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Abstract
Brownian motion has met growing interest in mathematics, physics and par-
ticularly in finance since it was introduced in the beginning of the twentieth
century. Stochastic processes generalizing Brownian motion have influenced
many research fields theoretically and practically. Moreover, along with more
refined techniques in measure theory and functional analysis more stochastic
processes were constructed and studied. Lévy processes, with Brownian mo-
tion as a special case, have been of major interest in the recent decades. In
addition, Lévy processes include a number of other important processes as
special cases like Poisson processes and subordinators. They are also related
to stable processes.

In this thesis we generalize a result by S. Chandrasekhar [2] and Edward
Nelson who gave a detailed proof of this result in his book in 1967 [12].
In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied.
Physically this describes free particles performing a random and irregular
movement in water caused by collisions with the water molecules. In a further
step he introduces a nonlinear drift in the position variable, i.e. he studies the
case when these particles are exposed to an external field of force in physical
terms.

In this report, we aim to generalize the result of Edward Nelson to the
case of α-stable Lévy processes. In other words we replace the driving noise
of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and
introduce a scaling parameter β uniformly in front of all vector fields in the
cotangent space, even in front of the noise. This corresponds to time being
sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion
constant the stationary state of the velocity process (which is approached as
time tends to infinity) is the Boltzmann distribution of statistical mechanics.
The scaling limits we obtain in the absence and presence of a nonlinear drift
term by using the scaling property of the characteristic functions and time
change, can be extended to other types of processes rather than α-stable Lévy
processes.

In future, we will consider to generalize this one dimensional result to Eu-
clidean space of arbitrary finite dimension. A challenging task is to consider
the geodesic flow on the cotangent bundle of a Riemannian manifold with
scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck
process is defined on the tangent bundle of the real line and the driving Lévy
noise is defined on the cotangent space.

Keywords: Ornstein-Uhlenbeck position process, α-stable Lévy noise, scal-
ing limits, time change, stochastic Newton equations

v



Sammanfattning
Brownsk rörelse har fått allt större intresse i matematik, fysik och särskilt i
ekonomi sedan den introducerades i början av nittonhundratalet. Stokastiska
processer som generaliserar Brownsk rörelse har påverkat många forsknings-
områden teoretiskt och praktiskt. Dessutom konstruerades och studerades
mer stokastiska processer i samband med mer raffinerande metoder i måtte-
ori och funktionalanalys. Lévy processer, med Brownsk rörelse som ett spe-
cialfall, har fått ett stort intresse under de senaste decennierna. Dessutom
omfattar Lévy processer en rad andra viktiga processer som särskilda fall
som Poisson processer och subordinatorer. De är också relaterade till stabila
processer.

I denna avhandling generaliserar vi ett resultat av S. Chandrasekhar [2]
och av Edward Nelson som gav ett detaljerat bevis av detta resultat i sin
bok från 1967 [12]. I Nelsons första resultat studeras standard Ornstein-
Uhlenbeck. Fysikalisk beskriver detta fria partiklar som utför en slumpmässig
och en oregelbunden rörelse i vattnet som orsakas av kollisioner med vatten-
molekylerna. I ett ytterligare steg introducerar han en olinjär drift av posi-
tionsvariabeln, dvs han studerar i fysiskaliska termer fallet när partiklarna
utsätts för ett yttre kraftfält .

Vi kommer i denna rapport att generalisera resultatet av Edward Nelson
till fallet med α-stabila Lévy processer. Med andra ord ersätter vi det dri-
vande bruset för en standard Ornstein-Uhlenbeck process med ett α-stabilt
Lévy brus och inför en skalningsparameter β likformigt framför alla vektor-
fält i cotangensrummet och framför bruset. Detta motsvarar att tiden går
mot oändlighet. Med Chandrasekhars och Nelsons val av diffusionskonstan-
ten har det stationära tillståndet av hastighetsprocessen (som fås då tiden går
mot oändligheten) en Boltzmann fördelning av statistisk mekanik. Det skal-
ningsgränsvärde vi uppnår i närvaro och frånvaro av en olinjär drift genom
att använda skalningsegenskaper av karakteristiska funktioner och tidsför-
ändring kan utvidgas till andra typer av processer snarare än α-stabila Lévy
processer.

I framtiden tänker vi generalisera detta endimensionella resultat till eukli-
diska rummet för en godtycklig ändlig dimension. En utmanande uppgift är
att betrakta det geodetiska flödet på cotangensknippet av en Riemann mång-
fald med skalad drift och skalad Lévy brus. Geometrisk definieras Ornstein-
Uhlenbeck processen på tangentknippet av den reella linjen och det drivande
Lévy bruset definieras på cotangensrummet.

Nyckelord: Ornstein-Uhlenbeck processer, α-stabila Lévy brus, skalning
gränsvärde, tidsförändring, stokastisk Newton ekvationer
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Chapter 1

Introduction

Brownian motion has been the most intensively studied Lévy process in both
theory and applications. In fact, the studies of this process was initiated by a
kinematic physical problem. In the nineteenth century biologists and physi-
cists worked with phenomenas which finally lead to the Brownian motion we
know today. The most well known scientist amongst them is the Scottish
botanist Robert Brown who discovered it in 1827. In the beginning of the
twentieth century Einstein and Smoluckowski introduced it as a model for
the physical phenomenon of Brownian motion and Bachelier described with
it the evolution of stock prices. The latter was the first one to give a mathe-
matical theory of Brownian motion in 1900 in his PhD thesis ”The theory of
speculation”.

In 1905 Einstein published his first paper on Brownian motion which be-
came the keystone of a fully probabilistic formulation of statistical mechanics
and an important subject in physics. Moreover Einstein’s first paper con-
tained the cornerstone for the modern theory of stochastic processes, see [5].
In his model a microscopic particle experiences a random number of collisions.

Later on, in 1906 Smoluchowski presented a similar equation to the one of
Einstein. He worked on the molecular kinetic approach to Brownian motion
independently of Einstein. This equation became of high importance in the
theory of stochastic processes. This theory was placed a rigorous mathemat-
ical basis by Wiener in 1920.

Three years after Einstein i.e 1908, the French physicist Paul Langevin
initiated a different but likewise successful description of Brownian motion.
He showed that the time evolution of the position of the Brownian particle
itself can be described approximately by an equation which involves taking
into account a random force field rather than Einstein’s prediction of the
motion where the change in position is directly given by white noise. Both
descriptions have since then been generalized into mathematically distinct
but physically equivalent tools for studying an important class of continuous
random processes, see [9].

In 1930 L. S. Ornstein and G. E. Uhlenbeck studied a free particle in
Brownian motion moving in a gas and affected by a friction force proportional
to the pressure [13].
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Chapter 1. Introduction

Much more careful experiments supporting the kinetic theory were made
by Gouy, see [12] and by S. Chandrasekhar [2].

The main objective of the present thesis is to generalize the result given
in [12] which is based on Langevin equation and Ornstein-Uhlenbeck the-
ory [2]. We would like to mention that there exist other works in this direction
see e.g. the references given in [12]. The generalization we want to present
is based on a wider class than Brownian motion, namely Lévy processes.

In general, stochastic processes are mathematical models of random phe-
nomena evolving in time. Lévy processes are stochastic processes with in-
dependent increments where the increments are stationary in time. Their
trajectories admit, however, jumps even though they are continuous in prob-
ability.

The thesis is organized as follows. In chapter 1 we give a few basic ideas
about Lévy processes and stochastic integrals. While in chapter 2 we present
our two papers where the first one is the generalization of the limit given
in [12] without drift term and the second paper contains an additional non-
linear drift.

1.1 Infinite divisibility
Let us start to give some concepts which have a connection to Lévy processes
The characteristic function, or inverse Fourier transform, is the basic tool
in the analysis of the distributions of Lévy processes. Let X be a random
variable, taking values in IRd, defined on the probability space (Ω,F , P ) with
probability law pX . Then we define the characteristic function ΦX : IRd → C
as

ΦX(u) = E
(
ei(u,X)

)
=

∫
IRd

ei(u,y)pX(dy),

where u ∈ IRd.

Definition 1.1.1. If X is a random variable in IRd then we say that X is
infinitely divisible if there exist independent identically distributed random
variables Y1, . . . , Yn such that

X
d= Y1 + · · ·+ Yn,

for all n ∈ N.

Example 1.1.1 (Gaussian random variables). Let X = (X1, . . . , Xd) be
a random vector. We say that the random vector is Gaussian if it has a
probability density function (pdf) of the form

f(x) =
1

(2π)n/2
√

det(A)
e−

1
2 (x−m,A−1(x−m)),

2



1.2. Lévy-Khintchine formula

for all x ∈ IRd, where m ∈ IRd is a vector and A is d × d matrix. For
this we write that X has a Gaussian (normal) distribution with mean m and
covariance matrix A, i.e. X ∼ N(m,A).
Moreover, the characteristic function is given by

ΦX(u) = ei(m,u)− 1
2 (u,Au),

respectively
[ΦX(u)]1/n = ei( m

n ,u)− 1
2 (u, A

n u).

Thus, X is infinitely divisible with Yj ∼ N(m/n, A/n) for all 1 ≤ j ≤ n, see
e.g. [1, 19].

1.2 Lévy-Khintchine formula
This formula was established by Paul Lévy and A. Ya. Khintchine in 1930. It
was actually developed by de Finetti and Kolmogorov on IR in some special
cases, see [19]. This formula gives a representation of the characteristic
functions of all infinitely divisible random variables. Before we present the
Lévy-Khintchin theorem we need some preliminaries.
Let ν be a Borel measure defined on IRd/{0}, we say that ν is a Lévy measure
if ∫

IRd/{0}
(|y2| ∧ 1)ν(dy) < ∞,

where the symbol ∧ stands for the minimum. There are other alternatives to
characterize the Lévy measure, one of them is given by∫

IRd/{0}

|y|2

1 + |y|2
ν(dy) < ∞.

Of course one can define the Lévy measure on the whole IRd by letting
ν({0}) = 0 as it is in [19]. It is worth to mention here that the Lévy
measure we are dealing with later is of the form

ν(dx) =
{ c1

x1+α on (0,∞)
c2

|x|1+α on (−∞, 0)

where 0 < α < 2, c1 ≥ 0, c2 ≥ 0, and c1 + c2 ≥ 0.

Theorem 1.2.1. Let µ ∈ B, where B is a Borel set. If µ is infinitely
divisible then for all u ∈ IRd

Φµ(u) = exp
[
i(b, u)− 1

2
(u, Au)+

+
∫

IRd/{0}

(
ei(u,y) − 1− i(u, y)1D(y)

)
ν(dy)

]
, (1.1)
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Chapter 1. Introduction

where b ∈ IRd is a vector, A is a d×d matrix, ν is Lévy measure on IRd/{0},
D is the closed unit ball and 1D is the indicator function of D.
The converse is also true i.e. every mapping of the form (1.1) is the charac-
teristic function of an infinitely divisible probability measure on IRd.

1.3 Lévy processes

Let us give a formal definition of Lévy processes. We mention here that our
notation coincides with the one given in [1].

Definition 1.3.1. A stochastic process X = (X(t), t ≥ 0) on a probability
space (Ω,F , P ) is a Lévy process if the following conditions are satisfied

1. X0 = 0 almost surely.

2. For any n ∈ N and 0 ≤ t0 < t1 < · · · < tn, the random variables Xt0 ,
Xt1 −Xt0 , Xt2 −Xt1 ,. . . ,Xtn

−Xtn−1 are independent.

3. X has stationary increments, i.e. Xs+t −Xs
d= Xt.

4. X is stochastically continuous, i.e. for every s ≥ 0 and a > 0

lim
t→s

P (|Xt −Xs| > a) = 0.

5. The sample path are right-continuous with left limits almost surely
(càdlàg).

Lemma 1.3.1. If X = (X(t), t ≥ 0) is stochastically continuous, then the
map t → ΦX(t)(u) is continuous for each u ∈ IRd.

Proof. Let s, t ≥ 0 with t 6= s and write X(s, t) = X(t)−X(s). Fix u ∈ IRd.
Given any ε > 0 we can find δ1 > 0 such that

sup
0≤|y|<δ1

∣∣∣ei(u,y) − 1
∣∣∣ <

ε

2
, (1.2)

where the map y → ei(u,y) is continuous at the origin. And by stochastic
continuity we can find δ2 > 0 such that whenever 0 < |t − s| < δ2, we have

4



1.3. Lévy processes

P (|X(s, t)| > δ1) < ε
4 . Thus for all 0 < |t− s| < δ2 we have∣∣ΦX(t)(u)− ΦX(s)(u)

∣∣ =
∣∣∣∣∫

Ω

ei(u,X(s)(ω))
[
ei(u,X(s,t)(ω)) − 1

]
P (dω)

∣∣∣∣
≤

∫
IRd

∣∣∣ei(u,y) − 1
∣∣∣ pX(s,t)(dy)

=
∫

Bδ1 (0)

∣∣∣ei(u,y) − 1
∣∣∣ pX(s,t)(dy) +

∫
Bδ1 (0)c

∣∣∣ei(u,y) − 1
∣∣∣ pX(s,t)(dy)

≤ sup
0≤|y|<δ1

|ei(u,y) − 1|+ 2P (|X(s, t)| > δ1)

≤ ε

2
+ 2

ε

4
< ε

where we used (1.2) and P (|X(s, t)| > δ1) < ε
4 in the last step. Thus the

result follows.

Let us discuss the relationship between processes with stationary inde-
pendent increments, which hold for Lévy process, and infinitely divisible dis-
tributions.

Lemma 1.3.2. The characteristic function of a Lévy process X is given by

ΦXt(u) = etη(u),

where u ∈ IRd, t ≥ 0, and η is the Lévy symbol of X(1).

Proof. Since by assumption Xt is a Lévy process which has stationary, inde-
pendent increments we can write

ΦX(t+s)(u) = E
(
ei(u,X(t+s))

)
= E

(
ei(u,X(t+s)−X(t))ei(u,X(t))

)
= E

(
ei(u,X(t+s)−X(t))

)
E

(
ei(u,X(t))

)
= E

(
ei(u,X(s))

)
E

(
ei(u,X(t))

)
= ΦX(s)(u)ΦX(t)(u). (1.3)

Because of the continuity in probability, Lemma 1.3.1, we conclude that
ΦX(t)(u) is continuous with respect to t. However, the unique solution of (1.3)
and ΦX(0)(u) = 1 is ΦX(t)(u) = etη(u), for some function η : IRd → C.
Furthermore ΦX(1)(u) = eη(u) which implies that ΦX(t)(u) = (ΦX(1)(u))t.
In addition we have that the Lévy-Khinchine formula for a Lévy process
X = (X(t), t ≥ 0) is

Φµ(u) = exp
[
t

(
i(b, u)− 1

2
(u, Au)+

+
∫

IRd/{0}

(
ei(u,y) − 1− i(u, y)1D(y)

)
ν(dy)

)]
,

5



Chapter 1. Introduction

for each t ≥ 0, u ∈ IRd, where (b, A, ν) are the characteristics of X(1).

Theorem 1.3.3. If X = (X(t), t ≥ 0) is a stochastic process and there exists
a sequence of Lévy processes (Xn, n ∈ N) such that each Xn = (Xn(t), t ≥ 0)
converges in probability to X(t) for each t ≥ 0 and

lim
n→∞

lim sup
t→0

P (|Xn(t)−X(t)| > a) = 0,

for all a > 0, then X is a Lévy process [1].

Proof. We see that the first condition of the definition of Lévy processes is
satisfied from the fact that (Xn(0), n ∈ N) has a subsequence converging to
0 almost surely. For the third condition we obtain stationary increments by
observing that for each u ∈ IRd, 0 ≤ s < t < ∞,

E
(
ei(u,X(t)−X(s))

)
= lim

n→∞
E

(
ei(u,Xn(t)−Xn(s))

)
= lim

n→∞
E

(
ei(u,Xn(t−s))

)
= E

(
ei(u,X(t−s))

)
,

where the convergence of the characteristic function follows by the argument
used in Lemma 1.3.1 and the dominated convergence theorem is used in the
last equality. The independence of the increments is proved similarly.
Since the limit process X was shown to be stationary it suffices to show
continuity at t = 0. We have for each a > 0, t ≥ 0, n ∈ N due to monotonicity
of probability measures that

P (|X(t)| > a) ≤ P (|X(t)−Xn(t)|+ |Xn(t)| > a)

≤ P
(
|X(t)−Xn(t)| > a

2

)
+ P

(
|Xn(t)| > a

2

)
and

lim sup
t→0

P (|X(t)| > a)

≤ lim sup
t→0

P
(
|X(t)−Xn(t)| > a

2

)
+ lim sup

t→0
P

(
|Xn(t)| > a

2

)
. (1.4)

As each Xn is a Lévy process we find

lim sup
t→0

P
(
|Xn(t)| > a

2

)
= lim

t→0
P

(
|Xn(t)| > a

2

)
= 0,

hence the result follows by taking limn→∞ in (1.4).
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1.3. Lévy processes

1.3.1 Examples of Lévy processes
In the sequel we introduce the most prominent and frequently used examples
of Lévy processes. For more details and examples see i.e. [1; 8]

1.3.1.1 Brownian motion From the definition of a Lévy process we see
that Brownian motion in IRd is a Lévy process which possess even continuous
sample paths almost surely, see [6; 7; 14; 15; 16]. The well known Gaussian
distribution with mean 0 and variance t has the probability density function

f(u) =
1√
2π

e−
1
2 u2

.

Then the characteristic function of the standard Brownian motion B =
(B(t), t ≥ 0) is given by

ΦB(t)(u) = e−
1
2 t|u|2 =

[
e
− 1

2 t
∣∣∣ u√

n

∣∣∣2]n

,

which shows that it is an infinitely divisible distribution. Moreover η = − |u|2
2

is called the characteristic exponent or Lévy symbol. For more details and
deeper studies of Brownian motion we refer to i.e. Sato [19], Revuz and
Yor [16], and Karatzas and Shreve [7].

1.3.1.2 Poisson processes For λ > 0 we consider the probability dis-
tribution of a Possion process with parameter λ:

P (n) =
(λ)n

n!
e−λ.

The characteristic function is obtained by calculating∑
n≥0

eiθnP (n) = e−λ(1−eiθ) =
[
e−

λ
n (1−eiθ)

]n

. (1.5)

Thus, the characteristic function is in fact the sum of n independent Poisson
processes with parameter λ/n as given by the right hand side of (1.5). More-
over, for the Poisson processes with parameter λt the characteristic function
is given by

E(eiθNt) = e−λt(1−eiθ),

and the characteristic exponent is η = λ(1 − eiθ) for any θ ∈ IR. Poisson
processes are called jump processes because they jump up to a higher state
each time an event occurs. The applications of Poisson processes can be
frequently seen in insurance mathematics.

7



Chapter 1. Introduction

1.3.1.3 Compound Poisson processes The compound Poisson pro-
cesses is defined as

Y (t) = Z(1) + · · ·+ Z(N(t)),

where Z(n), n ∈ N, is a sequence of independent identically distributed ran-
dom variables taking values in IRd with common law µZ and N is a Poisson
process with parameter λ > 0. One can verify the properties specified in Def-
inition 1.3.1 in the case of Compound Poisson processes i.e. Y (0) = 0 almost
surely and Y (t) has stationary independent increments. The continuity in
probability can be achieved by considering

P (|Y (t)| > a) =
∞∑

n=0

P [|Z(1) + · · ·+ Z(n)| > a]P (N(t) = n),

where by the dominated convergence theorem we obtain the required result.
The characteristic function of a Compound Poisson process can be deter-
mined as follows

ΦX(u) =
∞∑
0

E (exp [i(u, Z(1) + · · ·+ Z(N))] |N = n) P (N = n)

=
∞∑
0

E (exp [i(u, Z(1) + · · ·+ Z(N))]) e−λ λn

n!

= e−λ
∞∑
0

(λΦZ(u))n

n!

= exp (λ (ΦZ(u)− 1)) ,

where we used independence and Taylor expansion. If we insert ΦZ(u) =∫
IRd ei(u,y)µZ(dy) we obtain the characteristic function of the Compound

Poisson process, i.e. ΦX(u) = exp
[∫

IRd

(
ei(u,y) − 1

)
λµZ(dy)

]
.

1.3.2 Stable Lévy processes
A stable Lévy process X is a Lévy process where each X(t) is a stable random
variable. And a random variable X(t) is said to have stable distribution if
for all n ≥ 1 the following equality holds in distribution

X1 + · · ·+ Xn
d= anX + bn,

where X1, . . . , Xn are independent copies of X, an > 0 and bn ∈ IR. If
an = n1/α for 0 < α ≤ 2 and bn = 0 we obtain

X1 + · · ·+ Xn
d= n1/αX,

8



1.4. Stochastic integrals

which classifies strictly stable distributions, see [18]. One may see that for
the case α = 2 we retrieve the case of Gaussian random variables with char-
acteristic exponent of the form

η(u) = iµu− 1
2
σ2u2.

On the other hand the characteristic exponents of stable Lévy process when
α ∈ (0, 1) ∪ (1, 2) is given by

η(u) = iµu− σα|u|α
[
1− iβ sgn (u) tan

(πα

2

)]
, (1.6a)

and the characteristic exponent when α = 1 is given by

η1(u) = iµu− σ|u|
[
1 + iβ

2
π

sgn (u) log (|u|)
]

, (1.6b)

where β ∈ [−1, 1], σ > 0 and µ ∈ IR. In terms of Lévy measure the represen-
tation is given by

i(b, u)− 1
2
(u, Au) +

∫
IRd/{0}

(
ei(u,y) − 1− i(u, y)1D(y)

)
ν(dy),

where b ∈ IRd is a vector, A is a d× d matrix, ν is Lévy measure on IRd/{0},
D is the closed unit ball and 1D is the indicator function of D, see [1; 19]. It
is worth mentioning that stable Lévy processes have many important appli-
cations because they exhibit self-similarity property, see [3].

1.4 Stochastic integrals
In calculus, the Riemann-Steljes integral is defined by a limiting procedure
arising from partitions getting finer. One defines the integral of a function in
such a way that the integral represents the area under the graph. The next
step is to extend the notion to a larger class of functions by approximation
i.e. the integral of a function is defined as the limit of the sum of the function
in subintervals in some sense.
One proceeds in the same way when defining the Itô integral i.e. by an
approximation procedure. But here the step function is replaced by a process
which is actually a random step function. The integral is then in several steps
extended to larger classes of processes by taking the limit of the sum. By
construction the integrator is not more deterministic in contrast to Riemann-
Steljes integral rather than stochastic with respect to some process.
The most famous one is the one with respect to Brownian motion. One call
this type Itô integrals after the discoverer Kiyoshi Itô. This kind of integral

9



Chapter 1. Introduction

has been used widely in different field of mathematics and its applications [6;
7; 14; 15; 16]. The corresponding differential calculus, the Itô calculus extends
the calculus of differential equations to one having stochastic processes as its
driving process. Let us give a formal definition of the stochastic integrals

Definition 1.4.1. Let Bt be a Brownian motion of dimension 1 on a prob-
ability space (Ω,F , P ). Then a stochastic integral is a stochastic process Yt

on (Ω,F , P ) of the form

Yt = Y0 +
∫ t

0

u(s, ω)ds +
∫ t

0

v(s, ω)dBs,

where u and v are functions in IR. One may sometimes write this integral
equation in a shorter differential form

dYt = udt + vdBt.

For more details about stochastic integrals with respect to Brownian mo-
tion we refer to i.e. [6; 7; 14; 15; 16].
Let us now present the Itô formula where the same references as above are
applied. For a generalization of this result see [4; 17].
Let xt be an Itô process, i.e. a stochastic process such that

dxt = udt + vdBt.

Let g(t, x) ∈ C2([0,∞] × IR) be twice continuously differentiable function
then Yt = g(t, Xt) is also an Itô process and the Itô formula reads

dYt =
∂g

∂t
(t, xt)dt +

∂g

∂x
(t, xt)dxt +

1
2

∂2g

∂x2
(t, xt) · (dxt)2,

=
(

∂g

∂t
+ u

∂g

∂x
+

v2

2
∂2g

∂x2

)
dt + v

∂g

∂x
dBt

where one use the rules dt · dt = dt · dBt = dBt · dt = 0 and dBt · dBt = dt.
Yt is again an Itô process.

Let us take an example which is suitable for our calculations later on.
Consider g(t, Bt) = etBt . Here g(t, x) = etx is twice continuous differentiable
function. We have ∂

∂tg = xetx, ∂
∂xg = tetx and ∂2

∂x2 g = t2etx. Thus we use
Itô formula to obtain

d(etBt) = etBtBtdt + tetBtdBt +
1
2
t2etxdt

= etBt

(
Bt +

1
2
t2etx

)
dt + tetBtdBt.

10



1.4. Stochastic integrals

From the Itô formula we can derive the integration by parts formula i.e.
suppose the function f(s) is continuous and of bounded variation with respect
to s ∈ [0, t], then

∫ t

0

f(s)dBs = f(t)Bt −
∫ t

0

Bsdf(s),

where the second integral is a Stieltjes integral i.e. an appropriate limit of
the sum

∑
j B(tj) (f(tj+1)− f(tj)).

Of course the driving process for the stochastic integral above need not be
Brownian motion. Recently Lévy processes have been of big interest in
stochastic analysis and its applications. There are a lot of publications using
the stochastic integral with respect to a Lévy process. Keeping in mind that
a Lévy process has a Poisson and a Brownian part we say that the stochastic
process Y = (Y (t), t ≥ 0) in IRd is a Lévy-type stochastic integral if it can
be written in the following form

Y (t) = Y (0) +
∫ t

0

G(s)ds +
∫ t

0

F (s)dB(s)

+
∫ t

0

∫
|x|<1

H(s, x)Ñ(ds, dx) +
∫ t

0

∫
|x|≥1

K(s, x)Ñ(ds, dx), (1.7)

or it can be written as

dY (t) = G(t)dt + F (t)dB(t) +
∫
|x|<1

H(t, x)Ñ(dt, dx)

+
∫
|x|≥1

K(t, x)N(dt, dx), (1.8)

where G, F, H are predictable mappings F : [0, T ] × E × Ω → IR for which
P

(∫ T

0

∫
E
|F (t, x)|2ν(dx)dt < ∞

)
= 1 , with ν as a Lévy measure and K is

predictable. Moreover, B is a standard Brownian motion and N is an inde-
pendent Possion process on IR+×IRd/{0} with compensator Ñ = N(ds, dx)−
dsν(dx), where ν is the intensity measure which is assumed to be a Lévy mea-
sure.
If Y is a Lévy-type stochastic integral of the form (1.8) then for each f ∈

11



Chapter 1. Introduction

C2(IRd), t ≥ 0 with probability 1 the Itô formula is given by

df(Y (t)) = f ′(Y (t))G(t)dt + f ′(Y (t))F (t)dBt +
1
2
f ′′(Y (t))F (t)2dt

+
∫
|x|≥1

[f(Y (t−) + K(t, x))− f(Y (t−))]N(dt, dx)

+
∫

0<|x|<1

[f(Y (t−) + H(t, x))− f(Y (t−))] Ñ(dt, dx)

+
∫

0<|x|<1

[f(Y (t−) + H(t, x))− f(Y (t−))

−H(t, x)f ′(Y (t−))] ν(dx)dt.

For more details about Lévy-type stochastic integral, Itô formula and in-
tegration by parts we refer to the book by Applebaum [1] and references
therein.

1.5 Ornstein-Uhlenbeck processes

Let us take a physical point of view, i.e. let us assume that x(t) is the position
of a Brownian particle at time t which exhibits a velocity v(t) = d

dtx(t),
t ≥ 0, in distributional sense. Ornstein and Uhlenbeck studied this type of
motion and argued that the total force on the particle is a sum of random
bombardments between the particles in the fluid and a frictional force which
damps the motion. Using Newton’s law one can write

m
dv

dt
= −βmv + m

dB

dt
,

where β > 0, m is the mass of the particle. In the form of a stochastic
differential equation we write the latter equation as

dv(t) = −βv(t)dt + dB(t).

In order to find the solution of this stochastic differential equation one uses
Itô formula to obtain

v(t) = e−βtv0 +
∫ t

0

e−β(t−s)dBs,

which we call in our work Ornstein-Uhlenbeck velocity process. For a deeper
insight in the Ornstein-Uhlenbeck theory we refer to [2; 12] and for the exis-
tence and uniqueness we refer to e.g. [6; 15].
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1.6. Time change

1.6 Time change
One can transform one stochastic process into another one by extending or
shrinking the time scale. One possibility is to use the random time change , a
pathwise change of time scale. Here we give a short introduction to random
time change in the case of Brownian motion.

Theorem 1.6.1. Let dYt =
∑n

i=1 vi(t, ω)dBi(t, ω), Y0 = 0, where B =
(B1, . . . , Bn) is a Brownian motion in IRd. Then

B̂t = Yat
, is a 1-dimensional Brownian motion

where at = inf {s; bs > t} is the right inverse of

bs =
∫ s

0

{
n∑

i=1

v2
i (r, ω)

}
dr.

This means that at is a random time change as defined in [14]. For more
details about random time change we refer to [14; 15]. And for time change
with respect to càdlàg processes and Lévy processes we refer to [10; 11; 19]
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Abstract. Brownian motion has been constructed in different ways. Einstein was the most out-
standing physicists involved in its construction. From a physical point of view a dynamical theory
of Brownian motion was favorable. The Ornstein-Uhlenbeck process models such a dynamical the-
ory and E. Nelson amongst others derived Brownian motion from Ornstein-Uhlenbeck theory via a
scaling limit. In this paper we extend the scaling result to α-stable Lévy processes.
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1. INTRODUCTION

Anyone looking at water through a microscope is apt to see little things moving around.
Robert Brown conducted a systematic investigation of this motion showing in particular
that it was not vital in origin but the chaotic perpetual motion of small particles which
is the result of collisions with the molecules of the surrounding fluid. The molecular
collisions with the particle occur in very rapid succession. Hence the mean free path of
the molecules is small compared with the particle’s size respectively the relaxation time
β−1 between two successive collisions is small.
The Einstein-Smoluchowski theory is different from Newtonian mechanics of parti-
cles although numerically, i.e. experimentally, indistinguishable from the Ornstein-
Uhlenbeck theory which describes a dynamical model. Examples where the Einstein-
Smoluchswski theory breaks down but the Ornstein-Uhlenbeck theory is successful may
be found in the book by E. Nelson [3].
In the physical model x(t) describes the position of the Browninan particle at time
t > 0. It is assumed that the velocity dx

dt = v exists and satisfies the Langevin equation.
Mathematically the two ordinary differential equations combine to the initial value
problem:

dxt = vt dt
dvt =−βvtdt +dBt ,

(1)

with initial value (x0,v0) = (x(0),v(0)), where Bt , t ≥ 0, is mathematical Brownian
motion on the real line and β > 0 is a constant which physically represents the inverse
relaxation time between two successive collisions.



The solution of system (1) is

vt = e−β tv0 +
∫ t

0
e−β (t−u)dBu,

which is called Ornstein-Uhlenbeck velocity process, and

xt = x0 +
∫ t

0
e−β sv0ds+

∫ t

0

∫ s

0
e−β seβudBuds, (2)

which is called Ornstein-Uhlenbeck position process.
For β tending to infinity the Ornstein-Uhlenbeck position process converges to Brown-
inan motion. A mathematically rigorous exposition of the limiting procedure is given
in [3, chap. 9] as well as further references. We stress that Nelson is not using stan-

dard Brownian motion but introduces the diffusion constant
√

2βkT
m where k, m, T are

physical constants.

2. α-STABLE LÉVY NOISE CASE

In this paper we introduce a modified Ornstein-Uhlenbeck position process driven by
βXt , where {Xt}t≥0 is an α-stable Lévy process, 0 < α < 2 and β > 0 is a scaling
parameter as above

xt = x0 +
∫ t

0
e−β sv0ds+

∫ t

0

∫ s

0
e−β seβu

βdXuds. (3)

The second term of (3), a double integral, includes a stochastic integral with respect to
a Lévy process the existence of which is guaranteed e.g. by the results in [1, section 4.2].

Our notation coincides with the one in [1] from where we also recall that for arbitrary
Lévy processes Y the characteristic function is of the form φYt (u) = etη(u) for each
u ∈ IR, t ≥ 0, where η is called the Lévy-symbol of Y (1). For a centered α-stable Lévy
processes the Lévy-symbol for α 6= 1 is given by:

η(u) =−σ
α |u|α

[
1− iβ sgn(u) tan

(
πα

2

)]
(4a)

and for α = 1 is given by:

η1(u) =−σ |u|
[

1+ iβ
2
π

sgn(u) log(|u|)
]
. (4b)

Proposition 2.1. Assume that Y is an α-stable Lévy process, 0 < α < 2, and g is a
continuous function on the interval [s, t]⊂ T  IR. Let η be the Lévy symbol of Y1 and ξ

be the Lévy symbol of ψ(t) =
∫ t

s g(r)dYr. Then we have

ξ (u) =
∫ t

s
η(ug(r))dr .



The proof is a direct consequence of Theorem 1 in [2].

For g(`) = eβ (`−t), ` ≥ 0 and the α-stable process X in (3) the symbol of
Zt =

∫ t
s eβ (r−t) dXr is:

ξ (u) =

{ ∫ t
s eαβ (r−t) dr ·η(u) for 0 < α < 2,α 6= 1∫ t
s eαβ (r−t) dr ·η1(u) for α = 1

with η , η1 as in (4a) and (4b), respectively, and 0 ≤ s ≤ t. We are thus lead to introduce
the random time change τ−1(t) where

τ(t) =
∫ t

0
e−αβ teαβudu =

1
αβ

(
1− e−αβ t

)
which is actually deterministic. This means that X and Zτ−1(t) have the same distribution.
Let us now formulate the main result of this paper.

Theorem 2.1. Let t1 < t2, t1, t2 ∈ T and T a compact subset of [0,∞). Then for every
δ > 0 there exists ε > 0 depending on N1 and N2 satisfying:

(i) t2− t1 ≥
N1

β
and (ii) β

α ≥ N2vα
0 , (5)

with 0 < α < 2 such that

IP[|xt −Xt |> ε] < δ

for any t1 ≤ t ≤ t2 where {xt}t≥0 is the Ornstein-Uhlenbeck position process (3) and
{Xt}t≥0 is its driving α-stable Lévy Noise.

Proof. The statement of the theorem means that the Ornstein-Uhlenbeck-type position
process xt in (3) converges uniformly to Xt on any compact subset of the time axis [0,∞)
almost surely as N1 and N2 tend to infinity. The increment of the Ornstein-Uhlenbeck
process (3) is given by

x̃t =
∫ t2

t1
e−β sv0ds+

∫ t2

t1

∫ s

0
e−β (s−u)

βdXuds, (6)

where the first integral of (6) is
∫ t2

t1 e−β sv0ds = v0
β

(
e−β t1 − e−β t2

)
. From now on let us

denote ∆t = t2− t1.
Taking the latter expression to the power α , where 0 < α < 2, and taking into account
that e−β t1 − e−β t2 ≤ 1 we obtain that

vα
0

β α

∣∣∣e−β t1 − e−β t2
∣∣∣α

=
vα

0
β α

e−αβ t1
∣∣∣−(1− e−β∆t)

∣∣∣α

≤ 1
N2

e−αN1
∣∣−(1− e−N1)

∣∣α
,

where we used ((5)(i),(ii)) and the fact that e−αβ t1 ≤ e−α ′N1 , where α ′ = α min{s∈ T}.



If we choose N1 and N2 large enough then 1
N2

e−αN1
∣∣−(1− e−N1)

∣∣α tends to zero as
N1,N2 tend to infinity.

The second part of (6) is estimated by first splitting the double integral into two integrals.
We have

β

[∫ t2

t1

∫ s

t1
e−β seβudXuds+

∫ t2

t1

∫ t1

0
e−β seβudXuds

]
(7)

The double integral of the second part of (7) can be written as

β

∫ t2

t1

∫ t1

0
e−β seβu dXuds = βZτ(t1)

∫ t2

t1
e−β seβ t1ds =−Zτ(t1)

(
e−β t2 − e−β t1

)
eβ t1

=
(

1− e−β∆t
)

Z 1
αβ

(1−e−αβ t1) =
1

α
√

β

(
1− e−β∆t

)
Z 1

α (1−e−αβ t1)

where we used that Z is an α-stable Lévy process. Moreover, the scaling property of
Lévy processes we used in the last step, i.e. Zγτ = γαZτ , where γ > 0, is actually a
special case of Proposition 2.1. Using the assumption (5(i)) we obtain

e−β∆t ≤ e−N1.

Thus, for N1 and N2 tending to infinity, the latter expression converges to zero and
Z 1

α (1−e−αβ t1) converges to Z 1
α

a.e. which is almost surely finite. Hence the product
converges almost surely to zero.

Let us turn to the first part of (7), we use partial integration to have

β

∫ t2

t1

∫ s

t1
e−β seβudXuds = −

[
e−β s

∫ s

t1
eβudXu

]t2

t1
+

∫ t2

t1
e−β seβ sdXs

= −e−β t2
∫ t2

t1
eβudXu +(Xt2 −Xt1)

By introducing a random time change similar to the one before, for the first term on the
right hand side of (8) we obtain

−e−β t2
∫ t2

t1
eβudXu = Z 1

αβ
(1−e−αβ∆t) =

1
α
√

β
Z 1

α (1−e−αβ∆t)

where we used again the scaling property of Lévy processes Zγτ = γαZτ with γ > 0.
By assumption (5(i)) we see that e−αβ∆t ≤ e−αN1 which tends to zero for large N1
and Z 1

α (1−e−αβ∆t) converges to Z 1
α

. In analogy to the argument above the product
1

α
√

β
Z 1

α (1−e−N1) tends to zero almost surely for N1 and N2 tending to infinity.



This means that the increments of the Ornstein-Uhlenbeck position process are the sum
of the increments of the originally driving α-stable Lévy process

Xt2 −Xt1,

and three terms which are uniformly bounded by e−N1 and e−N2 for all t1, t2 ∈ T , T a
compact subset of [0,∞), and which converge to zero as N1 and N2 tend to infinity.
Since we have uniform convergence to zero we need not consider that we have been
using versions of the error terms in the course of estimation.
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Abstract

Edward Nelson derived Brownian motion from Ornstein-Uhlenbeck
theory by a scaling limit. Previously we extended the scaling limit to
an Ornstein-Uhlenbeck process driven by an α-stable Lévy process. In
this paper we extend the scaling result to α-stable Lévy processes in
the presence of a nonlinear drift, an external field of force in physical
terms.
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1 Introduction

In [10] E. Nelson constructed Brownian motion as a scaling limit of a one
parameter family of Ornstein-Uhlenbeck position processes. See also the
references in [10] for previous results. In a further step he extended the
scaling limit by adding a nonlinear drift to the evolution equation in the
cotangent space. Processes of this type are solutions of stochastic Newton
equations which where studied e.g. in [1; 2; 9]. Geometrically the Ornstein-
Uhlenbeck process is defined on the tangent bundle of the real line. The
driving Brownian motion of the system is defined in the tangent space. The
scaling procedure recovers the driving process in the limit and a drift term
which physically represents the external field of force, see [10].
In our previous work [3] we have extended the result in [10] to α-stable Lévy
processes. In this paper we introduce Ornstein-Uhlenbeck processes driven
by an α-stable Lévy process as in [3] with an additional nonlinear drift term
(βK), β > 0. For the new model we derive the limit, but first let us give
a description of the case where the Ornstein-Uhlenbeck position process is
driven by a Brownian motion.

∗E-mail: haidar.al-talibi@lnu.se
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In physical models x(t) describes the position of a particle at time t > 0.
It is assumed that the velocity dx

dt = v exists and satisfies the Langevin
equation with an additional nonlinear drift. Mathematically the two ordinary
differential equations combine to the initial value problem:

dxt = vt dt

dvt = −βvtdt+ βK(xt)dt+ dBt,
(1)

with initial value (x0, v0) = (x(0), v(0)), where Bt, t ≥ 0, is mathematical
Brownian motion on the real line, β > 0 is a constant which physically
represents the inverse relaxation time between two successive collisions, and
K(xt) is a nonlinear drift. As mentioned before we assume that a global
solution exists. Sufficient conditions for the existence of a unique solution of
(1) can be found in e.g. [2; 9] and references therein.
The solution of system (1) is

vt = e−βtv0 + β

∫ t

0
e−β(t−u)K(xu)du+

∫ t

0
e−β(t−u)dBu,

which is called velocity process, and

xt = x0+
∫ t

0
e−βsv0ds+β

∫ t

0

∫ s

0
e−β(s−u)K(xu)duds+

∫ t

0

∫ s

0
e−βseβudBuds,

(2)
which is called position process. We introduce this physical notation for
the solution to the stochastic Newton equation since it is more adequate
for our studies than the mathematical one. For β tending to infinity the
position process converges almost surely to Brownian motion with drift. A
rigorous description of the limiting procedure is given in [10, chap. 10]. We
emphasize that Nelson is not using standard Brownian motion but introduces

the diffusion constant
√

2βkT
m where k, m, T are physical constants.

2 Driving Lévy Noise with an External Force

Let us modify the stochastic Newton equation (1) as in [3]. We introduce
a stochastic Newton equation driven by βXt, where {Xt}t≥0 is an α-stable
Lévy process, with 0 < α < 2 and β is a scaling parameter. Sufficient
conditions for the existence of a unique solution may be found in [4; 6;
7]. In this case the solution of this stochastic differential equation can be
represented as given in the proposition below.

Proposition 2.1. Let A be a linear map from IR to IR. Furthermore, let X
be a Lévy process on IR. Let f : [0,∞] → IR be a continuous function. Then
the solution of the stochastic differential equation

dxt = Axtdt+ f(t)dt+ dXt, t ≥ 0,

2



with initial value x(0) = x0, is

xt = eAtx0 +
∫ t

0
eA(t−s)f(s)ds+

∫ t

0
eA(t−s)dXs.

Proof. We derive the representation of the solution using integration by parts
or Itô formula, respectively, i.e.

e−Atxt = x0 +
∫ t

0
xs

(
−Ae−As

)
ds+

∫ t

0
e−Asdxs,

and inserting for dxt = Axtdt+ f(t)dt+ dXt we obtain

e−Atxt = x0 +
∫ t

0
e−Asf(s)ds+

∫ t

0
e−AsdXs,

which finishes the proof of the proposition.

For simplicity reason we treat the case where K in (1) is independent of
time. Then the stochastic Newton equation is given by

dxt = vt dt

dvt = −βvtdt+ βK(xt)dt+ βdXt,
(3)

where β > 0 and K satisfies sufficient conditions to guarantee existence and
uniqueness of solutions see e.g. [4; 7]. Let us focus on the position process
{xt}t≥0. Due to Proposition 2.1 it has the form

xt = x0+
∫ t

0
e−βsv0ds+β

∫ t

0

∫ s

0
e−β(s−u)K(xu)duds+

∫ t

0

∫ s

0
βe−βseβudXuds.

(4)
There is a natural extension of these results to IRd, d > 1. We observe that
the third term in (4), a double integral, includes a stochastic integral with
respect to a Lévy process.
Our notation coincides with the one in [4] from where we also recall that
for arbitrary Lévy processes Y the characteristic function is of the form
φYt(u) = etη(u) for each u ∈ IR, t ≥ 0, where η is the Lévy-symbol of Y (1).
For a centered α-stable Lévy processes the Lévy-symbol at t = 1 for α 6= 1
is given by:

η(u) = −σα|u|α
[
1− iβ sgn (u) tan

(πα
2

)]
, (5a)

and for α = 1 is given by:

η1(u) = −σ|u|
[
1 + iβ

2
π

sgn (u) log (|u|)
]
. (5b)
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Proposition 2.2. Assume that Y is an α-stable Lévy process, 0 < α < 2,
and g is a continuous function on the interval [s, t] ⊂ T  IR. Let η be the
Lévy symbol of Y1 and ξt be the Lévy symbol of ψ(t) =

∫ t
s g(r) dYr. Then we

have

ξt(u) =
∫ t

s
η(ug(r)) dr .

The proof is a direct consequence of Theorem 1 in [8].
For g(`) = eβ(`−t), ` ≥ 0, and the α-stable process X in (4) the symbol of
Zt =

∫ t
s e

β(r−t) dXr is:

ξ(u) =

{ ∫ t
s e

αβ(r−t) dr · η(u), for 0 < α < 2, α 6= 1∫ t
s e

αβ(r−t) dr · η1(u), for α = 1

with η, η1 as in (5a) and (5b), respectively, and 0 ≤ s ≤ t. We are thus
lead to introduce the time change τ−1(t) where

τ(t) =
∫ t

0
e−αβteαβudu =

1
αβ

(
1− e−αβt

)
, (6)

which is actually deterministic. This means that Xt and Zτ−1(t) have the
same distribution.

3 Scaling limit for the stochastic Newton equation

Let us now formulate the main result of this paper.

Theorem 3.1. Let t1 < t2, t1, t2 ∈ T , T a compact subset of [0,∞), and
β > 0. Assume that N1 > 0 and N2 > 0 satisfy

(i) t2 − t1 ≥
N1

β
and (ii) βα ≥ N2v

α
0 , (7)

with 0 < α < 2. Furthermore, let

dyt = K(yt)dt+ dXt, (8)

with y(0) = x0 and K : IR→ IR satisfy a global Lipschitz condition, then for
N1 and N2 tending to infinity we have

lim
β→∞

xt = yt, (9)

in probability for any t ∈ T , where {xt}t≥0 is the position process (4) and
{yt}t≥0 is the solution of (8) with {Xt}t≥0 as its driving α-stable Lévy noise.
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Proof. The statement of the theorem means that the position process xt

in (4) converges uniformly in probability to yt on any compact subset of
the time axis [0,∞), as N1 and N2 tend to infinity. The increment of the
process (4), according to Proposition 2.1, is given by

xt2 − xt1 =
∫ t2

t1

e−βsv0ds+ β

∫ t2

t1

∫ s

0
e−β(s−u)K(xu)duds+∫ t2

t1

∫ s

0
e−β(s−u)βdXuds. (10)

From now on let us denote ∆t = t2 − t1. The first integral of (10) tends to
zero as β tends to infinity, see [3].

The third part of (10) is estimated by first splitting the double integral
into two integrals. We have

β

[∫ t2

t1

∫ s

t1

e−βseβudXuds+
∫ t2

t1

∫ t1

0
e−βseβudXuds

]
. (11)

The double integral of the second part of (11) tends to zero as β and N1

tend to infinity. For more details we refer to [3].
Let us turn to the first part of (11) which reveals the increment of the

driving Lévy process. We use partial integration to have

β

∫ t2

t1

∫ s

t1

e−βseβudXuds = −e−βt2

∫ t2

t1

eβudXu + (Xt2 −Xt1) . (12)

By introducing a time change in analogy to (6) on the right hand side of (12)
we obtain

−e−βt2

∫ t2

t1

eβudXu = Z 1
αβ (1−e−αβ∆t) =

1
α
√
β
Z 1

α(1−e−αβ∆t),

where we used the scaling property of α-stable Lévy processes, i.e. Zγτ
∆=

γαZτ with γ > 0.
By assumption (7(i)) we see that e−αβ∆t ≤ e−αN1 which tends to zero when
N1 tends to infinity and Z 1

α(1−e−αβ∆t) converges to Z 1
α
. In analogy to the

argument above the product 1
α√β
Z 1

α(1−e−N1) tends to zero almost surely for
N1 and N2 tending to infinity.
This means that the increments related to the position process, i.e. the terms
independent of the drift K, are the sum of the increments of the originally
driving α-stable Lévy process

Xt2 −Xt1 ,
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and three terms which are uniformly bounded by e−N1 and e−N2 for all
t1, t2 ∈ T , T a compact subset of [0,∞), and which converge to zero as N1

and N2 tend to infinity.
The second term in (10) can be rewritten as∫ t2

t1

βe−βs

∫ s

0
eβuK(xu)duds.

Let t1 = 0 we obtain ∫ t2

0
βe−βs

∫ s

0
eβuK(xu)duds.

Using integration by parts, we obtain[
−e−βs

∫ s

0
eβuK(xu)du

]t2

0

+
∫ t2

0
K(xs)ds = −e−βt2

∫ t2

0
eβuK(xu)du+

+
∫ t2

0
K(xs)ds. (13)

The first integral of (13) can be estimated by∣∣∣∣∫ t2

0
e−β(t2−u)K(xu)du

∣∣∣∣ ≤
∫ t2

0
e−β(t2−u) |K(xu)−K(x0)| du+

+K(x0)
∫ t2

0
e−β(t2−u)du. (14)

The last integral of (14) is K(x0)
(
− 1

β + 1
β e
−βt2

)
which tends to zero as β

tends to infinity. Let κ be the Lipschitz constant of K i.e. |K(x1)−K(x2)| ≤
κ|x1 − x2| for x1, x2 ∈ IR. Looking at the first integral in (14) we see that it
is bounded by∫ t2

0
e−β(t2−u) |K(xu)−K(x0)| du ≤ κ sup

0≤u≤t2

|xu − x0|
∫ t2

0
e−β(t2−u)du.

(15)
Now reconsider (4), observing that

∫ s
0 e
−β(s−u)du ≤ 1 and letting t2κ ≤ 1

2 ,
we have

xt − x0 =
∫ t2

0
e−βsv0ds+ β

∫ t2

0

∫ s

0
e−β(s−u)K(xu)duds+

+
∫ t2

0

∫ s

0
βe−βseβudXuds.

The absolute value of this difference may be estimated by using the triangle
inequality, monotonicity of Lebesgue integrals and by neglecting negative
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terms as follows

|xt − x0| ≤
∫ t2

0
e−βs|v0|ds+ β

∫ t2

0

∫ s

0
e−β(s−u)|K(xu)|duds+

+ β|
∫ t2

0

∫ s

0
e−βseβudXuds|

≤
∫ t2

0
e−βs|v0|ds− e−βt2

∫ t2

0
eβu|K(xu)|du+

∫ t2

0
|K(xs)|ds+

+ | − e−βt2

∫ t2

0
eβudXu + (Xt2 −X0) |

≤
∫ t2

0
e−βs|v0|ds+

∫ t2

0
|K(xs)|ds+ |e−βt2

∫ t2

0
eβudXu|+

+ | (Xt2 −X0) |.

Due to the Lipschitz continuity of K with constant κ, taking suprema on
both sides of the inequality reveals

sup
0≤t≤t2

|xt − x0| ≤ |v0|+ t2κ sup
0≤s≤t2

|xs − x0|+ t2|K(x0)|+

+ |e−βt2

∫ t2

0
eβudXu|+ sup

0≤u≤t2

| (Xu −X0) |.

Algebraic calculation yields

sup
0≤t≤t2

|xt − x0| ≤ |v0|+
1
2

sup
0≤s≤t2

|xs − x0|+ t2|K(x0)|+

+ |e−βt2

∫ t2

0
eβudXu|+ sup

0≤u≤t2

| (Xu −X0) |

1
2

sup
0≤t≤t2

|xt − x0| ≤ |v0|+ t2|K(x0)|+ |e−βt2

∫ t2

0
eβudXu|+ sup

0≤u≤t2

|Xu|.

For β tending to infinity |e−βt2
∫ t2
0 eβudXu| vanishes. Hence we neglect this

term in the sequel and find

sup
0≤t≤t2

|xt − x0| ≤ 2|v0|+ c|K(x0)|+ 2 sup
0≤u≤t2

|Xu|, (16)

where c = 1
κ > 0. We see that the right hand side of this inequality is

bounded in probability. In an analogous way we see that for each interval
[t1, t2] ⊂ T such that (t2 − t1)κ ≤ 1

2 we have that

ζ2 = sup
t1≤t≤t2

|xt − xt1 | ,

is bounded. If (t2 − t1)κ > 1
2 we slice the time interval [t1, t2] and use the

induction. Thus, for all t1 ≤ t ≤ τn ≤ t2, n = 1, 2, . . ., and any t1, τn ∈ [0, T ]
we have

ζn = sup
t1≤t≤τn

|xt − xt1 | .
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For n = 2 we have seen that ζn is bounded. We assume that ζn is bounded
for n = p and we use the supremum property to show that it is bounded for
n = p+ 1, i.e. for τp+1 ≤ t2

ζp+1 = sup
t1≤t≤τp+1

|xt − xt1 | ≤ sup
t1≤t≤τp

|xt − xt1 |+ sup
τp≤t≤τp+1

∣∣xt − xτp

∣∣ ,
where the first term of the right hand side is bounded by assumption and
the second term is bounded by an analogous argument to the one given in
the first step of the induction. Inserting (16) into (15) we obtain∫ t2

0
e−β(t2−u) |K(xu)−K(x0)| du ≤

≤ κ

[
2|v0|+ c|K(x0)|+ 2 sup

0≤u≤t2

|Xu|
] [

1
β

(
1− e−βt2

)]
.

Then, the integral
∫ t2
0 e−β(t2−u) |K(xu)−K(x0)| du vanishes when β tends

to infinity. Finally, the remaining, non vanishing part of (13) is the integral∫ t2
t1
K(xs)ds as proposed in (9).

Interesting applications of the Nelson-type scaling limit for α-stable Lévy
processes are to study Lévy processes on manifolds. A generalization of Nel-
son’s result on Brownian motion to Banach spaces and Riemannian manifolds
is proven in [5].
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