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marginalization (PM) algorithm, was recently proposed. Advantages of the method are that it is straightforward to

parallelize, and that it offers a fully predictable runtime. PM trades performance for computational complexity via a

user-defined parameter. In the limit of high computational complexity, the algorithm becomes the MAP demodulator.

The PM algorithm also works with soft-input, but until now ithas been unclear how to apply it for other

modulation formats than binary phase-shift keying (BPSK) per real dimension. In this paper, we explain how to

generalize PM with soft-input to general signaling constellations, while maintaining the low complexity advantage

of the original algorithm.
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Abstract

A new method for multiple-input multiple-output (MIMO) detection with soft-output, the partial

marginalization (PM) algorithm, was recently proposed. Advantages of the method are that it is

straightforward to parallelize, and that it offers a fully predictable runtime. PM trades performance for

computational complexity via a user-defined parameter. In the limit of high computational complexity,

the algorithm becomes the MAP demodulator.

The PM algorithm also works with soft-input, but until now ithas been unclear how to apply it for

other modulation formats than binary phase-shift keying (BPSK) per real dimension. In this paper, we

explain how to generalize PM with soft-input to general signaling constellations, while maintaining the

low complexity advantage of the original algorithm.

Index Terms

Detection, multiple-input multiple-output (MIMO), soft-input, soft-output

I. INTRODUCTION

We are concerned with multiple-input multiple-output (MIMO) communication, where several antennas

are used both at the sender and at the receiver side [1]. Specifically, we study the problem of soft

demodulation for the case where all antennas transmit independent symbols. Our focus is on systems that

use capacity-achieving codes, i.e., turbo and low-densityparity-check (LDPC) codes. On the receiving

side of the system, iterative demodulation and decoding [2]is employed, see Fig. 1. In these systems, the

demodulator and the decoder are exchanging information concerning the likelihood of code bits being 0

and 1, which is referred to as soft information. Both the demodulator and the decoder must thus be able

to handle soft-input and soft-output information.

Optimum soft demodulation has a computational complexity that is exponential in the number of

transmit antennas, and polynomial in the size of the signal constellation. Several methods have been
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devised to approximate the optimal soft demodulator [3]. Low-complexity solutions, such as zero-forcing

(ZF) and zero-forcing with decision feedback (ZF-DF), usually provide rather poor performance in most

scenarios of practical interest. A more sophisticated method that delivers very good performance is the

sphere decoder [4], but its complexity fluctuates substantially from one frame to another, and its expected

complexity is exponential in the number of transmit antennas [5]. There are also more recent flavors of

the sphere decoder that operate at fixed complexity, both forhard detection [6], and soft demodulation

[7].

The soft demodulation method of interest in this paper is therecently proposed partial marginalization

(PM) algorithm [8], originally proposed for approximativedemodulation without soft-input. The approxi-

mation in the PM algorithm consists of two steps. In the first step, a carefully chosen set of marginalization

sums is approximated by their largest terms. In the second step, a low-complexity method (ZF-DF,

preferably) is used to find these largest terms. The main advantages of PM over the sphere decoder [4]

are that it offers a constant and fully predictable runtime,and that it is straightforward to parallelize.

PM trades performance for computational complexity via a user-defined parameter, and differently from

[6], [7], PM is not based on the Max-log approximation. When setting the user parameter to its largest

possible value, the algorithm becomes the optimal (exact) demodulator, and by setting the parameter to

zero, one obtains the ZF-DF solution.

In [8], an extension of PM that can exploit soft input, for thecase of binary phase-shift keying (BPSK)

per real dimension, was also presented. This extension was based on the fact that the logarithmic prior

probabilities of the information bits are linear in the modulated symbols, an observation originally made

in [9]. A consequence of this is that the soft input can be algebraically incorporated into the problem by

performing a completion of squares operation. This resultsin a computational problem that has the same

form as the corresponding demodulation problem without soft input, but with a larger channel matrix.

Such an operation can be interpreted in terms of adding virtual antennas to the system, where the virtual

antennas carry the soft input information. This extension of the PM method is however only possible for

BPSK modulation per real dimension.

This paper’s main contribution is an extension of PM that allows operation with soft input and higher-

order constellations of arbitrary size and shape, and with arbitrary mappings between the channel bits

and the signal constellation points. The key idea is to incorporate the soft input into the part ofthe

PM algorithm where the ZF-DF scheme is invoked to find the largest term in a sum. The computational

complexity of our proposed technique is essentially the same as that of the original method without soft

input in [8].
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Demodulator Decoder

L(bi|y)

L(bi)y Information bits

Fig. 1. The MIMO receiver considered in this paper.

II. PRELIMINARIES

We consider a real-valued discrete-time channel model of the form

y = Hs + e, (1)

where s is the Nt-dimensional transmitted vector, consisting of scalar symbols sn that belong to the

M -ary constellationS, y is theNr-dimensional received vector, and the channel matrixH ∈ R
Nr×Nt is

completely known at the receiver side. TheNr-dimensional noise vectore has independent and identically

distributed (i.i.d.) Gaussian elements with zero mean and varianceN0/2. Hence, we have that

p(y|s) =
1

√

πNrNNr
0

exp

(

−
1

N0
‖y − Hs‖2

)

. (2)

The model in (1) may be the result of rewriting a complex-valued model with a separable constellation.

We consider the receiver structure in Fig. 1. The signal vector s carries transmitted bitsbi ∈ {−1, 1},

i = 1, ..., NtK, whereK , log2(M) is the number of bits per symbol.1 Our receiver is of “turbo”-type,

i.e., the final estimate of the transmitted codeword is obtained by iterating between the demodulator and

the channel decoder. In each iteration, the decoder supplies a log-likelihood ratio (LLR)

L(bi) = log

(

P (bi = 1)

P (bi = −1)

)

(3)

for each bitbi, i = 1, . . . , NtK, of the symbol vector. This LLR is used as a priori information by the

demodulator. The demodulator in turn outputs the a posteriori LLR value L(bi|y), which is employed as

input to the decoder. Calculation of this LLR value is the topic of the next section.

III. D EMODULATION

The a posteriori LLR for detection ofbi giveny is

L(bi|y) = log

(

P (bi = 1|y)

P (bi = −1|y)

)

(4)

1Throughout the paper, we let “bits” take on the values{-1,+1} instead of{0,1}. This convention simplifies some of the
equations in Section III-B.
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= log





∑

s1∈S
· · ·
∑

sj∈S:bi=1 · · ·
∑

sNt∈S
exp

(

− 1
N0

‖y − Hs‖2
)

P (s)

∑

s1∈S
· · ·
∑

sj∈S:bi=−1 · · ·
∑

sNt∈S
exp

(

− 1
N0

‖y −Hs‖2
)

P (s)



 (5)

= log





∑

s:bi=1 exp
(

− 1
N0

‖y − Hs‖2
)

P (s)

∑

s:bi=−1 exp
(

− 1
N0

‖y − Hs‖2
)

P (s)



 , (6)

where (5) follows from a standard calculation [8]. In (5), the bit to be detectedbi is carried by symbol

sj. Equation (5) is rewritten as (6) to simplify notation. The probability of each signal vectors

P (s) =

NtK
∏

k=1

P (bk) =

Nt
∏

n=1

P (sn), (7)

is given by assuming independent bitsbk, k = 1, . . . , NtK. The symbols per real dimensionsn, n =

1, . . . , Nt are thus also independent. In fact, a hard decision thatbi equals 1 forL(bi|y) ≥ 0, and thatbi

equals -1 otherwise, is a maximum a posteriori (MAP)-optimal decision [10]. Because of this property,

we name (6) the MAP detector. However, it is important to observe that no hard decisions are taken by

the demodulator unit, its purpose is to supply the decoder with an LLR for each bitbi.

The computational complexity of (6) is polynomial in the size of the signal constellationM ,

and exponential in the number of transmit antennasNt. This is prohibitive in real systems. As an

approximation, one may replace (6) with

L(bi|y) ≈ log





maxs:bi=1

(

exp
(

− 1
N0

‖y − Hs‖2
)

P (s)
)

maxs:bi=−1

(

exp
(

− 1
N0

‖y − Hs‖2
)

P (s)
)



 , (8)

which is referred to as the Max-log approximation. Replacing (6) by (8) does not solve the fundamental

complexity problem though, since searches for the maximum term in the numerator and in the denominator

have to be performed. Several methods that find the maximum terms in (8) have been proposed in the

literature. For example, the ZF-DF method is fast, but has poor error probability performance unlessH is

very well conditioned [3]. Another possibility is sphere decoding [4], which always finds the maximum,

provided that one waits until the algorithm terminates.

A. Review of partial marginalization (PM) in [8]

The MAP problem (6) in the case when the a priori symbol probabilities are uniformly distributed,

P (sn) = 1/M , sn = 1, . . . ,M , n = 1, . . . , Nt, is referred to as the maximum-likelihood (ML) problem

L(bi|y) = log





∑

s:bi=1 exp
(

− 1
N0

‖y −Hs‖2
)

∑

s:bi=−1 exp
(

− 1
N0

‖y − Hs‖2
)



 . (9)
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A recent development in MIMO ML demodulation is the soft-output partial marginalization (PM)

algorithm [8]. PM combines summation of terms as in (6), and maximization of terms as in (8), via

a user-defined parameter. The partial summation, or marginalization, has given the method its name.

Maximization is in turn approximated by ZF-DF. The advantages of PM are that it is straightforward to

parallelize, that it has a constant and fully predictable runtime, and that it may operate arbitrarily close

to the optimal ML solution.

The first step of PM is to let the columns ofH and the elements ofs undergo a permutation in order

to reduce the soft detection FER in practice, see Appendix A.The permutation in Appendix A differs

from its equivalent in [8], in the way that the column ofH corresponding tobi after permutation is

among the firstr columns, and similarly, the symbol per real dimension carrying bi is among the first

r entries ofs. This does not appreciably affect the performance, but it simplifies the description of the

PM algorithm. Also, for simplicity of the notation, we continue usingH and s for the corresponding

variables with permutations. We also introduce

H =
[

HA HB
]

, and s =





sA

sB



 , (10)

whereHA ∈ R
Nr×r, HB ∈ R

Nr×Nt−r, sA ∈ R
r, andsB ∈ R

Nr−r. The PM approximation of (6) is given

by

L(bi|y) ≈ log





∑

sA :bi=1 maxsB exp
(

− 1
N0

‖y − HAsA − HBsB‖2
)

∑

sA :bi=−1 maxsB exp
(

− 1
N0

‖y − HAsA − HBsB‖2
)



 (11)

≈ log





∑

sA :bi=1 exp
(

− 1
N0

‖y − HAsA −HBŝB‖2
)

∑

sA :bi=−1 exp
(

− 1
N0

‖y − HAsA − HBŝB‖2
)



 , (12)

whereNt − r of the Nt sums, cf. (5), are approximated by maximization oversB in (11). In (12), the

maximization is approximated by a ZF-DF solutionŝB. We note that for largerr, the ratio of the number

of columns to the number of rows ofHB becomes smaller, which improves the condition number of

HBTHB, and thus also the ZF-DF solution, see [8]. In the limit of larger, the ML solution (9) is obtained,

and in the limit of smallr, the Max-log solution (8) for the case of uniform a priori probabilities, with

maximization performed by ZF-DF, is obtained.

B. Partial marginalization with natural mappings of bits to symbols

It was shown in [8] that for BPSK modulation per real dimension, the general MAP problem (6)

can be rewritten as an ML problem of the form (9). The reformulation was based on ideas originally
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presented in [9]. This strategy can in fact be extended. The MAP problem (6) can be formulated as an

ML problem (9) as long as a uniform, separable constellationwith a natural mapping of bits to symbols

is employed. The key is that the signal vector can be written as a linear function of the bits. Consider

a uniform constellationS = {−A,−A + 2 A
M−1 ,−A + 4 A

M−1 , . . . , A} whereA is the maximal signal

amplitude. Then we can write

s = Wb, (13)

where

b ,











b1

...

bNtK











∈ R
NtK , (14)

W ,
A

M − 1

















1 2 4 · · · 2K−1 0 0 0 . . . 0 · · · 0 0 0 . . . 0

0 0 0 . . . 0 1 2 4 · · · 2K−1 · · · 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...

0 0 0 . . . 0 0 0 0 . . . 0 · · · 1 2 4 · · · 2K−1

















∈ R
Nt×NtK . (15)

For example, for 4-PAM andA = 3, the bit sequences [-1,-1], [1,-1], [-1,1], and [1,1] are mapped to the

signal constellation points -3,-1,1, and 3 respectively.

It is further possible to rewrite

log(P (sn)) =

nK
∑

k=(n−1)K+1

1

2

(

log (P (bk = 1)P (bk = −1)) + log

(

P (bk = 1)

P (bk = −1)

)

bk

)

, (16)

for n = 1, . . . , Nt. We introduce

Γ , Diag

[

1

2
log

(

P (b1 = 1)

P (b1 = −1)

)

, . . . ,
1

2
log

(

P (bNtK = 1)

P (bNtK = −1)

)]

∈ R
NtK×NtK , (17)

H̄ ,





HW

N0

2 Γ



 ∈ R
Nr+NtK×NtK , (18)

ȳ ,





y

1



 ∈ R
Nr+NtK , (19)

where1 ∈ R
NtK is an all-ones vector. By completing the squares with respect to N0

2 Γb, and rearranging

the terms, (6) may be written as

L(bi|y) = log





∑

b:bi=1 exp
(

− 1
N0

‖ȳ − H̄b‖2
)

∑

b:bi=−1 exp
(

− 1
N0

‖ȳ − H̄b‖2
)



 . (20)
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Relation (20) is the MAP estimator (6) on the ML form in (9). The new augmented channel matrix̄H

can be interpreted in terms of having added virtual antennasto the system.

Once the MAP problem is formulated on ML form, the PM method can be used for achieving an

approximate solution (12). The linear equation (13) can however not be written for other bit-to-symbol-

mappings, and natural mappings are sub-optimal in general [11]. In the following section, we show how

to extend the ideas in [8] to the case of a general constellation, and to arbitrary mappings of the channel

bits to the constellation.

C. Partial marginalization with soft input for general constellations

We next present the main contribution of this paper, an extension of [8] to soft-input for general (not

necessarily uniform) constellations and arbitrary bit-symbol mappings. The idea is to modify the part

of the PM algorithm that invokes the ZF-DF scheme. Similarlyto in Section III-A, we start from (6),

successively introduce approximations, and rearrange expressions so as to obtain a form suitable for fast

computations. We first approximate (6) by replacingNt − r sums with the maximum term

L(bi|y) ≈ log





∑

sA :bi=1 maxsB

(

exp
(

− 1
N0

‖y − HAsA − HBsB‖2
)

P (sB)
)

P (sA)

∑

sA :bi=−1 maxsB

(

exp
(

− 1
N0

‖y − HAsA − HBsB‖2
)

P (sB)
)

P (sA)



 . (21)

Thereafter, a QR-factorization of the channelHB = QR is performed, whereQ ∈ R
Nr×Nr is

orthogonal, andR ∈ R
Nr×Nt−r is upper triangular. The Euclidean norm is invariant under an orthogonal

transformation, and it is possible to rewrite (21) as

L(bi|y) ≈ log





∑

sA :bi=1 maxsB

(

exp
(

− 1
N0

‖RsB − QT (y − HAsA)‖2
)

P (sB)
)

P (sA)

∑

sA :bi=−1 maxsB

(

exp
(

− 1
N0

‖RsB − QT (y − HAsA)‖2
)

P (sB)
)

P (sA)



 . (22)

We further introduce




ỹ

y̆



 , QT (y − HAsA), R =





R̃

0



 , (23)

whereỹ is a vector withNt − r elements,̆y is a vector withNr −Nt + r elements,R̃ ∈ R
Nt−r×Nt−r is

upper triangular, and0 ∈ R
Nr−Nt+r×Nt−r is an all-zero matrix.

Relation (23) is reformulated as

L(bi|y) ≈ log





∑

sA :bi=1 maxsB

(

exp
(

− 1
N0

‖R̃sB − ỹ‖2 − 1
N0

‖y̆‖2
)

P (sB)
)

P (sA)

∑

sA :bi=−1 maxsB

(

exp
(

− 1
N0

‖R̃sB − ỹ‖2 − 1
N0

‖y̆‖2
)

P (sB)
)

P (sA)



 . (24)
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We observe that solving

ŝB = argmaxsB

(

exp

(

−
1

N0
‖R̃sB − ỹ‖2

)

P (sB)

)

(25)

in (24) is equivalent to solving

ŝB = argmaxsB

(

−
1

N0
‖R̃sB − ỹ‖2 +

Nt−r
∑

n=1

log (P (sB
n))

)

, (26)

wheresB = [sB
1 , . . . , sB

Nt−r]
T . Inspired by the traditional ZF-DF algorithm [3], we suggest to use Alg. 1

for solving (26) approximatively, and with low computational complexity.

Algorithm 1 ZF-DF-type algorithm for solving (26). The output of the algorithm is ŝB.
1: Setk := 1.
2: Solve

ŝB
Nt−r = argmax

sB
Nt−r∈S

(

−
1

N0
(R̃Nt−r,Nt−rs

B
Nt−r − ỹNt−r)

2 + log (P (sB
Nt−r))

)

. (27)

3: Setk := k + 1.
4: Solve

ŝB
Nt−r−k+1 = argmax

sB
Nt−r−k+1

∈S

(

−
1

N0

(

R̃Nt−r−k+1,Nt−r−k+1s
B
Nt−r−k+1

+

k
∑

l=2

R̃Nt−r−k+1,Nt−r−k+lŝ
B
Nt−r−k+l − ỹNt−r−k+1

)2

+ log (P (sB
Nt−r−k+1))

)

. (28)

5: If k < Nt − r, continue from step 3, otherwise terminate.

Both (27) and (28) are scalar optimization problems. Differently from the standard ZF-DF, at each step

k, a search over allM points in the scalar signal constellationS is required. This is because a non-linear

equation is solved at each step in Alg. 1, while the standard ZF-DF solves a linear equation at each step.

Once Alg. 1 is performed for all possiblesA, we may approximate (22) as

L(bi|y) ≈ log





∑

sA :bi=1 exp
(

− 1
N0

‖R̃ŝB − ỹ‖2 − 1
N0

‖y̆‖2
)

P (sA)P (̂sB)

∑

sA :bi=−1 exp
(

− 1
N0

‖R̃ŝB − ỹ‖2 − 1
N0

‖y̆‖2
)

P (sA)P (̂sB)



 (29)

As the optimization in Alg. 1 is performed, the expressionsexp
(

− 1
N0

‖R̃ŝB − ỹ‖2
)

P (ŝB) in (29) are

evaluated simultaneously.

The proposed soft-input demodulator is straightforward togeneralize to non-separable constellations. In

this case, Alg. 1 has to search through a complex-valued constellation instead of a real-valued constellation
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at each step.

We briefly discuss the computational complexity of (29). ForeachH, a preprocessing consisting of

sorting ofH ands by means of Alg. 2 in Appendix A, must be performed. In Alg. 2, the computational

complexity of the matrix inversions dominates. Also, for each H, a QR decomposition ofH, and a

calculation ofQTHAsA for eachsA, are required. For eachy, calculation ofQTy requires approximately

N2
r multiplications and additions, and Alg. 1 needs approximately 2rM(Nt−r)Nt comparisons of scalars.

In sufficiently slow fading, the cost of preprocessing eachH can be amortized over many bits. The total

number of operationsCbit needed for the detection ofbi is then on the order of

Cbit ≈
2rM(Nt − r)Nt + 2N2

r

Nt
, (30)

and the exponential complexity inNt of (6) is avoided.

IV. EXPERIMENTS

In this section, the performance of the proposed algorithm is quantified, and compared to other

approaches.

A. Simulation setting

Experiment parameters are chosen as follows:

• MIMO system: A 3×3 MIMO complex system was used. This means thatNt = Nr = 6. 16-

quadrature amplitude modulation (QAM) signaling, which corresponds toM = 4 different possible

constellation points per real dimension, was employed. We further used a rate-1/2, regular (3,6)

LDPC code with codeword size 2000 bits. A parity check matrixwas randomly constructed, but

some small-loop removal was applied. The resulting graph had girth 8.

• Channel: We are considering Rayleigh slow fading channels, where each element ofH is

independent and identically distributed (i.i.d.) zero mean with variance 1/2. More precisely,H is

constant over a codeword.

• Performance comparisons: We refer to the set of uncoded bits per codeword as a frame. We

estimate the frame-error rate (FER) by means of Monte Carlo integration for varying signal-to-noise

ratio (SNR). The SNR is defined asEb/N0, whereEb is the transmitted energy per uncoded bit. For

each SNR value, we count 1000 frame errors in the Monte Carlo simulation. Comparisons are made

with the optimal brute-force MAP detector (6), and the brute-force Max-log detector (8), which both

are non-polynomial (NP)-hard problems to solve.
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B. Results

In Fig. 2 we see a comparison between brute-force MAP (6) and PM (29) with different numbers of

iterations. For PM, the numberr of columns over which the sum is performed is equal to 3. For all SNR

values, and after every iteration step, the PM algorithm performs almost as well as the MAP detector.

In Fig. 3, the numberr of columns over which the sum is performed in the PM method is varied,

and comparisons are made with the MAP and Max-log schemes. The number of demodulator-decoder

iterations is 3 for all algorithms. For all signal-to-noiseratios, PM gives better performance than the

Max-log method, which, similarly to the MAP method, has an exponentially increasing computational

complexity with the number of antennas. The observation that PM gives better performance than the

Max-log algorithm is important, since the fixed complexity sphere decoder, which is a major competitor

to the PM algorithm, is based on the Max-log algorithm [6], [7].

The choice ofr as a function ofNt is discussed in more detail in reference [8], which also contains

more extensive simulation results for different numbers ofantennas (for 4-QAM). The tradeoffs involved

in the choice ofr do not depend much on whether an iterative receiver (providing the demodulator with

soft input) is used. The C++ program used for generating the results can be downloaded from [12].
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Fig. 2. Performance comparison between PM (29) and brute-force MAP (6) when the number of iterations is varied. We use
a 3 × 3 complex MIMO system,Nt = Nr = 6, with 16-QAM modulationM = 4, and a rate-1/2 LDPC code where each
codeword contains 2000 bits, and spans one channel realization. For PM, the numberr of columns over which the sum is
performed is equal to 3.
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Fig. 3. Performance comparisons for PM (29), with differentnumbersr of summed columns, brute-force MAP (6), and
brute-force Max-log (8). The number of demodulator-decoder iterations is 3 for all algorithms. All other simulation parameters
remain the same as in Fig. 2.

V. CONCLUSION

A previously proposed method for MIMO detection with soft-input and output, PM [8], has fixed

computational complexity, is straightforward to parallelize, and may operate arbitrarily close to the MAP

detector performance-wise, when using more computationalpower. However, when using soft-input, this

scheme has until now only worked with BPSK modulation per real dimension.

This paper offers a new soft-input extension, for arbitraryseparable constellations, to the PM method.

The computational complexity is not significantly increased. In a range of presented experiments, the new

method gives the nearly same FER performance as MAP detection. Moreover, the PM algorithm performs

better than the Max-log algorithm. This last experimental comparison is important, since the fixed

complexity sphere decoder [6], [7] is based on the Max-log algorithm. The proposed ZF-DF algorithm

is straightforward to generalize to non-separable constellations. In this case, the ZF-DF algorithm has to

search through a complex-valued constellation instead of areal-valued constellation at each step.

APPENDIX A

COLUMN REORDERING

The purpose of Alg. 2 is to reorder the bits so that the “most difficult” bits are dealt with by the

marginalization oversA in (12). In effect, this minimizes the error propagation in Alg. 1. For a more

thorough discussion of Alg. 2, see [8].
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Algorithm 2 Reordering of columns ofH
1: Let I = ∅ (empty), and letIc = [1, . . . , Nt].
2: Computeλ = diag((HTH)−1). Let k be the index of the largest element ofλ.
3: SetI := [I Ic

k].
4: Remove thekth column ofH.
5: If H is empty, go to step 6, otherwise repeat from step 2.
6: Assume that the bitbi that is to be detected is carried by the symbolj before permutation. Ifj is

elementIl of I , wherel > r, redefineI := [I1, . . . ,Ir−1, j,Ir,Ir+1, . . . ,Il−1,Il+1, . . . ,INt ].
7: RedefineH with its original element values that it had in step 1.
8: Rearrange the columns ofH and the scalar entries ofs according toI . For performing the summation

in (29), the position of the symbolj that carries the biti should also be stored.
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