
  
 

 
 

DiVA – Digitala Vetenskapliga Arkivet http://umu.diva-portal.org 

________________________________________________________________________________________ 

 

This is an article published in Diabetologia. 

 

Citation for the published paper: 

 

B. Fontaine-Bisson, F. Renström, O. Rolandsson, The MAGIC investigators, F. Payne, G. 
Hallmans, I. Barroso, P. W. Franks 

Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a 
northern Swedish population 

Diabetologia, 2010, Vol. 53, Issue 10: 2155-2162 

URL: http://dx.doi.org/10.1007/s00125-010-1792-y 

 

 



ARTICLE

Evaluating the discriminative power of multi-trait genetic risk
scores for type 2 diabetes in a northern Swedish population

B. Fontaine-Bisson & F. Renström & O. Rolandsson &

The MAGIC investigators & F. Payne & G. Hallmans &

I. Barroso & P. W. Franks

Received: 18 January 2010 /Accepted: 13 April 2010 /Published online: 23 June 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract
Aims/hypothesis We determined whether single nucleotide
polymorphisms (SNPs) previously associated with diabeto-
genic traits improve the discriminative power of a type 2
diabetes genetic risk score.

Methods Participants (n=2,751) were genotyped for 73
SNPs previously associated with type 2 diabetes, fasting
glucose/insulin concentrations, obesity or lipid levels, from
which five genetic risk scores (one for each of the four
traits and one combining all SNPs) were computed. Type 2
diabetes patients and non-diabetic controls (n=1,327/1,424)
were identified using medical records in addition to an
independent oral glucose tolerance test.
Results Model 1, including only SNPs associated with type
2 diabetes, had a discriminative power of 0.591 (p<1.00×
10−20 vs null model) as estimated by the area under the
receiver operator characteristic curve (ROC AUC). Model 2,
including only fasting glucose/insulin SNPs, had a signifi-
cantly higher discriminative power than the null model
(ROC AUC 0.543; p=9.38×10−6 vs null model), but lower
discriminative power than model 1 (p=5.92×10−5). Model 3,
with only lipid-associated SNPs, had significantly higher
discriminative power than the null model (ROC AUC 0.565;
p=1.44×10−9) and was not statistically different from model
1 (p=0.083). The ROC AUC of model 4, which included
only obesity SNPs, was 0.557 (p=2.30×10−7 vs null model)
and smaller than model 1 (p=0.025). Finally, the model
including all SNPs yielded a significant improvement in
discriminative power compared with the null model (p<1.0×
10−20) andmodel 1 (p=1.32×10−5); its ROC AUC was 0.626.
Conclusions/interpretation Adding SNPs previously asso-
ciated with fasting glucose, insulin, lipids or obesity to a
genetic risk score for type 2 diabetes significantly increases
the power to discriminate between people with and without
clinically manifest type 2 diabetes compared with a model
including only conventional type 2 diabetes loci.
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Abbreviations
DIAGRAM Diabetes Genetics Replication and Meta-

Analysis
GRS Genetic risk score
NSHDS Northern Sweden Health and Disease Study
ROC AUC Area under the receiver operator

characteristic curve
SNP Single nucleotide polymorphism

Introduction

Type 2 diabetes is a complex disease characterised by
chronically elevated fasting or post-challenge systemic
glucose concentrations [1]. Heritability studies suggest that
genetic factors influence the risk of developing the disease.
Indeed, multiple loci pre-disposing to type 2 diabetes have
been discovered recently, many of which have emerged
from genome-wide association studies [2].

Several studies have examined the clinical value of
variants known to predispose to type 2 diabetes by
analysing their ability to discriminate between people with
or without pre-existing diabetes, or to predict development
of the disease [3–5]. Although opinion is divided on the
clinical value of these genetic risk scores (GRS), in their
present form they do not meaningfully improve the
predictive power over risk scores comprised solely of
established non-genetic risk factors [3–5].

As with type 2 diabetes, major advances have also been
made in identifying gene variants that influence some of the
major risk factors for type 2 diabetes, e.g. chronic obesity,
dyslipidaemia and hyperglycaemia. Indeed, we have previ-
ously studied the level of type 2 diabetes risk associated with
several of these loci in the Northern Sweden Health and
Disease Study (NSHDS) [6, 7]. However, to our knowledge,
the discriminative or predictive power of multi-trait GRSs for
type 2 diabetes have not yet been reported on.

The purpose of this study was to test whether gene
variants that are not explicitly defined as loci predisposing to
type 2 diabetes, but have been shown to influence antecedent
traits (i.e. hyperglycaemia, hyperinsulinaemia, dyslipidaemia
or obesity) can be used to improve the discriminative power
of a GRS for type 2 diabetes compared with a score
comprised solely of specific type 2 diabetes loci. We did not
seek to establish the comparative power of this score with
non-GRSs for type 2 diabetes, in part because cross-sectional
studies are inadequate for this purpose.

Methods

Participants Participants (effective n=1,327 type 2 dia-
betic patients, 1,424 controls) were Swedish adults from

the county of Västerbotten in northern Sweden, and
selected from the NSHDS, a prospective cohort study of
common diseases [8]. All living participants provided
written informed consent and the Research Ethics Com-
mittee of Umeå University Hospital approved all aspects
of the study.

Ascertainment of type 2 diabetes cases and controls The
case ascertainment methods have been described in detail
previously [7]. In brief, cases were those participants with a
documented clinical history of type 2 diabetes in addition to
an independent OGTT result consistent with a diagnosis of
type 2 diabetes, according to the WHO criteria [1].
Conversely, controls were those participants who did not
have a documented clinical diagnosis of diabetes (of any
type), were not taking glucose-lowering medications, and
who had fasting and 2 h glucose values below the
diagnostic thresholds for diabetes [1].

Clinical measures The clinical methods have been de-
scribed in detail previously [8]. Briefly, height, weight,
glucose concentrations and lipid fractions were measured
using standard methods (Table 1). The purpose of providing
this information is to emphasise that type 2 diabetic patients
and controls differed significantly in levels of the traits
related to the single nucleotide polymorphisms (SNPs)
focused on in this study. Blood was drawn after an
overnight fast from an antecubital vein; a second sample
was drawn 2 h after a 75 g oral glucose load.

Selection of SNPs and genetic analyses The type 2 diabetes
and lipid SNPs are those for which replication results were
in the public domain as of May 2008 (Fig. 1a–d).
Additional obesity and fasting glucose/insulin SNPs were
identified through participation in the Genetic Investigation
of ANthropometric Traits consortium [9, 10] and the Meta-
Analyses of Glucose and Insulin-related traits Consortium
[11], respectively. Thus, because of the timing of genotyp-
ing relative to progress in the field, and to a limited extent
because of assay design limitations, several previously
replicated SNPs could not be included.

DNA was extracted from peripheral white blood cells [6,
7]. Genomic DNA samples were subsequently diluted to
4 ng/µl. Genotyping was performed using Taqman MGB
chemistry (Applied Biosystems, Foster City, CA, USA) or
Sequenom iPLEX (Sequenom, Hamburg, Germany). Geno-
typing success rates were >95%.

Statistical analysis Analyses were conducted in SAS
version 9.2 (SAS Institute, Cary, NC, USA). A likelihood
ratio test with 1 df was used to test Hardy–Weinberg
equilibrium (all SNPs fulfilled Hardy–Weinberg expect-
ations; Bonferroni corrected p>0.05). SNPs were individ-
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ually tested (additive SNP models) for association with type
2 diabetes using unconditional logistic regression from
which ORs and 95% CI were estimated (Fig. 1a–d). In the
discriminative power comparison models, effect alleles for
all SNPs are coded in a manner consistent with the Diabetes
Genetics Replication and Meta-Analysis (DIAGRAM)
database [12] or the findings from MAGIC [11]. Regression
models were adjusted for age and sex. In an ethnically
homogeneous population such as this, biological traits such
as obesity and dyslipidaemia are unlikely to confound the
effects of gene variants on diabetes risk, once age has been
accounted for. Therefore, because we sought to exploit such
effects, no adjustments for intermediate diabetes risk factors
were made. The basic genetic model (model 1) included 17
variants previously associated with type 2 diabetes. Com-
parison models included previously associated fasting
glucose/insulin (n=13) (model 2), lipid (n=26) (model 3)
[13] or obesity (n=17) (model 4) [9, 10, 14, 15] SNPs.
Finally, a model containing all 73 SNPs (model 5) was
compared with the null model and with model 1. The
discriminative power of the five different SNP models was
estimated by comparing the area under the receiver operator
characteristic curves (ROC AUC) for each model. Because
the majority of SNPs studied here are in low linkage
disequilibrium, we were unable to accurately impute
missing genotypes using methods based on linkage dis-
equilibrium. Therefore, we calculated the mean genotype at
each locus in cases and controls separately, and exchanged
missing genotypes for the relevant mean value for that SNP.
Alleles were rounded to the nearest whole unit. Prior to
imputing genotypes, we tested whether genotyping failure
rates differed between the type 2 diabetes group and
controls, as this could have biased tests of association
using imputed data. There was no evidence of such
selection bias (association of missing genotypes with
diabetes: OR 1.00, 95% CI 0.98–1.01). ROC AUCs were
compared using the methods described by DeLong et al.
[16]. In these analyses, the null model included no predictor
variables. Prior to entering the SNPs into the ROC models,

we ensured each risk allele was coded in a manner consistent
with the DIAGRAM database [12] and used the relevant
random effects ORs from this dataset to derive weightings
for each risk allele. This was achieved by multiplying each
risk allele by the log of its OR in the DIAGRAM dataset.
Four SNPs were unavailable in DIAGRAM. In these cases,
we used the average effect estimate for the SNPs within the
relevant trait group (i.e. diabetes, glucose, lipid or obesity
SNPs). The GRSs were computed by summing the weighted
risk alleles across all loci for each trait (or for the full model
for all traits). Overall, weighting SNP models did not
materially alter the discriminative power compared with the
unweighted models.

Results

Participant characteristics are shown in Table 1. Figure 1a–d
shows ORs (95% CIs) for each of the 73 SNPs. In general,
the risk estimates in this cohort for SNPs previously
associated with type 2 diabetes were directionally consistent
with previous reports. As shown in Fig. 1a–d, few SNPs
were individually statistically associated with type 2 diabetes
(at p<0.05).

Figure 2 shows the relationships between each GRS
(expressed in quartiles of the GRS) and type 2 diabetes risk.
For each of the GRSs, statistically significant relationships
with type 2 diabetes risk were observed (p<0.05). The odds
of type 2 diabetes per quartile of the score was: for the type
2 diabetes GRS OR 1.25 (95% CI 1.17–1.34); for the
glucose GRS OR 1.08 (95% CI 1.01–1.15); for the lipid
GRS OR 1.07 (95% CI 1.00–1.14); for the obesity GRS OR
1.14 (95% CI 1.07–1.22); and for the full GRS OR 1.33
(95% CI 1.24–1.43). With the exceptions of the glucose and
lipid SNP GRSs (p=0.09 and p=0.06, respectively),
individuals in the highest quartile of each GRS were at
statistically greater risk of type 2 diabetes than those in the
first quartile. For example, those in the highest quartile of
the full GRS had a 2.40-fold higher odds of type 2 diabetes

Variable Non-diabetes controls Type 2 diabetes cases p value
for difference

n Mean (SE) n Mean (SE)

Age (years) 1,424 53.1 (0.2) 1,327 53.6 (0.2) NS

Sexa (n) 715/709 775/552 <0.0001

BMI (kg/m2) 1,423 25.8 (0.1) 1,327 29.5 (0.1) <0.0001

Fasting glucose (mmol/l) 1,417 5.27 (0.02) 1,305 8.04 (0.09) <0.0001

2 h glucose (mmol/l) 1,380 6.55 (0.04) 805 10.48 (0.15) <0.0001

Total cholesterol (mmol/l) 1,413 5.99 (0.03) 1,312 6.12 (0.04) 0.0048

Triacylglycerol (mmol/l) 945 1.63 (0.02) 935 2.36 (0.05) <0.0001

Table 1 Participant characteris-
tics stratified by case and
control status

aMale/Female

Test of difference of means
between groups (p for differ-
ence) was performed with an
independent samples t test; for
sex distributions, between-group
differences were tested using the
Mantel–Haenszel χ2 statistic
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SNP locus Nearest gene Risk allele Risk allele Odds ratio (95% CI)
(other) frequency 0 7 0 8 0 9 1 1 2 1 3 1 4 1 5 1 6 1 7 1 81 1(other) frequency 0.7 0.8 0.9 1 1.2 1.3 1.4 1.5 1.6 1.7 1.81.1

rs12779790 CDC123, CAMK1D G(A) 0.16, ( )

rs7903146 TCF7L2 T(C) 0.21

rs1153188 DCD A(T) 0.73

rs9472138 VEGFA T(C) 0 30rs9472138 VEGFA T(C) 0.30

rs10811661 CDKN2A, -B T(C) 0.78, ( )
rs5219 KCNJ11 T(C) 0.44

rs13266634 SLC30A8 C(T) 0.70

rs4430796 HNF1B A(G) 0 23rs4430796 HNF1B A(G) 0.23

rs7578597 THADA T(C) 0.94( )

rs10923931 NOTCH2 T(G) 0.09

rs10010131 WFS1 G(A) 0.57

rs7923837 HHEX A(G) 0 38rs7923837 HHEX A(G) 0.38

rs7480010 LOC387761 A(G) 0.71( )

rs11037909 EXT2 C(T) 0.25

rs1111875 HHEX T(C) 0.47

rs1801282 PPARG C(G) 0 87rs1801282 PPARG C(G) 0.87

rs7961581 TSPAN8, LGR5 C(T) 0.26rs7961581 TSPAN8, LGR5 C(T) 0.26
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rs28927680 BUD13 APOA G(C) 0 07rs28927680 BUD13,  APOA G(C) 0.07

rs1501908 TIMD1, -4 C(G) 0.65, ( )

rs4420638 APOE, APOC1, -2, -4 G(A) 0.20

rs12130333 ANGPTL3 T(C) 0.18

rs2156552 LIPG ACAA2 A(T) 0 16rs2156552 LIPG, ACAA2 A(T) 0.16

rs646776 SARS, CELSR2 T(C) 0.76, ( )

rs2338104 MMAB, MVK C(G) 0.49

rs17321515 TRIB1 A(G) 0.54

6586891 LPL C(A) 0 36rs6586891 LPL C(A)                             0.36

rs6511720 LDLR G(T) 0.92rs6511720 LDLR G(T) 0.92

rs471364 TTC39B C(T) 0.09

rs2197089 LPL A(G) 0.56

rs4149268 ABCA1 C(T) 0.89

rs7679 PLTP C(T) 0 21rs7679 PLTP C(T) 0.21

rs3890182 ABCA1 A(G) 0.13( )

rs1566439 NLRC5 C(T) 0.35

rs7819412 AMAC1L2 A(G) 0.51
rs2144300 GALNT2 C(T) 0 44rs2144300 GALNT2 C(T) 0.44
rs11206510 PCSK9 T(C) 0.82

rs12654264 HMGCR T(A) 0.38

rs2271293 LCAT G(A) 0.88

rs4775041 LIPC C(G) 0 34rs4775041 LIPC C(G) 0.34
rs174547 FAD1, -2, -3 C(T) 0.33
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rs1121980 FTO G(A) 0.57rs1121980 FTO G(A) 0.57

rs17782313 MC4R T(C) 0.73

rs7498665 SH2B1 A(G) 0.59

4923461 BDNF A(G) 0 80rs4923461 BDNF A(G) 0.80

rs6235 PCSK1 C(G) 0.70rs6235 PCSK1 C(G) 0.70

rs10838738 MTCH2 A(G) 0.60

rs1424233 MAF T(C) 0.51

17700144 MC4R A(G) 0 24rs17700144 MC4R A(G) 0.24

rs7647305 ETC5 T(C) 0 19rs7647305 ETC5 T(C) 0.19

rs10769908 STK33 T(C) 0.50

rs2815752 NEGR1 G(A) 0.41

rs1805081 NCP1 T(C) 0.60
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Fig. 1 Individual odds ratios
(95% CIs) for type 2 diabetes
for each of the a type 2 diabetes
(n=17), b fasting glucose/
insulin (n=13), c dyslipidaemia
(n=26) and d obesity (n=17)
SNPs included in these analyses
(n=73). Allele frequencies were
calculated in the control group.
All SNPs are located on the plus
strand (HapMap CEU, Phase II
+III, release 27, NCBI build
36). LOC287761 is discontin-
ued, but was included here as it
was documented as a replicated
locus when this study began.
Data were adjusted for age and
sex. Odds ratios between the
WFS1 rs10010131 and most
obesity SNPs with type 2 dia-
betes have been previously
reported for this sample (7, 8).
The association between the
TCF7L2 SNP and type 2 diabe-
tes has been previously reported
for a sub-sample of the case–
control cohort examined here
[35]
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than those in the lowest quartile (p=3.50×10−16); for the
type 2 diabetes GRS, the respective odds of type 2 diabetes
was 1.96 (p=3.42×10−8).

Five separate ROC models were run to compare the
discriminative power of the different SNP sets. Model 1,
including only type 2 diabetes-associated SNPs, had a
discriminative power of 0.591 (p<1.00×10−20 vs null
model) as estimated by the ROC AUC. Model 2, including
only fasting glucose/insulin SNPs, had significantly higher
discriminative power than the null model (ROC AUC
0.543; p=9.38×10−6 vs null model), but lower discrimina-
tive power than model 1 (p=5.92×10−5 vs model 1). Model
3, with only lipid-associated SNPs, had significantly higher
discriminative power than the null model (ROC AUC
0.565; p=1.44×10−9) and was not statistically different
frommodel 1 (p=0.083). The ROC AUC of model 4, which
included only obesity SNPs, was 0.557 (p=2.30×10−7 vs
null model), which was smaller than model 1 (p=0.025).
Finally, the model including all SNPs yielded a significant
improvement in discriminative power compared with the
null model (p<1.0×10−20) and model 1 (p=1.32×10−5); its

ROC AUC was 0.626. Figure 3 shows the ROC AUCs for
all SNPs compared with only conventional type 2 diabetes
SNPs.

Discussion

Our findings show that inclusion of genetic information
from loci previously associated with quantitative risk
factors for type 2 diabetes, but not primarily with diabetes,
significantly increases the power to discriminate between
people with and without clinically manifest type 2 diabetes.
This emphasises the multi-factorial nature of type 2
diabetes and highlights the important potential role in
disease development played by loci that do not reach a level
of genome-wide significance in type 2 diabetes scans.

Our study was based on the premise that some loci
capable of influencing diabetes risk and thus contributing to
the discriminative power of type 2 diabetes GRSs have
weak effects on type 2 diabetes individually, falling, as a
result, below the stringent significance thresholds used in
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Data are adjusted for age and sex. Missing genotypes were imputed as
described in the Methods. Type 2 diabetes patients, n=1,327, controls,
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genome-wide scans, which means they have not previously
been identified as diabetes-predisposing loci. We hypoth-
esised that some of the loci reliably associated with traits
that predispose to type 2 diabetes might, by virtue of this
association, also raise the risk of type 2 diabetes. Hyper-
glycaemia is the cardinal feature of type 2 diabetes,
providing sufficient justification for including glucose-
raising alleles in a GRS for type 2 diabetes. However, it
is worth noting that not all glucose-raising loci appear to
influence type 2 diabetes risk [11], possibly because some
loci may cause modest elevations in glucose concentrations
that do not worsen over time, as observed in maturity-onset
diabetes of the young [17]. Obesity is also a well
established risk factor for diabetes, as illustrated in clinical
trials where weight loss interventions have substantially
reduced the incidence of the disease in high risk individuals
[18, 19]. For dyslipidaemia, the mechanisms of association
with type 2 diabetes primarily involve insulin resistance
caused by the infiltration of insulin-sensitive tissues by
triacylglycerol and other lipid metabolites [20, 21]. Two
important organs in this regard are muscle and liver, the
former being important because of its predominance as a
site for glucose uptake and metabolism, and the latter
because of its major role in glucose production. Studies in
non-obese individuals with a strong family history of type 2
diabetes have provided experimental evidence that eleva-
tions in NEFA directly impair muscle glycogen synthesis
and glucose uptake, and induce muscle, hepatic and adipose
tissue insulin resistance in a genetically determined manner
[3]. Prospective epidemiological studies indicate that
dyslipidaemia early in life [22, 23] or during adulthood
[24] raises the risk of developing type 2 diabetes later in
life, but such associations may be driven by obesity [22]

rather than a lipid-specific genetic defect. Nevertheless,
animal and human studies suggest a shared genetic basis for
diabetes and dyslipidaemia. For example, expression of the
HDL-associated apolipoprotein M is completely abolished
in the liver of mice lacking the HNF1A gene [25];
mutations in HNF1A also cause maturity-onset diabetes of
the young class 3 [26]. Epidemiological studies have also
identified genetic loci that influence dyslipidaemia and
glucose homeostasis or type 2 diabetes [25, 27–30].
Although these joint relationships are unlikely to result
from confounding, it remains unclear whether they reflect
causal relationships between dyslipidaemia and diabetes, or
pure genetic pleiotropy. Similarly, one cannot easily
determine whether the cumulative association between lipid
loci and diabetes in the present study is attributable to (1)
dyslipidaemia mediating the effects of the genotypes on
diabetes risk; (2) purely pleiotropic effects; or (3) a
combination of these explanations. Notwithstanding these
limitations of interpretation, the use of a priori biological
information to help filter genome-wide scan results mini-
mises the multiple testing burden inherent in hypothesis-
free whole-genome genetic association studies and may
raise the prior probability of association, hence helping to
preserve statistical power.

To minimise over-fitting of our models, prior evidence of
association from the DIAGRAM dataset [12] was used to
code the effect alleles in the ROC analyses presented here.
Fitting the alleles in this way did not result in markedly
different ROC AUCs than when alleles were fitted directly
to the current dataset, indicating that our data are unlikely
to be markedly over- or under-fitted. We were unable to
include all currently identified risk alleles for the traits of
interest, partly because the rate at which new risk variants
have been discovered out-paced our study and partly
because resources were limited. Although initially pre-
sumed otherwise [31], it is unlikely that LOC387761 is a
true diabetes locus and could thus have been excluded from
our models without diminishing the discriminative power. It
is also important to highlight that there are many other
antecedent traits for type 2 diabetes beyond those studied
here, e.g. HbA1c, fibrinogen and adiponectin; if variants
associated with such traits were to be included in a GRS,
the discriminative power would probably increase further.

The derivation of GRSs using the approach applied here
requires complete genotype data in the population in which
the score is computed. Because the genotype success rates
were less than perfect in our study (as in virtually all
studies) and genotyping failures were randomly distributed
across the selection of SNPs in this cohort, it was necessary
and appropriate to impute missing genotypes. The alterna-
tive would have been to use a sample set in which directly
genotyped data were available for all SNPs. However,
because missing genotype data were random across the
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study sample, around half of all participants were missing
data on at least one of the 73 SNPs. Thus, use of only the
complete directly genotyped subgroups would have
resulted in a considerable loss of statistical power and
could have led to biased conclusions about the magnitude
of association for the GRSs.

A further consideration is whether our findings are likely
to be attributable to confounding. With the exception of
linkage disequilibrium between the non-functional ob-
served and functional unobserved loci, statistical associa-
tions between germline genetic variants such as SNPs and
phenotypes are generally robust to confounding in ethni-
cally homogeneous cohorts such as that studied here.
Therefore, the associations reported here are unlikely to
be prone to confounding.

Our study is clearly a hypothesis-generating effort and
robust type 2 diabetes effect sizes for most of the GRSs of
interest in this report are absent from the published
literature. As such, meaningful a priori power calculations
could not be performed for this study and post-hoc power
calculations would be inappropriate, as discussed at length
elsewhere [32–34]. The fact that most of the associations
reported for the GRS models are highly statistically
significant indicates that our study was well powered to
detect the observed effects (which is a circular argument
and one important reason why post hoc power calculations
are often discouraged).

Finally, owing to the cross-sectional study design, we
were unable to calculate the reclassification index attribut-
able to the different genetic models, which would be
valuable when considering a possible clinical application.
One should also consider that in cross-sectional studies, in
which cases and controls are phenotypically highly distinct,
estimates of discriminative power may exceed estimates of
predictive power derived from prospective studies.

In conclusion, polymorphisms that affect diabetogenic
traits, but which are not conventionally considered to be
diabetes-predisposing loci, significantly improve the dis-
criminative power of a conventional GRS for type 2
diabetes. This is the case even though, on an individual
basis, most variants have weak effects that were not
statistically associated with type 2 diabetes in our study.
Nevertheless, the discriminative power of the GRS remains
below a level many would consider clinically useful; thus,
validated non-genetic prediction algorithms remain the
most appropriate tools for predicting type 2 diabetes in
the clinical setting.

Acknowledgements We thank the study participants, the staff of the
Umeå Medical Biobank for the preparation of materials and staff of
the Västerbottens Intervention Programme for data collection. We also
thank M. Sjögren and M. Orho-Melander for facilitating aspects of the
Sequenom genotyping, and both the Västerbotten Diabetes Registry
(DIVE; chaired by O. R. Rolandsson) for access to phenotypic data

and S. Steiginga for assistance with the figures. We thank S.
Lindström for helpful feedback on genotype imputation methods. The
study was funded by project grants from Novo Nordisk, the Swedish
Heart–Lung Foundation, the Swedish Diabetes Association, Påhlssons
Foundation, the Swedish Research Council, Umeå University Career
Development Award and The Heart Foundation of Northern Sweden
(all to P. W. Franks). Other project grants were from Tore Nilsons
Foundation (to F. Renström) and the Wellcome Trust grant 077016/Z/
05/Z (to I. Barroso). F. Renström was supported by a postdoctoral
stipend from the Swedish Heart–Lung Foundation.

Duality of interest I. Barroso owns stock in Incyte and
GlaxoSmithkline. All other authors declare that there is no duality
of interest associated with this manuscript.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. World Health Organization (1999) Definitions, diagnosis and
classification of diabetes mellitus and its complications. Part 1:
diagnosis & classification of diabetes mellitus. World Health
Organization, Geneva

2. Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes:
new genes, new understanding. Trends Genet 24:613–621

3. Lango H, Palmer CN, Morris AD et al (2008) Assessing the
combined impact of 18 common genetic variants of modest effect
sizes on type 2 diabetes risk. Diabetes 57:3129–3135

4. Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk
factors, DNA variants, and the development of type 2 diabetes. N
Engl J Med 359:2220–2232

5. Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in
addition to common risk factors for prediction of type 2 diabetes.
N Engl J Med 359:2208–2219

6. Renstrom F, Payne F, Nordstrom A et al (2009) Replication and
extension of genome-wide association study results for obesity in
4923 adults from northern Sweden. Hum Mol Genet 18:1489–1496

7. Franks PW, Rolandsson O, Debenham SL et al (2008) Replication
of the association between variants in WFS1 and risk of type 2
diabetes in European populations. Diabetologia 51:458–463

8. Hallmans G, Agren A, Johansson G et al (2003) Cardiovascular
disease and diabetes in the Northern Sweden Health and Disease
Study Cohort—evaluation of risk factors and their interactions.
Scand J Public Health Suppl 61:18–24

9. Willer CJ, Speliotes EK, Loos RJ et al (2009) Six new loci
associated with body mass index highlight a neuronal influence on
body weight regulation. Nat Genet 41:25–34

10. Lindgren CM, Heid IM, Randall JC et al (2009) Genome-wide
association scan meta-analysis identifies three loci influencing
adiposity and fat distribution. PLoS Genet 5:e1000508

11. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic
loci implicated in fasting glucose homeostasis and their impact on
type 2 diabetes risk. Nat Genet 42:105–116

12. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-
wide association data and large-scale replication identifies additional
susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

13. Kathiresan S, Willer CJ, Peloso GM et al (2009) Common
variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet
41:56–65

Diabetologia (2010) 53:2155–2162 2161



14. Thorleifsson G, Walters GB, Gudbjartsson DF et al (2009)
Genome-wide association yields new sequence variants at seven
loci that associate with measures of obesity. Nat Genet 41:18–24

15. Benzinou M, Creemers JW, Choquet H et al (2008) Common
nonsynonymous variants in PCSK1 confer risk of obesity. Nat
Genet 40:943–945

16. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing
the areas under two or more correlated receiver operating character-
istic curves: a nonparametric approach. Biometrics 44:837–845

17. Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms
and clinical pathophysiology of maturity-onset diabetes of the
young. N Engl J Med 345:971–980

18. Knowler WC, Barrett-Connor E, Fowler SE et al (2002)
Reduction in the incidence of type 2 diabetes with lifestyle
intervention or metformin. N Engl J Med 346:393–403

19. Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of
type 2 diabetes mellitus by changes in lifestyle among subjects
with impaired glucose tolerance. N Engl J Med 344:1343–1350

20. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The
glucose fatty-acid cycle. Its role in insulin sensitivity and the
metabolic disturbances of diabetes mellitus. Lancet 1:785–789

21. Petersen KF, Shulman GI (2006) Etiology of insulin resistance.
Am J Med 119:S10–S16

22. Franks PW, Hanson RL, Knowler WC et al (2007) Childhood
predictors of young-onset type 2 diabetes. Diabetes 56:2964–2972

23. Morrison JA, Glueck CJ, Horn PS, Wang P (2010) Childhood
predictors of adult type 2 diabetes at 9- and 26-year follow-ups.
Arch Pediatr Adolesc Med 164: 53–60

24. Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM,
D'Agostino RB Sr (2007) Prediction of incident diabetes mellitus
in middle-aged adults: the Framingham Offspring Study. Arch
Intern Med 167:1068–1074

25. Richter S, Shih DQ, Pearson ER et al (2003) Regulation of
apolipoprotein M gene expression by MODY3 gene hepatocyte
nuclear factor-1alpha: haploinsufficiency is associated with
reduced serum apolipoprotein M levels. Diabetes 52:2989–2995

26. Frayling TM, Evans JC, Bulman MP et al (2001) Beta-cell genes
and diabetes: molecular and clinical characterization of mutations
in transcription factors. Diabetes 50(Suppl 1):S94–S100

27. Hicks AA, Pramstaller PP, Johansson A et al (2009) Genetic
determinants of circulating sphingolipid concentrations in Euro-
pean populations. PLoS Genet 5:e1000672

28. Beer NL, Tribble ND, McCulloch LJ et al (2009) The P446L
variant in GCKR associated with fasting plasma glucose and
triglyceride levels exerts its effect through increased glucokinase
activity in liver. Hum Mol Genet 18:4081–4088

29. Orho-Melander M, Melander O, Guiducci C et al (2008) Common
missense variant in the glucokinase regulatory protein gene is
associated with increased plasma triglyceride and C-reactive
protein but lower fasting glucose concentrations. Diabetes
57:3112–3121

30. Vaxillaire M, Cavalcanti-Proenca C, Dechaume A et al (2008) The
common P446L polymorphism in GCKR inversely modulates
fasting glucose and triglyceride levels and reduces type 2 diabetes
risk in the DESIR prospective general French population.
Diabetes 57:2253–2257

31. Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide
association study identifies novel risk loci for type 2 diabetes.
Nature 445:881–885

32. Goodman SN, Berlin JA (1994) The use of predicted
confidence intervals when planning experiments and the
misuse of power when interpreting results. Ann Intern Med
121:200–206

33. Smith AH, Bates MN (1992) Confidence limit analyses should
replace power calculations in the interpretation of epidemiologic
studies. Epidemiology 3:449–452

34. Detsky AS, Sackett DL (1985) When was a “negative” clinical
trial big enough? How many patients you needed depends on what
you found. Arch Intern Med 145:709–712

35. Mayans S, Lackovic K, Lindgren P et al (2007) TCF7L2
polymorphisms are associated with type 2 diabetes in northern
Sweden. Eur J Hum Genet 15:342–346

2162 Diabetologia (2010) 53:2155–2162


	Forsattsblad_DiVA_UmU forlag Diabetologia
	Diabetologia 2010 53 21.pdf
	Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a northern Swedish population
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


