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Abstract

Mapping is a central and common task in robotics research. Building an accurate
map without human assistance provides several applications such as space mis-
sions, search and rescue, surveillance and can be used in dangerous areas. One
application for robotic mapping is to measure changes in terrain volume. In Swe-
den there are over a hundred landfills that are regulated by laws that says that
the growth of the landfill has to be measured at least once a year.

In this thesis, a preliminary study of methods for measuring terrain volume by the
use of an Unmanned Aerial Vehicle (UAV) and a Light Detection And Ranging
(LIDAR) sensor is done. Different techniques are tested, including data-merging
strategies and regression techniques by the use of Gaussian Processes. In the
absence of real flight scenario data, an industrial robot has been used for data
acquisition. The result of the experiment was successful in measuring the volume
difference between scenarios in relation to the resolution of the LIDAR. However,
for more accurate volume measurements and better evaluation of the algorithms,
a better LIDAR is needed.

Sammanfattning

Kartering är ett centralt och vanligt förekommande problem inom robotik. Att
bygga en korrekt karta av en robots omgivning utan mänsklig hjälp har en mängd
tänkbara användningsområden. Exempel på sådana är rymduppdrag, räddnings-
operationer, övervakning och användning i områden som är farliga för människor.
En tillämpning för robotkartering är att mäta volymökning hos terräng över tiden.
I Sverige finns det över hundra soptippar, och dessa soptippar är reglerade av la-
gar som säger att man måste mäta soptippens volymökning minst en gång om året.

I detta exjobb görs en undersökning av möjligheterna att göra dessa volymberäk-
ningar med hjälp av obemannade helikoptrar utrustade med en Light Detection
and Ranging (LIDAR) sensor. Olika tekniker har testats, både tekniker som slår
ihop LIDAR data till en karta och regressionstekniker baserade på Gauss Proces-
ser. I avsaknad av data inspelad med riktig helikopter har ett experiment med en
industrirobot genomförts för att samla in data. Resultaten av volymmätningarna
var goda i förhållande till LIDAR-sensorns upplösning. För att få bättre volym-
mätningar och bättre utvärderingar av de olika algoritmerna är en bättre LIDAR
sensor nödvändig.
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Chapter 1

Introduction

Mapping is a central and common task in robotics research. Building an accurate
maps without human assistance provides for several applications such as space
missions, search and rescue, surveillance and can be used in dangerous areas. This
work focuses on the application of measuring volume difference using an airborne
robot. This first chapter provides an introduction to the problem and the purpose
and structure of the thesis.

1.1 Problem formulation

Figure 1.1: An Unmanned
Aerial Vehicle measuring
volume at a landfill.

There are hundreds of landfills in Sweden. Land-
fills are currently regulated by restrictions from
Naturvårdsverket that says that all landfills in Swe-
den have to measure their growth at least once a
year for as long as the landfill is active. The growth
should be measured by volume or height [11]. To-
day this kind of landfill measurement is performed
once a year by a person manually placing a GPS at
known positions on the landfill. This job is far from
safe, and accidents have happened in the past, mak-
ing this a question of safety. There is also the ques-
tion of accuracy: the resolution of the measurement
made by foot is around ten GPS measurements per
hectare. One of the questions that this thesis is
trying to answer is whether this can be done with
higher accuracy using an Unmanned Aerial Vehi-
cle (UAV). The idea is to use sensor fusion to solve
this problem, placing the required sensors on the
UAV and merging the acquired sensor information
into an accurate map. This work evaluates different
methods for creating maps from raw data acquired

by a LIDAR. The position of the UAV is assumed to be known in this work.

1



2 Introduction

Since all sensors are more or less affected by noise, so also laser range finders,
the need for methods that handles uncertainties and sensor incompleteness is de-
sirable. In search for such a method this work has focused on the use of Gaussian
Processes (GP). Gaussian Processes provides a probabilistic approach to mapping,
which is the dominant approach for mapping using robotics as it provides ways of
dealing with uncertainties. As a preliminary study before the flights with a real
UAV an experimental setup using an industrial robot is used for data collection.

1.2 Thesis objective

The objective of this work is to find methods and algorithms for merging informa-
tion from a LIDAR sensor with known sensor poses into a topological map, and to
evaluate the performance of these algorithm for the purpose of measuring changes
in terrain volume.

1.3 Related work

The problem of mapping has previously been solved using a variety of algorithms
and with several different types of maps. Difficulties in robotic mapping include
how to handle uncertainties and sensor incompleteness in a good way. The amount
of probabilistic approaches to the mapping problem has grown significantly as com-
putational power has increased the last decades. Probabilistic methods provide
ways of handling the sensor limitations, hence their popularity [18]. Along with
the choice of mapping method, there is also a number of methods for storing and
representing the terrain, all contributing to the wide array of methods available
[16].

Triangulated Irregular Networks (TIN) is commonly used in computer games to
create terrain, but is also used for mapping purposes. Leal, Scheding et al. uses
TINs and a stochastic mapping approach to model terrain [8]. TIN provides a
meshed model of the terrain, and does not require an equidistant map. Therefore
TIN maps are theoretically able express very fine grained terrain models in com-
parison to many other methods. Approaches using TIN do have problems with
scalability as the number of so called network nodes grows significantly when the
mapped areas gets larger. In computer gaming such issues can be handled by di-
viding the TIN network using binary space partitioning that reduces the amount
of active TIN nodes, but that is not a valid simplification in a mapping application.

There is a great deal of applications that utilizes various kinds of Kalman filters
to handle the uncertainties of the sensors. Examples includes Kleiner and Dorn-
hege who use a Kalman like filter together with a convolution kernel to reduce the
effect of missing data and erroneous range information [4]. Cremean and Murray
implements a Simoultaneous Localization and Mapping (SLAM) algorithm using
a Digital Elevation Map and a Kalman filter for mapping using a ground vehicle
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[1]. Cremean and Murray have real time requirements on their implementation as
well as requirements on scalability (as it is a high speed outdoor application), and
make different simplifications in order to meet these requirements. For example,
a 2.5D relaxation is used in order to limit computations.

Another popular mapping method when mapping is Occupancy Grid Mapping
(OGM). OGM provides a probabilistic approach to the problem of mapping using
Bayesian filtering. The map is divided into cells and the probability of each cell
being occupied is calculated [16]. The sum of the probability of each cell is given as
a measurement for how probable the whole map is. The number of variables (cells)
that need to be evaluated in an OGM approach increases significantly when going
from two dimensions to three dimensions, hence OGM traditionally has not been
well suited for large scale 3D mapping. Recently, Wurm, Hornung et al. presented
an extension to the OGM called Octomaps [23]. The Octomap approach builds
a tree based structure which leads to good memory representation even in three
dimensions. The result of Octomaps have looked promising both in simulations
and real-world experiments.

Gaussian processes (GP) builds on the same Bayesian framework as OGM. GPs
have been studied for mapping purposes by Vasudevan, Ramos et al. [22] who uses
Gaussian processes together with KD-trees for increased scalability to produce el-
evation maps with uncertainty information, primarily by using data provided by
the mining industry. They found the use of a non-stationary neural network kernel
to be a good way of mapping large areas with rough terrain. Gaussian processes
are also used by Lange, Plagemann et al [7], who use the same basic approach of
non-stationary kernels, but instead look into the computer vision community to
find ways of creating local kernels. A very good overview of the theory of GP for
machine learning is given by Carl Rasmussen who covers the basic theory as well
as kernel choices and more [14].

Aerial mapping has had a later development due to the increased complexity (in-
creased number of freedoms, payload limitations and tougher dynamics) of flying
vehicles compared to ground vehicles. Despite this, several solutions have been
proposed. Thrun, Hahnel and Diel implemented a method for 3D-modeling using
Bayes filtering and a fast optimization technique to map using a manually con-
trolled non traversing helicopter [20]. Grzonka, Grisetti and Burgard [2] performed
indoor mapping using a quad-rotor flying UAV using particle filters. A node based
approach was used for solving the mapping part of the SLAM problem. As indoor
flying implies heavy restrictions on payloads for the helicopter, the same laser was
used for both mapping and altitude estimation by using a mirror.

1.4 CybAero

CybAero AB develops and manufactures Vertical Take Off and Landing (VTOL)
Unmanned Aerial Vehicles (UAV), i.e. unmanned helicopters. One of their VTOL



4 Introduction

UAVs can be seen in Figure 1.2. A VTOL UAV has several applications, both
civil and military. One such application is to survey the ground below the UAV
and produce a topographic map. Military use for a mapping application includes
surveillance missions or mine detection. Civil applications includes good ways to
get an overview of disaster areas or to measure the volume of landfills. One of
CybAeros possible partners for the application of measuring volume differences is
Tekniska Verken. Tekniska Verken is a regional company which aims to create a
community which is sustainable in the long term. Waste management is a part of
their care.

CybAero started the process of measuring landfill volume using UAV’s during
the spring of 2010. As a part of this two master theses have been carried out
at CybAero during the spring of 2010. One focusing on estimating the position
and orientation of the helicopter, and this thesis that focuses on laser mapping
methods.

Figure 1.2: One of the Vertical Take Off and Landing (VTOL) Unmanned Aerial
Vehicles (UAV) developed by CybAero AB.

1.5 Outline of thesis

The remainder of this work is outlined as follows.

Chapter 2 Includes necessary theoretical background information. This includes
information on the laser range finder sensor and how to transform data from
the sensor into a usable raw data set.

Chapter 3 Provides information about the laser mapping algorithms that were
implemented.

Chapter 4 Presents the results of experiments and the performance of the im-
plementations.

Chapter 5 Presents conclusions of the work, and possible future work.
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Appendix A Contains information on quaternion rotation, and a section with
abbreviations and technical terms.





Chapter 2

Sensors and Pre-Processing

This chapter introduces the state vector and covers the basic relations for merging
the data from the sensors into raw elevation data. It also a contains a description of
the sensors used, specially focusing on the laser range scanner as it is the primary
sensor for this work.

2.1 Pose information

To describe a moving body two coordinate systems, which can be seen in Fig-
ure 2.1, is used. The first coordinate system is fixed in the world (earth) and is
referred to as xwc (wc for world coordinate). The second coordinate system moves
with the vehicle system, and is referred to as xsp (sp for sensor platform). The
position and orientation of the moving coordinate system, xsp, is assumed to be
provided by some external estimation procedure. The state vector consists of the
following states:

[

x̂ q
]T

=
[

x y z q0 q1 q2 q3
]T

, (2.1)

where x̂ = [x y z] denotes the position of a known point in the moving frame xsp

from which the mounting position of the LIDAR is known, and q = [q0, . . . , q3]
is a quaternion that denotes the orientation of this known point. Quaternions is
a generalization of the complex plane to three dimensions that is frequently used
to describe orientation. It is superior to the Euler angle representation as it does
not suffer from the problems of singularities in the same way as Euler angles do
(this is one of the reasons that the quaternion representation has been chosen as
interface between the two parallel master theses).

The first unit of the quaternion, q0, describes the magnitude of the rotation around
an axis. The axis is described by the remaining units of the quaternion, q1 − q3.
The quaternion is normalized so that its absolute value always sums up to one.
See Appendix A for more information about quaternions, and how the quaternions
is used to describe orientation. The robot is assumed to be a rigid body, and thus

7
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x wc

x sp

Figure 2.1: Two coordinate systems are used to describe a moving vehicle. The
coordinate system xsp moves with the vehicle, while xwc is fixed in the world.

the orientation of the known point on the body is the same as the orientation of
the LIDAR. The states given in (2.1) are provided at approximately 100 HZ.

2.2 Geometry

The data collected by a LIDAR sensor placed on a moving vehicle forms a ge-
ometrical problem. The gathered raw data data needs to be transformed into
information about the world around it. In order to project the LIDAR measure-
ments into the world forward kinematics can be used [4]. The following section
explains how linear algebra can be used to describe the relationship between the
moving coordinate system, xsp, placed at a known location at the moving vehicle,
and the world fixed coordinate system xwc.

Let O denote the origin of xwc, and R be the origin of xsp. Further, let L be
the placement of the LIDAR sensor within xsp, and S be a range measurement
made by the LIDAR in xsp according to Figure 2.2. The measurements made by
the LIDAR in xwc can then be expressed as the vector

OSwc = ORwc + RSwc. (2.2)

The relations in (2.2) have to be expressed in the same coordinate system,
the fixed world coordinate system xwc. The vector RS between the origin of xsp

and the LIDAR measurement can be seen as an addition between the vectors RL
and LS in xsp. This can be related to world coordinates by applying a rotation
matrix R(q) to (2.2) that expresses how xsp is rotated with respect to xwc. The
rotation matrix is provided by the quaternion q (See Appendix A). Using R(q) a
range measurement made by the LIDAR expressed in world coordinates is given
by (2.3). The vector RL is a translation between the known origin of the moving
frame and the mounting point of the LIDAR. This distance is measured by hand.
The vector LS is the measurement made by the LIDAR as explained in the next
section.

OSwc = ORwc + R(q)
(

RLsp + LSsp

)

(2.3)
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L

R

O

x

x

wc

sp

S
OR

OS

LS

RS
RL

Figure 2.2: Principles of the geometry. By the use of translations and a rotation
matrix the measurements made by the LIDAR in the moving coordinate system
xsp can be expressed in the fixed world coordinate system, xwc.

2.3 The LIDAR sensor

A LIDAR sensor is used to measure the environment in this work, and this section
contains basic information about the sensor. The LIDAR used is a Hokouyo URG-
04-LX, see Figure 2.3. The LIDAR provides range measurements by emitting

Figure 2.3: The Hokuyo URG-04-LX sensor.

laser pulses and detecting the pulses reflected from nearby objects. Like a radar,
distance to the object is determined by measuring the time delay between the
transmission of a pulse and the detection of the reflected signal. The URG-04-LX
has a 240◦ field of view and has an angular resolution of about 0.36◦. It has an
operation range of zero to four meters. The width of the laser cone grows with
increasing range, and the observed range corresponds to an arbitrary range within
the width of the cone [4]. The LIDAR operates at 10 HZ and collects laser data
in sweeps, each with N laser measurements. The URG-04-LX does not provide
information on intensity of the pulses. A laser measurement, Li, each consists of
a range measurement ri and an angular measurement φi as
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Li =

[

ri

φi

]

, i = 1, . . . , N. (2.4)

For the particular mapping application in this work, the whole field of view
is not significant as measurements only provides information when hitting the
ground. Hence the field of view has been limited to [φmin, φmax]. The range
and bearing measurements from the LIDAR can be transformed into Cartesian
coordinates by the following transform,

[

xi

yi

]

=

[

ri cos(φi)
ri sin(φi)

]

, i = 1, . . . , N. (2.5)

2.3.1 Sensor uncertainties

An ideal LIDAR would always measure the correct range to the nearest object
within the measurement field. However, even if the LIDAR would measure the
range to the closest object correct it would still be subject of errors, due to limited
resolution, atmospheric effects on the measurements etc [19]. Therefore, measure-
ment noise and uncertainties always have to be taken into account when working
with LIDARs. There are also other sources of noise connected to LIDARs, includ-
ing missed measurements, unexpected objects and sensor failures [19]. These also
have to be taken into account when developing algorithms using measurements
from a LIDAR. In order to provide information about the uncertainties of the
measurements, the model in (2.5) was first expanded into three dimensions by the
use of spherical coordinates as





xi

yi

zi



 =





ri cos(φi) sin(θ)
ri sin(φi) sin(θ)

ri cos(θ)



 i = 1, . . . , N, (2.6)

where ri is the measured range, φ the angle against the x axis and θ the angle
against the z axis in the moving coordinate system xsp. The angle that describes
the pitch, θ, is always set to π/2 since the LIDAR is acquiring all measurements
in the same plane. The uncertainties in range and angular measurements can be
transformed into uncertainties in spherical coordinates using the Jacobians,

Ji =
∂(xi, yi, zi)

∂(ri, φi, θi)
=

=





cos(φi) sin(θ) −ri sin(φi) sin(θ) ri cos(φi) cos(θ)
sin(φi) sin(θ) ri cos(φi) sin(θ) ri sin(φi) cos(θ)

cos(θ) 0 −ri sin(θ)



 . (2.7)

Setting θ = π
2 and calculating the Jacobian of (2.6) results in

Ji =





cos(φ) −r sin(φ) 0
sin(φ) r cos(φ) 0

0 0 −r



 (2.8)
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The uncertainty of a range scan increases with the detected range, and the
uncertainty in range is dominating. There is also uncertainties in the angles φi

and θi. The standard deviation in angular accuracy describes the spreading of the
LIDAR. Setting the standard deviation to zero would imply a beam with no area,
which is clearly not the truth. The covariance matrix for the LIDAR measurements
is modelled as

Σi =









(

σr

(

1 +
ri

rmax

))2

0 0

0 σ2
φ 0

0 0 σ2
θ









, i = 1, . . . , N, (2.9)

where σr, σφ, σθ denote the standard deviation of r, φ and θ respectively. The
standard deviations in the angles are the same since the LIDAR beam is circular.
The standard deviations for the angles are set to

σϕ = σθ =

√

1

2

2π

1024
. (2.10)

Given the above relationships the covariance of each measurement point can
be expressed in the world coordinate system xwc by first changing base from
the spherical coordinates and then rotating by a rotational matrix, R(q), that
describes how the local coordinate system xsp is rotated in the world (see Section
2.2). The translation does not affect the covariance matrix as the translations are
linear without any uncertainties being added [15]. This results in a covariance
matrix in the fixed world coordinate frame given by

Σsp = JΣJT , (2.11a)

Σwc = R(q)ΣspR(q)T = R(q)JΣJT R(q)T . (2.11b)





Chapter 3

Laser mapping

This section covers the different mapping methods that have been implemented.
The approach has been to try the simplest things first, hence starting off with av-
eraging and median filtering for each cell. Focus was then shifted towards models
that handle uncertainties, including a Kalman like filter that weights the mea-
surements against their respective covariances, and then on to Gaussian processes
(GPs). All methods have been implemented in MatlabTM. The initial methods are
covered in Section 3.2. An introduction to to the stationary GP can be found in
Section 3.3. The stationary GP is generalized to non-stationary GP in Section 3.4.

3.1 2.5D and grid mapping

An important assumption during the course of this work has been the 2.5D as-
sumption. The difference between 2.5D mapping and full 3D mapping problem is
that gaps in the terrain as seen in Figure 3.1a are not modelled in the 2.5D case.
This makes the mapping problem easier in many ways, as a 2D grid map can be
used for storing information instead of a full scale 3D grid map. This reduces the
amount of grids needed to represent the map by one dimension, and thus fewer
calculations are needed than in the full 3D case. In a 2D elevation map the value
of each grid cell corresponds to the height of the corresponding grid. A grid hk,l

with a resolution of r cells in the first dimension (k) and s cells in the second
dimension (l), makes it a total of rs cells in the grid. Such grid is illustrated in
Figure 3.1b.

3.2 Initial mapping methods

Converting LIDAR data into world coordinates gives a data-set of n independent
measurement points, D = (xi, yi)

n
i=1, where x = [x1, x2] corresponds to the coor-

13
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Gap

Measurement

(a) Difference between
2.5D and 3D mapping.

k

l

Cell h(1,s)

Cell h(r,1)

(b) Basic grid map.

Figure 3.1: Illustration of 2.5D LIDAR mapping and the corresponding grid map

dinates in the plane and y is the terrain elevation at the corresponding location1.
The goal of the following mapping procedures is to filter and structure the data
in this data set into a valid map. Initial methods are grid based approaches that
focuses on merging the neighbouring raw data points into a elevation grid map.
Such methods all have the advantage of being easy to understand and use, but
suffer from the drawback of poor handling of incomplete data. Incomplete data
occurs when the LIDAR have measured erroneous data, or simply have not col-
lected any data in a region. Therefore merging methods needs to be used together
with a interpolation technique in order to provide full maps. The three different
methods for merging the data in D into a map is explained below.

A first approach to determining the map is to use averaging. The area that is
to be mapped is divided into a grid of wanted resolution, hk,l. The average of the
LIDAR measurements within each cell is calculated and set as the output value of
the cell as

hk,l =

∑p
j=1 yk,l,j

p
, k ∈ [1, r], l ∈ [1, s], (3.1)

where hk,l is the corresponding elevation estimate of cell k, l, yk,l,j is the height
value of a LIDAR measurement within cell k, l, and p is the number of measure-
ments within cell k, l. The number of hits within a cell, p, will naturally vary for
all cells. The grid map h equals to the output elevation map.

The second approach is almost the same as the first one, but instead of calcu-
lating the average for each cell the median of all LIDAR hits within each cell is
calculated and set to the corresponding grid elevation estimate

hk,l = med(yk,l,1, . . . , yk,l,p), k ∈ [1, r], l ∈ [1, s], (3.2)

where hk,l is the corresponding elevation estimate of cell k, l, yk,l,j is the height
value of a LIDAR measurement within cell k, l, and p is the number of measure-
ments within cell k, l in the same way as for the averaging filter.

1To clarify, x = [x1, x2] here corresponds to the x and y coordinates and y to the z coordinate
in a traditional Cartesian coordinate system.
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The target value of each grid cell in the elevation map can also be set by a filter
that weights the measurements against their corresponding accuracy, where the
the elevation of each grid cell is updated given all the observations within the grid
cell in the past and the uncertainty of the measurement [4]. Observations are mod-
elled as a normal distribution N(yj , σ2

yj
) with σyj

being the standard deviation of
the LIDAR measurement as explained in Section 2.3.1. The elevation of cell k, l
given measurement j is modelled as a normal distribution with N(hk,l,j , σ2

hk,l,j
),

see Figure 3.2. The elevation of a grid cell then updated against the measurement
uncertainty for each measurement in the cell and the cells uncertainty given all
observations within the cell in the past. This results in a Kalman-like weighting
filter where each measurement is weighted against the accuracy of the LIDAR as

}N(h(t),       )    σh(t)

k

l

Figure 3.2: When weighting against uncertainty, each cell in the elevation map is
assumed to be normally distributed.

hk,l,j =
1

σ2
yj

+ σ2
hk,l,j−1

(σ2
yj

hk,l,j−1 + σ2
hk,l,j−1

yj), (3.3a)

σ2
hk,l,j

=
1

1

σ2
hk,l,j−1

+
1

σ2
yj

, (3.3b)

where in the same way as before j ∈ [1, p] indicates the number of measure-
ments within each grid cell. The initial uncertainty of each grid cell, σhk,l,0

, was
set high as no information is known about the cell beforehand.

Since the three methods mentioned above all suffer from not handling incom-
pleteness, the methods need to be augmented with interpolation methods. The
method for interpolation used in this work determines the height of an incomplete
cell by linear interpolation with height values from neighbouring cells. This was
done by utilizing a MatlabTMcommand that uses Delaunay triangulation to find
the height of the missing grid cells.

The LIDAR may also suffer from artefacts occuring when the LIDAR beam hits
edges of objects, which may results in the returned range being a mixture of ranges
to different objects. This may lead to phantom peaks in the map [24]. To reduce
such effects a convolution kernel with a smoothing effect can be applied to the
elevation map [4]. The convolution kernel is a simplified version of the Certainty
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Assisted Spatial filter (CAS) implemented by Yee and Borenstein [24]. In the
convolution kernel the height of a grid cell is filtered against the cells uncertainty
σhk,l

and the distance to the center of the kernel. A three by three cell convolu-
tion kernel is defined as follows. Let hk+i1,l+i2

denote a height value related to
the kernel center at map location k, l, with i1, i2 ∈ {−1, 0, 1}. Then weights, w,
are calculated according to (3.4a) and the height of the given cell hk,l is updated
according to (3.4b).

wi1,i2
=



































1

σh2
k+i1,l+i2

if|i1|+ |i2| = 0

1

2σh2
k+i1,l+i2

if|i1|+ |i2| = 1 i1, i2 ∈ {−1, 0, 1} .

1

4σh2
k+i1,l+i2

if|i1|+ |i2| = 2

(3.4a)

hk,l =
1

∑

wi1,i2

∑

i1,i2

hk+i1,l+i2
wi1,i2

i1, i2 ∈ {−1, 0, 1} . (3.4b)

3.3 Gaussian Processes

As previously mentioned autonomous mapping includes difficulties in several forms.
Sensors are affected by measurement noise (Section 2.3.1), and the acquired data
may be incomplete. Gaussian Processes (GPs) provide a way to overcome these
obstacles by replacing missing information with best unbiased estimates while
considering sensor uncertainty. This section covers the basics of Gaussian process
regression, a method that utilizes probabilistic theory to form a map. The imple-
mentation is based on a combination of two works on GPs. Vasudevan, Ramos et
al. finds a scalable solution to the mapping problem by a windowing approach [22].
Lang, Plagemann et al develops the concept of local kernels for modelling terrain
and introduces the Elevation Structure Tensor (EST) for this purpose [7]. The
theoretical cornerstones of GP regression theory for machine learning purposes
are well summarized by Rasmussen and Williams [14]. GPs have been chosen as
the method for investigation as it is a probabilistic approach that was believed
to utilize the 2.5D assumption in a good way compared to other algorithms (for
example Occupancy Grid Mapping (OGM)).

3.3.1 Background

The initial mapping methods discussed in the previous section all focuses on merg-
ing gathered data to gain an accurate view of the surrounding environment. Sec-
tion 1.3 briefly mentioned an alternative ways to merging data strategies based
on probabilistic theory. The popularity of probabilistic methods within robotic
mapping stems from their ability to handle the sensor uncertainties. Probabilistic
mapping methods explicitly model the sources of noise and their effect on the mea-
surements, and does so with the whole framework of the mathematical probability
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theory behind them [18]. The cornerstone of probabilistic mapping is Bayes rule.
Using Bayes rule the probability of a map a given some observed data b is given
by

p(a|b) =
p(b|a)p(a)

p(b)
, (3.5)

where p(a) is called the prior, p(a|b) the posterior, and p(b|a) the likelihood.
The cornerstone of Bayesian filters is to maximize the probability of a map by the
use of information learned about the world prior to observations and then combine
the information learned beforehand with observations to make the best prediction
about the observed data. Gaussian Processes (GP) is one of many methods that
utilizes the Bayesian framework. GPs are a non-parametric model in the sense
that they do not absorb the data used to gain the prior information, which is a
benefit with GP [14].

Mapping using GPs differs against the previously mentioned algorithms in Sec-
tion 3.2 in that it is based on regression. Regression based approaches does not
associate measurements into a certain cell, but instead uses the measurements to
create a valid model which explains the gathered data. The goal is to recover a
function f

yi = f(xi) + ǫi, ǫi ∼ N (0, σ2
n), (3.6)

where xi ∈ R
d denotes input (location samples) with dimension d and yi ∈ R

targets (corresponding to terrain elevation). The variance σ2
n is the same for

all n points. As the name implies GPs have strong connections with Gaussian
distributions, and can be seen as an generalization of the Gaussian distribution.
While Gaussian distributions handles random variables over vectors, GPs are over
functions. The definition of a GP is [14]:

Definition 3.1 A Gaussian process is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

Using this definition the regression problem for terrain modelling purposes can
be formalized as follows. Given a data-set D = (xi, yi)

n
i=1 with n observations of

terrain elevations y at locations x, find a model for p(y∗|x∗,D), where y∗ is the
elevations of the terrain at new locations in a test grid X

∗.

The key behind the Gaussian process framework is that the samples yi from the
finite data-set D can be seen as being jointly normally distributed, where the in-
ference is made in function space. Viewing the set of samples from D as being
normally distributed the predictive distribution for the targets is

p(y1, . . . , yn|x1, . . . , xn) ∼ N (µ, K) (3.7)

where µ ∈ R
D denotes the mean, and K is a covariance matrix. The mean µ

is usually assumed to be zero. K is specified by a covariance function k with an
additional global noise term σn. Element (i, j) of K is defined as

Ki,j = cov(yi, yj) = cov(f(xi), f(xj)) = k(xi, xj) + σ2
nδij . (3.8)
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where δij is called Kronecker’s delta, and δij = 1 iff i = j, as the measurements
are assumed to be independent. In other words a function f distributed as a GP is
fully specified by a mean function µ which is assumed to be zero, and a covariance
function k.

The covariance function is perhaps the most central part of the GP framework.
A covariance function k(xi, xj) represents the prior knowledge about the targets
and models the relationship between measurements taken at xi and xj . Notice
that the covariance function in (3.8) only depends on the input locations x and
not on targets y. In theory, any covariance function could be used as long as
it is a positive definite function, which is a demand of the underlying Gaussian
distribution theory. One choice of covariance function is the squared exponential
covariance function, kSE :

kSE (xi, xj) = σ2
f exp

(

−
1

2
(xi − xj)T Σ(xi − xj)

)

. (3.9)

xi, xj ∈ R
d, σ2

f denotes the amplitude of the function and the kernel Σ is
a symmetric d × d matrix that models the dependencies among the dimensions
d . Setting the number of dimensions d to two which is the natural choice for
terrain modelling, and using a diagonal kernel matrix Σ = diag(ℓ1ℓ2) (3.9) can be
rewritten as

kSE (xi, xj) = σ2
f exp

(

−
1

2

2
∑

k=1

(xi,k − xj,k)
2

ℓ2
k

)

. (3.10)

Here, the length scale parameters, ℓi, models how quickly the function changes
along the two dimensions, and tells us how far we can move in either direction
before measurements become uncorrelated. If the kernel matrix Σ is not diago-
nal it is possible to rotate the axes and get oriented kernels (See Section 3.3.4).
Parameters that specify the covariance function, such as ℓ1, ℓ2, σf , are called hy-

perparameters for the covariance function and are denoted by Θ. Finding the right
hyperparameters is of great importance and is further discussed in Section 3.3.2.

Notice that the kSE covariance function in (3.10) only depends on relative dis-
tance between data points, |xi − xj |. It is invariant to translations and says that
the rate at which points are correlated with each other decreases with the euclidean
distance between the points. A covariance function that only depends on relative
distance and thus is the same all over input space, such as the kSE , is called a
stationary covariance function.

The process of finding the hyperparameters Θ for a specific kernel is called training

the Gaussian process. This procedure is described in the next section. The found
hyperparameters Θ together with the training data set D is then used to apply the
GP to a set of points in a test grid X

∗. In practice, the amount of data provided
in the data-set D is often fairly large. Therefore, a sampling step is often included
when working with GPs. The sampling of data points could in theory be random,
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uniform or taken from high gradient areas in the terrain. Random sampling have
been used in this work. The overall process of using the Gaussian processes can
be seen in Figure 3.3.

Sampling

Raw LIDAR measurements

Training

Hyperparameters

Elevation map with
uncertainties

Applying GP

Figure 3.3: The steps of mapping using GPs can be divided into sampling, training
and applying.

3.3.2 Training a Gaussian Process

The covariance function of a GP is not fully specified without values for the set of
hyperparameters Θ. For the squared exponential covariance function introduced
in the previous section, the set of hyperparameters includes ℓ1, ℓ2, σf as well as the
global noise parameter σn. These hyperparameters depend both on the choice of
covariance function and the data-set, D. Therefore, training the GP is the same
thing as optimizing the hyperparameters in the light of the data. The importance
of finding the right length scales is illustrated in Figure 3.4 for a one dimensional
problem. Having too short length scales will result in uncertainty growing signif-
icantly away from the measurements points, Figure 3.4b, while having too long
length scales yields a smoother function but at the cost of higher uncertainty over-
all, Figure 3.4c. The optimal choice is a trade-off, Figure 3.4d.

Training the GP equals to finding the optimal solution to the log marginal
likelihood problem

log p(y|X, Θ) = −
1

2
yT K

−1
y−

1

2
log |K| −

n

2
log(2π), (3.11)

where y denotes a vector of y measurements, X holds the corresponding x mea-
surements and K is the covariance function for the corresponding noisy targets,
Ki,j = k(xi, xj) + σ2

nI from (3.8) and (3.10). This expression is the result of
marginalization over the function values, integrating the prior times the likelihood
in (3.5). The log marginal likelihood problem in (3.11) is non-linear, so the opti-
mization of the hyperparameters is not a convex problem. From (3.11) itself it is
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Figure 3.4: Illustration of the importance of finding the correct length scalese, ℓ.
Grey areas indicate confidence regions.

possible to derive the partial derivatives of the hyperparameters analytically, but
in practice gradient based approaches are the choice. In this thesis, an implemen-
tation that uses Polack-Ribiere flavour of conjugate gradients to find the optimal
values have been used2.

Note that (3.11) contains three different terms. The first term is describing the
data fit, the second term is penalizing complexity and the third term is a normaliz-
ing factor. Having the penalizing term in the expression makes sure the parameters
does not suffer from overfit. Thus, Occam’s razor which says that "entities must
not be multiplied beyond necessity", is built into the optimization procedure.

3.3.3 Applying a Gaussian Process

After the optimal hyperparameters have been found, the GP can be applied to
a set of query points, the test grid X

∗ that consists of m regression points x∗.
The result of the process of applying the GP is an elevation grid map with given
uncertainties, see Figure 3.3. As the joint distribution3 of any finite number of
random variables of a GP is Gaussian, the measurements from the data-set D
and the query points X

∗ can be seen as samples taken from the same Gaussian
distribution [22]. Therefore it is possible to specify a one dimensional normal

2Implementation by Carl Rasmussen available at http://www.gaussianprocess.org/gpml/

3For a joint Gaussian

[

x

y

]

∼ N

([

a

b

]

,

[

A C

C⊤ B

])

the conditional probability is

given as x|y ∼ N
(

a + CB−1(y − b), A − CB−1C⊤
)
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distribution that expresses the relationship between the measurements and the
test grid. By denoting all x measurements in D by X the relationship between
the heights of the corresponding measurements y and the height of the reqression
points y∗ is given as

[

y

y∗

]

∼ N

(

0 ,

[

k(X, X) + σ2
nI k(X, X

∗)
k(X∗, X) k(X∗, X

∗)

])

, (3.12)

where for n training points in the data-set D and n∗ points in the test grid
X

∗, k(X∗, X) denotes a n × n∗ matrix evaluated between all pairs of training
and test points. By denoting K k(X, X) , k k(X, X

∗) and k∗ k(X∗, X
∗) the

following important equations calculate a one dimensional normal distribution for
the targets of the test grid

f∗ = N (µ∗, v∗) (3.13a)

µ∗ = E{f∗} = k
T (K + σ2

nI)−1y, (3.13b)

v∗ = V {f∗} = k∗ + σ2
n − k

T (K + σ2
nI)−1k, (3.13c)

where dimensions of these properties given n points of training data is: K ∈
R

n×n, Kij = k(xi, xj), k ∈ R
n×n∗

, ki,j = k(x∗
i , xj) , k∗ = k(X∗, X

∗) ∈ R
n∗×n∗

,
and y ∈ R

n. The uncertainty for a point in the test grid, x∗, is given by the
covariance k∗ + σ2

n minus a positive term that depends on the the data from
the training inputs, k

T (K + σ2
nI)−1k. The posterior covariance will therefore be

smaller than the prior covariance all the time. Or in other words, the information
from the training data-set is used to lower the uncertainties of the estimates.

3.3.4 Visualisation

The perhaps most important part of the kSE covariance function is the kernel

Σ. As mentioned before, if Σ is a diagonal matrix it holds the length scales for
each dimension. The length scale parameters, ℓi, models how quickly the function
changes along the two dimensions, and tells us how far we can move in either
direction before measurements become uncorrelated. They can be seen as a co-
variance matrix for the Gaussian kernel. If Σ is a non-diagonal matrix the axes
are rotated and describes how the covariance structure of the input space is orien-
tated. Luckily this has a good visualization possibility, as kernel matrices can be
seen as ellipses in the case of two a dimensional input space.

Any positive semi-definite matrix4 is a valid kernel matrix, as it meets the criteri-
ons for the underlying multivariate normal distribution. Looking into the matrix
decomposition rules in linear algebra, the spectral theorem says that any positive
definite matrix Σ can be divided into two matrices Σ = RART , where A is a

4A symmetric n × n matrix M is positive definite if zT Mz > 0 holds for all non-zero vectors
z, z ∈ R

n.
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diagonal matrix containing the eigenvalues of Σ and R contains the correspond-
ing eigenvectors for these eigenvalues. The matrix Σ can thus be divided into a
rotation matrix R and a diagonal matrix A as:

Σ = RART = R

(

ℓ2
1 0
0 ℓ2

2

)

RT = (3.14)

Σ can be visualized as an ellipse, where the eigenvalues determines the length
along the axes of the ellipse and the angle of the orientation matrix R determines
the orientation of the ellipse. Let α be the orientation angle of the rotation matrix

R =

(

cos α − sin α
sin α cos α

)

in (3.14), then the kernel matrix Σ can be visualized accord-

ing to Figure 3.5. The elipse can also be seen as statistical limits of a 2D- Gaussian
distribution, where the length scale corresponds to one standard deviation of the
Gaussian.

α
l1

l2

Figure 3.5: Visualization of kernels, Σ, is possible by drawing ellipses with length-
scales ℓi defining the length of the axes and orientation specified by an angle α.

3.3.5 Local windowing

The equations for estimating the terrain elevation and the corresponding uncer-
tainty given in (3.13) includes an inversion of the covariance matrix of the training
data (K + σ2

nI). This matrix is of the the dimension n × n, making the matrix
inversion very costly for a large scale terrain modelling problem as the inversion
operation is of cubic complexity O(n3). There are several more or less complicated
approximation methods reducing the complexity of this inversion, several of them
are listed by Rasmussen and Williams [14]. An initial method is to divide the
area into several subregions in order to decrease the size of matrix that is to be
inverted. This has been performed by Lang in order to speed up computations of
a large scale mapping scenario [7]. A natural extension to this method is to apply
a local moving window technique. A local approximation method like the moving
window technique is based on the idea that a point is correlated the most with its
immediate neighbourhood. Hence the m spatially closest points is chosen when
applying the GP model to the terrain, which speeds-up the matrix inversion of
(K + σ2

nI). In this work m = 50 have been used. A drawback of using the moving
window approximation is that it introduces the need for good sorting methods in
order to find the nearest neighbours of a point. Finding closest neighbours is a



3.4 Non-stationary Gaussian Processes 23

subject that has been well analysed throughout the years. Vasudevan, Ramos et
al proposed the use of a k-dimensional tree (KD-tree) for sorting the measurement
points and finding the nearest neighbours [22]. A MatlabTMKD-tree implemen-
tation was briefly tested during this work, but was not the optimized and was
outperformed by sorting the matrices after euclidean distance.

3.4 Non-stationary Gaussian Processes

In Section 3.3.1 the squared exponential covariance function kSE was introduced.
The kSE is a frequently used covariance function in GPs as it is fairly easy to
understand since the correlation between the points in input space decreases with
euclidian distance in the same way across the whole input space. However, this
property of the kSE does not fit very well with our goals of modeling terrain using
GPs. It is not realistic to assume that the terrain varies as much in all areas,
some areas may be flat while others may be very rough. The kSE also gives a
smoothing effect on map which is good in flat areas but not wanted in regions
with rough obstacles. One of the difficulties in mapping is to find a good trade-off
between smoothness and preserving discontinuities. A natural thought would be
to vary the length scales, and thus the covariance function, depending on the local
terrain. This introduces the principle of non-stationary covariance functions and
Non-stationary Gaussian Processes (NGP) . Whereas a stationary covariance func-
tion is static all over the input space, a non-stationary covariance function varies
over the input space and enables the capturing of local terrain properties. There
are several possible non-stationary covariance functions. For example Vasudevan,
Ramos et al. successfully used a dot product neural covariance function kernel
to model large scale terrain [22]. In this work a slightly different approach, first
introduced by Paciorek and Schervish [12] is attempted .

Paciorek and Schervish introduced a generalized version of the kSE covariance
function by assigning an individual kernel matrix Σi to each measurement point
xi in the data-set D. This kernel matrix holds information about the local envi-
ronment of xi, and provides a way to adapt the length-scales depending on the
input location. The principle is illustrated in in Figure 3.6. The idea is that in
areas with flat terrain the kernel matrix is circular and holds large length scales
in both dimensions, while areas of rough terrain yields thinner kernels with length
scales adapted to the terrain. Another way of putting this would be that in a
point in rough terrain, one does not have to go far away from the measurement
point to become uncorrelated, while flat areas have higher correlation with mea-
surements far away. The stationary squared exponential covariance function kSE

is generalized into the non-stationary squared exponential, kNSE as

kNSE (xi, xj) = σ2
f |Σi|

1
4 |Σj |

1
4

∣

∣

∣

∣

Σi + Σj

2

∣

∣

∣

∣

− 1
2

·

exp

[

−(xi − xj)T

(

Σi + Σj

2

)−1

(xi − xj)

]

.

(3.15)
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(e) Non-stationary kernels.

Figure 3.6: For the kSE covariance function the same kernels is used for all input
locations which leads to oversmoothing of discontinuities. The non-stationary
covariance function, kNSE adapts individual kernels that makes it possible to
handle discontinuities better, and at the same time gain smoothness in flat areas.

where Σi and Σj correspond to the kernels associated with xi and xj respec-
tively. Breaking down kNSE and comparing it with kSE in (3.10) first notice that
setting Σi = Σj in (3.15) gives the stationary kSE covariance function. This indi-
cates that the kNSE is indeed a generalization of the kSE . kNSE can be divided
into three parts;

kNSE = σ2
f · p · e (3.16)

The properties of these parts is fully explained in [6], but is briefly summarized
here as well. The first part is recognized from kSE as the amplitude scale factor.
The second and third term differs from kSE . The exponential part e measures the
Mahalanobis distance between input locations, a weighted average of the individual
kernels at input locations i and j. As is the case with kSE , the correlation between
data points decreases with distance, but in kNSE even two distant input locations
may be correlated if the averaged kernel is large.

The addition of the last term, the prefactor p, might look confusing. It is
added to make kNSE positive definite, which is a requirement on a covariance
function in the Gaussian framework [14]. However, the prefactor also gives rise to
some unexpected behaviours noted in [13] and analysed in [6]. Summarized, the
prefactor penalizes kernels that differ in shape. That is, given two equally shaped
kernels the prefactor will get its largest value at p = 1, independent of the kernel
size. The prefactor p then starts to decrease towards zero when the kernels start
to differ in shape. This leads to larger kernels having smaller covariances if they
are different in shape in comparison to two small kernels that are equally shaped.
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Looking closer at (3.16) there are risks of data overfitting that can be derived
from both the exponential part and prefactor. Overfitting occurs if one relies to
much on the close local surroundings, which in the end may result in correlation
with a single measurement point alone. If the kernels become very small the ex-
ponential part will add to the risk of overfitting. On the other hand, the prefactor
will lead to overfitting if the shapes of the neighbouring kernels are to different.
Due to these behaviours, there are in practice two constrains on the kernels that
needs to be met in order to avoid overfitting:

• Kernels shall not be too small, due to the behaviour of the exponential part.

• Kernels shall vary smoothly, due to the behaviour of the prefactor.

Note that there is a difference between saying that the shape of the kernel shall
vary smoothly, and that the terrain itself shall vary smoothly. For example, the
kernel could look the same at both sides of a rough step in the terrain, with the
kernels being shaped along the edges.

3.4.1 The elevation structure tensor

The previous section introduced the principle of covariance functions with local
kernels, Σi. Finding the local kernels can be done in multiple ways, but is not a
trivial task. In adition to the hyperparameters σf and σn three additional param-
eters, ℓ1, ℓ2 and α, have to be set for all n kernels. This results in a total number of
3n + 2 parameters to set. When Pacriorek and Schervish introduced the principle
of the non-stationary covariance function they proposed a hierarchical method for
finding the local kernels by using a second level GP and Markov-Chain Monte
Carlo sampling [12]. As stated by the authors this provides a good and elegant
solution by using the same framework to find Σi as to make the actual elevation
predictions. However, the method introduces several additional parameters per
local kernel, and hence looses the simplicity of the stationary GP model. This also
leads to very slow computations as the number of parameters grows, computation-
ally limiting the amounts of kernels to around one thousand measurement points.
Lang introduces two methods of finding the kernels in [6]. The first method uses
a gradient search method for finding the optimal values for each local kernel. In
order to avoid local minima a neural network adaptation procedure called RProp
is used, and an extra regulation procedures is applied to ensure that the local ker-
nels vary smoothly. Even if special precautions was taken to avoid local minimas,
the method is still sensitive to local minimas as the amount of parameters (3n+2)
quickly gets very large.

The second method introduced by Lang in [6] is the method of choice in this
work. The values for Σi is found by adapting the kernels against the local gra-
dients of the terrain. The hyperparameters found by the optimization procedure
in Section 3.3.2 are influenced by the properties of the local terrain structure in
an iterative manner. The method of using local gradient information is inspired
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by work done in the computer vision community by Middendorf and Nagel [10].
They used an adaptive approach to find the grey-value structural tensor to capture
the local image structure. The method also has similarities with the principles of
the Harris detector [3], used in the computer vision community to detect edges.
The difference between detecting edges in an image and terrain modelling using
LIDAR is that the pixels in images consists of equidistant information, whereas
data gathered by a LIDAR does not. The principle of adapting kernels against
local terrain is built upon the definition of a Elevation Structure Tensor (EST).
The EST provides a locally weighted average of the gradients in an area and are
estimated directly from the elevation samples in the neighbourhood of the point.
The EST for a point xi = [xi,1, xi,2] is defined as

EST(xi) =

m
∑

k=1

w(xk, xi)

[

I2
x1

Ix1
Ix2

Ix2
Ix1

I2
x2

]

=

[

〈I2
x1
〉 〈Ix1

Ix2
〉

〈Ix2
Ix1
〉 〈I2

x2
〉

]

, (3.17)

where Ix1
=

(

∂y

∂x1

)

and Ix2
=

(

∂y

∂x2

)

is the first order derivatives with

respect to height and I2
x1

and I2
x2

denotes second order derivatives in the same
manner. The window w consists of normalized Gaussian weights with standard
deviation σE

w(xk, xi) =
1

2πσ2
E

e−|xk−xi|/2σ2
E . (3.18)

where k indexes the m points closest to xi and therefore determines the size of
the window.

The EST is a 2 by 2 matrix which can be represented by two eigenvalues λ1 and λ2

as well as an orientation parameter β (See Section 3.3.4). The first eigenvalue of
the EST is pointing in the direction where the terrain gradient is strongest, while
the second eigenvalue will be perpendicular to this direction. These properties are
consistent with those of the Harris detector [3] and the following inference can be
made by considering the magnitude of λ1 and λ2

• If both λ1 ≈ 0 and λ2 ≈ 0 the measurement point is located in a flat area.

• If λ1 ≫ 0 and λ2 ≈ 0 an edge in the terrain is found.

• If both λ1 ≫ 0 and λ2 ≫ 0 a corner, terrain top or a bottom of a hole is
found.

The basic relationship between the EST tensor and the local kernels Σi is that
Σi should be adapted against the inverse of the corresponding EST tensor. In flat
areas where the EST is small there is correlation between measurements over large
areas. In the proximity of edges or in steep terrain the EST is oriented towards
the strongest ascent, and correlation between measurements can be found at each
side of the edge. This means that the kernels Σi should be shifted 90◦ against the
largest eigenvalue of the EST. For an edge, the kernels will then be oriented along
the edge. For corner structures two large eigenvalues will result in smaller circular
Σi. The principles of the EST adaptation can be seen in Figure 3.7.
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Figure 3.7: The underlying idea behind the Elevation Structure Tensor (EST) is
that the kernels should be rotated 90◦ against the strongest elevation.

3.4.2 Finding the local kernels

Finding the local kernels with the properties presented in Section 3.4.1 is done
iteratively. The reason for utilizing an iterative process is to ensure that overfitting
is avoided. Kernels shall not be to small to avoid extreme correlation with the
closest neighbourhood, and kernels should vary smoothly across the input space.
The second requirement is hard to verify in a strict way, and also the hardest
requirement to meet implementation wise. In order to prevent the kernels from
being too large, limitations on the kernel eigenvalues are set to ensure that kernels
lie between a smallest and largest value σmin and σmax [10]. Different methods for
limiting the kernels have been proposed. In this work choice has been Bounded
Linear adaptation as it has proven to produce well balanced kernels [6]. Bounded
Linear adaptation first introduces λk = λk/(λ1 + λ2), k = 1, 2 and uses spectral
theorem to separate Σ into an orientation matrix and a diagonal matrix containing
the eigenvalues of Σ as described in Section 3.3.4. Limitations on the length-scales
of ℓk can then be set as

ℓ2
k = λkσ2

min + (1− λk)σ2
max, k = 1, 2. (3.19)

The process of finding the local kernels Σi can thus be made in an iterative
manner using the dataset D, σmin and σmax as inputs according to Algorithm 1.
The local kernels are initialized with the lengthscales of the stationary GP, and
then adapted against the inverse of the local values of the EST tensor, Σ

′

i. The
parameters σmin and σmax are tuned depending on the size of the optimal length
scale of the stationary GP.

Algorithm 1 also introduces the local learning rate µi which is used to speed-
up the iterations. The learning rate is set in relation to the local data-fit df(xi)
and the kernel complexity ci. The data-fit increases the learning rate if the model
is poor within an area, while the complexity term penalizes learning if the kernel
is starting to become to small. The data-fit is given by

df(xi) =
p(yi|xi)

maxyp(z|xi)
. (3.20)

This is equation can be evaluated as (3.6) states that yi = f(xi) + ǫi where the
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noise is given as ǫi ∈ N (0, σ2
n). Hence Equation 3.20 yields a number between zero

and one, and can be calculated as

df(xi) =
N (yi − f(xi), σ2

n)

N (0, σ2
n)

. (3.21)

The kernel complexity ci is calculated from the length scales as

ci =
1

|Σi|
=

1

l2
1,il

2
2,i

. (3.22)

The resulting learning rate is estimated by a sigmoid (3.23), see Figure 3.23. The
sigmoid is empirically tuned and holds two parameters, a and b, used to modify
the sigmoid. The parameter b is needed as the complexity term is general quite
large and needs to be scaled down. Parameter a is needed as the normal sigmoid
is defined between [−∞,∞], but as the the data-fit term is defined only between
[0, 1] it only enables half of this input space.

f(xi) =
1

1 + exp

(

df(xi) · ci − a

b

) . (3.23)
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Figure 3.8: A sigmoid depending on the data fit, df(xi) and kernel complexity ci

is used to increase the learning rate.
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Algortithm 1 Adaptation of local kernels

Learn g l o b a l parameteters Θ us ing s t a t i o n a r y GPs .
I n i t i a l i z e l o c a l k e r n e l s Σi = Θ
while not converged

for a l l Σi

Estimate the l o c a l l e a r n i n g ra t e µi

Estimate EST(xi ) accord ing to Σi

Adapt Σ
′

i accord ing to EST(xi )

Σi ← µiΣ
′

i + (1− µi)Σi

end for

end while

3.4.3 Estimating the kernel at unseen locations

The kNSE covariance function introduced above requires a local kernel to be as-
signed to each data point in the training set D. When applying the GP using
(3.13b) and (3.13c), evaluation of the the covariance function at the new input
locations in the test grid x∗, and the evaluation of k(x∗, x∗) and k(xi, x∗) is re-
quired. As there is naturally no terrain measurement available at these locations,
the kernel Σ∗ can not be estimated by the EST tensor. First thoughts of solving
this problem includes either choosing the closest kernel from the data set D to rep-
resent the kernel Σ∗, or to use the stationary GP kernel for all predicted kernels Σ∗.
Choosing the closest kernel will however exclude the penalty of the prefactor from
the calculations, and choosing the stationary kernel for all prediction points will
not guarantee the local smoothness criterion mentioned in Section 3.4. Instead a
weighted average of the kernels of the closest neighbours of x∗ is made to estimate
the corresponding kernel Σ∗. The kernels are weighted against a 2D Gaussian with
standard deviation of 1, so that kernels in D closer to x∗ is weighted higher than
kernels associated with points further away. The weights are normalized so that
they sums up to one. In this way the local kernels can be estimated also for points
in the test grid, X

∗.
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Chapter 4

Experimental results

There are several different aspects to keep in mind when evaluating the imple-
mentations presented in the previous chapter. The results depend on what one
prioritizes in terms of accuracy, robustness, scalability and to some extent speed
and complexity. While evaluating the results from the experiments it is also im-
portant to have a real flight scenario in mind. This chapter first compares the two
methods based on Gaussian Processes based on an artificial data-set. Then an
experimental setup is presented, and focus is placed on the LIDAR sensor. Two
experiments are made using this setup. The first one with terrain changes where
the true volume change is known accurately, and the second one with more natural
terrain. A discussion about the results is provided at the end of this chapter.

4.1 Artificial data set

To illustrate the principles of the non-stationary kernel an artificial data set is
used. An artificial data set is a good way of showing the different properties of the
Gaussian Processes while eliminating several problems of working with sensors.
The artificial data in Figure 4.1 contains both flat regions and several discontinu-
ities that are hard to adapt to. It contains three plateaus with different edges. To
simulate a realistic environment random white noise of magnitude σ = 0.03 was
added to the raw data. The artificial data-set consists of 441 measurement points.
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Figure 4.1: Artificial dataset with noise.
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The results of applying the GPs to the data are shown in Figure 4.2. Before
the adaptive iterations, the NGP is the same as a stationary GP. This can be seen
in Figure 4.2b, which shows that the local kernels are the same all over the input
space. After the iterations, the kernels have adapted to the local environment. The
benefit of adapting local kernels is clearly seen at the discontinuous steps between
the plateaus. For example the smoothing effect between the highest plateau and
the ground level is not as visible as for the GP. Looking at the local errors in
Figure 4.2e and 4.2h it is also clear that the steps looks hardest to adapt to and
they also contains the regions with largest error.
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(d) Kernels after one iteration
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Figure 4.2: Artificial data set showing the progress of the NGP.

Working with the artificial data-set showed that it is possible to get a better
trade-off between smoothing flat regions and step discontinuities. It also showed
the increasing amount of complexity involved in the NGP compared to GP. The
main problem found with NGP in the artificial data-set has been the tendency
to overfit data. The requirement that says kernels of the kNSE should not get to



4.2 Experiments using an industrial robot 33

small is easy to control. However, the requirement that states kernels shall vary
smoothly is hard to meet. This includes tuning of the learning-rate sigmoid, which
is a crucial part in meeting this requirement.

4.2 Experiments using an industrial robot

Flight time for an UAV is rather expensive and also surrounded by many security
regulations. Therefore an UAV flight was simulated by the use of an industrial
robot throughout the thesis. The robot provides the same degrees of freedom as a
real helicopter and also provides the necessary pose information. The same combi-
nation of sensors that is to be used in real flight was attached to a sensor platform
that is held by the arm of the industrial robot, as shown in Figure 4.3.

There is of course differences between the experimental environment and real flight
that is important to be aware of. The environment in which the industrial exper-
iment is carried out is a lot more controlled than a real flight. Even if the robot
itself can be programmed with great precision it is very hard to fully simulate
the vibrations of the UAV. Furthermore the sensor platform can not rotate more
than 180 degrees in either direction, so a fully natural flight path can not be
programmed. Further, the LIDAR used within the experiment is not the same
as the one used during real flight scenarios. The resolution and other properties
of the LIDAR data will therefore not be the same during experiment and flight
scenarios. The data collected by the experiment is to be considered quite uniform
and the grid cells are hit by the LIDAR beam in a more evenly distributed way
in the experiment compared to real flight. The mounting of the sensors will also
differ between the experiment and the real flight, as well as the speed in which
the sensors is moving above the ground. A flight using a real helicopter will also
yield significantly more measurement data as the intended LIDAR sensor will be
operating at higher frequency and the flight scenario will be longer. This calls for
a scalable mapping solution.

4.2.1 Data collection

There are three sensors attached to the sensor platform on the industrial robot
in Figure 4.3. An Inertial Measurement Unit (IMU), a camera and a LIDAR.
The IMU, a Crossbow IMU400CC-200, measures angular velocity and specific
force using accelerometers and gyroscopes. In this thesis the IMU is mainly used
for synchronization between the sensors mounted on the sensor platform and the
industrial robot, as they provide measurements with different timestamps. The
camera is an Allied Marlin F080B, which takes black and white images of the
environment. These images are used for state estimation, for example for loop
closure and to estimate the orientation of the industrial robot. The industrial
robot, an ABB IRB-1400, is a frequent tool within the process industry for effi-
cient automation of processes. In this work the industrial robot is both used as a
"sensor" providing the states introduced in Section 2.1 and to simulate the UAV
movement. In a real flight scenario a GPS will also be mounted on the UAV to
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Figure 4.3: The industrial robot and the sensor platform.

replace the states provided by the robot.

An Intel P4, with 1GB RAM and Ubuntu was used in the data collection. To
handle the data from the sensors a software suite called Player1 was used. Player
is a project that gathers different Linux sensor drivers to make it easier to collect
and visualize data. Player was used as it provided drivers that worked well out of
the box for all sensors except for the IMU.

There are two different sets of timestamps within the experiment that are in need of
synchronization. On the one hand there is the industrial robot with its own times-
tamps on the data, produced by a background process in the industrial robot that
stores the position and rotation of the sensor platform with a sample frequency of
100 Hz. On the other hand the sensors placed at the sensor platform recieves their
timestamps by Player. Only the mounted IMU provided an internal time stamp
for the measurements. A time stamp is therefore placed on each measurement by
the computer when it arrives in Player. In order to synchronize these timestamps
the acceleration data stored by the IMU and the positions stored by the industrial
robot is used. The robot moves in a predefined pattern, a synchronization se-
quence, at the start of every data collection. The position stored by the industrial
robot is derived two times to get comparable units. These accelerations are then
correlated to find the time delay between the data sets. A typical synchronization
sequence can be seen in Figure 4.4.

1Visit the Player Stage Project at playerstage.sourceforge.net/
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4.2.2 LIDAR calibration experiments

Simple experiments with the LIDAR showed that the LIDAR was effected by
several different sources of errors and was in need of calibration. The LIDAR
was slowly rotated 180◦ on the spot while taking measurements over a planar
surface. Rotating the LIDAR was done to make sure the ground was planar,
yet the LIDAR measurements looked convex as well as somewhat skew. This
can be seen in Figure 4.5a. The LIDAR was therefore assumed to have both
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Figure 4.5: LIDAR sweep field of view limited to [2φmin, 2φmax].

a small bias error in range and a small angle (mounting) error. The skewness
was compensated for with an empirically tuned rotation matrix, applied when
projecting the LIDAR data into the world. The convex look of LIDAR sweeps was
cancelled by adding a small constant to the range measurements as illustrated in
Figure 4.5b. Adding a small constant to the measurements cancels out the convex
effect as measurements far out in the viewing field will be affected less by the
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constant than measurements at zero degrees. While the effect of the sweeps being
convex was somewhat reduced as the field of view was limited to [φmin, φmax] (and
the effect is clearer for larger angles), it was still significant when doing longer
experiments. The result of cancelling the convex behaviour and compensating by
a rotational matrix can be seen in Figure 4.6. By taking measurements at different
ranges within the area of work the conclusion that the LIDAR properties would
differ greatly at different distances to the target was neglected, see Figure 4.7.
Figure 4.5 and the rest of the LIDAR sweep illustrations in this section (except
Figure 4.5a) was made by averaging over approximately 150 LIDAR sweeps while
the sensor was not moving.
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Figure 4.6: Partly covered styrofoam block (5 cm) placed on a sheet.
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Figure 4.7: 10 cm styrofoam block with orange identifier measured at different
distances from ground.

Reflectivity issues

During the data acquisition it was important to have identifiers on the ground for
a camera to be able to track features. The choice of color for these features proved
to be very important. The returned range from a LIDAR depends on the reflec-
tion property of the material the beam hits [4]. In Figure 4.6 a five cm height
styrofoam chunk was placed on a planar light-grey sheet. A small black paper
sheet was also placed on the styrofoam. In Figure 4.6 the part of the block that
was not covered by the black paper was measured to about two cm, while the
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block covered by the black paper sheet was indicating an object height of about
ten cm. This shows that the material reflectivity, density and colour indeed has
great impact on the resulting range measurements. In some experiments, it was
very hard to even distinguish the styrofoam from the ground level using the setup
in Figure 4.6. To investigate the importance of reflectivity and the accuracy of the
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Figure 4.8: Material reflectivity importance. Comparison between a light-gray
sheet and styrofoam as background material, with orange, blue and black paper
sheets placed on them as identifiers.

LIDAR further and to find good identifiers a second experiment was carried out.
Paper sheets of three different colours were placed on two different background
materials, light grey sheet and styrofoam. The paper had the colours of orange
(apricot), blue and black. The experimental setup can be seen Figure 4.8. When
placed on the sheet, the orange paper gave a negative contribution to the range
measurements in comparison to the background material. The blue paper sheet
was hardly visible in the sweep, while the black paper gave a positive contribution
to the range measurements (Figure 4.8a and 4.8b). If placed on styrofoam, the
result is somewhat the opposite. The black paper was still very easy to distinguish
from the background sheet. The blue paper also gave a large positive contribution
to the range measurements. The orange paper blended in best of the three colours
(Figure 4.8c and 4.8d).

As a result of these experiments, the remaining data acquisitions made in this
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work included orange paper, as the identifiers for the camera was orange paper.
Styrofoam was used both as ground material and terrain material. It should also
be noted that other things such as lighting and shadows also affects the LIDAR.
The findings of the experiments made here are backed up by [9], who does an
extensive comparison of two LIDARS, a SICK LMS-200 and the Hokuyo URG-04-
LX. They find the same importance of reflectivity properties for the URG-04-LX.
There is another version of the URG-04-LX sensor available on the market, called
UTM-30LX. This LIDAR provides intensity information from the received signals
that can be used to compensate for material properties.

4.3 Scenario one - blocks

As a first scenario, a terrain made of square block of known volume and a rela-
tively kind "flight route" was chosen. A kind flight route in this case means that
the sensor platform orientation was not tilted back and forth much. Square blocks
provide discontinuities that are generally hard to model, but it is easy to measure
the true volume. The initial scenario was done by acquiring two data sets. The
first one without any terrain placed in the scene and the other one with a block
with known volume of 4dm3. An introduction to the scenario can be seen in Fig-
ure 4.9. The figure shows the raw data gathered by the LIDAR. The data consists
of a total of 11000 measurement points and was divided into an estimation data
set and an validation data set to make it possible to cross validate. Each set there-
fore consisted of about 5500 measurement points. The resolution of the elevation
grid map was set to 2cm2. The methods introduced in Chapter 3 are compared in
Table 4.1 and in Figure 4.10 and Figure 4.11.

One way of comparing the performance of the implemented algorithms is to see
how much data is needed to produce reliable maps. In Table 4.1 the amount of
LIDAR data available for the iterations is varied. It is a natural thought that
the volume difference would be better if more data is available. The experiments
showed that a minimum of 10-15% of the data-set of 5500 points (i.e 500-750
points) was needed in order to produce maps that accurately modelled the shape
of the terrain. If fewer data-points are used the volume difference is approximately
the same, however the look of the volume measured started to look deformed. The
sharp edges of the squared block were blurred more and more regardless of method
used.

The reason that the volume estimates stay somewhat constant is the central
limit theorem, which states that the result of randomly adding and removing
points will eventually sum up to zero. When randomly altering the number of
used data, some contributions will add to the volume difference, while others will
reduce the volume difference. Figure 4.10 and Figure 4.11 shows the resulting
maps for two different amounts of data-points are used. It shows that the three
initial methods are basically the same if fewer data-points is used. This is because
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(a) Flight one. Image. (b) Flight two. Image.
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Figure 4.9: Scenario one.

the importance of choosing averaging, median or weighting algorithms is not as
important if there is only a few points available in each cell. Looking at the GP
based methods, the NGP can arguably be said to model the shape of the surface
better. If 100% of the data is used it is harder to determine which method that
is the best. Adding more measurements theoretically means that the resolution
of the grid can be lowered. Lowering the resolution to 1cm2 did not change the
volume difference errors in Table 4.1 significantly. For the GP-based methods, the
result of adding more measurement points is that the length scales decrease. Such
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Volume difference error (dm3)
Data used: 5% 10% 20% 50% 100%
Average 0.8 0.5 0.6 0.6 0.6
Median 0.4 0.6 0.6 0.6 0.6
Weighted 0.5 0.7 0.8 0.8 0.8
GP -0.1 0.4 0.7 0.6 0.5
NGP 0.4 0.5 0.6 0.6 0.5

Table 4.1: Volume difference error of scenario one. Average over ten runs.
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Figure 4.10: Scenario one, initial methods for different LIDAR data density.

optimal choice of resolution versus length-scales for the NGP was not searched
for due to the need for retuning the algorithm. The volume differences estimated
in Table 4.1 are generally converging towards a volume difference larger than the
true value. Even if a part of this offset may relate to the shape of the squared
block being hard to model and the edges being smoothed out over the step, it
also indicates that the LIDAR may have an offset despite the calibration. An
average of the volume difference error in Table 4.1 is somewhere around 0.6dm3.
This offset needs to be taken into consideration together with the accuracy of the
LIDAR, the observations about LIDAR sensitivity and the resolution of the grid
map. In the manual for the Hokuyo URG LIDAR sensor the accuracy for range
measurements made at distances where these measurements are taken, around one
meter above the ground, is about one percent. To get a feeling for it, an error of
one centimetre on a twenty by twenty styrofoam block gives rise to a volume of
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(b) NGP mapping, 100% LI-
DAR data.
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(c) GP mapping, 15% LI-
DAR data.
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Figure 4.11: Scenario one, GP based methods for different LIDAR data density.

0.2m·0.2m·0.01m= 0.0004m3 = 0.4dm3. As the results of Table 4.1 are averages
over multiple measurements, all of the volume difference error can not be blamed
on the LIDAR. However, assuming that the specifications made in the LIDAR
manual are optimistic, as they often are, together with the observations in Section
2.3.1, it is reasonable to say that it is hard to get more accurate volume difference
measurements using the Hokuyo URG-04-LX LIDAR.

4.4 Scenario two - natural terrain

A second experiment containing more naturally shaped terrain was also performed.
The industrial robot was used to perform two flights over the terrain shown in
Figure 4.12. The raw data set consisted of a total of 49000 measurement points,
divided into estimation and validation sets this gives around 24500 points per set.
The true volume differences between the two flights were measured by hand to
about 14.5dm3. This true volume was measured by pouring water into a container
and measuring how much the terrain altered the water level, hence the measured
volume is uncertain. A comparison between the methods is performed in Table 4.2
and illustrated in Figure 4.13 and Figure 4.14.

In Table 4.2 the amount of measurement points used is varied and compared
to the estimated volume difference in the same way as in Scenario one. As the
true volume of 14.5dm3 was measured with low accuracy, it is hard to determine
which method is best from the results in Table 4.2. It can also be noted that
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(a) Scenario two, flight one.
Image.

(b) Scenario two, flight two.
Image.

0.4
0.6

0.8
1

1.2
1.4 −0.4

−0.2

0

0.2

0.4
0.4

0.6

0.8

1

1.2

y [m]
x [m]

z 
[m

]

(c) Flight route.

Figure 4.12: Scenario two.

the offset on volume-error is not always positive, which indicates that some of
the offset in Scenario one is related to discontinuities of the squared block and
not just the LIDAR. All methods proved to produce fairly accurate maps if all
data was used for the estimates. However, the computational time for the NGP
method started to become very large when the data increased. This is due to the
additional operations needed to find nearest neighbours in order to determine the
EST tensor. When 2500 data points were used the total computation time for the
NGP algorithm was around 18 minutes on a standard laptop computer. When all
22500 points were used the time used increased to around 5 hours. Figure 4.14
and 4.13 shows the appearance after applying the average mapping, GP and NGP
mapping in the case where 5% data was used. This produced the same amount of
measurements per grid as in Scenario one. From Figure 4.14 and Figure 4.13 it is
hard to visually determine which method produces the best result.

Volume difference error (dm3)
Data used: 1% 5% 10% 20% 50% 100%
Average -0.5 -0.2 -0.1 -0.1 0.0 0.0
Median -0.7 -0.1 -0.1 0.0 0.0 0.1
Weighted -1.3 -0.3 -0.3 -0.1 0.2 0.2
GP 0.2 0.4 0.4 0.3 0.2 0.2
NGP -0.4 0.5 0.2 0.2 0.1 0.4

Table 4.2: Volume difference error of scenario two. Averages over multiple runs
(4-10).
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Figure 4.13: Scenario two, comparison experiment made over Figure 4.12b. 100%
data used.
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(c) GP mapping.
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Figure 4.14: Scenario two, comparison experiment made over Figure 4.12b. 5%
data used.
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4.5 Discussion

Considering the results from these preliminary scenarios using an industrial robot
it is clear that measuring terrain volume difference by the use of an UAV equipped
with a LIDAR should is possible. The two scenarios studied in this work mea-
sured changes in volume to the same magnitude as the true known volume, both
in scenarios with simple blocks as terrain and in scenarios with more naturally
shaped terrain. In the first scenario there was a positive offset on the volume
measurements regardless of the method used for mapping. This offset has to be
taken in consideration together with the resolution of the LIDAR, and that the
discontinuities in the terrain are hard to model. Section 4.2.2 showed that the
Hokouyo URG-04-LX had several artefacts related to reflectivity, which may also
contribute to the error in volume difference. In the experiments the LIDAR is also
operating only on a very small part of this working area. This makes the experi-
ments made slightly out of scale compared to a real flight scenario. The volume
errors was around 0.5dm3 in these small scaled experiments, and the Hokouyo
LIDAR sensor has got an operating range of 0 − 4m. Further the terrain models
was about ten centimetres high. These numbers does not directly scale up to a
real flight scenario, with hundreds of cubics of terrain and a LIDAR that operates
at 0 − 80m range. Therefore, the offset on the volume measurements could very
well be connected to the choice of LIDAR, experiment setup and the scale of the
experiment.

Further, the experiments like the ones made in this work can be carried out on
many different levels hardware wise. The experiments introduce an amount of
uncertainties by default. For example using a non real time operating system as
Ubuntu has disadvantages. Only the IMU provided an internal time stamp for
the measurements. Therefore, a time stamp was placed on sensor measurements
when they arrived in Player. Using timestamps made by the computer, one has
to be aware of the possible time delays in the different ports used (USB, fire-wire
and serial ports) and that Player is not the only process running on the computer.
The synchronization of the two different timestamps, the Player timestamps and
the industrial robots, is another uncertainty introduced in the experiment.

Looking closer at the different methods for mapping, they all provided similar mea-
surements in the case of dense data. With the number of measurements decreasing
the GP and NGP method provided visually more accurate maps, compared to the
other mapping methods, due to the inherent ability of GPs to better handle sensor
incompleteness. The visual appearance of the three initial methods was almost
the same. The weighting filter suffers from the scaling problem mentioned above.
As the LIDAR is operating in a small part of its working range, the difference
in variance for the measurements will be small compared to an experiment where
the whole LIDAR operating range is used. It should also be noted that the com-
putational cost of adding more measurements increased especially for the NGP
where computations took long time for dense data, even when applying the locally
moving window. This is due to the need for sorting of the measurements points
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in order to calculate the local gradients of the EST tensor.

Further, it should also be noted that the constraint on NGP which says that
the kernels should vary smoothly across the input space have been hard to meet
implementation wise. Even with additional averaging steps taken when searching
for the local-learning rate the method was still sensitive to data overfit. A major
criticism to many machine learning algorithms is also the extensive need for tuning
of the algorithm. So also for the NGP implementation, where especially tuning of
the learning-rate sigmoid was hard.





Chapter 5

Concluding remarks

In this work five possible LIDAR mapping methods have been implemented and
evaluated with the goal of finding volume differences between different data sets.
Experiments using an industrial robot were made to gather data, as the data from
real flight scenarios were not available. This chapter summarizes the results in
Section 5.1, and takes a look at possible future development in Section 5.2.

5.1 Conclusions

During this work the approach has been to try the simplest mapping solutions first.
Three initial mapping methods were tested, using simple averaging and median
methods as well as a slightly more complicated method that weights measurements
against their corresponding uncertainty in a Kalman like way. In combination with
linear interpolation these methods proved to produce quite good results in the case
of very dense data-sets. For sparse data-sets the measured volume difference re-
mained about the same, however the resulting maps were starting to get deformed
visually.

As a complement to the initial methods two probabilistic Bayesian methods based
on Gaussian Processes were implemented. GP are, in contradiction to the previ-
ously mentioned algorithms, based on regression. Regression based approaches do
not associate the measurements into a certain cell, but instead uses the data to cre-
ate a valid model that mathematically explains the acquired data. This increases
the ability to handle incomplete data, and hence the GP-based methods should
theoretically perform better in case of very sparse data sets. The experiments
partly supported this. In this work, a moving average window was applied making
the method of GP more scalable. GP based methods also provides uncertainty
information, which is a benefit with this regression based approach. Theoreti-
cally, GP has a built in smoothing effect that rimes well with modelling flowing
landscapes but tends to over-smooth steps. This lead to the implementation of a
non-stationary GP (NGP) model using a covariance function that adapts individ-
ual kernels to measurements by the use of a local EST tensor. The NGP manage
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to produce good maps even with sparse data sets, and considering an artificial
data set it also provided the wanted trade-off between handling of discontinuities
and handling of flat regions. Introducing the NGP model adds another level of
complexity to the mapping problem, and while doing the experiments, problems
with overfitting occurred due to the need for smoothly varying kernels. Com-
putational time also increased as a search for nearest neighbours is needed. GP
provides a good smoother, which handles incompleteness and provides uncertainty
information, and is fairly easy to use and implement. The next step, introducing
NGP by adapting local kernels through an EST tensor, do not quite pay for itself
in terms of complexity versus performance.

The experimental setup affected the results to a high degree. There are built
in uncertainties in the experiment from the start, for example with timestamps
on data being set in a non ideal way. Further, the LIDAR used is very sensitive
to reflectivity, and was only operating on a very small part of its working area,
which makes the experiments slightly out of scale. Getting to know the LIDAR
and making sure that gathered data is as good as possible is therefore important.

The experiments showed that to create typographical maps for volume estimation
purposes, simple methods may very well be accurate enough to produce valid esti-
mates. For CybAero AB to succed in making volume measurements with a higher
resolution than the previously mentioned ten GPS measurements per hectare is
therefore very likely. The determining factor for a real case flight is the density
and accuracy of the LIDAR data. In case of sparse LIDAR data regression based
methods like GP and NGP might be better. The need for methods based on re-
gression, such as GPs decreases with the density and accuracy of the LIDAR data.
Focusing on knowing where a measurements is taken, and getting a good raw-data
set is therefore of great importance.

5.2 Future work

There are two ways of looking at possible future work following this thesis. One
based on the hardware and improvments possible there, and the other one looking
at the different algorithms and possible improvements in that area.

During both the experiment and during real flight a camera is used. This camera
can provide information for adding textures to the map. This will require some
work as ways of merging several images into one texture is needed. One of the
problems during the thesis has been that the LIDAR was very sensitive to mate-
rial reflectivity properties and densities. In this thesis these problems have been
solved by altering the experimental environment. Theoretically, information from
a camera could provide ways of cancelling these unwanted effect of the LIDAR.
Testing another LIDAR model that provides intensity information would also be
interesting in the experimental environment, for example the Hokuyo UTM-30LX.
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Looking at the developed algorithms the method of combining a local windowing
approach suggested in [22] with the non-stationary family of Gaussian Processes
introduced in [12] theoretically provides a good way of handling incomplete data
and discontinuities. There are several areas where there is room for improvement.
First, the non-stationary approach includes a search for nearest neighbours, for
example when calculating the local elevation tensor (EST). On an implementation
basis it is therefore important to sort and organize the LIDAR point measurements
in order to quickly find the nearest neighbours. Vasudevan, Ramos et al suggested
a KD-tree for sorting and storing the LIDAR point clouds [22]. This is likely to
be a good method for structuring the data.

Second, the EST tensor and the algorithm for finding the local kernels showed
a great need for tuning and smoothing to avoid overfitting, which is a critique
for many machine learning algorithms. It would therefore be interesting to fur-
ther investigate the possibilities of finding the local kernels using probabilistic
approaches. The methods for estimating kernels at unseen locations can also be
improved. A very appealing idea would be to learn a second "hyperprocess" over
the kernel parameters, and try to estimate the kernels at the unknown location in
a more principled way.

More work can also be done on using the uncertainty map provided by the GP
framework in order to improve the accuracy of the estimates. For example, if
the sampling stage is included iterations of GPs are possible. New sample points
can be picked from the data set where uncertainties are high in order to increase
performance. This was briefly tested during the thesis, and while time-consuming
it worked fairly well.

There is also the possibility of searching for other covariance functions than the
one used in this work. Vasudevan, Ramos et al used a covariance function from
another family based on a neural-network covariance function [22]. Their partic-
ular implementation was patented, but it shows that several ways of utilizing the
GP framework for solving the robotic mapping problem are possible.

Lastly, there are other probabilistic mapping methods well worth looking into.
During the work with this thesis, the use of Occupancy Grid Maps (OGM) was
neglected due to the authors belief that it would not utilize the 2.5D assumption in
a good way. Recently, Wurm et. al presented Octomaps as an extension to the well
documented OGM [23]. The Octomap builds upon a tree based structure which
leads to good memory representation even in three dimensions, providing good
scalability and at the same time ensuring good accuracy. Octomaps may very well
be the best implementation available at the time this thesis is summarized, and
it is strongly suggested that CybAero AB looks into it in the case easier mapping
techniques do not provide the desirable accuracy in measuring volume difference.
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Appendix A

Quaternions

This appendix presents the basic equations needed to understand rotations us-
ing quaternions. There are several properties that are vital and interesting when
working with quaternions. However, this section only intends to cover the basics
needed for this work. A thorough explanation of quaternions and how its used
for rotations is made by Kupiers [5]. David Törnqvist also provides a good expla-
nation of quaternion rotation [21]. Quaternions is an attempt to generalize the
complex plane to three dimensions that was introduced by W.R Hamilton [17]. A
quaternion is a four-touple of elements defined as:

q = q0 + q1i + q2j + q3k =

(

q0

q

)

(A.1)

where
i2 = j2 = k2 = ijk = −1, ij = k, jk = i, ki = j = −ik

The quaternion can be divided into a scalar part, q0, and a vector part, q. Working
with quaternions follows the same basic algebraic rules as vectors, with the excep-
tion that multiplication is not commutative. That is, the order of the quaternions
matters when multiplying quaternions. Multiplication of quaternions p and q is
defined as:

p⊙ q =

(

p0

p

)

⊙

(

q0

q

)

=

(

p0q0 − p · q
p0q + p0p + p× q

)

, (A.2)

where × is the standard cross product for vectors. Further, the inverse of a
quaternion is defined as

q−1 ⊙ q = q ⊙ q−1 =

(

1
0

)T

(A.3)

and can be calculated as

q−1 =

(

q0

q

)−1

=

(

q0

−q

)

/

3
∑

i=0

q2
i (A.4)
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A.1 Rotation using quaternions

There are several properties that need to hold in order for a rotation to be valid.
A valid rotation should preserve the length of the rotated vector, and an inverse
rotation should bring the vector back to its original shape for example. Working
with quaternions there are two ways of doing rotations in a way that these proper-
ties holds. Either a vector is rotated about another vector, or a coordinate frame
is rotated around another, fixed coordinate frame. The only thing that differs
between these two representations is the sign of the scalar part of the quaternion.
For the application in this work, rotation around coordinate frames is used, see
Figure A.1. If q is a unit quaternion (norm(q) = 1) such rotation can be described
as

v = q−1 ⊙ u⊙ q, (A.5)

where v is the rotated output vector and u is the vector to be rotated,

v =

(

0
v

)

and u =

(

0
u

)

. (A.6)

If one extends the expression in (A.5) using the formula for quaternion multi-
plication given by Equation A.2 and quaternion inversion given by Equation A.4
the result of the quaternion rotation is

v =

(

quq0 − (q0u− q× u) · q
(q · u)q + q0(q0u− q× u) + (q0u− q× u)× q

)

(A.7)

Doing the calculations in Equation A.7, the rotation can be rewritten to a
matrix multiplication where R(q) is the rotation matrix that allows for the change
of coordinate frame,

(

0
v

)

=

(

0
R(q)u

)

(A.8)

R(q) =





q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3



 (A.9)

x

x’

y
y’

u

Figure A.1: Rotation made around a fixed coordinate system can also be seen as
a rotation about a vector, u.



Appendix B

Abbreviations

Abbreviations:

EST Elevation Structure Tensor
GP Gaussian Process
GPS Global Positioning System
LIDAR Light Detection And Ranging (a laser range finder)
KD-Tree K-dimensional tree (storage structure)
NGP Non-stationary Gaussian Process
OGM Occupancy Grid Mapping
SLAM Simultaneous Localization and Mapping
TIN Triangulated Irregular Network
UAV Unmanned Aerial Vehicle

Technical terms:

D Data set D = {xi, yi|i = 1, . . . , n}
hk,l Grid map at position k, l
kSE Squared exponential covariance function
kNSE Non stationary squared exponential covariance function
q Quaternion
Σi Kernel matrix for training input i.
xi The i th training input (x and y coordinates)
X Vector of x measurements (vector of x and y coordinates)
x∗ A regression point (x and y coordinates)
X

∗ A test grid (multiple x∗)
yi Target at input xi (z coordinate)
y Vector of targets (z coordinates)
y∗ Predicted target (z coordinate).
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