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Abstract: In this paper identification of laryngeal 
disorders using cepstral parameters of human voice is 
investigated. Mel-frequency cepstral coefficients 
(MFCC), extracted from audio recordings, are further 
approximated, using 3 strategies: sampling, averaging, 
and estimation. SVM and LS-SVM categorize pre-
processed data into normal, nodular, and diffuse classes. 
Since it is a three-class problem, various combination 
schemes are explored.  Constructed custom kernels 
outperformed a popular non-linear RBF kernel. 
Features, estimated with GMM, and SVM kernels, 
designed to exploit this information, is an interesting 
fusion of probabilistic and discriminative models for 
human voice-based classification of larynx pathology. 
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1. Introduction 
 
Identification of laryngeal diseases in clinical practice is 
a rather complex diagnostic procedure, involving 
evaluation of patient's complaints, case-record, and data 
of instrumental as well as histological examination. 
Patient's complaints are usually summarized as 
questionnaire data, while the instrumental examination 
results into a sequence of laryngeal images and voice 
records. Both questionnaire data and voice records can 
be attributed to the category of non-invasive 
measurements, which can be used for early detection of 
potential diseases and therefore be of great value in 
preventive care. Such noninvasive techniques are not 
restricted to the medical area alone, as they may also be 
of special interest in voice quality control for voice 
professionals such as singers, speakers, etc. 
Data in this study are categorized into 1 normal class 
and 2 classes of laryngeal disorders, namely, nodular 
(nodules, polyps, and cysts) and diffuse (papillomata, 
hyperplastic laryngitis with keratosis, and carcinoma). 
Categorization into nodular and diffuse classes is based 
on visual appearance of vocal fold mass lesions, 
evaluated under direct microlaryngoscopy. Nodular 
lesions (localized thickenings) visually appear as single 
lesions of various sizes with a smooth, regular surface 
and distinct margins surrounded by a normal tissue of 
the vocal fold. Respectively, diffuse lesions visually 
appear as irregular, rough, multiple thickenings without 
distinct margins, often surrounded by an inflamed tissue 
and have a tendency to become cancerous. Final 

diagnosis was confirmed by histological examination of 
laryngeal specimens taken during endolaryngeal 
microsurgical intervention. 
Pathological voice is induced by mass increase, a lack 
of closure, or elasticity change of the vocal folds. The 
result is that the movement of the vocal folds is not 
balanced and an incomplete closure of the vocal folds 
may appear in glottal cycles. This is the reason of 
changes in the whole harmonic structure (increasing the 
inter-harmonic energy and the fundamental frequency 
perturbation). Energy increases at higher components 
are from aerial turbulence induced by an incomplete 
closure of the glottal clef. Alterations related to the 
mucosal waveform due to an increase of mass emerge in 
low bands, whereas higher bands tend to reflect noisy 
components due to a lack of closure. Both alterations 
manifest themselves as noise with poor outstanding 
components and wide band spectra [2]. 
 

2. Voice database 
 
Voice samples were recorded at the Department of 
Otolaryngology, Kaunas University of Medicine, 
Lithuania in a sound-proof booth on a digitized Sony 
Mini Disc Recorder MDS-101 (Tokyo, Japan) through a 
D60S Dynamic Vocal (AKG Acoustics, Vienna, 
Austria) microphone (with freq. range from 70 Hz to 20 
kHz). Distance from the mouth was ~10 cm. Audio was 
saved in wav format (mono-channel PCM, 16 bit 
samples at 11 kHz rate), Nyquist frequency Fmax = 5,5 
kHz. Sustained phonation of vowel sound /a/ was 
considered. 
In this study from mixed gender database of 810 
subjects (130 normal / 212 diffuse / 459 nodular) we 
selected 410 subjects (130 normal / 140 diffuse / 140 
nodular) and this balanced dataset was used to train and 
test the SVM-based classifiers. During preprocessing, 
silent parts, especially at the beginning and the end of 
recording, were eliminated. Each patient has 2 – 4 such 
recordings of various lengths (0.5 – 3 s) and associated 
clinical diagnosis – normal, diffuse, or nodular. 
A previous study on the same database selected 104 
subjects (25 normal / 25 diffuse / 54 nodular) where 
each subject had exactly 3 recordings (with average 
length of 2.4 s). A correct classification rate of 84.6% 
was achieved when using a 4-member voting committee 
of SVMs, with each member trained on different feature 
sets, to classify one voice record and averaging to 
aggregate decisions about one-subject data. Correct 
classification rate dropped to 67.31% (aggregated by 
averaging) and 68.27% (weighted averaging) when only 
single feature set of 10 MFCCs was used [1]. Note that, 



since subjects we chose are not the same, these 
classification rates should not be compared to our 
results. 
 

3. Feature extraction 
 
Before windowing, the voice signal is pre-emphasized 
by forward differencing to reduce the effects of drifting 
amplitude. Since voice has low frequencies higher in 
amplitude than high frequencies, the 6dB/octave 
(naturally occurring attenuation) pre-emphasis finite 
impulse response high-pass filter is used to flatten the 
spectrum of signal by creating more equal amplitude of 
lows and highs (emphasizing higher formant 
components), which results in louder and sharper signal: 
 
 )1(97.01)( −⋅−= tsts . (1) 
 
Hamming windowing ensure smooth frame to frame 
transitions. Frame rate was 33 fps (~30ms size window). 
MFCC are extracted from preprocessed audio 
recordings. Data dimensionality is then further reduced 
by different strategies: selecting some frames as 
samples, squeezing closest frames by taking average of 
them or estimating statistical model from all the frames. 
 
3.1. Cepstral coefficients 
 
MFCCs are widely used features to characterize a voice 
signal and can be estimated by using a parametric 
approach derived from linear prediction coefficients 
(LPC), or by the non-parametric discrete fast Fourier 
transform (FFT), which typically encodes more 
information than the LPC method. 
Signal is windowed in the time domain and converted 
into the frequency domain by FFT, which gives the 
amount of energy present within particular frequency 
range for each of 256 bins. With an 11 kHz sampling 
rate, the total frequency range is from 0 to 5,5 kHz 
(Nyquist frequency) and by splitting it into 256 equal 
intervals, the ~21,5 Hz range (frequency resolution) is 
covered with each bin. Frequency resolution tells how 
many Hz are represented by a single bin or how narrow 
the band filter of each bin is. Triangular Mel-frequency 
filters are then applied to reduce the amount of data by 
summing filtered FFT bin values to get the Mel filter 
bank outputs. Mel-scaling is performed to get higher 
resolution at low frequencies and lower resolution at 
high frequencies. This is based on the human 
perception, where relationship between the real 
frequency scale (Hz) and the perceptual frequency scale 
(Mel) is logarithmic above 1000 Hz and linear below. 
Finally, MFCCs are obtained by applying discrete 
cosine transform (DCT) to the logarithm of Mel filter 
bank outputs (or energies). DCT represents signal in 
terms of the first basis function (constant component) 
and the remaining basis functions (components of 
successively increasing frequency), which are 
uncorrelated. First 13 components of DCT represent a 
compacted MFCC vector of the corresponding frame. 
Since sometimes better results can be achieved with just 
12 components (without constant component, which 

reflects fundamental frequency), this version of MFCC 
features was also tested. 
The Matlab code to calculate MFCC features was 
adapted from the Computer Audition Toolbox [9], 
where 40 (13 linearly spaced + 27 logarithmically 
spaced) triangular Mel-frequency filters are used, 
covering the frequency range from 133 Hz to 6854 Hz. 
 
3.2. Sampling and averaging 
 
After converting an audio signal to cepstral coefficients 
we have a vector of 13 MFCCs for each frame 
(window). The number of frames depends on the 
duration of single recording and, in our case, ranges 
from 21 to 98. Sampling then means selecting one or 
several frames, i.e. to get 1 sample we select the center 
frame and to get more samples we select other frames, 
spaced evenly. Such selection of equally spaced sample 
frames reminds putting centered ‘comb’ on the whole 
recording. 
For example, to get 4 sample frames from 52, frame 
indices are calculated by these Matlab expressions: 
 
cRadius = ceil( 52 / 4 / 2 ); mfccIndices = uint8( 1 + 
cRadius + ( (52-2*cRadius-1) / (4-1) ) .* [0:4-1] );  (2) 
 
Indices resulting from equation (2) are 8, 20, 33 and 45. 
Since voice recordings are of different length and 
number of frames is not the same across them, to get a 
fixed number of frames (which is a pre-requisite for 
SVM-based classification), simple time scaling can be 
implemented by averaging closest frames, instead of 
sampling. When a recording is shorter than the 
predefined number of frames, an extra frame is added 
between two neighboring frames that are closest in the 
Euclidean sense (have a smallest distance between their 
MFCC vectors). The inserted frame is the mean vector 
of the closest frames. When a recording is longer, such 
an averaged frame is placed instead of two neighboring 
frames. The process is repeated until the desired length 
is reached (recording is stretched or squeezed enough), 
where the number of iterations is equal to the absolute 
difference between the number of frames in the 
recording and the predefined number of frames to be 
left in the result [5]. 
 
3.3. Estimation with GMM 
 
When applying estimation, we can use a description of 
fixed size to represent all frames. Higher number of 
frames here becomes an advantage, since it results in 
more exact representation of statistical information. One 
possible solution is to represent each recording (or all 
recordings of single subject) with a statistical model and 
use it’s signature as features or to apply some 
parametric or non-parametric measure to assess distance 
between estimated models and use the distance to 
calculate kernel (Gram matrix) for classification. 
Gaussian mixture modeling (GMM) can be regarded as 
a way of clustering and represents the data (in our case 
MFCCs’) distribution as a probability density function 

, which is a weighted sum of K components 
(Gaussians): 
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Given a set of feature vectors (all frames), the model 
parameters are estimated using an iterative expectation–
maximization (EM) algorithm. Though the EM 
algorithm converges to a maximum likelihood it may 
converge to the local maximum. GMMs produced by 
the EM algorithm are, consequently, sensitive to 
initialization. Usually parameters are initialized by the 
K-means algorithm. 
 

4. Classification 
 
A support vector machine (SVM) and its least squares 
simplification (LS-SVM), are used for classification. 
SVM was originally created for binary classification 
problems. Multiclass classification (when the number of 
classes ) usually combines several binary SVMs. 3≥C
The minimum output coding (MOC) requires CL ≤  
classifiers, where . The one-vs-one (1vs1) 
scheme constructs a separate binary classifier for every 
pair of classes and yields  classifiers, 
while the one-vs-rest (1vsR) scheme constructs a binary 
classifier for each class by separating observations of 
this class from the rest and yields C  classifiers. 
Decision is implemented by the voting (1vs1) or 
winner-takes-all strategy (1vsR). 

CL 2log=

2/)1( −⋅ CC

Single optimization by Weston & Watkins (SOW) 
attempts to directly solve a multiclass problem. This is 
achieved by modifying the binary class objective 
function and adding a constraint to it for every class [8]. 
 
4.1. SVM 
 
SVM is a large margin classifier and determines the 
optimal hyperplane by maximizing the margin. The 
generalization error of SVM decreases with increasing 
margin. Some important advantages of the SVM 
compared to other AI techniques are good 
generalization properties, robustness in high 
dimensions, convexity of objective function, and a well-
defined learning theory. 
Suppose we have a set of N training samples, each 
represented as ( , ), where  is the feature vector in 
the input space and  is the class label, which can be 
positive (+1) or negative (-1). 
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Let  denote the corresponding feature space 
vector with a mapping function Φ  from the input space 
to a high-dimensional feature space. The hyperplane can 
then be defined as: 

)( ii xz Φ=

 
 0=+⋅ bzw  (4) 

 
where  is the vector defining the orientation of the 
hyperplane and b  is the bias parameter. Data samples 
are said to be linearly separable if there exists ( , ), 
such that 
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are valid for all data samples. To deal with samples that 
are not linearly separable, (5) and (6) can be generalized 
by introducing the non-negative slack variables ξ  
 
 ( ) iii by ξ−≥+⋅ 1zw  (7) 
  
where iξ  are non-zero for those , which do not 
satisfy (5) or (6).  
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To construct an optimal hyperplane, SVM uses an 
iterative training algorithm, which minimizes the error 
function: 
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subject to constraints (7), where C  is the capacity 
constant (or regularization parameter).  
The error function (8) is minimized by introducing 
Lagrange multipliers and using Kuhn-Tucker theorem 
of optimization theory. Non-zero coefficients in 
Lagrange expansion are the so called support vectors. 
 
4.2. LS-SVM 
 
LS-SVM is a modified version of SVM, with equality in 
(7) constraints instead of inequality [3], which results in 
a set of linear equations instead of quadratic 
programming. The solution of the linear system can be 
calculated efficiently using a conjugate gradient 
method. In the LS-SVM case all data points are relevant 
and used as support vectors. 
 

5. Kernel trick and kernel functions 
 
Kernel trick is a method of using a linear classifier to 
solve a non-linear problem by nonlinearly mapping the 
original observations into a higher-dimensional space, 
where a linear classifier is subsequently used. This 
makes linear classification in the new feature space 
equivalent to non-linear classification in the original 
input space. Instead of dealing with samples in the input 
space, one works with their mappings in the feature 
space without explicitly calculating them, since a kernel 
function returns a dot-product between vectors there. 
The kernel function measures similarity or distance 
between a pair of variables. Once the kernel is chosen, 
the feature space (subspace or space spanned by all the 
training samples) is automatically determined and can 
be used for classification. 
For all feature extraction strategies, besides the RBF 
kernel, we also explored a version of sequence kernel, 
based on kernelized principal angles (KPA). In the 



estimation case, the Gaussian mixture means (centers) 
alone were used as features for classification with the 
RBF and KPA kernels. To exploit information, present 
in the covariance matrices, new kernels were created by 
calculating the distance between two GMMs. The 
similarity metrics used here were: the distance 
approximation from the Monte-Carlo sampling (MCS), 
and the Kullback-Leibler divergence combined with the 
earth mover's distance (EMD). 
GMM models were estimated using the Matlab toolbox 
Netlab, while the similarity measures (MCS and EMD) 
between them were calculated using the MA Toolbox 
[10]. The resulting distance matrix D  was further 
processed by the rbf_of_dist function (from the Spider 
toolbox [11]), to get a well-formed kernel matrix K : 
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5.1. Radial basis function 
 
Radial basis function (RBF) is by far the most popular 
choice of kernel types used in SVM classification. The 
RBF kernel function is 
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where σ  is the width (variance) of the basis functions. 
 
5.2. Kernel principal angles 
 
Ensemble matching methods generally consider a task 
of obtaining a similarity function which operates on 
pairs of sets of feature vectors (matrices) or ensembles. 
The sequence kernel, we explored, is defined over a pair 
of matrices, rather than over a pair of vectors, and 
calculates the kernelized principal angle (KPA) between 
subspaces. The principal angle is the angle between two 
linear subspaces of two matrices, each matrix composed 
of feature vectors as columns. Kernelizing this angle via 
the kernel trick, allows it to be calculated between non-
linear subspaces. The degree of alignment of two 
subspaces spanned by the elements of the two 
ensembles is used here as a measure of similarity. 
Larynx pathology recognition is done on the premises, 
that different disorders generate different subspaces and 
principal angles between them can be measured. 
Positive-definite kernel (similarity metric) is given by: 
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where )cos( kϕ  are often referred to as principal 
correlations or canonical correlations of the matrix pair. 
If  angle 0=kϕ , then 1)cos( =kϕ  and the vectors are 
said to be parallel. If  angle 0=kϕ , then 1)cos( =kϕ  
and the vectors are said to be orthogonal. 
The kernel trick is performed here for correlation, to 
compute principal angles in the feature space induced 

by a minor Gaussian (RBF) kernel [6]. Using a linear 
minor kernel (polynomial degree 1) is equivalent to 
computing principal angles in the input space (between 
linear subspaces). 
The modified version of the kernel Gram-Schmidt 
(MKGS) orthogonalization was used to compute 
principal correlations. The MKGS algorithm [7] for QR 
decomposition in the feature space, used in this work, is 
much more numerically stable than the classical kernel 
Gram-Schmidt (KGS) version [6]. 
 
5.3. Kullback-Leibler divergence 
 
The Kullback-Leibler divergence, also known as mutual 
information, relative entropy or, simply, information 
divergence, is a classic information gain measure of the 
asymmetric difference between two distributions, i.e. it 
measures the divergence from one probability 
distribution to another. The symmetric KL-divergence 
between two distributions  and  (two GMMs, for 
example) may be expressed as 
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Its value ranges between 0 and infinity, and is 0 if and 
only if the two distributions are identical. 
 
5.4. Monte-Carlo sampling 
 
A closed form expression for KL divergence only exists 
when the number of Gaussian mixtures is 1. We can use 
Monte-Carlo simulations to approximate the KL-
divergence between two non-single Gaussians  and  
as follows: 
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where  and  are either the real data observations 
that were used to estimate the parameters of  and  
or they are synthetic samples, i.e. randomly generated 
from the estimated probability distributions  and q , 
and 

px qx
p q

p
T  is the number of observations or samples. The 

above approximation of KL-divergence is, exactly, the 
distance measure based on the cross likelihood ratio 
test. The drawback of the Monte-Carlo approach is that 
even though we have a compact probabilistic 
representation of data in the GMM form, we still have 
to refer back to the original data, and because of the 
stochastic nature of the Monte-Carlo method, 
approximations could vary in different runs. 
 
5.5. Earth mover's distance 
 
We use the Earth Mover's Distance (EMD) to calculate 
the distance between the probability distributions in 
each dimension and in such a way compute the distance 
between 2 recordings. The EMD computation is based 
on a simplified solution to the transportation problem 
where the total supply equals the total demand (sum of 



priors of source and target GMMs are equal). Instead of 
comparing the values of each GMM mean, the 
minimum amount of work needed to transform one 
distribution (hills) into the other (valleys) is calculated. 
EMD is conceptually equivalent to the Mallows or 
Wasserstein distance between probability distributions 
and in the case of two distributions with equal masses, 
they are exactly the same [8]. 
 

6. Experiments 
 
6.1. Experimental setup 
 
MFCCs were normalized to zero mean and unit 
variance. To evaluate the generalization error of SVM, 
stratified 10-fold cross validation was used. The 
appropriate values of SVM parameters  and C σ  were 
found experimentally. Comparison of results obtained 
for two different models was done with the help of the 
right tailed two-sample T-test (with Behrens-Fisher’s 
problem when variances were found to be unequal). 
 
6.2. Results 
 
Fig. 1 – Fig. 7 present the test set data classification 
accuracy obtained using the different coding schemes 
for the pure SVM  (SOW, 1vs1, 1vsR) and the LS-SVM 
(MOC, 1vs1, 1vsR). As can be seen from the figures, 
the MOC performed significantly worse than the other 
techniques, since it used the least number (only 2) of 
binary classifiers. The ordinary SVM (left side) was 
superior to the LS-SVM (right side), in all the tests. The 
95% confidence interval is also shown in the figures. 
On average, the sequence kernel (KPA) has shown a 
more stable and slightly better accuracy than the 
Gaussian (RBF) kernel, see Fig. 1 – Fig. 3.  
When using RBF and KPA kernels, it was found that it 
is better to concatenate GMM means of 3 recordings, 
rather than using a single GMM from all recordings of a 
subject, see Fig. 3 and Fig. 4. 
As can be seen in Fig. 5 – Fig. 7, the MCS and EMD 
kernels outperformed the RBF and KPA ones. In many 
tests the difference in accuracy was statistically 
significant.  
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Fig. 1. The test set classification accuracy, obtained by MFCC 
sampling and using RBF (dark) or KPA (light) kernels. 
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Fig. 2. The test set classification accuracy, obtained by MFCC 
averaging and using RBF (dark) or KPA (light) kernels. 
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Fig. 3. The classification accuracy, obtained by MFCC esti-
mation with 3 GMMs and RBF (dark) or KPA (light) kernels.  
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Fig. 4. The classification accuracy, obtained by MFCC esti- 
mation with 1 GMM and RBF (dark) or KPA (light) kernels. 
 
The MCS kernel performed better when GMM used the 
full covariance matrix, , rather than a diagonal one, 

, see Fig. 5. However, the EMD kernel has shown 
the opposite behavior, see Fig. 6. The EMD kernel, 
using GMM with diagonal covariance matrix, , 
provided the best overall performance, see Fig. 7. 
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Fig. 5. The test set classification accuracy, obtained using the 
MCS kernel and GMM, with   (dark) or  (light). diagΣ fullΣ
 

SOW 1vs1 1vsR MOC 1vs1 1vsR

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

 
 
Fig. 6. The test set classification accuracy obtained using the 
EMD kernel and GMM, with   (dark) or  (light). diagΣ fullΣ
 

SOW 1vs1 1vsR MOC 1vs1 1vsR

45

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

 
 
Fig. 7. Best classification accuracy, obtained using the MCS 
kernel with  (dark) and EMD kernel with  (light). fullΣ diagΣ
 

7. Discussion and conclusions 
 
It was shown experimentally that the KPA kernel 
slightly outperforms the RBF one. However, the 
difference is not statistically significant. 

While using RBF and KPA kernels, it was found that it 
is better to concatenate GMM means of 3 recordings, 
rather than use a single GMM representation of all 
subject’s recordings. For MCS and KPA kernels, when 
each patient is represented with several GMMs, as 
opposed to a single GMM from all individual 
recordings, his data should be aggregated on the 
decision level. By automatically detecting the most 
representative number of Gaussian mixtures for each 
patient (or recording) and, therefore, reducing the model 
order (i.e. variable size GMMs instead of fixed), one 
could probably achieve a better accuracy while 
significantly lowering the computational cost. 
The sequence kernel (KPA) and the distance kernels 
(MCS and EMD) outperformed the popular Gaussian 
(RBF) kernel, but the difference is statistically 
significant only in the distance kernels case. The MCS 
kernel, using GMM with full covariance matrices, and 
the EMD kernel, using GMM with diagonal covariance 
matrices, provided the best results. 
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	1. Introduction
	Identification of laryngeal diseases in clinical practice is a rather complex diagnostic procedure, involving evaluation of patient's complaints, case-record, and data of instrumental as well as histological examination. Patient's complaints are usually summarized as questionnaire data, while the instrumental examination results into a sequence of laryngeal images and voice records. Both questionnaire data and voice records can be attributed to the category of non-invasive measurements, which can be used for early detection of potential diseases and therefore be of great value in preventive care. Such noninvasive techniques are not restricted to the medical area alone, as they may also be of special interest in voice quality control for voice professionals such as singers, speakers, etc.
	Data in this study are categorized into 1 normal class and 2 classes of laryngeal disorders, namely, nodular (nodules, polyps, and cysts) and diffuse (papillomata, hyperplastic laryngitis with keratosis, and carcinoma). Categorization into nodular and diffuse classes is based on visual appearance of vocal fold mass lesions, evaluated under direct microlaryngoscopy. Nodular lesions (localized thickenings) visually appear as single lesions of various sizes with a smooth, regular surface and distinct margins surrounded by a normal tissue of the vocal fold. Respectively, diffuse lesions visually appear as irregular, rough, multiple thickenings without distinct margins, often surrounded by an inﬂamed tissue and have a tendency to become cancerous. Final diagnosis was confirmed by histological examination of laryngeal specimens taken during endolaryngeal microsurgical intervention.
	Pathological voice is induced by mass increase, a lack of closure, or elasticity change of the vocal folds. The result is that the movement of the vocal folds is not balanced and an incomplete closure of the vocal folds may appear in glottal cycles. This is the reason of changes in the whole harmonic structure (increasing the inter-harmonic energy and the fundamental frequency perturbation). Energy increases at higher components are from aerial turbulence induced by an incomplete closure of the glottal clef. Alterations related to the mucosal waveform due to an increase of mass emerge in low bands, whereas higher bands tend to reflect noisy components due to a lack of closure. Both alterations manifest themselves as noise with poor outstanding components and wide band spectra [2].
	2. Voice database
	Voice samples were recorded at the Department of Otolaryngology, Kaunas University of Medicine, Lithuania in a sound-proof booth on a digitized Sony Mini Disc Recorder MDS-101 (Tokyo, Japan) through a D60S Dynamic Vocal (AKG Acoustics, Vienna, Austria) microphone (with freq. range from 70 Hz to 20 kHz). Distance from the mouth was ~10 cm. Audio was saved in wav format (mono-channel PCM, 16 bit samples at 11 kHz rate), Nyquist frequency F max = 5,5 kHz. Sustained phonation of vowel sound /a/ was considered.
	In this study from mixed gender database of 810 subjects (130 normal / 212 diffuse / 459 nodular) we selected 410 subjects (130 normal / 140 diffuse / 140 nodular) and this balanced dataset was used to train and test the SVM-based classifiers. During preprocessing, silent parts, especially at the beginning and the end of recording, were eliminated. Each patient has 2 – 4 such recordings of various lengths (0.5 – 3 s) and associated clinical diagnosis – normal, diffuse, or nodular.
	A previous study on the same database selected 104 subjects (25 normal / 25 diffuse / 54 nodular) where each subject had exactly 3 recordings (with average length of 2.4 s). A correct classiﬁcation rate of 84.6% was achieved when using a 4-member voting committee of SVMs, with each member trained on different feature sets, to classify one voice record and averaging to aggregate decisions about one-subject data. Correct classification rate dropped to 67.31% (aggregated by averaging) and 68.27% (weighted averaging) when only single feature set of 10 MFCCs was used [1]. Note that, since subjects we chose are not the same, these classification rates should not be compared to our results.
	3. Feature extraction
	Before windowing, the voice signal is pre-emphasized by forward differencing to reduce the effects of drifting amplitude. Since voice has low frequencies higher in amplitude than high frequencies, the 6dB/octave (naturally occurring attenuation) pre-emphasis finite impulse response high-pass filter is used to flatten the spectrum of signal by creating more equal amplitude of lows and highs (emphasizing higher formant components), which results in louder and sharper signal:
	  . (1)
	Hamming windowing ensure smooth frame to frame transitions. Frame rate was 33 fps (~30ms size window).
	MFCC are extracted from preprocessed audio recordings. Data dimensionality is then further reduced by different strategies: selecting some frames as samples, squeezing closest frames by taking average of them or estimating statistical model from all the frames.
	3.1. Cepstral coefficients

	MFCCs are widely used features to characterize a voice signal and can be estimated by using a parametric approach derived from linear prediction coefficients (LPC), or by the non-parametric discrete fast Fourier transform (FFT), which typically encodes more information than the LPC method.
	Signal is windowed in the time domain and converted into the frequency domain by FFT, which gives the amount of energy present within particular frequency range for each of 256 bins. With an 11 kHz sampling rate, the total frequency range is from 0 to 5,5 kHz (Nyquist frequency) and by splitting it into 256 equal intervals, the ~21,5 Hz range (frequency resolution) is covered with each bin. Frequency resolution tells how many Hz are represented by a single bin or how narrow the band filter of each bin is. Triangular Mel-frequency filters are then applied to reduce the amount of data by summing filtered FFT bin values to get the Mel filter bank outputs. Mel-scaling is performed to get higher resolution at low frequencies and lower resolution at high frequencies. This is based on the human perception, where relationship between the real frequency scale (Hz) and the perceptual frequency scale (Mel) is logarithmic above 1000 Hz and linear below.
	Finally, MFCCs are obtained by applying discrete cosine transform (DCT) to the logarithm of Mel filter bank outputs (or energies). DCT represents signal in terms of the first basis function (constant component) and the remaining basis functions (components of successively increasing frequency), which are uncorrelated. First 13 components of DCT represent a compacted MFCC vector of the corresponding frame. Since sometimes better results can be achieved with just 12 components (without constant component, which reflects fundamental frequency), this version of MFCC features was also tested.
	The Matlab code to calculate MFCC features was adapted from the Computer Audition Toolbox [9], where 40 (13 linearly spaced + 27 logarithmically spaced) triangular Mel-frequency filters are used, covering the frequency range from 133 Hz to 6854 Hz.
	3.2. Sampling and averaging

	After converting an audio signal to cepstral coefficients we have a vector of 13 MFCCs for each frame (window). The number of frames depends on the duration of single recording and, in our case, ranges from 21 to 98. Sampling then means selecting one or several frames, i.e. to get 1 sample we select the center frame and to get more samples we select other frames, spaced evenly. Such selection of equally spaced sample frames reminds putting centered ‘comb’ on the whole recording.
	For example, to get 4 sample frames from 52, frame indices are calculated by these Matlab expressions:
	cRadius = ceil( 52 / 4 / 2 ); mfccIndices = uint8( 1 + cRadius + ( (52-2*cRadius-1) / (4-1) ) .* [0:4-1] );  (2)
	Indices resulting from equation (2) are 8, 20, 33 and 45.
	Since voice recordings are of different length and number of frames is not the same across them, to get a fixed number of frames (which is a pre-requisite for SVM-based classification), simple time scaling can be implemented by averaging closest frames, instead of sampling. When a recording is shorter than the predefined number of frames, an extra frame is added between two neighboring frames that are closest in the Euclidean sense (have a smallest distance between their MFCC vectors). The inserted frame is the mean vector of the closest frames. When a recording is longer, such an averaged frame is placed instead of two neighboring frames. The process is repeated until the desired length is reached (recording is stretched or squeezed enough), where the number of iterations is equal to the absolute difference between the number of frames in the recording and the predefined number of frames to be left in the result [5].
	3.3. Estimation with GMM

	When applying estimation, we can use a description of fixed size to represent all frames. Higher number of frames here becomes an advantage, since it results in more exact representation of statistical information. One possible solution is to represent each recording (or all recordings of single subject) with a statistical model and use it’s signature as features or to apply some parametric or non-parametric measure to assess distance between estimated models and use the distance to calculate kernel (Gram matrix) for classification.
	Gaussian mixture modeling (GMM) can be regarded as a way of clustering and represents the data (in our case MFCCs’) distribution as a probability density function  , which is a weighted sum of K components (Gaussians):
	   (3)
	 
	where   is an M-dimensional feature vector,   is the number of components,   is a weight ( ), and   is an M-variate Gaussian density with it’s parameters   (mean vector   and covariance matrix  ). 
	Given a set of feature vectors (all frames), the model parameters are estimated using an iterative expectation–maximization (EM) algorithm. Though the EM algorithm converges to a maximum likelihood it may converge to the local maximum. GMMs produced by the EM algorithm are, consequently, sensitive to initialization. Usually parameters are initialized by the K-means algorithm.
	4. Classification
	A support vector machine (SVM) and its least squares simplification (LS-SVM), are used for classification. SVM was originally created for binary classification problems. Multiclass classification (when the number of classes  ) usually combines several binary SVMs.
	The minimum output coding (MOC) requires   classifiers, where . The one-vs-one (1vs1) scheme constructs a separate binary classifier for every pair of classes and yields   classifiers, while the one-vs-rest (1vsR) scheme constructs a binary classifier for each class by separating observations of this class from the rest and yields   classifiers. Decision is implemented by the voting (1vs1) or winner-takes-all strategy (1vsR).
	Single optimization by Weston & Watkins (SOW) attempts to directly solve a multiclass problem. This is achieved by modifying the binary class objective function and adding a constraint to it for every class [8].
	4.1. SVM

	SVM is a large margin classifier and determines the optimal hyperplane by maximizing the margin. The generalization error of SVM decreases with increasing margin. Some important advantages of the SVM compared to other AI techniques are good generalization properties, robustness in high dimensions, convexity of objective function, and a well-defined learning theory.
	Suppose we have a set of N training samples, each represented as ( , ), where   is the feature vector in the input space and   is the class label, which can be positive (+1) or negative (-1).
	Let   denote the corresponding feature space vector with a mapping function   from the input space to a high-dimensional feature space. The hyperplane can then be defined as:
	   (4)
	where   is the vector defining the orientation of the hyperplane and   is the bias parameter. Data samples are said to be linearly separable if there exists ( , ), such that
	   (5)
	   (6)
	are valid for all data samples. To deal with samples that are not linearly separable, (5) and (6) can be generalized by introducing the non-negative slack variables  
	   (7)
	 
	where   are non-zero for those  , which do not satisfy (5) or (6). 
	To construct an optimal hyperplane, SVM uses an iterative training algorithm, which minimizes the error function:
	   (8)
	subject to constraints (7), where   is the capacity constant (or regularization parameter). 
	The error function (8) is minimized by introducing Lagrange multipliers and using Kuhn-Tucker theorem of optimization theory. Non-zero coefficients in Lagrange expansion are the so called support vectors.
	4.2. LS-SVM

	LS-SVM is a modified version of SVM, with equality in (7) constraints instead of inequality [3], which results in a set of linear equations instead of quadratic programming. The solution of the linear system can be calculated efficiently using a conjugate gradient method. In the LS-SVM case all data points are relevant and used as support vectors.
	5. Kernel trick and kernel functions
	Kernel trick is a method of using a linear classifier to solve a non-linear problem by nonlinearly mapping the original observations into a higher-dimensional space, where a linear classifier is subsequently used. This makes linear classification in the new feature space equivalent to non-linear classification in the original input space. Instead of dealing with samples in the input space, one works with their mappings in the feature space without explicitly calculating them, since a kernel function returns a dot-product between vectors there.
	The kernel function measures similarity or distance between a pair of variables. Once the kernel is chosen, the feature space (subspace or space spanned by all the training samples) is automatically determined and can be used for classification.
	For all feature extraction strategies, besides the RBF kernel, we also explored a version of sequence kernel, based on kernelized principal angles (KPA). In the estimation case, the Gaussian mixture means (centers) alone were used as features for classification with the RBF and KPA kernels. To exploit information, present in the covariance matrices, new kernels were created by calculating the distance between two GMMs. The similarity metrics used here were: the distance approximation from the Monte-Carlo sampling (MCS), and the Kullback-Leibler divergence combined with the earth mover's distance (EMD).
	GMM models were estimated using the Matlab toolbox Netlab, while the similarity measures (MCS and EMD) between them were calculated using the MA Toolbox [10]. The resulting distance matrix   was further processed by the rbf_of_dist function (from the Spider toolbox [11]), to get a well-formed kernel matrix  :
	   (9)
	5.1. Radial basis function

	Radial basis function (RBF) is by far the most popular choice of kernel types used in SVM classification. The RBF kernel function is
	   (10)
	where   is the width (variance) of the basis functions.
	5.2. Kernel principal angles

	Ensemble matching methods generally consider a task of obtaining a similarity function which operates on pairs of sets of feature vectors (matrices) or ensembles.
	The sequence kernel, we explored, is deﬁned over a pair of matrices, rather than over a pair of vectors, and calculates the kernelized principal angle (KPA) between subspaces. The principal angle is the angle between two linear subspaces of two matrices, each matrix composed of feature vectors as columns. Kernelizing this angle via the kernel trick, allows it to be calculated between non-linear subspaces. The degree of alignment of two subspaces spanned by the elements of the two ensembles is used here as a measure of similarity. Larynx pathology recognition is done on the premises, that different disorders generate different subspaces and principal angles between them can be measured.
	Positive-definite kernel (similarity metric) is given by:
	   (11)
	where   are often referred to as principal correlations or canonical correlations of the matrix pair. If  angle  , then   and the vectors are said to be parallel. If  angle  , then   and the vectors are said to be orthogonal.
	The kernel trick is performed here for correlation, to compute principal angles in the feature space induced by a minor Gaussian (RBF) kernel [6]. Using a linear minor kernel (polynomial degree 1) is equivalent to computing principal angles in the input space (between linear subspaces).
	The modiﬁed version of the kernel Gram-Schmidt (MKGS) orthogonalization was used to compute principal correlations. The MKGS algorithm [7] for QR decomposition in the feature space, used in this work, is much more numerically stable than the classical kernel Gram-Schmidt (KGS) version [6].
	5.3. Kullback-Leibler divergence

	The Kullback-Leibler divergence, also known as mutual information, relative entropy or, simply, information divergence, is a classic information gain measure of the asymmetric difference between two distributions, i.e. it measures the divergence from one probability distribution to another. The symmetric KL-divergence between two distributions   and   (two GMMs, for example) may be expressed as
	   (12)
	Its value ranges between 0 and infinity, and is 0 if and only if the two distributions are identical.
	5.4. Monte-Carlo sampling

	A closed form expression for KL divergence only exists when the number of Gaussian mixtures is 1. We can use Monte-Carlo simulations to approximate the KL-divergence between two non-single Gaussians   and   as follows:
	   (13)
	where   and   are either the real data observations that were used to estimate the parameters of   and   or they are synthetic samples, i.e. randomly generated from the estimated probability distributions   and  , and   is the number of observations or samples. The above approximation of KL-divergence is, exactly, the distance measure based on the cross likelihood ratio test. The drawback of the Monte-Carlo approach is that even though we have a compact probabilistic representation of data in the GMM form, we still have to refer back to the original data, and because of the stochastic nature of the Monte-Carlo method, approximations could vary in different runs.
	5.5. Earth mover's distance

	We use the Earth Mover's Distance (EMD) to calculate the distance between the probability distributions in each dimension and in such a way compute the distance between 2 recordings. The EMD computation is based on a simplified solution to the transportation problem where the total supply equals the total demand (sum of priors of source and target GMMs are equal). Instead of comparing the values of each GMM mean, the minimum amount of work needed to transform one distribution (hills) into the other (valleys) is calculated.
	EMD is conceptually equivalent to the Mallows or Wasserstein distance between probability distributions and in the case of two distributions with equal masses, they are exactly the same [8].
	6. Experiments
	6.1. Experimental setup

	MFCCs were normalized to zero mean and unit variance. To evaluate the generalization error of SVM, stratified 10-fold cross validation was used. The appropriate values of SVM parameters   and   were found experimentally. Comparison of results obtained for two different models was done with the help of the right tailed two-sample T-test (with Behrens-Fisher’s problem when variances were found to be unequal).
	6.2. Results

	Fig. 1 – Fig. 7 present the test set data classification accuracy obtained using the different coding schemes for the pure SVM  (SOW, 1vs1, 1vsR) and the LS-SVM (MOC, 1vs1, 1vsR). As can be seen from the figures, the MOC performed significantly worse than the other techniques, since it used the least number (only 2) of binary classifiers. The ordinary SVM (left side) was superior to the LS-SVM (right side), in all the tests. The 95% confidence interval is also shown in the figures.
	On average, the sequence kernel (KPA) has shown a more stable and slightly better accuracy than the Gaussian (RBF) kernel, see Fig. 1 – Fig. 3. 
	When using RBF and KPA kernels, it was found that it is better to concatenate GMM means of 3 recordings, rather than using a single GMM from all recordings of a subject, see Fig. 3 and Fig. 4.
	As can be seen in Fig. 5 – Fig. 7, the MCS and EMD kernels outperformed the RBF and KPA ones. In many tests the difference in accuracy was statistically significant. 
	 
	Fig. 1. The test set classification accuracy, obtained by MFCC sampling and using RBF (dark) or KPA (light) kernels.
	 
	Fig. 2. The test set classification accuracy, obtained by MFCC averaging and using RBF (dark) or KPA (light) kernels.
	 
	Fig. 3. The classification accuracy, obtained by MFCC esti-mation with 3 GMMs and RBF (dark) or KPA (light) kernels. 
	 
	Fig. 4. The classification accuracy, obtained by MFCC esti- mation with 1 GMM and RBF (dark) or KPA (light) kernels.
	The MCS kernel performed better when GMM used the full covariance matrix,  , rather than a diagonal one,  , see Fig. 5. However, the EMD kernel has shown the opposite behavior, see Fig. 6. The EMD kernel, using GMM with diagonal covariance matrix,  , provided the best overall performance, see Fig. 7.
	 
	Fig. 5. The test set classification accuracy, obtained using the MCS kernel and GMM, with    (dark) or   (light).
	 
	Fig. 6. The test set classification accuracy obtained using the EMD kernel and GMM, with    (dark) or   (light).
	 
	Fig. 7. Best classification accuracy, obtained using the MCS kernel with   (dark) and EMD kernel with   (light).
	7. Discussion and conclusions
	It was shown experimentally that the KPA kernel slightly outperforms the RBF one. However, the difference is not statistically significant.
	While using RBF and KPA kernels, it was found that it is better to concatenate GMM means of 3 recordings, rather than use a single GMM representation of all subject’s recordings. For MCS and KPA kernels, when each patient is represented with several GMMs, as opposed to a single GMM from all individual recordings, his data should be aggregated on the decision level. By automatically detecting the most representative number of Gaussian mixtures for each patient (or recording) and, therefore, reducing the model order (i.e. variable size GMMs instead of fixed), one could probably achieve a better accuracy while significantly lowering the computational cost.
	The sequence kernel (KPA) and the distance kernels (MCS and EMD) outperformed the popular Gaussian (RBF) kernel, but the difference is statistically significant only in the distance kernels case. The MCS kernel, using GMM with full covariance matrices, and the EMD kernel, using GMM with diagonal covariance matrices, provided the best results.
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