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ABSTRACT

The capital market equilibrium is derived in a model where asset returns follow a
mixed Poisson jump — diffusion process, rather than a simple diffusion process as in the
traditional ICAPM. In the resulting JCAPM (CAPM with Jumps) expected returns are
still linear in beta, but in addition premia have to be paid for jump risk. When jump
risk is diversifiable in the market portfolio the JCAPM reduces to the standard ICAPM,
as in Jarrow and Rosenfeld (1984).

Jumps are found tb be prevalent in the daily returns of the market indices in the
18 countries investigated, during the time period 1985—-89. However, when the year of
the crash, 1987, is excluded from the sample, the simple diffusion process gives an

adequate description of the market returns in seven countries.






1. Introduction

Is it realistic to model asset prices as diffusion processes as in the Intertemporal
Capital Asset Pricing Model, introduced by Merton (1973)?7 Would the ICAPM hold if
we allowed for jumps in asset prices? Jarrow and Rosenfeld (1984) address these
questions. They give sufficient conditions for the ICAPM to hold for asset prices having
discontinuous sample paths. The sufficient condition is that the jump risk be
diversifiable in the market portfolio. They do not, however, solve the model completely
for the case when this condition is not met. The purpose of this paper is to derive the
capital market equilibrium when asset returns follow jump-—diffusion processes. The
strategy will be to add enough restrictions to the model to be able to get an explicit
solution.

Jarrow and Rosenfeld (1984) also test if there is undiversifiable jump risk in the
market portfolo. Using U.S. stock market indeces, they find evidence of jumps in daily
returns, but not in weekly returns. They conclude that jump risk exists and is not
diversifiable. In contrast to Jarrow and Rosenfeld, Jorion (1988) finds strong evidence of
jumps in the weekly returns on the CRSP value—weighted index, even after taking
account of ARCH effects. On the other hand, a simple diffusion model provide an
adequate description of monthly stock returns. An additional purpose of this paper will
be to collect more evidence on the existence of undiversifiable jump risk by investigating
if we can detect jumps in the market indices of 18 OECD countries.

Previous studies that have found evidence in favor of discontinuous sample paths
for (individual) stock prices include Oldfield, Rogalski, and Jarrow (1977), Ball and
Torous (1983,1985), and Ho, Perraudin, and Sorensen (1992). Oldfield, Rogalski, and
Jarrow (1977) study the returns on 20 NYSE stocks during the 22 trading days in
September 1976. They find that transactions returns (omitting over—night returns)
follow an autoregressive jump process. Ball and Torous' (1983) data set consists of 500
daily return observations of 47 NYSE listed stocks. Over 78 percent of the stocks

indicated the presence of jumps at the one percent significance level. This result is



confirmed in Ball and Torous (1985) for a different data set and time period. Ho,
Perraudin, and Sorensen (1992) test various versions of a continuous—time Arbitrage
Pricing Model using daily data on the S&P index and eight individual stocks. They find
evidence in favor of a model containing both jumps and ARCH effects.

The plan of the paper is as follows. In section 2 the equilibrium pricing
relationships are derived for the intertemporal Capital Asset Pricing Model with Jump
risk (JCAPM). Section 3 tests the hypothesis that there is undiversifiable jump risk in
the stock market indices of 18 OECD countries. Finally section 4 gives some

conclusions.
2. Asset Pricing with Jump Risks

We consider an economy of the type developed in Merton (1973) and modified by
Jarrow and Rosenfeld (1984). It is a pure exchange economy with one good, which
serves as numeraire. The initial set of assumptions are:

Assumption 1. There are N risky assets and one risk—free asset. All assets are
marketable and perfectly divisible. There are no taxes, transactions

costs, or restrictions on short sales.

Assumption 2. Investors take prices as given.

Assumption 3. Trading takes place continuously in time at equilibrium prices.
Assumption 4. There is a risk—free rate of interest, r , for borrowing and lending.
Assumption 5. Investors have homogeneous expectations about asset prices, which

satisfy the stochastic differential equations
dP.

(1) — =y dt+0.dZ + edY—Dedt ,i=1,.N;
P, 1 2 1 1 ]

?

where Pz. is the price of asset i, ji, Tepresents the instantaneous
expected rate of return (including the jump), Z is a Wiener
process, o, is the instantaneous standard deviation of the rate of

return, Y is a Poisson process with parameter A, € is the



Assumption 6.

(2)

stochastic jump amplitude with expected value equal to € ; and
ZZ. , Y, and €, are assumed to be independent. The last two terms
in (1) together represent the unexpected rate of return connected
with the rare event. The price dynamics could also be set up to
separate between diversifiable and nondiversifiable risk. In this case

we are considering

= p, dt + fzd\I' + 9,-"’7,' + ez.dY— Ael.dt , i = 1,..,N;

where o = f£ + ¢* and 0.dZ = fd¥ + gdy,.
Investors maximize their von Neumann-Morgenstern expected

utility of lifetime consumption functions,

Etf: U(C(s),8)ds ,

where E, is the conditional expectation operator given the

information available at time ¢ and C(s) 1is the rate of

consumption. Investors have instantaneous utility functions that

exhibit Constant Relative Risk Aversion,

1=y _
WOy =T ¢y 1> 0,741,

where < is the Arrow-Pratt measure of relative risk aversion and

p is the utility rate of time preference.

Assumptions 1—4 are standard. In assumption 5, in addition to the diffusion

component, we let the returns be affected by a rare event that can cause the prices to

jump. The probability of a jump caused by the event in the time interval dt is Adt,

where ) is a constant. When the event occurs, there is an instantaneous jump in the

return on asset i of size ¢, . For a homogeneous Poisson counting process with intensity

) the interarrival times, i.e. the time interval between two successive events, are

independently and identically distributed. This may not be totally realistic for some

events. For example, we would expect the probability of a devaluation to be smaller just



after a devaluation has ocurred.! However, we can look at the jump process as a generic
rare event, in which case homogeneity will be less of a problem. I.e. one type of rare
event can be followed by another rare event, which is independent of the first event
having taken place. For example, a devaluation could be followed by a strike in the steel
industry. Other examples of the types of rare events we have in mind are stricter
environmental legislation, raised energy taxes, inventions, a defaulting bank or some
other news that typically will affect more than one company. The specification in
assumption 5 is slightly different than the one adopted in Jarrow and Rosenfeld (1984).
They let each price process have its own independent jump component. We have chosen
to look at a rare event as something that affects more than one stock although each
stock may be affected in a different way. Our assumtion 6 on preferences is more
restrictive than in Jarrow and Rosenfeld's model. They merely assume a twice
differentiable, strictly increasing and strictly concave instantaneous utility function. We
need to make the assumption of constant relative risk aversion in order to get an explicit
solution to the Bellman equation.

Under assumptions 1—6, the investor chooses a portfolio rule, {wi(s)}z.__A_r ;> and a

consumption rule, C(s) , so as to maximize

Etf” U(C(s),9)ds,

¢

subject to
v dP.

(4) AW = 2 wiW[——f— rdt] + (rW- O)dt,
) P
=1 i

where W is the investor's wealth.

The investor's problem is solved by the use of dynamic programming. First, we

define the maximum value function,

1See Bertola and Svensson (1990) for an exchange rate model along these lines. Shimko (1989) values cash

flows generated by Poisson processes. The jump itself can be diversified, but the expected frequency of
jumps cannot.



(5) JW,0) = mas {E Jw U(C(T),T)df}.
{cws
We can now write the Hamilton—Jacobi—Bellman equation for this problem,?2

I-v _
0= maz {—%;y——e "y J(Wit) + JW(W,t)[ Ww'(v—eX) + Wr- C}
(6) C,W

+ Ly W) WS w + J A [ J(W W' e a) 1) - J(W,t)]} f(a)da,
A
where Jz is the partial derivative of the indirect utility function with respect to

argument z , f(a) is the density function for the jump amplitudes, and the other

notation is the following:

W
v

i

the (Nx1) vector of portfolio shares;
the (INx1) vector of excess rates of return,
ie. v.=p. -r for asset i;

o

the (Nx1) vector of expected jump amplitudes;

€ the Nﬂ; vector of jump amplitudes;
e
¥ =the (VxN) covariance matrix of asset rates of return.

To make the solution simpler we will make a simplifying assumption regarding
the jump amplitudes:

Assumption 7. The jump amplitudes are nonstochastic, €, =€ Vi.

This assumption is not essential for the solution. It will merely simplify by
getting rid of the integration over A in the following expressions. With J(W,t) linear
in wealth, we could simply integrate over A and get the expected jump amplitudes.
Unfortunately J(W,t) is not linear in W, as we will see shortly.

The investor's problem has a well—defined solution if the following transversality
condition holds,

p > h+ X [(14we)l -],
where A is defined as
ho= (1-7)[w'(-Xe)+1] - 3 1(1-7) w'Ew .
The solution, in terms of the time—independent indirect wutility function

I(W) = ¢*J(W,t) , can then be found to be

2See Malliaris and Brock (1982): Ch. 2, Section 12.



(7) (W) =pw 7,

where

p=g{ Lo aawer ]}
which will be constant if the optimal portfolio, w , is constant over time. So, let us next
turn to the choice of an optimal portfolio rule.

We find that the domestic investor's optimal portfolio rule is implicitly given by
the following first—order condition:

(8) w-1 [Z—I(V—e/\) P\ (1+w'e)1'72‘1e] —0.

Since there are no time—dependent variables in this equation we conclude that the
optimal portfolio will be constant through time. This is consistent with the assumption
that p is a constant and thus the conjectured solution in (7) is indeed valid.

The portfolio rule is clearly nonlinear. This means that there is no easy way of
aggregating portfolios. It is clear from (8) that investors with different degrees of
relative risk aversion will demand different portfolios. In order to get an explicit
equilibrium pricing relationship we will have to make an additional assumption at this
stage.

Assumption 8. All investors have the same relative risk aversion, 7 .

Under assumption 8 all investors will hold the same portfolio according to (8).
Hence, all investors will have to hold the market portfolio, W If we substitute w =
w_ into (8) we get the equilibrim relationship
(9) v=73w_+ A [(1+W7;ze)1_7—-1]e .

From this expression we can derive the security market lines for the intertemporal
Capital Asset Pricing Model with Jump risk (JCAPM).3 The equilibrium pricing
relationship for asset ¢ will be

(10) v—€ = B,(v -€),

where

3See the Appendix for the derivation.



B, = Tim/ ai is the covariance of asset i with the world market portfolio
divided by the variance on the market portfolio;
v = w;nz/ is the excess rate of return on the market portfolio;
. =- )\em[(1+em)1"7— ] is the risk premium for jumps in
the return on the market portfolio;
£, = —Xef(l+e) 1"7_1] is the risk premium for jumps in
the return on asset ¢ ;
e = wq'ne is the jump in the return on the market portfolio;

Equation (10) states that the JCAPM holds for expected rates of return that have
been adjusted by the risk premia for jump risk, Ez. (==1,...,N,m). The risk premia may
be positive or negative since the jump amplitudes may be negative or positive. If jump
risk is diversifiable in the market portfolio, e =0, then £=0 (i=1,...,N,m) and the
standard ICAPM will hold, which is the result in Jarrow and Rosenfeld (1984). In the
case of logarithmic utility (7=1) we also get {. =0 (i=1,...,N,m) and the JCAPM again
reduces to the standard ICAPM.

Note that two assets with the same beta can have different expected rates of
return because of different expected jumps in their prices. For example, consider an
economy with 4>1. A rare event that has a negative effect on both asset i and the
market portfoli (ez.< 0 and e < 0) will result in a positive risk premium for asset ¢
(> 0). If the same event has a positive effect on the return to asset j (e]> 0) it will
result in a negative risk premium for asset j (§j< 0). Thus, the required rate of return
will be higher on asset i than on asset j even if they have the same beta value (8= ﬁj).

The risk premia can also be written as
IW(W(1+ em) ) — IW(W) \
e
1,,(W)

where the first factor is the relative jump in the marginal utility of real wealth if a rare

(11) £=—

» i=1,...,N,m;

event occurs.4 An event that results in a negative jump in the return on the market

portfolio will cause a positive relative jump in the marginal utility of wealth.

4The same type of risk premium is derived in Svensson (1990). In that paper the risk premium is due to
exchange rate uncertainty caused by devaluations.



Let us next say something about the practical implications of (10). Our results
indicate that if one is to use the CAPM in evaluating the required rate of return for a
project one should attempt to take the risk premia for jump risk into account. One
should ask questions of the following type. What is the probability of, for example, a
devaluation and what effect would it have on the return to the project and on the return
to the market portfolio? The answers should be stated in terms of expected returns to
the project, )\ez. , and to the market portfolio, Aem , respectively. The CAPM can then
be modified along the lines of (10) by computing ¢, and ¢ = and making an assessment

of the coefficient of relative risk aversion, 7 .

3. Is There Jump Risk in the Market Portfolio?
3.1 Test Procedure
To investigate if there is jump risk in the market portfolio let us look at the

market portfolio dynamics. The market portfolio consists of the market weighted values,

N
and equals M = 2 w_.P.. Using (1a), the return on the market portfolio can be
1=1
written as
N
dM _
(12) M_ ¥ [ wdit 0. dZ+ (~Ne di+ eidY)].
=1
If jump risk is diversifiable the condition for the ICAPM to hold5, using (1a), can be
stated as
N
(13) 2 w_. [ g,dn+ (—Aedi+ ez.dY)] =0,
=1

where gidni = oide. — fzd*Il ,i.e. de. has been divided up into a common factor d¥ and
residuals dp, . Condition (13) says that the market portfolio shares {wmi}g , must be
such that the stochastic components of the returns from the assets are eliminated, except

for the common factor d¥ .

5Derived by Jarrow and Rosenfeld (1984).



The hypothesis to be tested is (13) and if accepted we have the return on the
market portfolio
(14) —M pdt+ fd¥,
using (12) with p=1% w . and o= X wmz.fz. . If jump risk is not diversifiable we have
the alternative
(15) I yaer fa¥ + dg,
where p Tepresents the drift of the process, ¢ is the standard deviation (conditional on
no jump), d¥ and dg are independent Wiener and Poisson processes.

The likelihood function corresponding to (14) is

N
(14a) L =] [ 1 exp [—(lnxi— ”h)z] ,
¢ pec v 2702h 202h
and the log—likelihood function is
N
(14b) InL = —(N/2)ln27) + % exp [-ﬂn— "—ﬂ—)—]
i i1V R 2%

where N is the number of returns, h is the increment of time between observations,
and z,= (M/M_,).

Now let jumps arrive according to a Poisson process with mean number of jumps
equal to A>0. We assume the jump size, e , be a sequence of independent identical
lognormal distributed random variables with parameters (a,b2). The jump size and the
Poisson process are independent (see Karlin & Taylor (1981)).6 We can write the
likelihood function corresponding to (15) as?

=y —tAR J _ B
(152) I _] I‘ ‘ e (/\h) 1 exp [—(lnx; wh 0])2] ,
par ! 21(02h+b2] 2(o2h + b%))

and the log——hkehhood functlon is

6Generally the diffusion process can be described as ln(M /M W+ 0dZ + Y Y The jump size,

) =
k’ all identically lognormally distributed, gives the following sentence for the jump size, YY~

N(na,nb ), and the final process can be described as P()\)N([,t+na,0' +nb ) with a mean time between

jumps given by E(T) = )\—12 N(,u/+na,02+nb2).

"Basawa and Rao (1980).
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(15b) InL, = —NAh— (N/2)In(27)
N 00 i )
A \ el - — -
+ % [ y (/\,?) 1 _exp[ (Inz— ph .‘9])],
d Laod J° T 2(0%h + B2))

where = a—02/2, §=a—b2/2.8

A likelihood ratio test given by LR = —2(InL_— InL ) can be used to test the
hypothesis, jump risk is diversifiable with likelihood as Lc, versus the alternative that
jump risk are not diversifiable with likelihood as L, . LR has a X2 distribution with
degrees of freedom equal the difference in the number of parameters between the two

models.

3.2 Description of data

The empirical tests were performed on samples from 18 contries (and a "World"
index). The indices used were colleted from Morgan Stanley Capital Market Indices. The
indices consists of daily observations from a value weighted portfolio on stocks included
in the indices. The period covered are from january 1985 to december 1989 and from
each indices we have 1303 observations. A technical description of the indices can be
found in Morgan Stanley (1986).

A simple investigation of a possible jumps in the indices is given by the empirical
distributions in table 1. In table 1 simple summary statistics are given for each indices.
Besides means, standard deviations, skewness and kurtosis, the number of observations
with respect to sigma limits are reported.

In order to investigate the event in october 1987 the indices has been divided in a
part including the hole period from 1985-1989, and another part where 1987 has been
excluded.

From table 1 it is seen that all means are positive, and all skewness are negative.

This means, that the distributions are all skewed to the left, compared with a normal

8As pointed out by Ball and Torous (1985), the infinite sum in (15) has to be truncated so that sufficient
accuracy is achieved. The actual truncation depends on the value of A. The estimation was carried out in
double precision and the infinity sum was truncated at j=10.
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distribution with a skewness of zero. The kurtosis are all positive and has a kurtosis well
above a normal distribution where kurtosis is 3.

If we let a possible jump be identified by a return above (+/—) 4 times the
standard deviations, the results in table 1 shows several possible jumps in the indices.
Not all jumps belongs to a single year, 1987 (in parenthesis), but a lot of jumps does.
The World index shows 8 possible jumps and 5 of these jumps belong to a single year,
1987. The only country where no jumps are identified in 1987 is Italy.

It seems resonable to make the empirical investigation in two parts. One which
include 1987 (table 2), and a second which exclude 1987 (table 3), and then compare the

two investigations.

3.3 Estimation of parameters

The parameters in the model has been estimated using the collected data. Table 2
covers the period from 1985—1989 and the estimated parameters from the two stochastic
processes are displayed together with the corresponding standard errors, and the
likelihood ratio tests.

In table 2 the first part gives the result from the jump process. As can be seen,
the estimates of the mean number of jumps per year, ) , are all significant different from
zero. This suggest the existence of infrequent discrete movements. The mean number of
jumps from Austria (256.98), Italy (133.66) and Spain (181.30) shows some large
numbers in the mean number of jumps in these indices. In the Austrian market there is
a jump practically every day. In contrast the mean number of jumps in the U.K. market
is small (8.46).

The estimates for the jump size shows an expected negative value for several
indices. We would with these negative values expect that after the arrival of a jump the
jump size would be negative, that is a negative return in the indices. The positive values
are found in indices from Austria, Italy, Japan and Spain. In these contries we would
expect a positive return after the arrival of a jump. The estimated standard deviation

from the jump size also shows large numbers. At least the values indicate, that the
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values for the mean, although negative, they could as well be positive, and vice versa.
The estimates for the diffusion part shows all positive values for the mean, and
compared with the standard deviation we would expect positive returns in periods where
there are no jumps.

The simple Wiener process shows positive mean in all indices, and for some of the
means the stardard errors indicate, that the mean is not significantly different from zero.
On the other hand the computed standard deviations are all significant different from
zero, and none of the standard deviations looks like an abnormal value.

The final likelihood ratio test, all very significant compared with a X2 with 3
degrees of freedom, indicates jumps in the indices. With the sample from 19851989 we
reject the hypothesis that jump risk is diversifiable. If we take a look at the period which
has excluded 1987 we get the results in table 3.

The results in table 3 show, as indicated in the simple summary statistics, that a
single year, 1987, could be the cause to jumps in the indices. The result in table 3 show
this is the case for several indices. The likelihood ratio test support our hypothesis, that
jump risk is diversifiable for some indices. The hypothesis is accepted for the following
indices World, Denmark, Germany, Sweden, UK, Canada and Hong Kong. For the
remaining indices we reject the hypothesis and have to accept that jump risk is
nondiversifiable.

A closer look at table 3 shows, that if we do not expect a jump in an index, for
example the World, then the jump component is zero and the jump size, if a jump
should arrive, is very large (6.18). This is the case for all contries where we have rejected
the Jump process. In Germany we would indeed expect a very large positive return if a

jump should arrive. But the standard deviations are still very large.
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6. Conclusion

In this paper we have investigated the Intertemporal Capital Asset Pricing Model
as developed by Merton (1973), and further expanded by Jarrow & Rosenfeld (1984) to
cover jump risk.

We have used indices from 18 OECD contries covering the period 1985-1989. For
the sample periode 1985—1989, compared with Jarrow & Rosenfeld (1984), we come to
the same results 1) that the market portfolio contains a jump component and 2) that
risk is not diversifiable.

If we exclude a single year, 1987, we are able to accept the hypothesis that jump

risk is diversifiable for some countries.
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Appendix
Derivation of equations (10):
Premultiplying (9) by W, we get
K

(A1) w'v=qw! Bw — ) Al(l+w'e) -]we, .

k=1
Simplifying the notation,

a2
(A2) ' Vm— 7Um+ €m7
where the notation can be found after equation (10) in the main text. Combining (9)
and (A2) we get
1
(A3) V= 2 (v, =€ )4w_+¢.
m

From this equation we get the scalar forms of (10) in the main text.
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TABLE 1

Summary statistics and number of observations
with respect to sigma limits. Period 1985—1989.

INDEX Mean Std. Skew. Kurt. Less than More than

Dev. +/—4*Std  +/—4*Std
WORLD 0.00085 0.0085 —2.0 374 1295 (255 8(6
AUSTRALIA 0.00071 0.0132 —6.4 120.9 1293 (252 10(9
AUSTRIA 0.00104 0.0099 —{.6 11.6 1291 (257 12 (4
BELGIUM 0.00080 0.0104 -0.9 24.0 1287 (254 16 (7
DENMARK 0.00060 0.0099 -0.1 21.8 1295 (255 8(6
FRANCE 0.00082 0.0121 —-1.2 15.2 1291 (254 12 (7
GERMANY 0.00057 0.0140 —-1.2 15.6 1290 (250 13 (11
ITALY 0.00087 0.0137 —0.9 15.5 1293 (260 10(1
JAPAN 0.00088 0.0115 -1.9 44.8 1297 (257 6 (4
NETHERLAND 0.00039 0.0124 —0.8 22.7 1287 (250 16 (11
NORWAY 0.00065 0.0161 —-2.8 45.3 1294 (254 9(7
SPAIN 0.00085 0.0123 —0.3 14.6 1291 (256 12(5
SWEDEN 0.00091 0.0120 —-1.2 12.4 1292 (251 11 (10
SWITZERLAND 0.00047 0.0115 -2.3 33.0 1291 (252 12 E 9
UK : 0.00054 0.0109 2.3 28.7 1293 (253 10 ( 8
CANADA 0.00038 0.0088 -1.9 36.9 1292 (251 11 (10
HONG KONG 0.00075 0.0191 —8.7 161.7 1296 (259 T(2
SINGAPORE 0.00043 0.0153 —4.7 81.7 1296 (256 T(5
USA 0.00055 0.0134 —.3 77.9 1291 (257 12 (4
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