Setup and test of a WFS for NatureSDI+ according to INSPIRE

Klaus Drerup

June, 2010

Bachelor’s Thesis in Geomatics

Examiner: Bin Jiang
Supervisor: Anders Östman
Abstract

The INSPIRE initiative requires that every European member state establishes a national SDI and related web services. Among these a WFS must be implemented to query spatial data. Therefore several Quality of Service specifications must be fulfilled by this web service, among these are performance, capacity and availability. In this study work a WFS will be implemented for Nature SDI plus. In this European project the WFS will provide spatial data from several data specifications of ANNEX I and III. The main object is to test the conformance to the INSPIRE specification. Therefore load and performance tests will be performed.

Keywords: Load and performance Testing, Quality of Service (QoS), Web Feature Service (WFS), Spatial Data Infrastructure (SDI), INSPIRE
Acknowledgements

Writing a thesis is always connected with a great deal of work. This is one of the longest study works which occurs during the time being a student. I experienced the same last year when I wrote my first thesis. This year it was not really different, but I was very interested in doing some research at a Swedish company, so I saw this as opportunity. Nevertheless, it was also much work. Even if it is supposed to be done by oneself, it is almost impossible to do. There have been so many people who supported me, without their help I would not have been progressed so far right now.

First of all I want to thank my Supervisor Prof. Anders stman. He gave me the inspiration to do a study work here in Gvle. I wanted to do some research and he helped me to find some interesting questions. Furthermore I have to thank him for his support. And I also have to thank for that I could write my thesis at the GIS Institute. It was a really nice environment and I had access to resources I would usually not have.

In particular I would like to express my gratitude two people from that place, those are Finn Hedefalk and Xin He. They were always there when I had some questions, even to times when most of the people are not working anymore. All the time they could help me with their expertise, Finn in SuperMap and purchasing the datasets, Xin in performance testing.

And special thanks to my friends and my family for their support during that time.
Contents

List of Figures iv
List of Tables v
Glossary vi

1 Introduction 1

2 Background 3
 2.1 The INSPIRE directive 8
 2.2 Nature SDI plus 4
 2.3 WFS 5
 2.4 Testing of web applications 6
 2.5 Aims of this study 7

3 Methodology 8
 3.1 Software for WFS 8
 3.2 Hardware for WFS 10
 3.3 Offered Datasets 10
 3.4 Criteria for Quality of Service 13
 3.5 Tools for performance testing 14
 3.6 Detailed test description 14
 3.6.1 Test INSPIRE conformance 15
 3.6.2 Test of large datasets 16

4 Results

4.1 Results of the first test run

4.1.1 Deviation related to time of day

4.1.2 Performance of the different operations

4.1.3 Transfer rate of downloads

4.2 Results of the second test run

5 Discussion

6 Conclusions

References
List of Figures

2.1 INSPIRE technical architecture overview 4

3.1 Architecture of SuperMap IS .NET 6 9

3.2 Biogeographical regions in Sweden 11

3.3 Protected areas in Gävleborg 12

3.4 Performance criteria download service 13

4.1 Deviations between measurements at different times of day 18

4.2 Response times for the GetCapabilities requests 19

4.3 Response times for the DescribeFeature requests 20

4.4 Response times for the GetFeature requests 21
List of Tables

3.1 Times and locations first test run .. 15
3.2 Sizes of the responses to basic requests 16
3.3 File sizes large data sets ... 16
4.1 Throughput first test run ... 22
4.2 Transfer rate first test remote computer 22
4.3 Response times second test run .. 23
Glossary

GIS Geographic Information System. Such a system can capture, process and present geographic data.

GML Geographic Markup Language. A language to describe a data structure which is used to store geographical features

HTTP Hyper text transfer protocol. A protocol to transfer data over a network.

INSPIRE Infrastructure for Spatial Information in the European Community, an infrastructure for spatial data in Europe.

OCG Open Geospatial Consortium. A standardizing organization which defines specifications for web services for spatial data.

XML Extensible Markup Language. A language which saves information in a hierarchical way as a textfile.
Introduction

More and more spatial data are organized in Spatial Data Infrastructures (SDI) today. An SDI offers access to and shares geographic data among stakeholders for a certain spatial data user community. They exist at various levels, from a global into a national to a regional scale and can be found in many countries of the world (Maguire and Longley 2005). Their benefits are that they offer harmonized datasets and provide a central access to the data.

The INSPIRE directive will establish such a solution (THE EUROPEAN PARLIAMENT AND COUNCIL 2007). Its overall goal is to create one SDI for Europe to have common standards for a more consistent usage of geographical data in Europe. The framework for access and usage of spatial data are web services. Therefore each European member state has to implement these web services within a given time frame. Furthermore each web service has to comply with requirements for their performance.

One of these web service is the Web Feature Service (WFS). It is a download service for spatial data. There exists an implementation rule (Network Services Drafting Team 2009) to set minimum performance requirements. To meet these specifications is one challenge for the implementation of the WFS. Since the member states are going to setup their download services now there has not been a feedback which software solution does fulfill these specifications. According to the roadmap of INSPIRE (European Commission INSPIRE 2010), there are two years left to setup an operational WFS. Another issue is how to measure the performance. The specification describes only some measurements for the conformance, but not how to measure them. There is no standard testing procedure described.
Performance tests itself are a standard method to test software, web sites and other web services. The Web Mapping Service (WMS) is one of the most known from the spatial domain. For this view service there has been done some performance tests, e.g. in (Horak et al. 2009), but one cannot apply these for a WFS. The focus of a test of WMS is more likely to meet users experience, how fast a user can see a map after sending the request for it. The primary goal of a WFS is to download data which requires other test criteria. A WFS can be used to access spatial data from a local computer but with the emergence of Web Processing Services also in combination with other services. In a chain of different web services every single one has to be reliable. What if there are many concurrent users requesting several files and also how does the size of spatial dataset influence the performance. Will the WFS still be reliable and respond within a given time interval? It is important to develop an appropriate test as solution for these questions before publishing a WFS to see if it is operational.
2

Background

The chapter gives a short overview of INSPIRE, the Nature SDI plus project, what a WFS is and reviews related work of web service tests.

2.1 The INSPIRE directive

The Directive (2007/2/EC) of the European Parliament and of the Council is the legal foundation for a SDI within Europe called INSPIRE (THE EUROPEAN PARLIAMENT AND COUNCIL, 2007). It should be based on the infrastructures for spatial data of the European member states. One goal of INSPIRE is to support policies and activities with influence on the environment. Moreover this infrastructure shall provide interoperable spatial data. Therefore measures have to be established to ensure that the different stakeholders can share, exchange and use the data across different levels of authorities and boundaries, from a local one to national ones.

The directive has established an overall architecture on a technical level. The architecture is organized into 4 different tiers (figure 2.1). Each tier aggregates several processes on a horizontal level. The top tier, Applications and Geoportals, is undefined and determined for the later usage. The applications have access to the underlaying tier, the service layer. They are designed to be the only possibility to access and use the data. Therefore they perform different functions. These are registration of services, discover services and data, services for view and download and transformation. These services are using standards for web services defined by the Open Geospatial Consortium (OGC). Their implementation in INSPIRE is regulated in several Implementing
2.2 Nature SDI plus

The Nature SDI plus project deals with spatial data about nature conservation (NatureSDIplus consortium, 2009). The aim is to provide harmonized datasets which are interoperable and can be shared and reused by different stakeholders of the project and in INSPIRE. The data is specified in Annex I and Annex III of the INSPIRE directive: Annex I:

- Protected sites:
2.3 WFS

Annex III:

- Biogeographical regions:
- Habitats and biotopes:
- Species distribution:

As stated in section 2.1 only the one from Annex I is finalized, the others are project specific.

The GIS Institute in Gävle is responsible to setup a download service for spatial datasets related to Sweden.

2.3 WFS

A Web Feature Service (WFS) is a web service defined by the OGC \cite{2005}. Its purpose is to upload and download spatial data and metadata about spatial data from a server. A WFS provides a level of abstraction. This guarantees that this service can be used by every client implementing its service specification. The communication between server and client is performed by several operations. The most important ones are:

- **Get Capabilities**

 This request returns a document containing information about the service itself.

- **Describe Feature Type**

 A schema with the data specifications of one or several features can be accessed by this operation.

- **Get Feature**

 This request delivers the spatial data. There are many options how to query the data. One is to apply a bounding box to get only data of a certain spatial extent.

 There are furthermore other operations defined to use a WFS as transactional service to upload, update or delete spatial data on the remote server. The transfer protocol for the operations is HTTP-get or HTTP-post. A request using HTTP-get sends all
parameters in the URL of a request, one using http-post sends the parameters in the body of a request. A response is encoded in XML, the spatial data itself is encoded in GML. In comparison to other web services, in particular to a WMS is a WFS able to download the spatial data itself so that it can be used for further computational processing. This makes this service valuable in chaining different web services as it is demonstrated in (Kiehle 2006).

2.4 Testing of web applications

Today there is a shift from desktop applications to web applications in computer science. More and more applications are outsourced to the Internet. This has the benefit that it can be used by everyone and on demand. Furthermore is saves operational costs (Troni et al., 2008). As stated in section 2.1 this also includes web applications dealing with spatial data. It is an example for the usage of the Internet as the only connection to access these services. The INSPIRE architecture is completely based on web services.

Before publishing a web service it should be tested so that it will be reliable and has a minimum performance. First of all, one has to differ between white- and black-box testing. Black-box testing means to test an application without any knowledge of its underlying structure and implementation. This is known in white box testing, it is a concept to analyze and improve a software (Myers et al., 2004).

For application testing many different approaches exists with different goals. Hicks et el. differ between five different kind of tests: Test precondition data, functional testing, Stress test functionality, Capacity testing and load and performance testing (Hicks et al., 1997). One classical application and what is still an issue is testing of web sites. Menasc reviews load testing of web sites (Menasc, 2002). The test application simulates several virtual users who behave like a web browser. They request a web site, wait for the response and after receiving it and after a certain think time they request the next page. Each virtual user has a certain behavior how he does it. The test application can simulate many concurrent virtual users to see how many users a web site can serve within a given time frame. To analyze its performance, several so called Quality of Service (QoS) measures are presented. Two important QoS measures, the availability and the response time of a web site are pointed out. The availability indicates if a user has accessed a web site. The response time shows how fast this
2.5 Aims of this study

The objective of this study is on the one hand to setup a WFS and on the other hand to test its performance. Because this WFS shall offer data for the Nature SDI plus project, it has to be conform to the INSPIRE specifications for download services.
3

Methodology

This chapter introduces how I tested the QoS for the WFS. The used software and hardware for the WFS will be presented, the software for the performance tests, the datasets, an extensive description of the conformance specifications and details how I ran the QoS tests.

3.1 Software for WFS

There are many choices for a software to setup a WFS. I decided to use software from SuperMap because it is also used in the GIS Institute in Gävle (SuperMap Software Co., Ltd. [2010]). SuperMap is a Chinese company, they develop a GIS platform which can offer different kinds of GIS from Desktop GIS to Web services.

Among all components of the SuperMap GIS I used SuperMap IS .NET 6 to run the WFS Server and SuperMap Deskpro 6 to create maps for the WFS. After the software is installed, the next step is to configure SuperMap IS .NET 6 for a WFS. Then one has to migrate the data to the server. Therefore I created a map in SuperMap Deskpro 6 which contains all the data I want to provide. This map was uploaded to the server and set as default workspace for the data in the SuperMap IS .Net Manager, the configuration page for Internet Services.

SuperMap IS .NET 6 has a four-level structure for web services: The client application, web server, GIS application server and data server (SuperMap Software Co., Ltd. [2009]). The last three components can be run on the same or on different computers.
Subsequently I will explain all components more in detail and how they were involved in the WFS:

![Diagram of SuperMap IS .NET 6 architecture](image)

Figure 3.1: Architecture of SuperMap IS .NET 6 - SuperMap structures its web services for their GIS platform in several layers. - ([SuperMap Software Co., Ltd.](https://www.supermap.com) 2009).

- **Client application**

 A WFS can be accessed by many applications which act as client. Many GIS support WFS and can directly download and process spatial data. Furthermore, using the HTTP-get method as described in section 2.3 enables also simple web browsers to load geographical features and show the GML as XML. Since I wanted to run performance tests I used a performance test software (see section 3.5).

- **Web server**

 The web server gives the client access to the underlaying GIS. It provides a service on the Internet. In the SuperMap WFS implementation this is the part which
3.2 Hardware for WFS

forwards requests from the client to the GIS application server and sends also the response back.

- **GIS application server**

 This server provides the GIS functionality. In a SuperMap WFS this part processes requests for data and metadata, accesses the data from the data server, converts these datasets to GML and sends them to the web server. One or several GIS services can be setup on one or more computers by using a cluster function.

- **Data Server**

 The data server consists of one or several databases and offers spatial data, metadata and other data like business data to the GIS application server. Many types of databases are supported, for this implementation a SDX+ database of SuperMap has been used. Therefore each dataset was migrated to and stored in an own database.

3.2 Hardware for WFS

The server for the WFS was one from the University of Gävle. It was a HP proliant ml350 tower. The computer has four Intel Xeon processors with a speed of 2000 Mega Hertz. The size of the memory is 2 GB. As operating system is Microsoft Windows Server 2003 installed.

Beside the WFS application a course catalog was running on the server offering online courses.

3.3 Offered Datasets

As already stated in section 2.2 the WFS shall offer data according to four INSPIRE schemata. The time when I ran the tests three different datasets were available. The first one contained information about protected areas of the Swedish county Gävleborg. It is harmonized according to the final INSPIRE data specification. The second dataset contained biogeographical regions of whole Sweden. It is harmonized according to a draft for this INSPIRE data schema. This is not finalized, so in the future there might be some changes. Figures 3.2 and 3.3 show data structures of these two datasets.
3.3 Offered Datasets

Figure 3.2: Biogeographical regions in Sweden - [Screen shot DesktopPro 6].
3.3 Offered Datasets

The third one contained data from habitats and biotopes. This one was unharmonized, furthermore its data specification is not final. It was included in the tests because among the four datasets it was the largest one. That is because it had many features and many attributes. For the fourth schema, species distribution, the data was not available. The first three datasets were provided by the Swedish Environmental Protection Agency, the fourth will come from the Swedish University of Agricultural Sciences.

Therefore three of the four datasets which have to be provided later by the final WFS had been used to test the performance. The two harmonized datasets founded a good basis because they had a different number of attributes. As described in section 2.3, a WFS provides spatial data which are downloaded as GML. In a comparison to a less hierarchical structured text based file format or even a binary file format a GML file is larger with the same amount of information. For a download service the size of a file is very important. The number of attributes affects the file size considerably. For data as specified in one of the INSPIRE schemata, there are several attributes which are mandatory and must be recorded, but some are voidable. Inclusive the geometry one feature in protected sites had 14 attributes, one feature in biogeographical regions had only nine. This should be considered, it could be important to figure out the influence

Figure 3.3: Protected areas in Gävleborg - [Screen shot DesktopPro 6].
of a data specification for the performance of the WFS. The dataset about biotopes and
habitats had 73 attributes because is is not harmonized, but after a harmonization
many attributes would be eliminated. However, it is useful to test how the WFS can
deal with requests for large datasets.

3.4 Criteria for Quality of Service

In (Network Services Drafting Team [2009]) are the Quality of Service requirements for
a WFS defined. These are crucial for the main objective of this thesis. In this document
the criteria for the QoS are enlisted which are performance, capacity and availability.

• Performance

The performance is defined as the time the service needs to reply a request. The
maximum response time is given for a certain capacity. Furthermore a certain
transfer speed shall be kept for the ”Get Spatial Objects” and the ”Describe
Spatial Object Types” operations. Figure 3.4 shows in detail all the defaults.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Response time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get Download Service Metadata</td>
<td>10 seconds in normal situations *)</td>
</tr>
<tr>
<td>Get Spatial Objects</td>
<td>30 second initial response, then the service shall maintain a sustained response > 0.5 MB/s, alternatively 500 spatial objects/s in normal situations *)</td>
</tr>
<tr>
<td>Describe Spatial Object Types</td>
<td>10 seconds initial response, then the service shall maintain a sustained response > 0.5 MB/s, alternatively the attribute values of 500 spatial object types per s in normal situations *)</td>
</tr>
<tr>
<td>Define Query</td>
<td>Performance criteria are not applicable.</td>
</tr>
</tbody>
</table>

*) Normal situation represents periods out of peak load. It is set at 90% of the time.

Figure 3.4: Performance criteria download service - [Network Services Drafting Team [2009]].

• Capacity

The capacity is the number of requests a service can reply for the defined perfor-
mance. The minimum is ten requests per second. Furthermore the service can limit the number of requests to 50 at the same time.
3.5 Tools for performance testing

- Availability

 The availability defines how often the service must be able to answer a request. This specification says that this must be the case for 99% of the time.

3.5 Tools for performance testing

To test the conformance of the WFS, I tried two tools for performance testing. This kind of software is able to simulate a huge number of virtual concurrent users accessing a web service. The first one is WAPT (SoftLogica, 2010) and is a commercial software to test web services. It is a powerful tool but was not able to measure the single download time in a response. It could only show the overall response time which includes also the time the server needs to process a request. As stated in the previous section, the specification defines on the one hand a maximum time for the service to reply to a request and on the other hand a minimum download speed. The second tool was JMeter (The jakarta project, 2010). It is open source and based on Java. This tool has not so powerful evaluation possibilities as WAPT but can measure not only the overall load time of a response, but also the latency, the time when the first byte of the response is received. The difference between both numbers is important to compute the transfer time and -rate. To start a test in JMeter, first a testplan is created which organizes a test run. It has several types of virtual users, so called Thread-groups simulating one or several users. Each Thread-group has a defined sequence of requests. Furthermore many parameters for the result can be recorded. Another advantage of JMeter is that it is easy to configure and a testplan can be changed quickly.

3.6 Detailed test description

The applied tests were load and performance tests. They were designed as black box tests since only the performance of the software counts but not how the software itself works. The first test run was the major one. Its purpose was to figure out the performance of the WFS and its INSPIRE conformance. The second test run had the goal to see how the performance is for large files.
3.6 Detailed test description

<table>
<thead>
<tr>
<th>Location</th>
<th>University</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time afternoon</td>
<td>13:00</td>
<td>15:45</td>
</tr>
<tr>
<td>Time evening</td>
<td>18:00</td>
<td>20:45</td>
</tr>
<tr>
<td>Time night</td>
<td>23:00</td>
<td>01:30</td>
</tr>
</tbody>
</table>

Table 3.1: Times and locations for first test run

<table>
<thead>
<tr>
<th>Request</th>
<th>Dataset</th>
<th>Size in KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCapabilities</td>
<td>-</td>
<td>6.15</td>
</tr>
<tr>
<td>DescribeFeatures</td>
<td>Biogeographical regions</td>
<td>1.72</td>
</tr>
<tr>
<td>DescribeFeatures</td>
<td>Protected areas</td>
<td>2.81</td>
</tr>
<tr>
<td>GetFeature</td>
<td>Biogeographical regions</td>
<td>107.6</td>
</tr>
<tr>
<td>GetFeature</td>
<td>Protected areas small</td>
<td>51.3</td>
</tr>
<tr>
<td>GetFeature</td>
<td>Protected areas medium</td>
<td>100.37</td>
</tr>
<tr>
<td>GetFeature</td>
<td>Protected areas large</td>
<td>202.35</td>
</tr>
</tbody>
</table>

Table 3.2: Sizes of the responses to the basic requests.

3.6.1 Test INSPIRE conformance

This test has been repeated two times the same day to obtain reliable results. JMeter had been executed on two different locations, first from a remote client which was also connected to the university and then from the server itself. According to the INSPIRE specifications it must be measured on the server, but I did it also from another computer to record results for the download speed.

The basic operations for a download service were executed. For GetFeature request of the protected areas a bounding box has been additionally applied to measure the performance for different file sizes of the response (Figure 3.2).

The file sizes of the GetFeature request have been determined experimentally before and are good to demonstrate if the WFS complies with the requirements. Furthermore each operation has been run with 1, 5, 10, 20 and 50 virtual users each in a separate thread-group. The duration of each test was 150 s, the break to the next test 30 s.
Table 3.3: File sizes of large requested data sets.

<table>
<thead>
<tr>
<th>File size in KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1019.22</td>
</tr>
<tr>
<td>5235.91</td>
</tr>
<tr>
<td>9950.7</td>
</tr>
<tr>
<td>19970.13</td>
</tr>
<tr>
<td>38831.26</td>
</tr>
</tbody>
</table>

3.6.2 Test of large datasets

The second test has been run some days after the first one to measure the performance for way larger GML files than requested in the first test. This test run has been performed two times only on the server. The times were 21:00 and 02:00. Only GetFeature operations of the third dataset with data about biotopes and habitats were requested. Figure 3.3 presents the received file sizes. Each test for a specific file size was run in an own thread-group with 10 concurrent users, the duration was 600 s and the break to the next test 30 seconds.
This chapter presents the results of the two test runs. Since much data has been collected, it is impossible to present them all here. Therefore only derived values are used, the basis is always the average of all recordings of the responses of one thread-group. This was computed as the arithmetic mean. First data comparing differences of the time of the measurement will be presented. Then for each of the three WFS basic operations the results will be shown both for their response time and for their throughput. To give a clue about the download rate the transfer speed will be presented for the performance tests from a remote computer. To see how well the WFS can provide large datasets, data from the second test run show response time for various file sizes.

I used the following abbreviations for the operations: GetCaps = GetCapabilities, DF = DescribeFeature and GF = GetFeature. For the datasets I used: PA = Protected Areas, BR = Biogeographical Regions and BH = Biotops and Habitats. For the size of the dataset the following was used: sma = small, med = medium, lar = large.

4.1 Results of the first test run

4.1.1 Deviation related to time of day

Figure 4.1 illustrates the deviations related to the time when the tests were performed. First all measurement results for one request at one test run had been averaged. Next the values for a different number of users has been averaged.
4.1 Results of the first test run

Figure 4.1: Deviations between measurements at different times of day.
4.1 Results of the first test run

4.1.2 Performance of the different operations

In the figures 4.2, 4.3 and 4.4 are the response times for the operations illustrated. The values are the average values from the three test times executed on the server. Table 4.1 depicts the throughput of the different requests. The data was averaged as before and are also from the same test run.

![Diagram of response time vs. number of users]

Figure 4.2: Response times for the GetCapabilities requests - Request: GetCapabilities (GetCaps).

19
4.1 Results of the first test run

Figure 4.3: Response times for the DescribeFeature requests - Requests: DescribeFeature protected areas (DF PA) and DescribeFeature biogeographical regions (DF BR).
4.1 Results of the first test run

Figure 4.4: Response times for the GetFeature requests - Requests: GetFeature protected areas small (GF PA sma), GetFeature protected areas medium (GF PA med), GetFeature protected areas large (GF PA lar) and GetFeature biogeographical regions (GF BR).

Figure 4.4: Response times for the GetFeature requests - Requests: GetFeature protected areas small (GF PA sma), GetFeature protected areas medium (GF PA med), GetFeature protected areas large (GF PA lar) and GetFeature biogeographical regions (GF BR).
4.2 Results of the second test run

<table>
<thead>
<tr>
<th># user</th>
<th>GF PA sma</th>
<th>GF PA med</th>
<th>GF PA lar</th>
<th>GF BR</th>
<th>GetCaps</th>
<th>DF PA</th>
<th>DF BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.94</td>
<td>4.7</td>
<td>2.66</td>
<td>4.36</td>
<td>185.49</td>
<td>31.13</td>
<td>50.85</td>
</tr>
<tr>
<td>5</td>
<td>12.62</td>
<td>10.22</td>
<td>7.27</td>
<td>12.25</td>
<td>552.81</td>
<td>39.03</td>
<td>61.91</td>
</tr>
<tr>
<td>10</td>
<td>12.65</td>
<td>10.17</td>
<td>6.63</td>
<td>12.03</td>
<td>473.93</td>
<td>39.22</td>
<td>61.62</td>
</tr>
<tr>
<td>20</td>
<td>12.66</td>
<td>10.28</td>
<td>7.24</td>
<td>12.18</td>
<td>393.23</td>
<td>39.27</td>
<td>59.71</td>
</tr>
<tr>
<td>50</td>
<td>12.62</td>
<td>10.39</td>
<td>7.47</td>
<td>12.31</td>
<td>342.08</td>
<td>38.88</td>
<td>51.95</td>
</tr>
</tbody>
</table>

Table 4.1: Throughput first test run in ms.

<table>
<thead>
<tr>
<th># user</th>
<th>GF PA sma</th>
<th>GF PA med</th>
<th>GF PA lar</th>
<th>GF BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14707.96</td>
<td>10999.89</td>
<td>10051.79</td>
<td>10790.46</td>
</tr>
<tr>
<td>5</td>
<td>14084.52</td>
<td>10904.29</td>
<td>10022.56</td>
<td>10847.12</td>
</tr>
<tr>
<td>10</td>
<td>14442.55</td>
<td>10888.56</td>
<td>10088.96</td>
<td>10843.67</td>
</tr>
<tr>
<td>20</td>
<td>14136.32</td>
<td>10631.6</td>
<td>10024.36</td>
<td>10781.05</td>
</tr>
<tr>
<td>50</td>
<td>13937.58</td>
<td>10793.3</td>
<td>9910.14</td>
<td>10697.6</td>
</tr>
</tbody>
</table>

Table 4.2: Transfer rate first test from remote computer in KB/s.

4.1.3 Transfer rate of downloads

Table 4.2 depicts the values for the transfer speed of several queried datasets. The values are computed by the difference between the latency and the response time of this value and the size of the received GML file. The measurements were recorded during the test run on the remote computer and are the average value of the three different times. The results for the same test executed on the server show for most of the responses no time difference. Therefore it was impossible to computer the transfer speed for this test run.

4.2 Results of the second test run

In table 4.3 the values for the response time of the second test run are shown. These are the average of the first and second tests and show this value for different file sizes. Requesting a file larger than 39 MB was not possible.
4.2 Results of the second test run

<table>
<thead>
<tr>
<th>Size</th>
<th>Response time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8313.94</td>
</tr>
<tr>
<td>5</td>
<td>33532.08</td>
</tr>
<tr>
<td>10</td>
<td>63169.04</td>
</tr>
<tr>
<td>20</td>
<td>24723.37</td>
</tr>
<tr>
<td>39</td>
<td>266656.02</td>
</tr>
</tbody>
</table>

Table 4.3: Response times of the second test run in ms.
Discussion

The results of the performance tests showed little deviation. The variations between the different times of the day were small and have no regular pattern. Therefore it is possible to conclude some statements about the performance of the WFS from the measurements.

The WFS complies with the INSPIRES specification for the QoS requirements of a download service. For each operation this service could always reply within the given maximum response time. Even for a number of 50 users, the highest response times of 0.149 s for Get Capabilities, 1.293 s for Describe Feature Type and 4.117 s for GetFeatures according to the first test run were under the thresholds of 10, 10 and 30 s respectively for each request.

The simulation of different numbers of users shows that the WFS also fulfills the capacity requirement. According to this the server may limit the maximum number of users to 50. This was also the maximum number of tested concurrent users, the throughput values were almost always higher than ten users. Another result is that the service keeps a constant throughput for a larger number of users, there is a proportional relation between the number of users and the response time.

In the first test run one exception does not fulfill the performance requirement. This is the GetFeature operation when larger files are requested. This infers that the file size of the returned GML is an important influence factor. The specification indeed says that the specification is only applicable for a GetFeature operation if a bounding box constrains the request. But there is no value set for the size of the replied GML file or how many spatial objects this should contain. The performance requirement for
this operation was fulfilled for requesting features from the datasets biogeographical regions, small and medium protected areas. For the dataset containing protected areas large which has a size of about 200 KB the throughput was between 6 and 8 users per second which is not enough.

The results from the second test run show that the WFS lacks in delivering large files. Querying spatial features which result in a 5 MB large GML file by ten concurrent users already exceeds with 33 s the limit for an initial response of 30 s. This can be a practical issue when the service is operational. If one user queries a large dataset this will slow down the performance for other requests. And the size of 5 MB for spatial data encoded as GML is not unusual today.

The transfer rate of the WFS is sufficient. The tests performed on a remote computer illustrate that the network connection with 100 Mbit/s was the bottleneck. The transfer rate was between 10 MB/s and 15 MB/s which is more than the required 0.5 MB/s. Because JMeter is not really able the measure the time from the very first to the last received byte the value were slightly higher especially for the smaller response files. When the tests were performed on the server, the time for retrieving the data was even too short to measure it. There is also an alternative criteria specified for the minimum transfer rate of the queried features, but this is very inaccurate. It only makes a statement about the minimum number of spatial objects that should be delivered per second. However, a spatial object can have a simple structure with a simple geometry like a point so that it can be stored with some KBs or it has a complex structure and the geometry is based on a polygon with many coordinates which file size is multiple. This can be seen by comparison of the throughput values of PA medium and BR. Both the size of their responses and the throughput value are slightly smaller which means that it takes longer to retrieve it from the server.

Since the tests have been performed for a short period of time, it is not possible to draw conclusions about the reliability of the WFS. It can be only said that there was always a correct response to a request during the first test. For the second test run there were three error messages returned while querying the largest dataset which itself was not very applicable.

To enhance the performance of the WFS so that it could handle large files or a higher number of users one solution can be cloud computing. This is a new concept for
SDI which has already been introduced in other areas of computer science years ago (Schäffer et al., 2010).
Conclusions

From the results of the executed load and performance tests the following conclusions can be derived for this study work:

- The implemented WFS complies with the INSPIRE implementation rules for a download service.
- In the INSPIRE requirements the performance criteria for the Get Spatial Object operation is inaccurate. It can be fulfilled by requesting small datasets which does not meet practical applications.
- In term of the number of concurrent users the WFS shows a good scalability. Doubling the number of users results in approximately double response time.
References

