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Abstract

A new method for multiple-input multiple-output (MIMO) dettion with soft-output, the partial
marginalization (PM) algorithm, was recently proposed.v&atages of the method are that it is
straightforward to parallelize, and that it offers a fullyedictable runtime. PM trades performance for
computational complexity via a user-defined parameterhénlimit of high computational complexity,
the algorithm becomes the MAP demodulator.

The PM algorithm also works with soft-input, but until nowhias been unclear how to apply it for
other modulation formats than binary phase-shift keyin@$K) per real dimension. In this paper, we
explain how to generalize PM with soft-input to general sigrg constellations, while maintaining the

low complexity advantage of the original algorithm.

Index Terms

Detection, multiple-input multiple-output (MIMO), soiitput, soft-output

. INTRODUCTION

We are concerned with multiple-input multiple-output (MDYl communication, where several antennas
are used both at the sender and at the receiver side [1]. fiBp#gj we study the problem of soft
demodulation for the case where all antennas transmit gmgnt symbols. Our focus is on systems that
use capacity-achieving codes, i.e., turbo and low-dermstjty-check (LDPC) codes. On the receiving
side of the system, iterative demodulation and decodings[2mployed, see Fig. 1. In these systems, the
demodulator and the decoder are exchanging informationeraing the likelihood of code bits being 0
and 1, which is referred to as soft information. Both the deutator and the decoder must thus be able
to handle soft-input and soft-output information.

Optimum soft demodulation has a computational compleXitgt tis exponential in the number of

transmit antennas, and polynomial in the size of the signaktellation. Several methods have been
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devised to approximate the optimal soft demodulator [3jvtammplexity solutions, such as zero-forcing
(ZF) and zero-forcing with decision feedback (ZF-DF), usuprovide rather poor performance in most
scenarios of practical interest. A more sophisticated otetihat delivers very good performance is the
sphere decoder [4], but its complexity fluctuates substytirom one frame to another, and its expected
complexity is exponential in the number of transmit antenfid. There are also more recent flavors of
the sphere decoder that operate at fixed complexity, botideod detection [6], and soft demodulation
[71.

The soft demodulation method of interest in this paper isréloently proposed partial marginalization
(PM) algorithm [8], originally proposed for approximatidgemodulation without soft-input. The approxi-
mation in the PM algorithm consists of two steps. In the firspsa carefully chosen set of marginalization
sums is approximated by their largest terms. In the secogpl, s low-complexity method (ZF-DF,
preferably) is used to find these largest terms. The mainrdadgas of PM over the sphere decoder [4]
are that it offers a constant and fully predictable runtiraed that it is straightforward to parallelize.
PM trades performance for computational complexity via erwefined parameter, and differently from
[6], [7], PM is not based on the Max-log approximation. Whetting the user parameter to its largest
possible value, the algorithm becomes the optimal (exaatadtiulator, and by setting the parameter to
zero, one obtains the ZF-DF solution.

In [8], an extension of PM that can exploit soft input, for tese of binary phase-shift keying (BPSK)
per real dimension, was also presented. This extension asedbon the fact that the logarithmic prior
probabilities of the information bits are linear in the méadad symbols, an observation originally made
in [9]. A consequence of this is that the soft input can be laigieally incorporated into the problem by
performing a completion of squares operation. This resnlts computational problem that has the same
form as the corresponding demodulation problem without sqfut, but with a larger channel matrix.
Such an operation can be interpreted in terms of addingaligaotennas to the system, where the virtual
antennas carry the soft input information. This extensibthe PM method is however only possible for
BPSK modulation per real dimension.

This paper's main contribution is an extension of PM thatvad operation with soft input and higher-
order constellations of arbitrary size and shape, and with arbitrary mappings between the channel bits
and the signal constellation points. The key idea is to incorporate the soft input into the parthsf
PM algorithm where the ZF-DF scheme is invoked to find thedargerm in a sum. The computational
complexity of our proposed technique is essentially theesamthat of the original method without soft

input in [8].
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L(bily)
— Demodulator B > Decoder o
y L(b;) Information bits
Fig. 1. The MIMO receiver considered in this paper.
I[I. PRELIMINARIES
We consider a real-valued discrete-time channel model efidhm

y = Hs + e, 1)

wheres is the Ni-dimensional transmitted vector, consisting of scalar Isgisis,, that belong to the
M-ary constellationS, y is the N,-dimensional received vector, and the channel mdifix RNox N g
completely known at the receiver side. TNedimensional noise vecterhas independent and identically

distributed (i.i.d.) Gaussian elements with zero mean aréhmceN,/2. Hence, we have that

()

bl s) = e exp (= iS[?).
The model in (1) may be the result of rewriting a complex-ealumodel with a separable constellation.
We consider the receiver structure in Fig. 1. The signalorectarries transmitted bits; € {—1,1},
i=1,..,N{K, whereK = log,(M) is the number of bits per symbdi.Our receiver is of “turbo-type,
i.e., the final estimate of the transmitted codeword is olet@iby iterating between the demodulator and

the channel decoder. In each iteration, the decoder sgpplleg-likelihood ratio (LLR)

L(b;) = log <%> (3)

for each bitb;, i = 1,..., N¢K, of the symbol vector. This LLR is used as a priori informatioy the
demodulator. The demodulator in turn outputs the a posterid? value L(b;|y), which is employed as

input to the decoder. Calculation of this LLR value is theitopf the next section.

[1l. D EMODULATION

The a posteriori LLR for detection df; giveny is

P(b; = 1ly) )

L(bily) = log (m (4)

Throughout the paper, we let “bits” take on the valye$,+1} instead of{0,1}. This convention simplifies some of the
equations in Section IlI-B.
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4
: DisieS T Ds,eSihi=1 " Dasy S EXP (‘N%Hy - HSH2) P(s) )
= Og
25168 T ZSjeS:bi:—l T ZsNteS exp <_NLOHY - HSHQ) P(s)
St 50 (— 3 lly — Hs|?) P(s)
= log (6)

S t——10x0 (= |y — Hs|]?) P(s)
where (5) follows from a standard calculation [8]. In (5)ethit to be detected; is carried by symbol

sj. Equation (5) is rewritten as (6) to simplify notation. Thelpability of each signal vectar

NK No
P(s) =[] Pox) = [] P(sn), 7
k=1 n=1
is given by assuming independent bits £ = 1,..., NyX. The symbols per real dimension, n =
1,..., Ny are thus also independent. In fact, a hard decisiontthauals 1 forL(b;|y) > 0, and that,
equals -1 otherwise, is a maximum a posteriori (MAP)-optidecision [10]. Because of this property,
we name (6) the MAP detector. However, it is important to obsehat no hard decisions are taken by
the demodulator unit, its purpose is to supply the decodd#r am LLR for each bib;.
The computational complexity of (6) is polynomial in the esinf the signal constellation/,
and exponential in the number of transmit anten?as This is prohibitive in real systems. As an

approximation, one may replace (6) with
maxg.p,—1 (exp (—N%)Hy - HS”2) P(s)>

MaXg:p,—— <eXp <_N%)Hy - Hs||2) P(S))

which is referred to as the Max-log approximation. Replgdi®) by (8) does not solve the fundamental

L(bily) ~ log (8)

complexity problem though, since searches for the maxinarm tn the numerator and in the denominator
have to be performed. Several methods that find the maximumstén (8) have been proposed in the
literature. For example, the ZF-DF method is fast, but has poror probability performance unlekbis
very well conditioned [3]. Another possibility is spherecdéing [4], which always finds the maximum,

provided that one waits until the algorithm terminates.

A. Review of partial marginalization (PM) in [§]
The MAP problem (6) in the case when the a priori symbol prdiigs are uniformly distributed,
P(sp)=1/M, s, =1,...,M,n=1,..., N, is referred to as the maximum-likelihood (ML) problem
a1 exp (— 3 lly — Hs|?)

L(bily) = log ; ;
a1 exp (& lly - Hs|?)

(9)
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A recent development in MIMO ML demodulation is the softjoutt partial marginalization (PM)
algorithm [8]. PM combines summation of terms as in (6), arakimization of terms as in (8), via
a user-defined parameter. The partial summation, or mdizatian, has given the method its name.
Maximization is in turn approximated by ZF-DF. The advam®g@f PM are that it is straightforward to
parallelize, that it has a constant and fully predictabletime, and that it may operate arbitrarily close
to the optimal ML solution.

The first step of PM is to let the columns Bf and the elements &f undergo a permutation in order
to reduce the soft detection FER in practice, see AppendiXhe permutation in Appendix A differs
from its equivalent in [8], in the way that the column ®F corresponding td; after permutation is
among the first- columns, and similarly, the symbol per real dimension dagy; is among the first
r entries ofs. This does not appreciably affect the performance, butiipéfies the description of the
PM algorithm. Also, for simplicity of the notation, we contie usingH ands for the corresponding

variables with permutations. We also introduce
H- [ HA HP } , and  s— , (10)

whereHA ¢ RV>7, HB ¢ RN>N= gA ¢ R” ands® € RV, The PM approximation of (6) is given
by

D _shib,—1 MAXe €XP (—N%Hy — HAA — HBSBH?)

L(bily) =~ log (11)
D ehih,—_1 MAXgs €XP (—NLOHY — HAs” — HBsBHQ)
a1 050~ lly — HAS® — HES®|?)
~ log (12)

S b1 XD (o lly — HASA — HBS®|?)
where N; — r of the N; sums, cf. (5), are approximated by maximization os®rin (11). In (12), the
maximization is approximated by a ZF-DF solutigfh We note that for larger, the ratio of the number

of columns to the number of rows &P becomes smaller, which improves the condition number of
HBTHB, and thus also the ZF-DF solution, see [8]. In the limit ofjar, the ML solution (9) is obtained,
and in the limit of smallr, the Max-log solution (8) for the case of uniform a priori pabilities, with

maximization performed by ZF-DF, is obtained.

B. Partial marginalization with natural mappings of bits to symbols

It was shown in [8] that for BPSK modulation per real dimensithe general MAP problem (6)

can be rewritten as an ML problem of the form (9). The refomatioh was based on ideas originally
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presented in [9]. This strategy can in fact be extended. TA® Mroblem (6) can be formulated as an
ML problem (9) as long as a uniform, separable constellatith a natural mapping of bits to symbols
is employed. The key is that the signal vector can be writtem@ dinear function of the bits. Consider

a uniform constellatiorS = {—A, —A + 2%, —A+ 4%,...,/1} where A is the maximal signal

amplitude. Then we can write

s = Wh, (13)
where
by
b2 | | eRNE (14)
by
(1 24 ... 2511 000 ... 0 --000 ... 0 |
A 000 ... 0 124 ...2/1 ....0 00 ... 0
we— | | erN )
_000...0000...0---124---2K—1

For example, for 4-PAM andl = 3, the bit sequences [-1,-1], [1,-1], [-1,1], and [1,1] arepped to the
signal constellation points -3,-1,1, and 3 respectively.

It is further possible to rewrite

nkK

B 1 B B P(b, =1)
og(Plo) = > g (1o (Pl = 1P =-1) +1og (5 ), @)
k=(n—1)K+1
forn=1,..., N;. We introduce
2 mianm | L P(by =1) 1 P(bng =1) NK X NK
I' = Diag {2log (P(blz—l) ,...,2log Plows = —1) eR ) a7)
ﬁ A HW c RNH—NtKXNtK (18)
Nop ’
| 2
1

wherel € RMK is an all-ones vector. By completing the squares with resl;me%r‘b, and rearranging

the terms, (6) may be written as
bt &5 (— |y — Hb|?)
b1 b (— 1y — Fb|P)

L(bily) = log (20)
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Relation (20) is the MAP estimator (6) on the ML form in (9). & hew augmented channel matiik
can be interpreted in terms of having added virtual antetmaise system.

Once the MAP problem is formulated on ML form, the PM method t& used for achieving an
approximate solution (12). The linear equation (13) candwawx not be written for other bit-to-symbol-
mappings, and natural mappings are sub-optimal in gen&tdl [n the following section, we show how
to extend the ideas in [8] to the case of a general constailasind to arbitrary mappings of the channel

bits to the constellation.

C. Partial marginalization with soft input for general constellations

We next present the main contribution of this paper, an exbenof [8] to soft-input for general (not
necessarily uniform) constellations and arbitrary bitabpl mappings. The idea is to modify the part
of the PM algorithm that invokes the ZF-DF scheme. Similddyin Section llI-A, we start from (6),
successively introduce approximations, and rearrangeesgons so as to obtain a form suitable for fast

computations. We first approximate (6) by replaciig— » sums with the maximum term
D i, —1 MAXgE (exp (-N%)”y — HASM — HBSBH2) P(SB)> P(sh)

(21)
S maxge (exp (— 3k |y — HASA — HEs®|12) P(s8)) P(s*)

L(b;|y) =~ log

Thereafter, a QR-factorization of the chanddf = QR is performed, whereQ e RM*M js
orthogonal, andR € RN*M=" is upper triangular. The Euclidean norm is invariant undeoghogonal

transformation, and it is possible to rewrite (21) as

S maxgs (exp (— | Rs® — Q7 (y — HAS)2) P(s®)) P(s*)

L(bily) ~ log : (22)
S et Mg (exp (2| Rs® — Q7 (y — HASA)2) P(sB)) P(s)
We further introduce
y R
V12qQTy-HAY),  R-= , (23)
y 0

wherey is a vector withV; — r elementsy is a vector withiN; — Ny +r elementsR € RN jg
upper triangular, an@ € RN—NFrxN—r is an all-zero matrix.

Relation (23) is reformulated as
Sy maxso (exp (—FIIRs® = 31? = 3 1¥]2) P(s®)) P(s*)

- (24)
S nmy maxs (exp (= [Rs® = 712 = - [1¥]12) P(s8)) P(s4)

L(b;|y) = log
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8
We observe that solving
B = argmaxge <exp <_NLOHRSB - 5’”2> P(SB)> (25)
in (24) is equivalent to solving
«B L nB_ <2 - B
s® = argmax e (‘m”RS -yI*+ ; log <P<sn>>> : (26)

wheres® = [s8,... s] _ |7 Inspired by the traditional ZF-DF algorithm [3], we sugtsuse Alg. 1

for solving (26) approximatively, and with low computatarcomplexity.

Algorithm 1 ZF-DF-type algorithm for solving (26). The output of the @lighm is sB.
1. Setk := 1.
2: Solve

) 1 - §
SJBVt—r = argmax <_F(RN1—T7N1—T8]BVI—T - yNt—T)2 + IOg (P(SJB\G—T))> . (27)
s?vthES 0

3: Setk .=k + 1.

4: Solve
~B o 1 R B
SNi—r—k+1 =  argmax | — A Ni—r—k+1,Ne—r—k+1S Ny—r—k+1
S?thrkarleS 0
koo " ~ )
+ Z BN —r k1, Ne—r— kIS Ny—r— k1 — yNt—r—k:—‘,—l)
1=2

o8 (PR, 11) ) @9

5. If k& < Ny —r, continue from step 3, otherwise terminate.

Both (27) and (28) are scalar optimization problems. Déffdély from the standard ZF-DF, at each step
k, a search over all/ points in the scalar signal constellatiénis required. This is because a non-linear
equation is solved at each step in Alg. 1, while the stand&-dDE solves a linear equation at each step.

Once Alg. 1 is performed for all possib&, we may approximate (22) as
s 0 (RS = 712 = 17 ]2) P(*)P(E®)

o1 €D (— 5 IRSE = F2 = - 312) P(sA) P(E®)

L(bily) ~ log (29)

As the optimization in Alg. 1 is performed, the expressierp (—N%)HfiéB - S’HQ) P(38) in (29) are
evaluated simultaneously.

The proposed soft-input demodulator is straightforwargeneralize to non-separable constellations. In

this case, Alg. 1 has to search through a complex-valuedeitat®n instead of a real-valued constellation
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at each step.

We briefly discuss the computational complexity of (29). EachH, a preprocessing consisting of
sorting of H ands by means of Alg. 2 in Appendix A, must be performed. In Alg. f2e tomputational
complexity of the matrix inversions dominates. Also, forcked, a QR decomposition oH, and a
calculation ofQT Hasa for eachsp, are required. For eagh calculation ofQ”y requires approximately
N? multiplications and additions, and Alg. 1 needs approxatya” M (N, —r)N; comparisons of scalars.
In sufficiently slow fading, the cost of preprocessing ekEtltan be amortized over many bits. The total
number of operationé’,;; heeded for the detection éf is then on the order of

2" M (Ny — )Ny + 2N?
Ny ’

Chig = (30)

and the exponential complexity iN; of (6) is avoided.

IV. EXPERIMENTS

In this section, the performance of the proposed algoritenguantified, and compared to other

approaches.

A. Smulation setting

Experiment parameters are chosen as follows:

e MIMO system: A 3x3 MIMO complex system was used. This means that= N, = 6. 16-
quadrature amplitude modulation (QAM) signaling, whichresponds ta\/ = 4 different possible
constellation points per real dimension, was employed. Weér used a rate-1/2, regular (3,6)
LDPC code with codeword size 2000 bits. A parity check maivixs randomly constructed, but
some small-loop removal was applied. The resulting graghdidh 8.

« Channel: We are considering Rayleigh slow fading channels, whereh eslement ofH is
independent and identically distributed (i.i.d.) zero medth variance 1/2. More precisel# is
constant over a codeword.

« Performance comparisons. We refer to the set of uncoded bits per codeword as a frame. We
estimate the frame-error rate (FER) by means of Monte Categration for varying signal-to-noise
ratio (SNR). The SNR is defined d§,/ Ny, whereFE}, is the transmitted energy per uncoded bit. For
each SNR value, we count 1000 frame errors in the Monte Carlolation. Comparisons are made
with the optimal brute-force MAP detector (6), and the braiece Max-log detector (8), which both

are non-polynomial (NP)-hard problems to solve.
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B. Results

In Fig. 2 we see a comparison between brute-force MAP (6) aviid2®) with different numbers of
iterations. For PM, the numberof columns over which the sum is performed is equal to 3. HOBER
values, and after every iteration step, the PM algorithnigoers almost as well as the MAP detector.

In Fig. 3, the number of columns over which the sum is performed in the PM methodaised,
and comparisons are made with the MAP and Max-log schemes.ntimber of demodulator-decoder
iterations is 3 for all algorithms. For all signal-to-noisgtios, PM gives better performance than the
Max-log method, which, similarly to the MAP method, has ampaxentially increasing computational
complexity with the number of antennas. The observation B gives better performance than the
Max-log algorithm is important, since the fixed complexiphsre decoder, which is a major competitor
to the PM algorithm, is based on the Max-log algorithm [6], [7

The choice ofr as a function of)V; is discussed in more detail in reference [8], which also @ioist
more extensive simulation results for different numberamtennas (for 4-QAM). The tradeoffs involved
in the choice ofr do not depend much on whether an iterative receiver (progittie demodulator with

soft input) is used. The C++ program used for generating élselts can be downloaded from [12].

Frame error rate

-8 PM, 1 iteration
-6-PM, 2 iterations
——PM, 3 iterations
10 “|-8-MAP, 1 iteration
-©- MAP, 2 iterations
-x-MAP, 3 iterations k

o0

4 4.5
Ep/No (dB)

3 35

Fig. 2. Performance comparison between PM (29) and brutefdAP (6) when the number of iterations is varied. We use
a 3 x 3 complex MIMO system,N; = N; = 6, with 16-QAM modulationM = 4, and a rate-1/2 LDPC code where each
codeword contains 2000 bits, and spans one channel réafizé&or PM, the number of columns over which the sum is
performed is equal to 3.
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Frame error rate

-=PM, r=1
- PM, r=2
—=PM, r=3
107 |-a- map
-©- Max-log

3 35 4 45
Ep/No (dB)

Fig. 3. Performance comparisons for PM (29), with differenimbersr of summed columns, brute-force MAP (6), and
brute-force Max-log (8). The number of demodulator-decatirations is 3 for all algorithms. All other simulation naaneters
remain the same as in Fig. 2.

V. CONCLUSION

A previously proposed method for MIMO detection with sofput and output, PM [8], has fixed
computational complexity, is straightforward to parale] and may operate arbitrarily close to the MAP
detector performance-wise, when using more computatipoakr. However, when using soft-input, this
scheme has until now only worked with BPSK modulation pet dimension.

This paper offers a new soft-input extension, for arbitrseparable constellations, to the PM method.
The computational complexity is not significantly incrediske a range of presented experiments, the new
method gives the nearly same FER performance as MAP deateMiareover, the PM algorithm performs
better than the Max-log algorithm. This last experimentainparison is important, since the fixed
complexity sphere decoder [6], [7] is based on the Max-lggpraihm. The proposed ZF-DF algorithm
is straightforward to generalize to non-separable coasimhs. In this case, the ZF-DF algorithm has to

search through a complex-valued constellation insteadrefibivalued constellation at each step.

APPENDIX A

COLUMN REORDERING

The purpose of Alg. 2 is to reorder the bits so that the “mo#tcdit” bits are dealt with by the
marginalization oves”® in (12). In effect, this minimizes the error propagation itgAl. For a more

thorough discussion of Alg. 2, see [8].
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Algorithm 2 Reordering of columns cH
1: LetZ = () (empty), and letZ¢ = [1,..., V{].
Compute) = diag((H"H)™!). Let k be the index of the largest element Jf
SetZ := [T Ij).
Remove thekth column ofH.
If H is empty, go to step 6, otherwise repeat from step 2.
Assume that the bib; that is to be detected is carried by the symbpdiefore permutation. Ifj is
elementZ; of Z, wherel > r, redefineZ := [Z1,...,Z,-1,5,Zr  Zr+1, - - - v Zi—1, Li415 - - - IN)-
7. RedefineH with its original element values that it had in step 1.
8: Rearrange the columns 8f and the scalar entries sfaccording tdZ. For performing the summation
in (29), the position of the symbgl that carries the bit should also be stored.
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