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Abstract—Gait analysis can convey important information
about one’s physical and cognitive condition. Wearable inertial
sensor systems can be used to continuously and unobtrusively
assess gait during everyday activities in uncontrolled environ-
ments. An important step in the development of such systems
is the processing and analysis of the sensor data. This paper
presents a symbol-based method used to detect the phases of gait
and convey important dynamic information from accelerometer
signals. The addition of expert knowledge substitutes the need
for supervised learning techniques, rendering the system easy
to interpret and easy to improve incrementally. The proposed
method is compared to an approach based on peak-detection. A
new symbol-based symmetry index is created and compared to a
traditional temporal symmetry index and a symmetry measure
based on cross-correlation. The symbol-based symmetry index
exemplifies how the proposed method can extract more infor-
mation from the acceleration signal than previous approaches.

I. INTRODUCTION

Gait analysis has been investigated as an indicator of both
physical and cognitive condition. Gait analysis can be used to
help diagnose and assess the severity of neurological condi-
tions such as Parkinson’s disease [1] and stroke [2]. Measures
of gait speed and gait variability have been associated with
the risk of developing dementia and mild cognitive impairment
[3]. In addition, measures of gait symmetry are important when
assessing the quality of gait of amputees [4] and stroke patients
[5].

Gait analysis can be performed by a trained clinician
through observation, or in a gait and balance laboratory with
the help of motion capture (mocap) systems. The benefits of
using mocap systems include great accuracy and having com-
plete trajectory information. On the other hand, some of the
drawbacks are that the tests are expensive, patients are assessed
infrequently and only under controlled situations. Therefore,
this clinical gait analysis does not reflect the patient’s everyday
activities and, as such, may overlook important information.
In addition, the frequency of the assessments may not be
high enough to detect short term variations. Continuous gait
monitoring in uncontrolled environments is, therefore, an
important complement to traditional clinical gait assessment.

Studies of mobile (wearable) motion analysis systems have
employed a number of different sensing technologies e.g. ac-
celerometers, gyroscopes, pressure sensitive insoles and mag-

netometers. Accelerometers are a common choice of sensor
given their small size, low cost, and low power consumption
[6]. In addition, accelerometers can be easily embedded into
household objects and clothing items, creating pervasive and
unobtrusive systems. Previous gait analysis studies using only
accelerometers have mainly focused on either the identification
of gait phases, or the classification of walking patterns. Most
works have made use of supervised learning techniques and
manually tuned parameters which relate to the raw data but
not to gait. These approaches strongly depend on training data.
The trained model usually resembles a “black box” which
clinicians may find difficult to interpret.

This paper is concerned with the processing and analysis of
acceleration data for use in unobtrusive gait analysis systems.
The contributions of this work include a fully automatic
method for extracting gait measurements from accelerometer
data. This method is not dependent on supervised learning
techniques and conveys more information than previous meth-
ods. The method uses symbolization in order to abstract the
data to a higher level representation and facilitate the inclusion
of expert knowledge. This is a general approach which can be
used to extract several clinically interesting measures. This
paper reports the use of the method for detecting heel-strike
and toe-off events, and deriving a new symmetry measure
based on dynamic rather than static information.

II. RELATED WORK

Previous gait analysis studies using accelerometers have
mainly focused on either the identification of gait phases, or
the classification of walking patterns. Identification of gait
phases is normally achieved through detection of particular
events in time such as heel-strike (HS) and toe-off (TO), e.g.
[7]. This is typically done using thresholding or peak detection,
e.g. [8], [9]. Supervised machine learning techniques, such
as Artificial Neural Networks (ANN), have also been used,
e.g. [10]. These methods normally convey only temporal
information about the signal and no information about how
the subject’s feet are moving through space.

The other group of methods aims to classify walking pat-
terns based on certain dynamics of the walk: walking cadence,
if the subject is walking up or down stairs, walking or running,
e.g. [11]. These studies normally involve methods based on



sliding-window statistics [12], time-frequency analysis [13],
wavelet decomposition [14], and/or ANN [15]. This class of
methods is able to describe, to a certain extent, how the subject
is walking. However, the phases of gait are overlooked and
the information obtained from such methods is insufficient for
clinical gait analysis applications. In contrast to both groups of
studies, the present work aims to extract both temporal events
and dynamic characteristics in order to perform clinical gait
analysis.

Gait analysis in the clinical setting is normally concerned
with quantitative measures such as gait speed, step length,
double support time, stride-to-stride variability and symmetry,
e.g. [16], [17], [18]. The first step in identifying such measures
is to detect HS and TO. Most previous approaches to identify
HS and TO using only accelerometers were based on signal
filtering and peak detection. Aminian et al. [19] used a top-
down approach to detect peaks corresponding to HS and TO.
The analysis started with a rough estimate of HS and TO from
a low-pass filtered signal and iteratively closed in on a better
estimate from the signal filtered at higher frequencies. More
recently, Selles et al. [9] used a low-pass filtered signal to
estimate the average stride period, then used this estimate to
design different low-pass filters for slow and fast walks. The
peaks found in the filtered signals guided the search for HS
and TO. Both methods are essentially similar, and depend on
appropriate tuning of model parameters. Such parameters can
be filter cut-off frequencies, size and location of the window
where to narrow down on the estimates of HS and TO, etc. The
tuning of these low-level parameters optimizes the method to
a given data set and hinders the generalization of the method.
The proposed approach aims to overcome the parametrization
problem by abstracting the data to a higher level representation
where the characteristics of the system can be generalized to
different data sets.

Once HS and TO have been detected, other temporal mea-
sures may be extracted, e.g. [20]. Symmetry is an important
estimate of quality of gait, specially when assessing amputees,
stroke patients, and other conditions which typically affect one
side of the body. Given the data available from the previously
mentioned peak detection methods, a commonly used clinical
measure of symmetry is: ST = %100, where T is the
average stride time for the righzt foot and 77, is the average
stride time for the left foot [4]. According to SI, the closer
the absolute value is to zero, the more symmetric the walk.
Although a negative value indicates that the left foot is slower
than the right foot, a slower stride time does not indicate a
more abnormal movement. The value for this index ranges
from -200 to 200 and, in practice, a correspondence between
this index and quality of gait is unclear. This measure of
symmetry only takes into account the average stride time
for each foot. If the subject limps but manages to keep the
same cadence, the SI index will not consider this to be an
asymmetric walk.

A more informative symmetry measure must consider the
whole acceleration signal. Examples of techniques used to
derive gait symmetry measures from acceleration signals in-
clude eigenvectors [21], principal component analysis [22],
frequency analysis [23], and cross-correlation [24]. The latter

can be used to compare the shape of any two signals. Miller
et all [24] averaged EMG signals from consecutive strides
creating a Latency Corrected Ensemble Average (LCEA)
for the right, yr, and left, §y; feet. A normalized cross-
correlation curve p was used to determine how similar the
two LCEA were according to: SIycorr = maz{py, 4,100,

ToLg .

SLUR . S1,corr is the symmetry
. \/T?;_LQL (O)T@RQR (0) . ) ]
magnitude and r;; is the cross correlation between signals ¢

and j. The closer S7;com is to 100, the more symmetric are
the signals.

Symbolization is another approach used to extract informa-
tion about the underlying dynamics of time-series [25]. An
important practical advantage of working with symbols is that
the efficiency of numerical computations is greatly improved,
i.e. compression. Also, symbolic data is often less sensitive to
measurement noise. Many previous works have used symbolic
transformation of continuous data with great success [25].
Another advantage of using symbolization is the possibility
to use context-based analysis. A classic example of context-
based analysis is Optical Character Recognition, where the
individually classified characters in a word are checked against
a list of possible words. A similar context-based analysis
can be performed on motion data if the possible symbol
patterns are identified. Some works have already considered
the use of symbolization and context analysis on motion
capture data [26] or visual data [27]. These works used a
linguistic approach to classify different activities. The present
work, however, uses a symbol-based approach to extract gait
measurements from acceleration data.

where py, 5, =

III. METHOD

The method proposed here aims to extract temporal (HS
and TO) and dynamic gait measurements from acceleration
signals. This is achieved through symbolization of the signal,
and analysis of the context and distribution of each symbol.
The symbolized data represents a higher abstraction level,
which is more easily coupled to expert knowledge. The use of
expert knowledge substitutes the need for supervised learning
techniques. The proposed method is, therefore, automatic and
does not depend on extensive model training.

Throughout the paper, transition 75 refers to the moment
when symbol ¢ ends and symbol j begins. A stride lasts from
HS to the following HS on the same foot. Swing is the period
during which the foot is off the ground (from TO to HS).
Stance is the period during which the foot is on the ground
(from HS to TO).

A. Symbolization

The symbolization of the signal is illustrated in Figure 1.
The acceleration signals were filtered with a low-pass filter at
20 Hz. The resultant acceleration was calculated according to:
Ares = VA2 + A2, where A, and A, are accelerations in
the accelerometer’s local coordinate system. The “sideways”
acceleration was not considered. It was judged dispensable
when the subjects walk a straight line (See Section IV).

The resultant acceleration was segmented according to a
bottom-up piecewise linear segmentation algorithm described
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Fig. 1. Symbolization. Graphical representation of the steps taken towards
symbolization of the signal.

in [28]. The algorithm starts by fitting a small line segment
over every consecutive two samples, and iteratively merges
neighboring line segments to form longer ones. The merging
line segments are chosen so as to minimize the mean square
error (MSE) between the original signal and the resulting line
segment. The process continues until the total MSE reaches a
predetermined threshold. For this study, the MSE threshold
used was 0.1. One of the purposes of symbolization is to
reduce the amount of information that needs to be processed
while preserving the main characteristics of the signal. The
piecewise linear segmentation was chosen in order to preserve
its overall shape.

The segment features were chosen in order to preserve the
shape of the line segment (slope and length), and the main
characteristics of the original signal (mean and variance). The
features extracted from each segment were: mean segment
variance of the resultant acceleration; mean segment accel-
eration on both axes; the tangent of the angle between the
approximated line segment and the horizontal axis; and the
number of samples in the segment. Other sets of features are
possible, depending on the targeted analysis.

The acceleration signals and the segment features were
standardized (zero mean and unit standard deviation). K-means
clustering of the features was used to divide the segments into
groups. Clustering was performed considering from 2 to 10
clusters. The optimum number of clusters was chosen based
on the minimum Davies-Bouldin index [29]. The limit of 10
was chosen because most of the initial trials resulted in less
than 10 clusters. A unique symbol (integer between 1 and the
number of clusters) was assigned to the segments belonging
each cluster. This clustering technique can adequately adapt
to very different signals. The technique can produce, when
appropriate, different sets of symbols for each signal. This
is important because two subjects may have very different
walking patterns. Nonetheless, the “context analysis” phase
is the same regardless of the set of symbols used.
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Fig. 2. Period histogram. Example of how to compute the histogram of
symbol periods for symbol 1. The time elapsed between two consecutive
transitions is calculated and the corresponding histogram bin is incremented.
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Fig. 3. Histogram analysis. Example of histogram analysis for one particular
pair of transition histograms. The symmetry index is a combination of this
analysis for all transitions.

B. Symbol-based Symmetry Index

The symbolized data can be used to compute a measure of
gait symmetry. This symbol-based index takes all the acceler-
ation data and its dynamics into account. Other authors have
investigated symmetry indices based on acceleration signals,
e.g. [24]. However, the proposed index takes advantage of the
symbolization technique described previously.

After the segments are clustered into Z symbols,
S =1{51,95,,...5z}, the symbolized sequence is analyzed in
terms of its symbol periods. The periods between two consec-
utive appearances of the same symbols are computed for all
symbols. The symbol periods are organized into histograms
as exemplified in Figure 2. The symmetry index based on the
period histograms, SIgyms, is computed by:

Xl i Sica k) = heak)]
St Sie (k) + ()]
where 7 is the number of symbols; K is the number of bins
in the histograms; n; is the number of non-empty histogram
bins (for either foot) for symbol i; hr;(k) is the normalized
value for bin £ in the period histogram ¢ for the right foot;
and hp;(k) is the normalized value for bin k in the period
histogram ¢ for the left foot. The transition histograms are
normalized so as to consider the relative number of symbol
periods, disregarding the number of steps recorded.

This index ranges from 0 to 100, where 0 means total
symmetry and 100 means complete asymmetry. S1syms takes
into account not only the stride times but also the dynamics of

SIsymp = 00, (1)
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Fig. 4. Context analysis. Graphical representation of the steps taken towards
context analysis of the signal.

the movement. This symmetry index can be interpreted as a
comparison between the distributions of the transition periods.
Although there are several possible ways to analyze the
difference between two distributions, this was chosen for its
simplicity. Figure 3 illustrates the histogram analysis for one
pair of transition histograms. The S1,,,,; index demonstrates
one way in which the symbol abstraction employed for this
method can be directly used to extract meaningful dynamics
information from the sensor data.

C. Context Analysis

The physical characteristics of the system are reflected on
the symbolic data as certain symbol sequences or symbol
distributions. Some of the gait characteristics expected to be
found in the signal are described in Table I. This knowledge
was incorporated into the model in order to find the symbols
corresponding to HS and TO. The algorithm is divided into
three main steps: finding relevant symbols, hypotheses testing,
and estimating “likeliness”, as illustrated in Figure 4.

1 | During normal walk, approximately 60% of the total stride
time corresponds to stance

2 | TO is reflected on the resultant acceleration signal as a peak

3 | HS is reflected on the resultant acceleration signal as a valley
and large variance

4 | The foot moves the least at mid-stance (very small variance
of the resultant acceleration)

TABLE I
GAIT CHARACTERISTICS. EXPERT KNOWLEDGE ABOUT SOME PHYSICAL
CHARACTERISTICS OF GAIT.

1) Finding relevant symbols: Taking advantage of the
cyclic nature of gait, the most common period out of all
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Fig. 5. Creating hypotheses. The single step hypotheses are all pairwise
combinations of the relevant symbols, and parallel hypotheses are all permu-
tations of the right foot and left foot single step hypotheses.

symbols and symbol transitions is considered the average
stride period, StrP. Relevant symbols are symbols which
are likely to express striking characteristics of the original
signal, such as HS and TO. They are expected to appear
approximately once every cycle. Symbols (or transitions) with
period similar to or half of the estimated stride period are
considered relevant. From this point on, relevant transitions are
represented as extra relevant symbols and analyzed similarly.

The original acceleration signal can now be represented as a
cyclic sequence composed of relevant symbols (see Figure 4).
It is important to determine where the cycle begins, i.e. which
relevant symbol corresponds to HS. In order to determine
which symbols should be associated with HS (and TO), all
relevant symbols are considered and evaluated according to
certain assumptions. For each foot, the IV relevant symbols
S ={51,5,,..., Sn} are organized into all possible pairwise
combinations. These combinations are hypotheses of which
symbols could correspond to HS and TO. The combinations
for the right foot (Eq. 2) and left foot (Eq. 3), are then
recombined to express all possible permutations, considering
both feet in parallel (Eq. 4). The single-foot and parallel
hypotheses are exemplified in Figure 5.

B ={(81,52), (51, 53), ..(Sn, Siv—1))}

= {Cf{,Cl 30 ~Cﬁfzvf1)} @

CH = {(51,52), (51753) (Sst(N—l))} 3)
= {C(l 2): C 13)7~ C (N—1) )

Cparallel = {(Cff, C’1,2 ) (Cl )2 7C(1 3)) @)

~-(01§§N—1)a O(N,(N_l)))}

2) Hypotheses Testing: The single-foot hypotheses created
in the previous step are tested according to the assumption



Observations

Input variable for each hypothesis &

Partial likeliness value for each hypoth-
esis k

Approximately 60% of the stride
time corresponds to stance

relative séance time,
tnT(k
StnT’relative(k) = St:Pék; 5 where

StrP is the stride period and StnT is the
stance time

Ll(k) = FC(S[nTrelative (k))

HS is reflected on the resultant
acceleration signal as a valley and
large variance

TO is reflected on the resultant | average resultant acceleration at TO, _
acceleration as a peak TOgqccer (k) L2(k) = F5(TOaccer(k))
average resultant acceleration at HS,

HSqccel(k), and the maximum acceleration
variance between HS and HS + 10 samples,
HSvaT'(k)

La(k) = Fa(HSqccet (k)
Lu(k) = Fa(1-HSyar (k))

The foot moves the least at mid-
stance

average variance of resultant acceleration
at mid-stance, MidStanceyar

L5(k;) = FA(MidStancevar(k))

Detected number of strides must
be approximately 40% of the max-
imun number of strides which
could fit within the recorded data

relative number of detected strides,
N’relatiue(k) - W, Where, N is
the number of detected strides and M is
the length of the recorded data set

L(,(k) =Fp (Nrelative (k))

PARTIAL LIKELINESS VALUES CALCULATED FROM HYPOTHESIS ESTIMATES AND MEMBERSHIP FUNCTIONS. EACH LIKELINESS VALUE CORRESPONDS

TABLE I

TO A PIECE OF EXPERT KNOWLEDGE.

that stance lasts over 50% of the stride time. The average
stride period is calculated considering the corresponding HS
symbol. For each hypothesis, average stride period and stance
time are compared. If the average stance time is shorter than
half the average stride time, the hypothesis is discarded. Then,
the remaining parallel hypotheses are tested based on the
assumption that swing in one foot can only take place during
stance in the other foot. The parallel hypotheses that fail this
test are discarded.

3) Estimating likeliness: The remaining hypotheses are
considered possible, and a measure of “likeliness” tries to
estimate which hypothesis is more likely to be true. The
likeliness of each hypothesis k is estimated according to
the four observations stated in Table I. An extra assump-
tion is added to ensure that the most likely hypothesis is
able to detect an adequate number of strides, given the size
of the data. Each observation is represented by a fuzzy
membership function which maps measures such as average
symbol acceleration and variance to a likeliness value. The
four membership functions used are illustrated in Figure 6.
The calculus of the partial likeliness value associated with
each assumption is shown in Table II. For each hypothesis
k, the final likeliness value, L(k), is obtained from the
product of the corresgonding six partial likeliness values for
each foot, L(k) = [To_, LEF (k). T]°_, LEF (k). The hypoth-
esis with the largest final likeliness value is chosen as true
and the corresponding symbols are used to identify HS and
TO instances in the data.

IV. EXPERIMENTS

Gait acceleration data was collected in order to investigate
the use of the proposed method for gait analysis. The hardware
used for the experiments consisted of:

e Two SHIMMER sensor nodes (shimmer-research.com)
each equipped with a tri-axial accelerometer, sampling at
50Hz. The data was streamed continuously via Bluetooth
to a nearby computer.
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Fig. 6. Membership functions used to estimate the likeliness of each

hypothesis. The inputs to each of these functions is explained in Table II.

o A six-meter-long Gold Gait Rite pressure sensitive mat
[30], sampling at 60Hz. The Gait Rite has its own
software for detecting HS, TO and other temporal gait
measurements from the pressure sensitive mat. The Gait
Rite was only used to provide a reference signal, it is not
part of the proposed method.

Six volunteers participated in the experiments. The subjects
had the SHIMMER nodes attached to both shins, close to the
ankles. When the subject was standing still, the z axis of the
accelerometer corresponds to the vertical axis, and the z axis
corresponds to the horizontal axis tangential to the subject’s
sagittal plane.

The subjects were asked to walk a straight line on the
pressure mat according to three different instructions: 1) to
walk at a comfortable self-paced speed, normal walk data set;
2) to walk at a very slow speed taking shorter steps, slow
walk data set; and 3) to walk while having the right knee
immobilized with a brace in order to simulate limping, limp
walk data set.

The data obtained from the pressure mat was used as ground
truth for HS and TO. The proposed method was applied
so as to create subject-independent “normal” symbols. The
“normal walk” data sets of 3 randomly chosen individuals were



combined, segmented and clustered, resulting in 7 symbols.
The centers of these clusters were used to symbolize the
remaining data sets into equivalent symbols. All data sets were
analyzed in the exact same way.

In order to evaluate the performance of the proposed method
with regards to previous approaches, a peak-detection method
for detecting HS and TO was implemented [19]. This method
was chosen over a more recent work [9]. Both works are based
on the same principles but [19] seems to be less dependent
on the tuning of optimizing parameters, and therefore more
robust to different data sets. The method presented in [19]
was slightly modified in order to cope with the different sensor
placement. At each iteration, the interval used to narrow down
on the location of the peaks was changed to a window ten-
sample-wide, centered at the peak location from the previous
iteration. All data sets, were submitted to the peak-detection
analysis in the exact same way.

The symbol-based symmetry index was computed for all
three data sets. In order to evaluate the information conveyed
by this index, two other symmetry indices were calculated as
reported in [4] and [24]. The traditional measure of symmetry
explained in [4] was computed from the ground truth (GT)
data, i.e. data from the pressure sensitive mat. The cross-
correlation method stated in [24] was computed from the
acceleration signals, using the GT for stride segmentation.

V. RESULTS
A. Event Detection

The detected HS and TO instances, both from the proposed
method (symbolic approach) and from the peak-detection
method, were compared to the GT data. The resulting mean
absolute errors and standard deviations for each data set, in
seconds, are presented in Tables III, IV, and V. Table III
shows that both the symbolic approach and the peak-detection
methods may be used to detect HS and TO instances from gait
acceleration data during “normal walking” with small errors.
Considering the sampling frequency, 50Hz, the mean errors
correspond to approximately 2 samples. TO instances are
detected more accurately than HS instances. Table IV indicates
that, for the slow walk data set, mean errors correspond to
approximately 4% and 15% of the average stride time for
the symbolic approach and for the peak-detection method
respectively. Table V shows that, for the limp walk data set,
mean errors correspond to approximately 10% and 11% of the
average stride time for the symbolic approach and for the peak
detection method respectively.

The data set encompasses 131 “normal walk” steps, 167
“slow walk” steps and 114 “limp walk” steps. Each step
generates 2 error samples (HS and TO). Since the subjects
were random and all healthy, it is reasonable to assume the
error samples are identically distributed (for each type of
walk). T-tests were used to determine if the mean absolute
errors for each method were statistically different for each
type of walk:

Hy: Psymb — fpeak = 0;

Hl : ,asymb - ﬂpeak 7é 07

where [isyms is the mean absolute error in detecting HS
and TO with the symbolic approach, and fipeqr is the mean

Normal walk data
Method Event | mean
(standard deviation)
. HS 0.05 (0.04)
Symbolic approach TO 0.03 (0.04)
. HS 0.07 (0.10)
Peak detection TO 0.03 (0.03)
TABLE III

MEAN ABSOLUTE ERROR IN SECONDS AND STANDARD DEVIATION FOR
THE SYMBOLIC AND PEAK DETECTION METHODS ON THE NORMAL WALK
DATA SET. THE AVERAGE STRIDE TIME FOR THIS DATA SET IS 1.01s.

Slow walk data
Method Event | mean
(standard deviation)
. HS 0.06 (0.10)
Symbolic approach TO 0.05 (0.13)
. HS 0.22 (0.17)
Peak detection TO 0.16 (0.26)
TABLE IV

MEAN ABSOLUTE ERROR IN SECONDS AND STANDARD DEVIATION FOR
THE SYMBOLIC AND PEAK DETECTION METHODS ON THE SLOW WALK
DATA SET. THE AVERAGE STRIDE TIME FOR THIS DATA SET IS 1.46S.

Limp walk data
Method Event | mean (standard deviation)
. HS 0.10 (0.10)
Symbolic approach TO 0.09 (0.12)
. HS 0.12 (0.11)
Peak detection TO 0.08 (0.08)
TABLE V

MEAN ABSOLUTE ERROR IN SECONDS AND STANDARD DEVIATION FOR
THE SYMBOLIC AND PEAK DETECTION METHODS ON THE LIMP WALK
DATA SET. THE AVERAGE STRIDE TIME FOR THIS DATA SET IS 1.04s.

Normal Walk Slow Walk Limp Walk
o 0.05 0.05 0.05
Reject Hy? NO YES NO
p-value 0.12 ~0 0.72
95% conf. [-0.02, 0] [-0.16, -0.11] | [-0.02, 0.01]
interval
n. of samples 262 334 228
per group
post-hoc 82% 77% 78%
power

TABLE VI

RESULTS OF STATISTICAL TESTS.

absolute error using the peak detection method. Results are
shown in Table VI. The tests indicate that the symbolic
approach performs equally well to the peak-detection method
for the “normal walk” and “limp walk” data sets. The “slow
walk” data set is more accurately analyzed by the symbolic
approach.

B. Symmetry Indices

The symmetry indices were calculated for each subject in
each data set. The distributions of the symmetry indices within
each data set are shown as box-plots in Figure 7.

!post-hoc power calculated using “Cohen’s d” for effect size [31].



Reference Data
0.3

0.2

0.1

o 0 (=]

-0.1

-0.2

03 ormalSiow Limp

Acceleration Data
Symbolic Approach

Acceleration Data
Cross-correlation Approach

100 100
90 90
80 80
70 70
o 60 _ 60
550 8 50
P 40 ? a0
30 30
20 Q 20
10| 10|
0 Normal Slow Limp ONormal Slow  Limp

Fig. 7. Symmetry indices. The top plot shows the traditional symmetry
measure. The bottom-right plot shows the symbol-based symmetry index.
The bottom-left plot shows the cross-correlation symmetry measure. The
thick horizontal line corresponds to the median; the lower edge of the box
corresponds to the lower quartile; the upper edge of the box corresponds to
the upper quartile; the lower “whisker” corresponds to the smallest non-outlier
value; the upper “whisker” corresponds to the largest non-outlier value; and
outlier values are represented with crosses.

Figure 7 illustrates that the SI index judged “limp walk”
data as symmetric as the “normal walk” data. Note that ST
may take values between -200 and 200. Given that the ST
results are all in the interval [-0.2, 0.2], 0.1% of the index
full range, they cannot be considered significantly different.
In contrast, both the symbol-based symmetry index SIsyms
and the cross-correlation measure, S1;.o-, consistently dif-
ferentiate the data sets in terms of symmetry. Normal walk is,
on average, more symmetric than slow walk, which is more
symmetric than limp walk. For the STgy.,; values close to
zero indicate symmetry, whereas for ST, values close to
100 indicate symmetry.

VI. DISCUSSION

The peak detection results are slightly poorer than the results
reported by [9], which had an algorithm optimized to the
observed data set. For all the three types of walk investigated,
the symbolic approach performs equally well or better than
the peak detection algorithm.

The proposed symbolic approach is shown to be robust to
the different data sets. Although it was designed to analyze
normal walking, it provided reasonable estimates of HS and
TO for both slow and limp walk data sets. This illustrates
how the proposed method is not dependent on training data.
According to Table IV the peak detection method is a lot
less robust to certain data sets. This can be explained by the
fact that slow walk generates much smaller accelerations and

milder peaks, which were harder to detect without altering the
filtering frequencies.

The differences between normal and limp walk for the
traditional symmetry index, SI, were not significant. On the
other hand, SIymp and SI;.,.» were able to detect certain
dynamic information from the signal. In addition, both STy
and SI,.o. are in agreement regarding the overall symmetry
of each type of walk. Slow walk was probably less symmetric
than normal walk because the subjects needed to make a
conscious effort to change their walking pattern, sometimes
oscillating between their normal speed and a slower speed.
Although the information conveyed by SI and that conveyed
by SIgyms and Slycorr are not equivalent, this analysis aims
to exemplify how the peak detection approach fails to extract
dynamic information by only taking into account temporal
measurements of HS and TO.

The method presented here is totally automatic and does not
depend on labeled training data, unlike most previous works
based on supervised learning techniques. The use of expert
rules for context analysis allows the system to be gradually
improved by altering or adding new rules. This process avoids
the need to retrain the whole system. This expert system
depends on careful tuning of the rules. However, these rules
may be coded to reflect the reasoning made by clinicians
when assessing gait, rendering the system easy to interpret.
In addition, the symbolic representation of the signal allows
for direct comparison of symbol sequences between subjects,
or the evolution of symbol sequences for the same subject over
time.

Only two accelerometers were used for the experiments
because the envisioned system is to be embedded into the pa-
tient’s shoes. Although the use of more sensors could improve
the accuracy of the analysis, the final system would become
too cumbersome for the intended application. When consid-
ering other applications, the method can support as many
sensors as desired with small modifications to the “context
analysis” phase. The intended application should also be taken
into account when comparing the proposed method to previous
works. The amount of information this method extracts from
the signal is minimum compared to motion capture systems.
However, it is as precise and more informative than other
currently employed gait analysis systems such as the Gait Rite.

The symbolic approach explored here can be taken further
and developed into a Human Activity Language (HAL) [26].
Previous approaches to HAL have used motion capture data
or video images, which must be processed differently from
accelerometer data. The proposed method narrows the gap
between accelerometer based motion analysis and the HAL
framework. In addition, most symbol-based methods are used
for classification, whereas this work has achieved the detection
of temporal events, and the characterization of gait symmetry.

VII. CONCLUSION

This paper presented a symbol-based method for analyz-
ing gait from accelerometer signals. Compared to previous
works, the proposed method performs equally well or better,
and can also extract dynamic information from the signal.



The characterization of the signal in terms of its dynamics
was here exemplified with a novel symbol-based symmetry
index. Which can help identify gait disturbances that do not
necessarily interfere with temporal measurements, such as
compensatory adaptations in stroke patients. Future investi-
gations include a clinical study which will validate the use of
the proposed method for gait analysis, and the symbol-based
symmetry index, on patient data.

Other contributions of this work include the use of expert
knowledge in order to analyze symbolic context information.
Which avoids the need for supervised learning techniques and
large sets of training data. The addition of expert knowledge
also contributes to creating an intuitive model, which can be
easily interpreted and adapted to different applications.

The proposed method was here applied to acceleration data,
however, this approach may be extended to other types of
continuous sensor data. Once the characteristics of the system
are understood, rules can be designed to detect relevant events
in any type of time series. This method may also be seen
as a compression technique. The symbolization of the signal
together with its rule coding can greatly decrease the amount
of data needed to express the information held in the original
signal.
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