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Abstract

We present, both exactly and approximately, a complete set of mappings between the vacuum (or

fundamental) leptonic mixing parameters and the effective ones in matter with non-standard neu-

trino interaction (NSI) effects included. Within the three-flavor neutrino framework and a constant

matter density profile, a full set of sum rules is established, which enables us to reconstruct the

moduli of the effective leptonic mixing matrix elements, in terms of the vacuum mixing parameters

in order to reproduce the neutrino oscillation probabilities for future long-baseline experiments.

Very compact, but quite accurate, approximate mappings are obtained based on series expansions

in the neutrino mass hierarchy parameter η ≡ ∆m2
21/∆m2

31, the vacuum leptonic mixing parame-

ter s13 ≡ sin θ13, and the NSI parameters εαβ . A detailed numerical analysis about how the NSIs

affect the smallest leptonic mixing angle θ13, the deviation of the leptonic mixing angle θ23 from its

maximal mixing value, and the transition probabilities useful for future experiments are performed

using our analytical results.
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I. INTRODUCTION

During the past decade, neutrino oscillation experiments have provided us with very

convincing evidence that neutrinos are massive and lepton flavors are mixed [1, 2, 3, 4, 5, 6,

7, 8, 9, 10]. It opens an important window for searching new physics beyond the Standard

Model (SM) of particle physics, and has significant cosmological implications. Within the

framework of three active neutrinos, neutrino masses are the leading mechanism behind

neutrino oscillations [11, 12, 13, 14]. However, in future long-baseline neutrino oscillation

experiments, besides the standard matter effects [15, 16], the possibility of testing non-

standard neutrino interactions (NSIs) should be opened up.

Note that, NSIs enter neutrino oscillations at production, propagation, and detection

processes. In principle, in the case of dimension-6 operators, the corresponding NSI

parameters are related to the underlying new physics in the form of ε ∼ (mW/mX)2,

where mW is the mass of the W boson and mX denotes the new physics energy

scale. A rough estimate indicates that if new physics appears at the TeV region, the

magnitude of NSI parameters should not be larger than a few percent, although the

present experimental upper bounds are still very loose. Due to the interference effects,

NSIs modify the standard flavor transitions at leading order in ε for some typical pro-

cesses, especially at a future neutrino factory or other facilities with high-energy beams

[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. In these cases,

NSI corrections become particularly relevant, and the experimentally measured values of

leptonic mixing angles and CP violating quantities are dramatically different from the vac-

uum ones. In this sense, the combination of standard neutrino oscillations and NSI effects

in the analyses of future neutrino experiments is not only meaningful but also necessary.

In addition to NSIs at propagation processes, NSI effects at neutrino sources and detectors

play a very important role, since they may induce significant mimicking effects on mixing

parameters [37] or bring in distinguishable zero-distance effects for a near detector [38, 39].

Here we will only concentrate on NSIs during the phase of neutrino propagation, and a brief

discussion on how to consistently include the source and detector effects will be implemented

at the end of Sec. II.

Although much attention has been paid on the issue of NSIs according to different neu-

trino facilities and projects, the previous analytical investigations are either based on a two-
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flavor neutrino framework [40] or an approximation for the three-flavor neutrino oscillation

probabilities (indeed producing lengthy formulas). There are still lack of analytical relations,

which can show us the NSI effects on the leptonic mixing parameters in a transparent way.

Thus, in this paper, we first develop a full set of sum rules, which relate the vacuum leptonic

mixing matrix elements and their effective counterparts in matter. By solving these sum

rules, it is straightforward to establish the leptonic mixing matrix, unitarity triangles [41],

and CP violating effects in matter (see Sec. III). We then present series expansions of map-

pings in the mass hierarchy parameter η ≡ ∆m2
21/∆m2

31, the mixing parameter s13 ≡ sin θ13,

and the NSI parameters εαβ . The NSI corrections to the vacuum mixing parameters can

be manifested in a distinct way. We hope that the elegant and compact formulas provided

in this paper could be very helpful for the phenomenological studies of future long-baseline

neutrino oscillation experiments.

This work is organized as follows. In Sec. II, we present the general formulas and no-

tations, and show how the neutrino oscillation probabilities can be expressed through the

language of effective mixing parameters. In Sec. III, we introduce the sum rules between

leptonic mixing matrix elements and the effective counterparts in matter, and then derive

the mappings exactly. The expressions of effective masses in matter, which are necessary

for the calculation of neutrino oscillation probabilities, are shown in detail in Appendix A.

Next, in Sec. IV, we derive a full set of series expansions of these mappings. We also compare

our mapping results with the corresponding expressions existing in the literature but with-

out NSIs, and find that our results are in agreement with previous analyses in the limit of

vanishing NSIs. Section V is devoted to applications of our analytical mappings. Numerical

illustrations in order to show the validity and reliability of our approximate results are also

presented. Finally, a brief summary is given in Sec. VI.

II. THE LANGUAGE OF EFFECTIVE PARAMETERS

At energy scales µ ≪ mW , the NSIs involving neutrinos can be described by the effective

Lagrangian

LNSI = −GF√
2

∑

f,P

εfP
αβ (ναγµLνβ)

(

fγµPf
)

, (1)
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where f is a charged lepton or quark, GF is the Fermi coupling constant, and P = {L, R} is

a projection operator. The parameters εfP
αβ , which are entries of the Hermitian matrix εfP ,

give the strengths of the NSIs. The magnitudes of the NSI parameters can be constrained

from neutrino deep inelastic scattering experiments and from elastic ν−e scattering in which

the NSIs would contribute to the determination of sin2 θW , i.e., the Weinberg angle. The

latest constraints on εfP
αβ have been discussed in Ref. [42, 43, 44, 45], and the most stringent

bounds are those on εfP
µα for α = e, µ, τ .

In order to introduce the effective mixing parameters, we start from neutrino oscillations

in vacuum. The evolution in time of a neutrino state |ν(t)〉 is given by the Schrödinger-like

equation

i
d

dt
|ν(t)〉 = H|ν(t)〉 , (2)

where H is the Hamiltonian of the system. For neutrinos traveling in vacuum, the Hamil-

tonian in the ultra-relativistic limit E ≫ mi reads

H =
1

2E
V diag (0, ∆21, ∆31)V † , (3)

where ∆ij ≡ m2
i − m2

j are the neutrino mass-squared differences and E denotes the neu-

trino energy. In addition, V is the unitary leptonic mixing matrix [12], which relates the

mass eigenstates of the three neutrinos (ν1, ν2, ν3) to their corresponding flavor eigenstates

(νe, νµ, ντ )

να =
∑

i

Vαiνi , (4)

for α = e, µ, τ . For simplicity, the sum of Latin indices run over 1, 2, 3 and the sum of Greek

indices run over e, µ, τ throughout this paper, if not otherwise stated. We can define the

evolution matrix S(t, t0) such that

|ν(t)〉 = S(t, t0)|ν(t0)〉 , S(t0, t0) = 1 , (5)

and S(t, t0) satisfies the same Schrödinger-like equation (2), as |ν(t)〉. The neutrino oscil-

lation probabilities can be found as Pαβ = |Sβα(t, t0)|2. Using Eq. (3), the elements of the

evolution matrix are given by

Sβα(t, t0) =
∑

i

VαiV
∗
βie

−i
m2

i L

2E , (6)
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where we have identified L ≡ t − t0. Thus, the probability of transition from a neutrino

flavor α to a neutrino flavor β is given by

Pαβ ≡ |Sβα(t, t0)|2 =

∣

∣

∣

∣

∣

∑

i

VαiV
∗
βie

−i
m2

i L

2E

∣

∣

∣

∣

∣

2

. (7)

For the setups of future long-baseline neutrino oscillation experiments, the neutrino beams

inevitably travel through the Earth’s mantle, and the charged-current contributions to the

matter-induced effective potential have to be considered properly. Disregarding the neutral-

current contributions, the effective Hamiltonian responsible for neutrino propagation in mat-

ter is given by

H̃αβ = Hαβ + a (δαeδβe + εαβ) , (8)

where the matter parameter a =
√

2GFNe arises from coherent forward scattering. Here Ne

denotes the electron number density along the neutrino trajectory in the Earth and the NSI

parameters εαβ are defined as

εαβ =
∑

f,P

εfP
αβ

Nf

Ne

, (9)

with Nf being the number density of a fermion of type f .

Similar to the vacuum Hamiltonian in Eq. (3), the effective Hamiltonian in matter can

also be diagonalized through a unitary transformation

H̃ =
1

2E
Ṽ diag

(

m̃2
1, m̃

2
2, m̃

2
3

)

Ṽ † , (10)

where m̃2
i denote the effective mass-squared eigenvalues of neutrinos and Ṽ is the unitary

mixing matrix in matter. Note that, in writing down Eq. (10), we have already taken into

account the Hermitian property of H̃ .

In order to write out explicitly the transition probabilities, we assume a constant matter

density profile, which is actually close to reality for most of the proposed long-baseline

experiments. Following analogous procedures as shown in Eqs. (4)-(7), one can then obtain

the transition probabilities with matter effects included as

Pαβ ≡ |Sβα(t, t0)|2 =

∣

∣

∣

∣

∣

∑

i

ṼαiṼ
∗
βie

−i
m̃2

i L

2E

∣

∣

∣

∣

∣

2

. (11)
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Comparing Eq. (7) with Eq. (11), we arrive at the conclusion that there is no difference

between the form of the neutrino oscillation probabilities in vacuum and in matter if we

replace the vacuum parameters V and m2
i by the effective parameters Ṽ and m̃2

i . The

mappings between vacuum parameters and the effective ones are sufficient in order to study

the new physics effects entering future long-baseline neutrino oscillation experiments. The

key point turns out to be the diagonalization of the effective Hamiltonian H̃ and figuring

out the explicit relations of the effective parameters.

In most of the viable models for NSIs, the source and detector effects are simultaneously

taken into account, despite their magnitude. The language of effective mixing parameters

can then easily be extended to the case including NSIs at neutrino sources and detectors.

Now, the NSI parameters at sources and detectors can be defined as [17, 31, 46]

|νs
α〉 = |να〉 +

∑

β=e,µ,τ

εs
αβ|νβ〉 , (12)

〈νd
β| = 〈νβ| +

∑

α=e,µ,τ

εd
αβ〈να| , (13)

where the superscripts ‘s’ and ‘d’ denote source and detector, respectively. The transition

probabilities are then modified as1

Pαβ =

∣

∣

∣

∣

[

(

1 + εd
)T · S(t, t0) · (1 + εs)T

]

βα

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

γ,δ,i

(

1 + εd
)

γβ
(1 + εs)αδ ṼδiṼ

∗
γie

−i
m̃2

i L

2E

∣

∣

∣

∣

∣

2

. (14)

Note that Eq. (14) is also suitable to describe neutrino oscillations with a non-unitary mixing

matrix, i.e., the minimal unitarity violation model [47]. In the following sections, we will only

concentrate on NSI effects during propagation processes and establish parameter mappings

both exactly and approximately.

III. SUM RULES AND PARAMETER MAPPINGS

In order to establish analytical relations between the matrix elements of Ṽ and those of

V , we develop a set of sum rules, which enables us to express the products ṼαiṼ
∗
βi by using

1 Here we have neglected the normalization factors, which are needed in order to normalize the quantum

states.
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V , m2
i and m̃2

i . Such an approach has partially been employed in Refs. [48, 49, 50] in the

case of three or four-neutrino mixing. Here we will work out the most general form with

both the standard matter effects and the NSI effects included.

The first sum rule is just the unitarity conditions, which hold for both Ṽ and V ,

∑

i

ṼαiṼ
∗
βi =

∑

i

VαiV
∗
βi = δαβ . (15)

Inserting Eqs. (3) and (10) into Eq. (8), and comparing both sides of this result, it is

straightforward to obtain the second sum rule

∑

i

m̃2
i ṼαiṼ

∗
βi =

∑

i

∆i1VαiV
∗
βi + Aαβ , (16)

where we have defined Aαβ ≡ A (δαeδβe + εαβ) with A ≡ 2Ea for simplicity. In order to

derive a linearly independent sum rule besides the first two, we square both sides of Eq. (16)

and obtain the squared relation

∑

i

m̃4
i ṼαiṼ

∗
βi =

∑

i

∆2
i1VαiV

∗
βi +

∑

γ

AαγA∗
βγ +

∑

γ,i

∆i1

(

AαγVγiV
∗
βi + A∗

βγVαiV
∗
γi

)

. (17)

Equations (16)-(17) together with the unitarity condition Eq. (15) construct a full set of

linear equations of ṼαiṼ
∗
βi (for i = 1, 2, 3). By solving this set of equations, one will arrive

at the explicit expressions of ṼαiṼ
∗
βi straightforwardly.

In order to be concrete, we reexpress those equations in the following form

Õ











Ṽα1Ṽ
∗
β1

Ṽα2Ṽ
∗
β2

Ṽα3Ṽ
∗
β3











= O











Vα1V
∗
β1

Vα2V
∗
β2

Vα3V
∗
β3











+











0

Aαβ

∑

γ AαγA∗
βγ











+ Q
∑

γ











Aαγ











Vγ1V
∗
β1

Vγ2V
∗
β2

Vγ3V
∗
β3











+ A∗
βγ











Vα1V
∗
γ1

Vα2V
∗
γ2

Vα3V
∗
γ3





















, (18)

where the matrices Õ, O, and Q are defined by

Õ =











1 1 1

m̃2
1 m̃2

2 m̃2
3

m̃4
1 m̃4

2 m̃4
3











, O =











1 1 1

0 ∆21 ∆31

0 ∆2
21 ∆2

31











, Q =











0 0 0

0 0 0

0 ∆21 ∆31











. (19)
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After a lengthy calculation, the solution of Eq. (18) can be presented in a very elegant and

compact form

ṼαiṼ
∗
βi =

1

∆̃im∆̃in

[

∑

j

∆̂jm∆̂jnVαjV
∗
βj −Aαβ

(

m̃2
n + m̃2

m

)

+
∑

γ

AαγA∗
βγ +

∑

γ,j

∆j1

(

AαγVγjV
∗
βj + A∗

βγVαjV
∗
γj

)

]

, (20)

where i 6= n 6= m, ∆̃ij = m̃2
i − m̃2

j , and ∆̂ij = m2
i − m2

1 − m̃2
j . Note that the pairs

(m, n) = (2, 3), (3, 1), (1, 2) in the right-hand side correspond to i = 1, 2, 3 in the left-hand

side, respectively. Equation (20) is our main result for the exact analytical mappings.

The full mappings require the explicit form of m̃2
i , which involves the cubic roots of the

characteristic polynomial of Eq. (8). We follow the method given in Ref. [51], and the

corresponding roots (or eigenvalues) can be found in Appendix A. One may worry about

the m̃2
i ’s appearing in Eq. (20), since it seems that the effective mixing matrix elements rely

on the absolute effective neutrino masses. However, recalling the solutions in Eqs. (A4)-

(A6), it is easy to observe that only the mass-squared differences enter into the expressions

of m̃2
i , and it guarantees the consistency of our calculations. Obviously, Aαβ = 0 leads to

ṼαiṼ
∗
βi = VαiV

∗
βi. In the limit εαβ → 0, Eq. (20) reduces to the case of standard matter effects,

and the main results given in Refs. [48, 49, 52, 53, 54] will be easily reproduced. These exact

relations are model independent and do not rely on any specific parametrization, and hence,

it will be very helpful to systematically study NSIs in future experiments.

Taking α = β, the moduli of Ṽαi can be estimated immediately. For the case α 6= β,

the sides of leptonic unitarity triangles, which are defined by the orthogonality relations in

Eq. (15) in the complex plane, are obtained. These unitarity triangles have 18 different sides

and nine different inner angles, but their areas are all identical to a single rephasing-invariant

parameter J /2 defined through [55]

Im(VαiVβjV
∗
αjV

∗
βi) = J

∑

γ,k

(ǫαβγǫijk) . (21)

One of the major challenges of future long-baseline neutrino oscillation experiments is to

measure J , in order to establish the existence of CP violation in the lepton sector. We can

also define the counterpart of J in matter as J̃ . Its magnitude is related to the moduli of
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the effective mixing matrix elements as

J̃ 2 = |Ṽαi|2|Ṽβj|2|Ṽαj|2|Ṽβi|2 −
1

4

(

1 + |Ṽαi|2|Ṽβj|2 + |Ṽαj|2|Ṽβi|2

−|Ṽαi|2 − |Ṽβj|2 − |Ṽαj|2 − |Ṽβi|2
)2

. (22)

As an application, we show, in Appendix B, the zeroth-order series expansions of |Ṽe3|2,
|Ṽe2|2, and |Ṽµ3|2 in small parameters, i.e., η and Ve3. In addition, simplified formulas of

Eq. (20) and the effective mixing matrix elements for standard matter effects are presented

in Appendix B.

Now, the neutrino oscillation probabilities can be directly obtained with the help of

Eq. (11) for a realistic experiment. In order to be explicit, we can express the neutrino

oscillation probabilities in matter as

Pαα = 1 − 4
∑

i>j

|ṼαiṼ
∗
αj |2 sin2

(

∆̃ijL

4E

)

, (23)

Pαβ = −4
∑

i>j

Re
(

Ṽ ∗
αiṼβiṼαjṼ

∗
βj

)

sin2

(

∆̃ijL

4E

)

− 8J̃
∏

i>j

sin

(

∆̃ijL

4E

)

, (24)

where (α, β) run over (e, µ), (µ, τ), and (τ, e). For anti-neutrino propagation in matter, we

can simply recalculate Eqs. (23) and (24) through the replacements A → −A, Vαi → V ∗
αi,

and εαβ → ε∗αβ. In general, note that Ṽαi, ∆̃ij and J̃ for neutrinos are not identical to

Ṽαi, ∆̃ij and J̃ for anti-neutrinos. At first glance, one may wonder if the information on

the phases of εαβ have been lost, since there is only one parameter J governing the CP-

violating effects. We stress that, in neglecting the NSIs at sources and detectors, flavor and

mass eigenstates of neutrinos can always be correlated by using a unitary transformation,

and hence, we can use one effective rephasing invariant to describe the CP-violating effects in

neutrino oscillations. For instance, if we ignore the source and detector effects in Eq. (33) of

Ref. [31], the remaining CP-odd terms can be combined together with respect to a common

oscillating factor, which is consistent with our compact formulas (23) and (24).

Although our exact analytical results are very elegant, they do not show how new physics

affects mixing parameters in a transparent way. From a phenomenological point of view,

analytically approximate mappings are very useful, since they can reveal the underlying

correlations between effective mixing parameters and NSI effects, and in particular, show

which of them are mostly relevant for a given process. In the following section, we will
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perform a detailed analysis of approximate mappings based on series expansions in small

mixing parameters and NSI corrections. This method is indeed similar to the analysis of

series expansion formulas for neutrino oscillation probabilities [56].

IV. SERIES EXPANSIONS OF PARAMETER MAPPINGS

In this section, we proceed to present the series expansion formulas of parameter mappings

in η, s13, and the NSI parameters εαβ . For convenience, we adopt the standard parametriza-

tion and thus the vacuum leptonic mixing matrix V can be parametrized by using three

mixing angles and one CP violating phase as

V = O23VδO13V
†
δ O12

=











c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13











, (25)

where Vδ = diag(1, 1, eiδ), and Oij is the orthogonal rotation matrix in the (i, j)-plane with

cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13, 23). A global analysis of current experimental

data yields 0.25 < sin2 θ12 < 0.37, 0.36 < sin2 θ23 < 0.67, and sin2 θ13 < 0.056 at the 3σ

confidence level, but the CP-violating phase δ is entirely unrestricted [57]. The best-fit values

of neutrino mass-squared differences are ∆21 = 7.65× 10−5 eV2 and |∆31| = 2.4× 10−3 eV2,

which indicate that the hierarchy parameter we defined in Sec. I is given by η ≡ ∆21/∆31 ≃
±0.032. Present experimental bounds on the NSI parameters εαβ show that εµα (or εαµ) are

strongly constrained to |εeµ| . 3.8 × 10−4 and −0.05 < εµµ < 0.08 at 90 % confidence level

[30]. This is the reason why some of the previous works neglect contributions of εµα [40]. In

the following, we will only focus on εeτ , εµτ , εµµ, and εττ contributions, respectively.

Using a similar notation, one may also define the effective mixing angles θ̃12, θ̃13, θ̃23, and

CP violating phase δ̃ in matter. Then, we can parameterize Ṽ in analogy to Eq. (25). It is

straightforward to extract the sines of the mixing angles from Eq. (25) using

s13 = |Ve3| , s12 = |Ve2| /
√

1 − |Ve3|2 , s23 = |Vµ3| /
√

1 − |Ve3|2 . (26)

The effective mixing angles θ̃ij are obtainable once the moduli of Ṽαβ are computed using

Eq. (20), and it is not difficult to check that in the limit of vanishing matter effects the
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effective mixing angles are equal to the vacuum ones. Analytical relations between θ̃ and θ

could be very useful and they rely on the perturbation theory that we have employed.

For our purposes, we first factor out the rotation matrix O23

H̃ =
∆31

2E
O23Vδ · M · V †

δ OT
23

=
∆31

2E
O23Vδ ·

[

V̂ · diag (λ1, λ2, λ3) · V̂ †
]

· V †
δ OT

23 , (27)

where M is given by

M = O13O12 · diag (0, η, 1) · OT
12O

T
13 + diag

(

Â, 0, 0
)

+ V †
δ OT

23 · ε · O23Vδ , (28)

and Â ≡ A/∆31. In deriving Eq. (27), the following commutative properties are used

V †
δ O12 = O12V

†
δ , (29)

V †
δ · diag

(

Â, 0, 0
)

= diag
(

Â, 0, 0
)

· V †
δ . (30)

The diagonalization of M is performed by using perturbation theory, i.e., we write M =

M (0) + M (1) + · · · , where M (1) contains all terms of first order in η, s13, and εαβ . One finds

M (0) = diag
(

Â, 0, 1
)

= diag
(

λ
(0)
1 , λ

(0)
2 , λ

(0)
3

)

, (31)

and

M (1) =











ηs2
12 + Âε̂ee ηs12c12 + Âε̂eµ s13e

−iδ + Âε̂eτ

∼ ηc2
12 + Âε̂µµ Âε̂µτ

∼ ∼ Âε̂ττ











, (32)

with ‘∼’ denoting the conjugate elements and ε̂αβ = (V †
δ OT

23 · ε · O23Vδ)αβ . Since M (0) is

diagonal at zeroth order, we have V̂ (0) = I. Then, the first order corrections are given by

λ
(1)
i = M

(1)
ii , (33)

and

V̂
(1)
i =

∑

j 6=i

M
(1)
ji

λ
(0)
i − λ

(0)
j

V̂
(0)
j . (34)

Thus, the effective masses and mixing matrix are given by m̃2
i ≃ ∆31(λ

(0)
i + λ

(1)
i ) and Ṽ ≃

O23Vδ(V̂
(0) + V̂ (1)), respectively. Finally, inserting Eq. (32) into Eqs. (33) and (34), we arrive

11



at mappings for the effective mass squares

m̃2
1 ≃ ∆31

(

Â + ηs2
12 + Âεee

)

, (35)

m̃2
2 ≃ ∆31

[

ηc2
12 − Âs2

23 (εµµ − εττ ) − Âs23c23

(

εµτ + ε∗µτ

)

+ Âεµµ

]

, (36)

m̃2
3 ≃ ∆31

[

1 + Âεττ + Âs2
23 (εµµ − εττ) + Âs23c23

(

εµτ + ε∗µτ

)

]

, (37)

the effective mixing matrix elements,

Ṽe2 ≃ ηs12c12

Â
+ c23εeµ − s23εeτ , (38)

Ṽe3 ≃ s13e
−iδ

1 − Â
+

Â(s23εeµ + c23εeτ )

1 − Â
, (39)

Ṽµ2 ≃ c23 + s2
23c23Â (εττ − εµµ) + s23Â

(

s23εµτ − c2
23ε

∗
µτ

)

, (40)

Ṽµ3 ≃ s23 + Â
[

s23 (εµµ − εττ ) + c23εµτ − s2
23c23

(

εµτ + ε∗µτ

)

+ s3
23 (εττ − εµµ)

]

, (41)

and the effective Jarlskog parameter

J̃ =
s13s23

(

ηsδc12c23s12 + Âsδ+φeµ
c2
23|εeµ| − Âsδ+φeτ

c23s23|εeτ |
)

(Â − 1)Â

+
s23

(

sφeµ−φeτ
c23|εeµ||εeτ |Â2 − ηsφeµ

c12c23s12s23|εeµ|Â − ηsφeτ
c12s12c

2
23|εeτ |Â

)

(Â − 1)Â
, (42)

where the φαβ’s are the phases associated with the complex NSI parameters εαβ and the

sφαβ
’s are the corresponding sine functions. The above mappings can be transferred into

mappings between mixing angles straightforwardly, i.e., we have approximately s̃13 ≃ |Ṽe3|,
s̃12 ≃ |Ṽe2|, and s̃23 ≃ |Ṽµ3|. Equations (35)-(42) are our main results for the approximate

analytical mappings.

Some discussions are in order:

• In the limit εαβ → 0, it is interesting to observe that our results coincide with the

mapping results in Ref. [58] when evaluated at the same order of perturbation theory.

In fact, expanding Eqs. (27a)-(27c) of Ref. [58] in η and s13 (which means that the

Ĉ parameter appearing there equals 1 − Â), and retaining terms up to first order in

these small parameters, we can easily check that they reduce to

s̃13 =
s13

1 − Â
, (43)

s̃23 = s23 , (44)

s̃12 =
η

Â
c12 s12 , (45)
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which are in agreement with our Eqs. (38)-(41) evaluated at εαβ = 0. In addition,

from Eq. (43), it is worth noticing that the mixing parameter s13 is strongly modified

by matter effects when 0 < Â 6= 1, otherwise the resonance Â = 1 is at work and the

mapping procedure adopted in this paper is not valid.

• As shown in Eq. (29), the orthogonal matrix O23 commutes with the standard matter

potential. Hence, in the case of vanishing θ13 and NSIs, Eq. (8) can be rewritten as

H̃ =
∆31

2E
O23

[

O12 · diag (0, η, 1) · OT
12 + diag

(

Â, 0, 0
)]

OT
23 , (46)

where the CP violating phase δ loses its meaning and does not appear. An evident

conclusion deduced from Eq. (46) is that, if θ13 = 0, the standard matter effects

only contribute to the mixing angle θ12. Both θ13 and θ23 as well as ∆31 will keep

their vacuum values in matter. However, when the NSIs are taken into account, the

situation will be quite different. A non-zero θ̃13 will emerge in general, θ̃23 will deviate

from its maximal value π/4, and a non-trivial CP violating phase δ̃ may also exist.

• As already noticed above, the mapping for θ12 shows an unphysical divergence for Â →
0 or Â → 1, and the vacuum results cannot be reproduced, a well-known consequence

of the perturbative approach adopted in the mapping procedure. Thus, degenerate

perturbation theory should be elaborated on around these two singularities.

• Except from εeµ and εeτ , it can also be very clearly seen that contributions to s̃13

from all the other NSI parameters are all suppressed. Since the present experimental

bound on εeµ is rather stringent [43], we conclude that εeτ is the most significant NSI

parameter to be taken into account for θ̃13. As for θ̃23, NSI corrections are relatively

mild unless very high-energy regions are considered.

• The matrix elements |Ṽµ3|, |Ṽτ3|, |Ṽµ1|, and |Ṽτ1| are not modified by εeτ .

V. APPLICATIONS

We now proceed to numerically illustrate (using normal mass hierarchy, i.e., η ≃ +0.032)

the NSI corrections to the leptonic mixing parameters and the neutrino oscillations probabil-

ities based on our model independent results obtained in Secs. III and IV. We first consider

13



the exact results for mixing matrix elements, and combinations of them, as obtained ap-

plying Eq. (20). This is an important point, since both mixing angles and the Jarlskog

parameter depend on the modified behavior of the effective matrix elements [see Eqs. (22)

and (26)] due to matter effects and non-standard physics. We then focus on the importance

of the NSI effects on θ13 and θ23 in correcting their tri-bimaximal mixing values (i.e., θ13 = 0

and θ23 = π/4) [59, 60]. Finally, in order to show the goodness of our approximate results for

the effective mixing angles, we compare the exact νe → νµ, νe → ντ , and νµ → ντ oscillation

probabilities obtained including the NSI effects with those derived using Eqs. (38)-(41) for

the effective mixing angles.

A. NSI corrections to the leptonic mixing matrix

The effective leptonic mixing matrix can be reconstructed directly from Eq. (20). For

α = β, we obtain the expressions of the matrix elements |Ṽαi|, whereas for α 6= β, we obtain

the sides of unitarity triangles ṼαiṼ
∗
βi. The numerical results are presented in Fig. 1. In our

numerical calculations, we take the central values of the neutrino mass-squared differences

(∆21 = 7.65× 10−5 eV2, ∆31 = 2.4× 10−3 eV2) and the leptonic mixing angles (θ12 = 33.5◦,

θ23 = 45◦, θ13 = 0) obtained in a global analysis of the presently available neutrino oscillation

data [57]. Here, just as an example, we choose εeτ as the only non-vanishing NSI parameter.

For comparison, we also show the results without including NSIs. In particular, for higher

neutrino beam energies, the NSI corrections are remarkable.

First, we can observe that the energy dependence of the matrix elements can be easily read

off from the approximate relations in Eqs. (38)-(41), since the matter parameter A ∼ E.2

Thus, for example, the fact that |Ṽe2| is predicted to decrease with increasing neutrino energy

is confirmed in the first panel of the fourth row in Fig. 1. Moreover, the singularity for matrix

elements around E ∼ 10 GeV (see panels in the first and third rows) clearly corresponds to

the resonance at Â ∼ 1, which can be understood investigating the perturbative results in

Eqs. (38)-(41). Note that, for anti-neutrinos, since the sign in front of Â is negative, such a

singularity should not appear. In addition, the relation |ṼeiṼ
∗
µi| ≃ |ṼeiṼ

∗
τi| holds quite well,

which is an obvious consequence of the µ−τ symmetry in the genuine neutrino mass matrix.

2 The matrix elements that are not quoted in Eqs. (38)-(41) can be obtained using unitarity relations.
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FIG. 1: Illustrative plots for the effective matrix elements |ṼαiṼ
∗
βi| (first and second rows) and |Ṽαi|2

(third and fourth rows) as a function of the neutrino energy E. Here the solid, dashed, and dotted

curves correspond to i = 1, 2, 3, respectively. The first and third rows show the results without

including NSIs (labeled SI), while the second and fourth rows are those including NSIs. We use the

representative value Re(εeτ ) = Im(εeτ ) = 0.02, with all other εαβ being zero.
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This can be seen comparing the first and second panels of the second row for any value of

the index i. In the same panels, at energies E ∼ 4 GeV, ṼeiṼ
∗
µi and ṼeiṼ

∗
τi (i = 1, 2, 3)

are comparable to each other, and thus, the unitarity triangle built with these sides takes

a nearly equilateral form with three nearly degenerate inner angles. Such an equilateral

form is destroyed when increasing the energy. Similarly, |Ṽµ1Ṽ
∗
τ1| is rather stable against

matter corrections and NSI effects, which also reflects the stabilization of θ̃23. As for the

matrix elements, |Ṽµ1| and |Ṽτ1| are not sensitive to εeτ , which is also in agreement with our

approximate mappings.

B. NSI corrections to the mixing angles

A crucial goal of future neutrino facilities is to measure the smallest leptonic mixing

angle θ13 in order to extract information on leptonic CP violation. However, it has been

pointed out that NSIs may play a very important role for mimicking effects on θ13 and

leptonic CP violation, especially in the case of a small θ13 [61]. It is then quite important

to analyze in detail these effects in order to be able to disentangle genuine θ13 effects from

new physics-induced ones at future neutrino facilities.

On the other hand, the question of whether the leptonic mixing angle θ̃23 is exactly

maximal or not is quite relevant, especially from the model builders’ point of view: in

fact, many models presented in the literature predict θ23 being (almost) maximal and the

understanding of the flavor problem strongly relies on the knowledge on the value of θ23

to be as accurate as possible. Thus, it is very important to investigate the possible NSI

corrections to θ13 and the maximal mixing pattern in the µ − τ sector.

According to Eqs. (38)-(41), the most relevant NSI parameter for θ̃13 is εeτ (since the

upper bound on εeµ is rather stringent), whereas for θ̃23 εµτ , εµµ and εττ contribute. Notice

that, in the latter case for maximal mixing (θ23 = 45◦), a typical feature is that the vacuum

Hamiltonian takes on a µ − τ symmetric form, namely, H is invariant under the exchange

of µ and τ indices. Hence, if NSIs possess a similar µ − τ symmetric form (i.e., εeµ = εeτ

and εµµ = εττ ), the µ− τ symmetry exists in the effective Hamiltonian H̃, and the effective

mixing angle θ̃23 will not be affected by matter effects. As a consequence, εµτ itself does not

contribute to θ̃23 if all the other NSI parameters are zero.

In the upper plots of Fig. 2, we show the non-vanishing θ̃13 generated by the NSIs [com-
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FIG. 2: Dependence of the mixing angles θ̃13 and θ̃23 on the NSI parameters for three representative

values of the neutrino energy: E = 1, 5, and 30 (35) GeV, which roughly correspond to the νe and

νµ mean energies at a 50 GeV neutrino factory. The vacuum value of θ13 is fixed to be zero, whereas

we assume maximal mixing for θ23. In each plot, the darker the region, the larger the deviation of

θ̃13 and θ̃23 from their vacuum values. Only the labeled NSI parameters are non-vanishing in each

plot.

puted using our exact formula given in Eq. (20)]. One can observe that θ̃13 is quite sensitive

to εeτ . In the case of E = 30 GeV, θ̃13 may acquire a very sizable value close to 90◦. This

is due to the reordering of the eigenvalues m̃1 and m̃3 when E & 10 GeV. If we keep the

order of eigenvalues in the form of diag(m̃2
1, m̃

2
2, m̃

2
3), a shift of π/2 has to be added to θ̃13.

In the lower plots of Fig. 2, we show the corrections from εµµ and εττ to θ23, assuming the

vacuum value θ23 = π/4. Our numerical results indicate that there are no sizable corrections

to the mixing angle θ23, and even in the high-energy region, θ̃23 should not deviate from its

maximal value by more than a few degrees. We also find that the εµµ − εττ contributions
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FIG. 3: Neutrino energy dependence of the effective mixing angles (θ̃13 and θ̃23). Solid curves

correspond to exact numerical results, whereas the dashed ones are computed using our approximate

mappings. The non-vanishing NSI parameters have been labeled in each plot.

are symmetric with respect to the εµµ = εττ axis up to a minus sign, since an addition to

one of the parameters could as well be made to the other one.

It is interesting to observe that the main features of the previous exact results can also

be captured from our approximate mappings in Eqs. (38)-(41). To illustrate this point, we

show the dependence of θ̃13 and θ̃23 on the neutrino energy in Fig. 3, for different values of

the relevant NSI parameters, according to our foregoing discussions. Solid curves correspond

to exact results obtained using Eq. (20), whereas dashed ones represent our perturbative

mappings. In the first row, we can appreciate how the dependence of θ̃13 on εeτ is well

described by our perturbative result in Eq. (38), unless εeτ assumes a very large value, close

to its upper bound [30]. In addition, notice that the increase of θ̃13 corresponds to reordering

the eigenvalues for energies around 10 GeV. In the second row, we analyze the behavior of

θ̃23, for different values of the relevant parameters εµµ and εττ . In particular, in the first and
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second panels, we choose only one of them being different from zero (and equal to 0.01),

whereas in the last one, we allow both of them to assume larger values (εµµ = 0.08 and

εττ = 0.4). The agreement between our calculation and the exact evaluation of θ̃23 is quite

good, also in predicting the location of the resonance.

Finally, we comment on the fact that θ̃12 is dramatically suppressed by matter effects,

as shown in Eq. (38). However, since long-baseline neutrino oscillation experiments are not

very sensitive to this angle, we will not perform a detailed analysis here. The conclusions

made above about the dependence of the effective angles on the NSI parameters apply as well

to the case of anti-neutrinos in matter and we will not perform such a redundant analysis

here.

C. NSI corrections to the neutrino oscillation probabilities

Until now we have described the relevant features of new physics effects on the matrix

elements of the leptonic mixing matrix. In what follows, we study the dependence of the

transition probabilities on the NSI parameters, for different choices of neutrino energies

and baselines. In particular, we focus on the golden channel νe → νµ [62] and the CP

asymmetries derived from it, the silver channel νe → ντ [63, 64], and the so-called discovery

channel νµ → ντ , which is thought to be the best channel for searching for new physics [65].

We also show how the relevant features of the transition probabilities are well reproduced

computing them by inserting Eqs. (38)-(41) into Eq. (11).

In Fig. 4, we show the transition probability P (νe → νµ) as a function of the neutrino

energy for three different baseline setups: L = 700 km (around the scope of MINOS [10]

and OPERA [66]), L = 3000 km, and L = 7000 km (for the two detector setup of a

neutrino factory). The input parameters are the same as those in Fig. 1. In each panel,

the solid curves denote the exact numerical results, the dashed curves correspond to results

derived from our approximate mappings and, to highlight the effects of the NSI parameters,

the dotted curves represent the probability without including NSIs. We can observe that

our approximate mappings given in Sec. IV agree with the exact numerical results to an

extremely good precision. Similar to the plots of the mixing parameters, a singularity exists

around E ∼ 10 GeV due to the limitation of non-degenerate perturbation theory that we

have elaborated. For smaller θ13, the probability is more sensitive to the NSI effects, and
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FIG. 4: Neutrino oscillation probabilities for the νe → νµ channel as a function of the neutrino

energy E. The baseline lengths and values of s13 have been labeled in each plot. Here, we set

δ = π/2 and only εeτ = 0.01 is allowed to be non-vanishing. The solid curves denote the exact

numerical results. The dashed curves correspond to results derived from our approximate mappings,

and for comparison, the dotted curves are shown to illustrate probabilities without including NSIs.

thus, longer baseline lengths are more favored for the purpose of searching for new physics

effects.

The experimentally measured CP asymmetry in the golden channel, which is usually

defined as

ACP =
P (νe → νµ) − P (νe → νµ)

P (νe → νµ) + P (νe → νµ)
, (47)

is illustrated in Fig. 5 for the same baseline setup. Again, our approximate mappings

are valid in a large range of beam energies. At higher energies, the CP asymmetries are

dramatically affected by NSIs, i.e., the values of ACP , which are calculated without taken

into account NSI effects, may go to divergent directions.

In Figs. 6 and 7, we repeat the same exercise on the neutrino oscillation probabilities

and CP asymmetries, but instead as a function of the baseline length and for two fixed
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FIG. 5: CP asymmetry ACP derived from the νe → νµ channel. The values of the mixing parameters

as well as those of the baselines and neutrino energies are the same as in Fig. 4. The solid

curves denote the exact numerical results, the dashed curves correspond to results derived from our

approximate mappings, and the dotted curves show the probabilities without including NSIs.

value of the neutrino energy E = 5 GeV and E = 30 GeV. It can be clearly seen that

for smaller θ13 and lower beam energy, new physics effects play a significant role around

L ∼ 3000 km, which sheds some light on future beta beam experiments. For higher energy

experiments, i.e., a neutrino factory, a far detector with relatively longer baseline length

should be important to constrain NSI effects. In both figures, one can appreciate how the

probabilities computed using our approximations for the effective mixing angles are in very

good agreement with the exact results.

Finally, we illustrate the application of our analytical expressions for the νe → ντ and

νµ → ντ channels in Fig. 8. For comparison, we also show the maximal NSI corrections by

setting all the NSI parameters at their upper bounds given in Ref. [30]. One can observe

that NSI corrections to these two channels are not remarkable if the corresponding εαβ’s are

chosen to be a few percent. However, increasing the NSI parameters, the NSI effects become
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FIG. 6: Transition probability P (νe → νµ) as a function of the baseline length L. Here, εeτ = 0.01

and δ = π/2 are adopted, and the neutrino beam energies have been labeled in each plot. The

solid and dotted curves denote the exact numerical results with and without NSIs, respectively.

Probabilities calculated using our approximate mappings are shown as dashed curves.

more significant, in particular for the νe → ντ channel. The upper plots in Fig. 8 indicate

that our approximate mappings are not quite valid for relatively longer baseline lengths. This

is due to the fact that our expansions are performed according to small εαβ’s and cannot be

extended to the regions of sizable NSI parameters. As discussed in the introduction, if NSIs

are related to some underlying new physics, they should be attributed to next-to-leading

order effects and not deviate much from zero. In this sense, our approximate mappings

are quite realistic and should be very helpful for both phenomenological studies and model

buildings.

Since the analyses above certainly depend on the input NSI parameters, they mainly

serve as illustrations. However, our analytical results are model independent. Thus, they

are hoped to be very useful for a general study of NSI effects in future experiments. The

transparent mappings also manifest the underlying correlations between leptonic mixing
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FIG. 7: CP asymmetries as a function of the baseline lengths. Here, εeτ = 0.01 and the neutrino

beam energies have been shown in each plot. The solid and dotted curves denote the exact numer-

ical results with and without NSIs, respectively. Dashed curves denote ACP calculated using the
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parameters and NSIs in a very legible way.

VI. SUMMARY

In this work, we have developed both exact and approximate mappings between the

leptonic mixing matrix in vacuum and in matter in the presence of NSIs. A full set of

sum rules between fundamental mixing parameters and the corresponding effective ones in

matter have been derived. By using these sum rules, exact and model independent analytical

mappings between the mixing matrix elements Ṽαi and Vαi have been established, and in

turn using these mappings, the moduli of the mixing matrix elements and the sides of

unitarity triangles can be immediately figured out. Besides the exact expressions for the

mixing parameters, we have also derived approximate parameter mappings based on series
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FIG. 8: Transition probabilities for the νe → ντ and νµ → ντ channels as a function of the

baseline length L. Different setups of NSI parameters are considered: (a) for the νe → ντ channel,

we choose εeτ = 0.01, and for the νµ → ντ channel, we choose and εµµ = εµτ = εττ = 0.01.

Here, thick solid and dashed curves correspond to the exact numerical results and our approximate

mappings, respectively; (b) NSI parameters are at their upper bounds computed in Ref. [30] with

thin solid and dashed curves corresponding to the exact numerical results and our approximate

mappings, respectively. Dotted curves denote the numerical results without including NSIs, and

they are unique in each channel.

expansions in the small parameters η, s13, and εαβ. We have then performed a detailed

numerical analysis of the application and validity of our parameter mappings. In particular,

we have concentrated on the mimicking effects of NSIs on the mixing angle θ13 and on the

deviation of the mixing angle θ23 from maximal mixing. Furthermore, we have studied in

detail how the εαβ’s affect the transition probabilities of the νe → νµ, νe → ντ , and νµ → ντ

channels. We have found that the exact parameter mappings are very useful in obtaining

exact results for the mixing parameters and transition probabilities, and our perturbative

parameter mappings also describe quite well all the relevant features of these quantities.
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Note that our analytical analysis is independent of any specific model or assumptions on the

configuration of NSI parameters. In conclusion, the outstanding feature of our parameter

mappings is that they reveal the underlying correlations between NSI effects and neutrino

mixing parameters in a highly straightforward way, and they are very practical and useful

for the study of NSIs in future long-baseline neutrino oscillation experiments. It also makes

sense to note that the calculation procedures we have employed in the present work can also

be applied to the picture of non-unitary leptonic mixing [47], which will be elaborated on

elsewhere.
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APPENDIX A: CALCULATIONS OF EFFECTIVE MASSES

To calculate the explicit expressions of m̃i, the cubic roots of the characteristic polynomial

of Eq. (8) are involved. We follow the method given in Ref. [51] and define the so-called

elementary symmetric polynomials [67, 68]:

c0 = H̃ee

∣

∣

∣
H̃µτ

∣

∣

∣

2

+ H̃µµ

∣

∣

∣
H̃eτ

∣

∣

∣

2

+ H̃ττ

∣

∣

∣
H̃eµ

∣

∣

∣

2

− 2Re(H̃eµH̃µτH̃τe) − H̃eeH̃µµH̃ττ , (A1)

c1 = H̃eeH̃µµ + H̃eeH̃ττ + H̃µµH̃ττ −
∣

∣

∣
H̃eµ

∣

∣

∣

2

−
∣

∣

∣
H̃µτ

∣

∣

∣

2

−
∣

∣

∣
H̃eτ

∣

∣

∣

2

, (A2)

c2 = −H̃ee − H̃µµ − H̃ττ . (A3)

It is easy to check that the relations c2 = −∑i m̃
2
i /(2E), c1 =

∑

i<j m̃2
i m̃

2
j/(2E)2, and

c0 = −
∏

i m̃
2
i /(2E)3 are satisfied. By incorporating the definitions above, the mass squared

eigenvalues can be computed as

m̃2
1

2E
=

2

3

√
p cos

[

1

3
arctan

(

√

p3 − q2

q

)

+
2π

3

]

− 1

3
c2 , (A4)

m̃2
2

2E
=

2

3

√
p cos

[

1

3
arctan

(

√

p3 − q2

q

)

− 2π

3

]

− 1

3
c2 , (A5)

m̃2
3

2E
=

2

3

√
p cos

[

1

3
arctan

(

√

p3 − q2

q

)]

− 1

3
c2 , (A6)

where p = c2
2 − 3c1 and q = −27c0/2− c3

2 + 9c1c2/2. As a natural consequence, the effective

mass eigenvalues in matter are only related with the neutrino mass squared differences but

not the absolute neutrino masses.

As an example, we consider the case of vanishing NSI. From Eqs. (A1)-(A3), one can

directly write down

c0 = − 1

(2E)3
A∆21∆31 |Ve1|2 , (A7)

c1 =
1

(2E)2

{

∆21∆31 + A
[

∆21

(

1 − |Ve2|2
)

+ ∆31

(

1 − |Ve3|2
)]}

, (A8)

c2 = − 1

2E
(A + ∆21 + ∆31) . (A9)

Substituting Eqs. (A7)-(A9) into Eqs. (A4)-(A6), the matter corrected eigenvalues given in

Refs. [69, 70] can be reproduced straightforwardly. One may also check that A = 0 leads to

the limit m̃i = mi.
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APPENDIX B: FORMULAS FOR EFFECTIVE MIXING MATRIX ELEMENTS

In the limit of small parameters, i.e., η → 0 and Ve3 → 0, one can use our main result for

the exact analytical parameter mappings Eq. (20) to derive zeroth-order series expansion

formulas for the modulus squares of the mixing matrix elements Ve3, Ve2, and Vµ3. The

results are given by

|Ṽe3|2 =
1

∆̃31∆̃32

{

m̃2
1m̃

2
2 − A(1 + εee)(m̃

2
1 + m̃2

2) + A2
[

(1 + εee)
2 + |εeµ|2 + |εeτ |2

]}

,

(B1)

|Ṽe2|2 =
1

∆̃21∆̃23

{

m̃2
1m̃

2
3 − A(1 + εee)(m̃

2
1 + m̃2

3) + A2
[

(1 + εee)
2 + |εeµ|2 + |εeτ |2

]}

,

(B2)

|Ṽµ3|2 =
1

∆̃31∆̃32

{

m̃2
1m̃

2
2 + ∆31

(

∆31 − m̃2
1 − m̃2

2

)

|Vµ3|2 + A2
(

|εeµ|2 + |εµµ|2 + |εµτ |2
)

−Aεµµ

(

m̃2
1 + m̃2

2

)

+ 2A∆31

[

εµµ|Vµ3|2 + Re(εeµVe3V
∗
µ3) + Re(εµτVτ3V

∗
µ3)
]}

,

(B3)

which are valid to all orders in the NSI parameters. In addition, for standard matter effects,

i.e., without NSI effects, and for any η and Ve3, we can derive the corresponding formula to

Eq. (20). The result is

ṼαiṼ
∗
βi =

1

∆̃im∆̃in

[

∑

j

∆̂jm∆̂jnVαjV
∗
βj + Aδαeδβe

(

A − m̃2
n − m̃2

m

)

+ A
∑

j

∆j1

(

δαeVejV
∗
βj + δβeVαjV

∗
ej

)

]

. (B4)

In the specific cases of Ve3, Ve2, and Vµ3, we obtain

|Ṽe3|2 =
1

∆̃31∆̃32

[

∑

j

∆̂j1∆̂j2|Vej|2 + A
(

A − m̃2
1 − m̃2

2

)

+ 2A
∑

j=2,3

∆j1|Vej|2
]

, (B5)

|Ṽe2|2 =
1

∆̃21∆̃23

[

∑

j

∆̂j1∆̂j3|Vej|2 + A
(

A − m̃2
1 − m̃2

3

)

+ 2A
∑

j=2,3

∆j1|Vej|2
]

, (B6)

|Ṽµ3|2 =
1

∆̃31∆̃32

∑

j

∆̂j1∆̂j2|Vµj|2 , (B7)

which are valid to all orders in the small parameters η and Ve3.
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