprietary software products, for
several reasons such as lower cost, overall better openness
and reliability. The open source software used in the Julius
system are JBoss (application server), Hibernate (OR map-
ping tool), MySQL (database management system), Axis
(web services library) and Xalan (XSLT library). The pro-
duction system is running on the Red Hat Linux Enter-
prise edition.

The Julius system source code is available for review [see
additional file 1].

Results
The first release of Julius system has been deployed and
integrated with Swedestar, an EHR system for the primary
healthcare, in a pilot study with two primary care centres.
For the follow-up of patients with diabetes a template
with 50 variables has been created for the collection of
clinical data. During two years, over 250 patients have
been recorded with the Julius system and reported to the
National diabetes registry.

The second release of the Julius system, with an enhanced
template engine and an improved user interface has been
deployed at Department of Infectious Diseases, at the
Karolinska University Hospital. This release will later be
used for Swedish HIV registry, which when fully imple-
mented will receive input from 37 clinical units all over
Sweden.

Pilot user groups have been interviewed regarding their
early experience of using the Julius system. The feedback
from clinicians has been positive since the Julius system
empowers them in deciding what and how the clinical
information should be collected. The users can define val-
idation rules and options for the recorded concepts,
which results in higher quality and more consistent
patient data to be gathered for quality control and clinical
research. Since the template system can be invoked seam-
lessly from several major EHR products, it does not
change the way clinicians are used to work, nor does it
force them to repeat the recording of data for clinical and/
or research purposes. The web based solution of Julius
allows data from different units to be collected from the
same user interface regardless of the EHR software that the
clinicians actually use.

CDS UML Class DiagramFigure 2
CDS UML Class Diagram.
Page 5 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
Discussion
The use of templates in combination with user defined
variables with the functionality of the template system
was new to the current EHR products used in the Stock-
holm region. The template system provides the clinical
user groups with a set of tools to author variable defini-
tions and templates, and to share the definitions of both,
which alleviates the interoperability problem simply
because the definitions are explicit and readily accessible.
This is contrary to most of proprietary systems whose

domain entities are hidden and often embedded in pro-
gramming logic.

A second important aspect of the template system is that
it is a highly flexible and adaptive system since its runtime
behaviour is driven by templates and variable definitions
created and maintained by the end users, the medical pro-
fessionals themselves. Requirements unforeseen by the
software developers can be easily accomplished by creat-
ing new or updating existing templates and variables.
Compared with the traditional approach, the clinical
users would have to require a change from the vendors
and wait for the vendors to do the implementation. Not
only does this take a long time and resources, but also
increase the possibility of system errors. Furthermore, the
traditional software engineering process requires knowl-
edge transfer from the medical domain experts to the soft-
ware engineers, which sometimes inadvertently leads to
misunderstandings and new errors in the software. Given
the changing nature and the complexity of medical
knowledge, the driving force to adapt EHR systems has to
be the medical professionals who have best understand-
ing of the clinical procedures and what needs to be
recorded. Thus the system offers a useful complementary
solution to the existing EHR systems for both clinical rou-
tine and research use.TDS UML Class DiagramFigure 4

TDS UML Class Diagram.

CDS Administration screenFigure 3
CDS Administration screen.
Page 6 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
Since the PDS data are stored separately from the local
EHR, there is a risk that duplicated data could be entered
into both systems thus causing inconsistency of the data.
It has been recommended to the users that templates that
overlap with the local EHR systems should not be created
and used for data entry to avoid data coherence problems.

Other similar approaches
The OpenSDE [2] system developed by Renske K. Los et al
used row-modelling technique to allow generic structured
data entry. The flexibility of the OpenSDE system is simi-
lar to Julius though they are based on different solutions.
Compared with the Julius approach, the OpenSDE system
doesn't seem to be able to share the definitions of tem-
plates and concepts, nor does it can be integrated into
existing local EHR system for the purpose of shared EHR
data among different sites.

Yamazaki etc [3] reported using XML for sharing Elec-
tronic Patient Record (EPR) screen templates in EPR plat-
form independent way. Although it's partly like what the
Julius Template Service does, their focus wasn't to share
EHR data but the screen templates used for structured data
entry.

Other authors [4,5] have also reported template based
EHR system and platform independent structured data
entry, but none of these researches have the reached goal
for sharing EHR data between different EHR sites.

High level comparison to openEHR approach
It should be noted that the Julius approach is quite similar
to the archetype concept described by Beale [6] in the way

that Julius template is roughly a clinical domain archetype
as described by Beale. Essentially, both approaches use a
small set of predefined information models, which allows
unlimited ways of combination to meet the changing
requirements, but constrained by user defined knowledge
components during system runtime. Both share the
attribute of being highly flexible and adaptive; however
there are some differences between these two approaches.

The archetype concept has received a wide recognition
and been adopted as a key component by the openEHR
foundation [7], a non-profit organization which pro-
motes comprehensive and interoperable EHR by produc-
ing open standards and open source software. A large
portion of the openEHR specifications have been incorpo-
rated into the latest draft European standard for EHR com-
munication prEN 13606. In fact, the Archetype Definition
Language (ADL), the expression form of archetypes, has
been included in the part 2 of EN 13606. Also two EHR
related ISO documents, namely the Technical Report of
EHR Definition, Scope and Context and Technical Speci-
fication of Requirement of EHR Architecture, have been
much influenced by the openEHR work. Conformance to
international standards is perhaps most distinctive differ-
ence between Julius system and openEHR. The Julius sys-
tem is based on a proprietary design, while the openEHR
designs are publicly available specifications and based on
the latest formal European standard for EHR communica-
tion.

The second key difference lies in the expressiveness of the
information models. The openEHR reference information
model seems to be more comprehensive and well-thought

TDS administration screenFigure 5
TDS administration screen.
Page 7 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
(the detailed comparison is included below). The
openEHR design has been refined through more than 10
year experience from several European EHR projects and
early implementations conducted both in Australia and
UK. The openEHR reference model covers not only the
EHR information model but also related areas like demo-
graphic data, version control, security and access control
and medico-legal concerns which are not covered by the
Julius model.

On the other hand, the Julius system was designed to be a
complementary solution to existing EHR systems with
specific goals under practical constraints from both time
and resources. So it is understandable that the Julius
design is not as sophisticated as that of the openEHR,
which aims for full-blown and possibly future-proof EHR
systems. Although openEHR was founded in 2000, the
Release 1.0 of the design specifications has just been final-
ized at the time of writing due to continuous effort on har-
monizing between openEHR and major international

information model standards, e.g. HL7 RIM v3 and the
CEN [8] work on EN 13606 EHR Communication.

The openEHR specifications have been validated by at
least one reference implementation which is also released
as open source software. Since the openEHR design is fun-
damentally based on the same approach as Julius – two-
level modelling and its specifications are freely available
and relatively well-known in the EHR world, it is worth-
while to make a more detailed comparison between the
design of openEHR and Julius.

More detailed comparison to openEHR archetypes
The Julius Variables and Templates serve similar purposes
as the openEHR Archetypes. More specifically, the Julius
Variables are somewhat like the leaf level constraints of
the Archetypes, which essentially select input data types,
predefined values and provide binding to external termi-
nologies. The Julius Templates are equivalent to Arche-
types constraining on the level of data structures and EHR

PDS Data Entry ScreenFigure 6
PDS Data Entry Screen.
Page 8 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
compositions and entries by including a collection of Var-
iables and grouping them according to the semantics of
the screen forms. Archetypes are domain content models
that can be used not only to derive screen forms but also
to facilitate generic query interfaces and to build messages
for exchange between different EHR systems. Julius Varia-
bles and Templates are less sophisticated by design and
have limited scope compared with archetypes.

The Julius Variable only allows binding between a varia-
ble and a single terminology or coding system, and does
not provide possibility to reference external terminologies
for value set items. In contrast the openEHR Archetype
allows binding between an archetype node to any number
of target terminologies both on the entry node level and
value selection level.

Interestingly the Julius Templates can also provide extra
validation rules, description text besides the ones from the
Variable definition, which can be regarded as local cus-
tomization of the Variable constraints. They also give

hints for rendering the graphic interface, e.g. with high-
light flags.

The constraints from Julius Variables and Templates are
captured in their own models and used when PDS objects
are constructed. The mapping between the constraints
and the PDS model are not explicit, for instance a Variable
constraint is used to create an instance of Value object
from PDS model (Figure 7), and a Template constraint is
used to create PDS Form instance. This type of loose cou-
pling between the constraints and the target information
model is a design feature of the Julius system. The con-
straint model is generic in the sense that any existing EHR
systems might use the Variable and Template definitions
to achieve some level of interoperability without any cou-
pling to the Julius PDS. On the other hand, without refer-
encing the target information model, there is no
guarantee that the target object instance would obey any
of the constraints because it is up to the target system to
map them to its internal information model. Since the
constraints from Julius Variables and Templates are about

>PDS UML Class DiagramFigure 7
PDS UML Class Diagram.
Page 9 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
common data types, limited data structures and rather
simple validation rules, it should in principle be quite
straightforward to map the constraints to the internal data
model of any existing EHR system.

The openEHR Archetype Model is also generic, but the
constraints are expressed explicitly on a selected informa-
tion model, e.g. openEHR Information Model or EN
13606 Information Model. This explicit use of a target
information model is lacking in Julius Variables/Tem-
plates as mentioned above. The explicitness of the Arche-
types based on the object constraints, e.g. class and
attributes names, associations and invariants, gives a very
solid ground reinforced by object oriented programming
environments (e.g. editor, compiler). With knowledge of
the target information model and its built in constraints,
it is possible to validate the Archetypes against the given
model and prevent any erroneous constraints being cre-
ated, which otherwise would cause object creation failure
during runtime. Also the burden of binding constraints to
the internal object model is no longer on the target sys-
tems, thus the degree of ambiguity is greatly reduced. This
will in turn improve the interoperability among target
EHR systems. Because the Archetypes are further con-
straints on the object models, it is possible to express con-
straints with general semantics of object models, e.g.
existences, cardinalities and occurrences of attributes.

In Julius the Variables and Templates definitions are iden-
tified by their names, which are unique and meaningful to
human users. This is sufficient in small scale usage, but
will not be easy to scale up. For instance, different health
care units could define different Julius Variables for the
same medical concept, and if only the concept name is
used as an identifier for the Julius Variables, namespace
clashes are likely to happen. Also currently the naming of
different version of the same Variables or Templates is
done ad hoc – the Variables or Templates are simply given
new names without any explicit rules. The openEHR
Archetypes have formal rules for identification, which

consists of the originator, the target model, the concept
name and the version id. The combination of these sub-
components should make the Archetype namespace
much more maintainable.

Authoring of Julius Variables and Templates are done with
the web based applications, CDS Admin and TDS Admin
respectively. The results are directly stored on the sever
side and later published by web services in XML format.
That means there is no need for a human user to deal with
interchangeable formats of any kind. There is also no need
for a specific linguistic format parser because the binding
from XML to object format is automated by Java XML
Binding on the server side. So the whole chain of author-
ing, storing, sharing, parsing are fully integrated. From
this aspect, the tooling support of openEHR Archetypes is
not as thorough as that of Julius Variables and Templates
even if the Julius ones are not as ambitious. There are cur-
rently GUI tools for editing and validating Archetypes and
it is now possible to save Archetypes in either ADL or XML
format. Although there are also parsers that can handle
Archetypes in ADL format, there is not yet any server side
component available for versioning, storing and publish-
ing archetypes.

Table 1 summarizes the comparison between the Julius
and openEHR models.

Possible future improvements
Currently there is no versioning support for the defini-
tions of the Julius Variables and Templates. Changes
made to the definitions overwrite the previous ones,
which might have been used for data entry already. If the
changes are related to validation rules and data structures,
it leads to that the previous record cannot be loaded with
new definitions. One proposal is therefore to replace the
current template and variable engine with the openEHR
archetype based EHR kernel which has good versioning
support.

Table 1: Comparison of Julius PDS to openEHR Reference Information Model

RM Features Julius openEHR

data types string, integer, decimal, date Boolean, State, Identifier, Text, Coded Text, Paragraph, Count, Interval, Ordinal,
Quantity, Quantity Ratio, Multimedia, Parsable, URI, Date, Time, Datetime, Duration

data structures – spatial Group Item Single, Item List, Item Tree, Item Table
data structures – history N/A History, Single Event, Event Series
Demographic N/A Party, Actor, Person,Organisation, Agent Address, Contact etc
object identification Counters of type big integer Object ID, Archetype ID, Terminology ID, Hierarchical Object ID, ISO OID, UID, UUID,

Object Ref, Party Ref etc
change control Version Version, Contribution,Audit Details, Version Repository, Versioned Compositions,

Directory
Page 10 of 11
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2007, 7:10 http://www.biomedcentral.com/1472-6947/7/10
The support of more data types and data structures is
desirable for the improvement of expressiveness of the
present Julius Variables and Templates. Without proper
support for common data types and data structures, the
user's ability to model clinical concept in the form of Var-
iables and Templates is limited. It may lead to creation of
poor Variables and Templates that do not reflect the real
clinical need faithfully, which in turn might cause low
quality of patient data. The way to improve this is to intro-
duce more data types, e.g. ISO 11404 data types [9] and
common data structures, such as List and Table, also avail-
able in openEHR.

With the openEHR model, the Julius user could benefit
from the expressiveness of the openEHR reference model
and also interoperability with other standard compliant
EHR systems. In addition to interoperability using the full
openEHR specifications, the function to export and
import XML extracts in EN13606 format for patient data
exchange between different EHR systems will become very
useful in any EHR system.

A further development of Julius CDS has been proposed
with the aim to provide direct access to well known refer-
ence terminologies such as ICD10 and SNOMED-CT by a
separate concepts and terminology service that may also
be accessible to non-Julius systems and to a Julius PDS
application at runtime. A more advanced terminology
binding design would be required to allow several refer-
ence terms to be associated with a Variable and value set
items. Such separate terminology services will also be
desirable in an archetype based system both when defin-
ing archetypes and sometimes at EHR runtime.

Conclusion
The Julius system has met its design goals. The approach
of the Julius system in combination with various local
EHR systems can facilitate the sharing and reuse of vali-
dated clinical information from different health care
units. However, future system developments for these
purposes should consider using the openEHR/CEN mod-
els with shareable archetypes.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
Enberg contributed to the original design of the system,
the project management of development and deploy-
ment. He also contributed with review and revision of this
manuscript. Chen contributed to the improvement of the
system with the new architectural design and performed
the implementation of the software system and acted as
the main drafter of the manuscript. Klein was serving as a

senior advisor on the architectural design and contributed
to the analysis comparing the Julius approach with the
openEHR model. All authors have read and approved the
final manuscript.

Additional material

Acknowledgements
The research and development of the Julius system was financed by
research grants from the Stockholm County Council and Karolinska Insti-
tutet. The continued support and encouragement and support by the steer-
ing group led by Kaj Lindvall and Ingvar Krakau made this work possible.

References
1. Fowler M: Patterns of Enterprise Application Architecture, Addison Wesley

2003.
2. Los Renske K, van Ginneken Astrid M, de Wilde Marcel, van der Lei

Johan: OpenSDE: Row Modeling Applied to Generic Struc-
tured Data Entry. J Am Med Inform Assoc 2004, 11(2):162-165. doi:
10.1197/jamia.M1375

3. Yamazaki S, Satomura Y: Standard method for describing an
electronic patient record template: application of XML to
share domain knowledge. Methods Inf Med 2000, 39(1):50-5.

4. Henry SB, Douglas K, Galzagorry G, Lahey A, Holzemer WL: A tem-
plate-based approach to support utilization of clinical prac-
tice guidelines within an electronic health record. J Am Med
Inform Assoc 1998, 5(3):237-44.

5. Kahn CE Jr: A generalized language for platform-independent
structured reporting. Method Inform Med 1997, 36:163-71.

6. Beale T: Archetypes – An Interoperable Knowledge Method-
ology for Future-proof Information Systems. [http://
www.deepthought.com.au/it/archetypes/Output/front.html]. 2007-
05-02

7. The openEHR Foundation [http://www.openehr.org]. 2007-05-
02

8. CEN/TC 251 [http://www.centc251.org/WGI/WGIdoclist.htm].
2007-05.-02

9. ISO 11404 Language-independent datatypes
[http:isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/
PubliclyA vailableStandards.htm]. 2007-05-02

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1472-6947/7/10/prepub

Additional file 1
This archive contains all the source code files required to build the Julius
system.Refer to the README.TXT file for an overview of the different files
of the archive.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-7-10-S1.tgz]
Page 11 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1472-6947-7-10-S1.tgz
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14662800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14662800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10786070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10786070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10786070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9609493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9609493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9609493
http://www.deepthought.com.au/it/archetypes/Output/front.html
http://www.deepthought.com.au/it/archetypes/Output/front.html
http://www.openehr.org
http://www.centc251.org/WGI/WGIdoclist.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://www.biomedcentral.com/1472-6947/7/10/prepub

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Design considerations
	System description
	Concept Data Service (CDS)
	Template Data Service (TDS)
	Patient Data Service (PDS)
	Design and implementation

	Results
	Discussion
	Other similar approaches
	High level comparison to openEHR approach
	More detailed comparison to openEHR archetypes
	Possible future improvements

	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References
	Pre-publication history

