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SPENCER-ATTIX CAVITY THEORY
Gudrun Alm Carlsson

Dept of Radiation Physics, IMV
Faculty of Health Sciences

S-581 85 LINKÖPING

The cavity theory by Spencer and Attix treats the energy deposition in a Bragg-Gray (B-G)
cavity (detector). Originally the theory was developed for the case of a B-G detector inside a
medium irradiated with photons and assuming electronic equilibrium in the medium at the
position of the cavity. The theory is also applicable in media irradiated with other types of
uncharged ionizing particles (e.g., neutrons) and charged particles such as electrons and
protons.

The special case of photon irradiation under CPE (charged particle equilibrium) conditions
was coupled to a model for calculating the energy spectrum of the equilibrium fluence of
electrons in the undisturbed medium. For other situations, e.g., in a medium externally
irradiated with electrons, the problem is to evaluate the energy spectrum of the electron
fluence at the point considered in the medium. Today, this is mostly accomplished using
Monte Carlo simulations.

A Bragg-Gray cavity is regarded to be so small that:

• the energy imparted to the cavity from electrons released by photons in the cavity is
negligible compared to the energy imparted from electrons released by photons in the
surrounding medium and passing through the cavity

• the cavity should not disturb the fluence of electrons in the medium, i. e., the fluence of
electrons traversing the cavity is assumed to be identical to that existing at the point of
interest in the medium in the absence of the cavity.

I. Background

1. Experimental findings

The measured ionization in an air filled cavity was found to differ significantly from the
ionization calculated according to the Bragg-Gray-Lawrence theory, especially when the
material of the wall had a high atomic number. The ionization per unit mass of air,
proportional to the mean absorbed dose in air, also varied with the size of the air cavity at
small cavity sizes. An argument made by Gray in the early development of B-G theory was
that as long as the ionization in the cavity gas increased linearly with cavity size, the cavity
could be considered to fulfil the requirements on a B-G detector. In 1955 both Burch (Burch
1955) and Spencer and Attix (Spencer and Attix 1955) came up with an explanation to this
deviation from Gray´s theory and formulated new expressions for the conversion factor

det/ DDmed for a B-G detector. While Burch was not able to quantify his expression for

det/ DDmed , Spencer and Attix managed to develop an expression that could be solved
numerically.



2

2. Qualitative explanation

In the Bragg-Gray-Lawrence theory, the ratio det/ DDmed between the absorbed dose in the
medium and absorbed dose in the detector is given as a weighted mean of the mass stopping
power ratio for the materials in the cavity and the wall (medium), respectively.  The energy
spectrum of the electron fluence, used in calculating the stopping-power ratio, was derived in
the continuos slowing down approximation, CSDA.  With this approximation, the δ-particles
generated during the slowing down of the primary electrons are neglected. (Primary electron
= electron released by a photon). When the production of δ-particles is taken into account and
added to the spectrum of primary electrons, a considerably larger fluence of electrons is
obtained with, in particular, a larger fraction of low energy electrons, Fig 1.

Fig 1:  Upper curve,1: The electron equilibrium spectrum in Al for primary
electrons and δ-particles at emission of one electron with kinetic energy 2.04 MeV per cm3 in Al.
Lower curve,2: The same spectrum omitting the δ-particles, approximately the same spectrum as that
obtained in the CSDA approximation.
(From Attix-Roesch, Radiation dosimetry Vol I, chapter 5, page 250)

The stopping power ratio varies strongly with the electron energy if the difference in atomic
composition between wall (medium) and cavity is large. The Bragg-Gray-Lawrence theory
makes wrong predictions mainly because the weighted mean of the mass stopping-power ratio
is derived from a spectrum with too few low energy electrons. The result of using a false
energy spectrum is more serious the higher the atomic number of the wall material. The
variation of the stopping power ratio with electron energy increases with increasing difference
in atomic composition between wall and cavity.
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II. The Spencer-Attix theory

In order to take into account the effect of the δ-particles in the cavity theory, Spencer and
Attix developed a two group theory for the energy losses of electrons.

It is assumed that
(1) the energy lost by an electron in a collision with an atomic electron is immediately

transformed into imparted energy (i.e.,is regarded as locally absorbed) if the energy loss is
less than a given energy ∆.

(2) if the energy loss is larger than ∆, it is carried away as kinetic energy of a δ-particle and
no energy is locally absorbed. The δ-particles generated with kinetic energy >∆ are added
to the fluence of electrons.

1. Choice of energy limit ∆

The concept "locally" absorbed is here related to whether δ-particles, generated in the cavity
are able to carry their energy out in the wall material or not. Those δ-particles generated
inside the cavity with ranges small compared to the dimensions of the cavity tend to impart all
their energy to the cavity while those with ranges that are large compared to the dimensions of
the cavity tend to impart all their energy in the wall material. From this we conclude that ∆
should approximately equal the kinetic energy of an electron just able to pass through the
cavity, i.e., with a range comparable with the cavity dimension.

Fig 2: The fraction , 
T
T )(ε

, of the initial kinetic energy , T, which is on average imparted  to a

spherical cavity when electrons are randomly generated over the cavity volume as function of T  given
as a fraction of the energy ∆ .  The dashed edge function illustrates the approximation of the function

T
T )(ε

 used in the Spencer-Attix theory. (From L V Spencer, Acta Radiol Ther Phys Biol 10(1979),

pp 1-20.)
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Spencer (1971)4 discussed a more qualified way of choosing the energy limit ∆. Some of the
δ-particles generated in the cavity with energy ≤ ∆ will, in spite of being regarded as locally
absorbed, deposit some of their energy outside the cavity. Similarly, some of the δ-particles
generated in the cavity with energies > ∆ will deposit some of their energy inside the cavity
although considered not to contribute to the "locally" absorbed energy. By proper choice of ∆,
the energy carried out of the cavity by δ-particles generated with energies ≤ ∆ could exactly
be compensated by the energy deposited in the cavity from δ-particles generated with energies
> ∆. To make this balance when choosing the energy limit ∆, we have to take into account the
shape of the cavity as well as the angular- and energy distributions of the δ-particles generated
in the cavity. If the cavity is a sphere the angular distribution does not matter. Fig 2 shows the
fraction of the initial energy T of electrons ( −δ particles), generated randomly in a spherical
cavity, which is on average imparted to the cavity.

2. The mean absorbed dose in the detector and the ratio medDDdet when monoenergetic
electrons are emitted in the medium.

If dmTdn o )( mono energetic electrons are released per unit mass, the mean absorbed dose
in the cavity is:

det,,
0,det

1
),(

0

∆∆








Φ= ∫

col

T

medT STTdTD
ρ

(1)

Here, dTTTmedT ),( 0,Φ  = the equilibrium fluence of electrons in the medium (cf Fig 1) with

energy in the interval (T, T+∆T), and

det,,

1

∆









col

S
ρ   = the restricted mass stopping power for electrons in the detector material.

In Eq 1, the integration is from ∆ to the maximum energy To.  According to the two group
theory, energy losses ≤ ∆ are "locally absorbed". When an interacting electron loose so much
energy that its own energy falls below ∆, the residual energy of this electron is also regarded
as locally absorbed. Therefore, no electrons with energy ≤ ∆ are present in the calculated
fluence spectrum.

Note: The two group theory for the energy losses and the choice of the energy limit ∆ in
relation to the size of the cavity is a method to approximately solve the transport equation for
δ-particles generated in the cavity. Neither δ- particle equilibrium (nor partial δ -particöe
equilibrium) is achieved in the cavity. Since the energy spectrum calculated in the continuos
slowing down approximation approximately equals the fluence of  primary electrons (see
Fig1),  the Bragg-Gray-Lawrence theory would give a correct result if δ-particle equilibrium
prevailed in the cavity. (When electron equilibrium prevails also δ-particle equilibrium
prevails.) The discrepancy relative to the Bragg-Gray-Lawrence theory is a result of lacking
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δ-particle equilibrium in the cavity, which will get more pronounced when the difference
between the atomic numbers in the cavity and the medium increases.

Using the qualified choice of energy limit ∆ discussed above, the energy deposition function
)(Tε  in Fig 2 could be used to calculate detD :

( )
)

'
'

'),'('),(
1 2/

0
'

0

0
0,

det
det T

T
TTTdTTTdTD

T

T

T

medT
><

Φ= ∫∫
ε

µ
ρ (2)

where  TdTTT ′′′ ),(µ   is the probability per unit length in the detector material that an
electron with energy T will interact and create a δ-particle with energy in the interval
(T',T'+dT'). The energy deposition function )(Tε  depends on the geometry of the cavity,

the angular distribution of the released δ-particles and is a mean value at uniform emission of
δ-particles over the entire cavity. Since the differential fluence ),( 0, TTmedTΦ is assumed to

be the same in all points in the cavity the emission of δ-particles will be uniform over the
entire cavity.

Eq 2 could be used to determine a suitable energy limit ∆ in Eq 1.

In the two group theory ( )'Tε  is approximated by (see Fig 2)

1
'
)'(

=
T
Tε

 when T'≤ ∆

  0
'
)'(

=
T
Tε

  when T'>∆

With Eq 3 introduced into Eq 2 the last integral in Eq 2 reduces to:

( ) ( ) det,,
0

'

2/

0

' )('),'('
'
'

'),'(' ∆

∆

==
><

∫∫ colT

T

T TSTTTdT
T
T

TTTdT µ
ε

µ

It is noted that the result in Eq 2 presupposes that the atomic electrons are free during the
generation of δ-particles and that consequently no energy is imparted to the cavity material in
the interactions of primary electrons. However, Eqs 2-4 indicate the significance of the
Spencer-Attix two group theory regards the transport of δ-particles in the cavity.

In accordance with Eq 1,  the absorbed dose in the medium, Dmed, at the position of the
detector can be written as:

(3)

(4)
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dT
S

TTD
medcol

T

Tmedmed
,,

0

0, ),(
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Φ= ∫ ρ

Bremsstrahlung losses are neglected in the original Spencer-Attix theory.  Since electron
equilibrium is assumed to exist in the medium the photon energies are limited to hν≤1 MeV
and neglect of bremsstrahlung is not a serious problem.

At CPE, Dmed can be written as:

0
0 )(

T
dm

Tdn
Dmed =            (6)

and the ratio 
medD

Ddet  be expressed as:

dT
S

TT
T

dm
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dT
S

dT
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D
D
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T
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0
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0
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,,
,

det,,
,

det

ρ

ρ

ρ
       (7)

In literature,  
dm

Tdn )( 0  is often normalized to one.

3. Calculation of the electron equilibrium spectrum ),( 0, TTTmedΦ

The Möller cross section  is used to calculate the generation of δ-particles. This cross section
is valid for collisions between free electrons. Therefore  ∆ should be much larger than the
binding energy of most of the atomic electrons.

Spencer and Fano 1954 have shown that the equilibrium spectrum of electrons obtained in the
CSDA approximation approximately equals the equilibrium spectrum of the primary

electrons. When  
dm

Tdn )( 0  electrons with energy T0 are emitted per unit mass the slowing down

spectrum of the primary electrons can thus be obtained from:

(5)
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medmed
medpT TS

dT
dV

Tdn
dT

TS
dmTdn

dT
)(

)(
))((

)( 00
,, ⋅=≈Φ

ρ
(8)

Here, 
medTS

dT
)(

 is  the average track length traversed by an electron while its energy is

decreased from T  to dTT − . Eq 8 shows that the equilibrium spectrum of electrons can be
expressed in terms of a track length distribution and we therefore often call it the slowing-
down spectrum of electrons.

A fluence of δ-particles is added to the fluence of primary electrons. All δ-particles generated
with energies above T  contribute to the slowing-down spectrum in the energy interval

dTTT −, . The number of emitted δ-particles per unit mass in the medium with energies
above T  is:

**),(*),''(
1

'' 0,"

0

''2

2
0

dTTTTTdT medTT

T

T

T

T

Φ∫∫ µ
ρ

(9)

Here, TdTTT ′′′′ ∗
′′ ),(µ  is the probability per unit length in the medium that an electron with

energy ∗T  will interact and give rise to a δ-particle in the energy interval TdTT ′′+′′′′ , .

When δ-particles are included, the slowing-down spectrum will be:

med

medTT

T

T

T

T
medT S

dTTTTTdT
dm

Tdn

TT










Φ+

=Φ
∫∫

ρ

µ
ρ

**),(*),''(
1

''
)(

),(
0*,"

''2

2
0

0,

0
0

No δ-particles have energies above 2/0T . The differential fluence ),( 0, TTmedTΦ is

successively derived starting with the highest energy interval.

4. Special properties of the restricted collision stopping power in the Spencer-Attix theory.

The transport equation for electrons in an infinite homogenous medium with a uniformly
distributed radiation source, emitting one electron with the kinetic energy 0T  per unit volume,
is given by:

(10)
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∫ Φ+−=Φ
0

''0 )'',('')()(
T

T

TTT TTdTTTT µδµ

Here, )(Tµ  is the probability per unit length that an electron with energy T  will interact (and
disappear from the energy interval); dTTTT )'',(µ is the probability per unit length that an
electron with energy T ′′  will interact and produce an electron with energy in the interval

dTTT +, . )( 0 TT −δ  is a Dirac delta function, expressing that the radiation source emits
monoenergetic electrons. The transport equation as given above implies that bremsstrahlung
processes are negligible and that the interactions occur between free electrons.

Equation 11 expresses that when CPE prevails the number of electrons that disappears from
an energy interval per unit volume due to interactions is the same as the number of electrons
per unit volume entering the energy interval through emission from radiation sources or
through interactions at which electrons with higher energies produce electrons in the regarded
energy interval.

µ(T) can be written as :

''),()(
2/

'' dTTTT
T

T
T∫ ′′= µµ (12)

Here, 2/TT >′′  indicates that the produced electron is the primary electron that has lost
energy between 0 and 2/T .

Inserting Eq12 in Eq11 gives:

∫∫ Φ+−=′′Φ
0

''0
2/

'' )'',('')(''),(
T

T
TT

T

T
TT TTdTTTdTTT µδµ  (13)

Eq 13 is multiplied with T  and integrated from ∆=T  to 0TT = :

''0

2/

''

0 00

)'',(''''),''( T

T T

T

T

T

T

T

T

T TTdTTdTTdTTTdTT Φ+=Φ ∫ ∫∫∫
∆∆

µµ (14)

The order of integration in the double integral on the right hand side of Eq 14 is changed so
that:

(11)
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∫ ∫∫ ∫
∆ ∆∆

Φ=Φ
00 0 ''

'''' )'',('''')'',(
T T

TT

T T

T

TT TTTdTdTdTTTTdT µµ (15)

The variables in the double integral on the right hand side of Eq 15 are renamed:

T → T''

T''→ T

so that

∫ ∫ ∫ ∫
∆ ∆ ∆ ∆

Φ=Φ
0 0''

'''' ''),''('')'',(''
T T T T

TTTT dTTTTdTdTTTTdT µµ (16)

Inserting the results from Eqs 15 and 16 in Eq 14 we get:

0

2/

''''

0

''),''(''"),''( TdTTTTdTTTTdT
T T

T

T

TTT =











−Φ∫ ∫ ∫

∆ ∆

µµ (17)

To interpret the result in Eq 17 regard two cases: ∆<T≤2∆ and T>2∆.

a) T > 2∆

If T > 2∆ the energy of the interacting electron will never be less than ∆ after the interaction
(T/2>∆). The expression inside the parentheses on the left hand side of Eq 17 can then be
written:

( ) ''),''(''''),''(''
2/

''''

2/

dTTTTdTTTTT
T

TT

T

T
∫∫
∆

−− µµ (18)

In this case:

the expectation value of the energy loss per unit length of the interacting electron = L∞ , the
(unrestricted) collision stopping power.

( ) =−∫ ''),''('' ''

2/

dTTTTT T

T

T

µ
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and 

equals the expectation value of the energy transferred to δ-particles with energies larger than
∆ per unit length.

The difference between these two integrals equals ∆L  the restricted stopping power. This is
equal to the expectation value of all energy losses less than ∆  per unit length (defined in
ICRU Reports 19,33). (Note that ∆L  has another definition in the recent ICRU Report 60.)

b) ∆<Τ≤ 2∆

If ∆<Τ≤ 2∆ the interacting electron could after interaction have an energy less than ∆. The
expression inside the parentheses on the left hand side of Eq 17 can be written as in a):

( ) ''),''(''''),''(''
2/

''''

2/

dTTTTdTTTTT
T

TT

T

T
∫∫
∆

+− µµ

but since in this case all energy losses are less than ∆ (the electron can never loose more
energy than T/2 ≤ ∆) ∞L  in the first integral is identical to ∆L  the restricted collision
stopping power.

The second integral

equals the expectation value of the residual energy of electrons that, after the interaction, have
got energies less than ∆ per unit length.

By introducing S∆

''),''(''
2/

'' dTTTTLS
T

T∫
∆

∆∆ += µ (19)

Eq 17 can be written:

''),''(''
2/

'' dTTTT
T

T∫
∆

µ

L∞

''),''(''
2/

'' dTTTT
T

T∫
∆

µ
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∫ ∫ ∫∫
∆

∆

∆

∆

∆

∆

∆ =











Φ+Φ=Φ

T

T

TTT

T

T TdTdTTTTTdTTLdTTS
2

0

2/

" "),"(")()()(
0

µ    (20)

Equation 20 confirms the result that in CPE the emitted energy per unit volume, T0, is equal to
the absorbed energy per unit volume (bremsstrahlung losses being neglected). The expression
is exactly valid independent of how the energy limit ∆ is chosen. The value of this limit will,
however, affect the energy spectrum of the equilibrium electron fluence, exhibiting a cut-off
at energy ∆. To compensate for the cut off and to preserve energy so that emitted energy =
absorbed energy, the restricted collision stopping power L∆ has to be replaced by S∆ in Eq 19
for electrons with energies between ∆  and ∆2 . The total  energy of the interacting electron
and not only its energy loss is included in S∆ if the electron gets an energy  ≤ ∆ after the
interaction. The interacting electron is than regarded as "locally" absorbed together with the
produced δ-particle.

5. The ratio 
medD

Ddet  when polyenergetic electrons are emitted in the medium.

If 0
0 )(

dT
dm

Tdn  electrons with energy in the interval T0, T0+dT0 are emitted (released by

photons) per unit mass we get:

dT
TS

TTdT
dm

Tdn
D

col

T

medT

T

det,,

0,0
0

det

0max )(
),(

)(

∆∆∆
∫∫ 








Φ=

ρ
(21)

Here, dTTTmedT ),( 0,Φ  is the equilibrium fluence of electrons with energy in the interval

dTTT +,  when one electron with energy 0T  is emitted per unit mass in the medium. The

ratio medDD /det is given by:

∫

∫ ∫
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max

max 0

0

0
0

0

det,,
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0

det
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),(

)(
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medT

med
dT

dm
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T

dT
TS

TTdT
dm

Tdn

D
D ρ

(22)

Formally the ratio medDDdet could be written in another way more clearly showing that the
ratio is equal to a weighted mean value of the restricted collision stopping power ratio for the
detector and the medium.



12

The differential absorbed dose contribution in the detector and medium, respectively, can be
written:

det,,
,det,

)(
)()(

∆








Φ=

col
medTT

TS
dTTdTTD

ρ
(23)

medcol
medTmedT

TS
dTTdTTD

,,
,,

)(
)()(
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Φ=

ρ
(24)

Here, dTTmedT )(,Φ  is the total fluence of electrons with energy in the interval dTTT +,  in
the medium.

From Eqs 23 and 24 we get:

dTTD
TS

TS

dTTD medT

medcol

col
T )(
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)(

)( ,

,,

det,,
det,

∆
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=

ρ

ρ
(25)

If Eq 25 is integrated from ∆=T  to maxTT = we get:

∫ ∫
∆ ∆
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(26)

and for the ratio:
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= ∫
ρ

ρ

ρ

ρ
(27)

which is a weighted mean value of the restricted stopping power ratio for detector and
medium with the weighting factor given by medmedT DTD /)(, .



13

Above it was stated that in the Bragg-Gray-Lawrence theory the ratio medDD /det  is obtained
as a weighted mean of the mass stopping power ratio for detector and medium.
(Bremsstrahlung losses are neglected so that stopping-power = collision stopping power).
The variation with energy of the stopping-power ratio does not differ too much from that of
the restricted stopping-power ratio. The discrepancy between the Bragg-Gray-Lawrence
theory and the Spencer-Attix theory is mainly due to differences in the electron equilibrium
spectra used for the calculations of the weighted mean values of stopping-power ratios and
restricted stopping-power ratios, respectively, cf Fig 1.

6. Comparison between theory and experiments

Experiments show that the absorbed energy per unit mass in the detector, detD varies with the
size of the cavity even if it is so small that it fulfills the requirements of a Bragg-Gray cavity.
The Spencer-Attix theory  predicts a variation in detD with the size of the detector through the
parameter ∆. But how good is the accordance between experiment and theory regarding the
variation of detD with cavity size?

Variations in detD with detector size indicate that the detector is not homogeneously
irradiated. This is a result of lacking δ-particle equilibrium in the detector.  Even if  the
assumption that the fluence of electrons at all points in the detector is the same as that in the
medium was perfectly fulfilled, detD should anyway vary with the size of the detector in

correspondence with the variation in the expression for detD  with the parameter ∆. Eqs 2 and
4 clearly show that use of the restricted stopping power S∆ is an approximate solution of the
δ-particle transport in the detector (exactly described by the energy deposition function

)(Tε  for the δ-particles generated in the detector).

In practice we can never assume that the fluence of electrons from the medium is unchanged
and homogenous throughout the whole detector volume. For electrons with energies close to
the cut off energy ∆ the detector is apparently thick (∆≈ energy of an electron, that just can
pass the cavity/detector volume) and the fluence of electrons with such energies can hardly
remain constant in all points of the detector. The smaller the cavity, i e the smaller the value
of ∆, the fewer are the electrons in the equilibrium fluence for which the detector is thick and
the better should be the accordance between experiment and theory. Since the restricted
collision stopping power has a steep increase with decreasing energy even small disturbances
in the fluence of low energy electrons could result in effects on detD , that may not be
negligible.

In the theory there are no electrons in the fluence with energies below ∆, which must be the
case in reality. In the expression for medD , Eq 5, the lack of electrons with energy ≤ ∆ is
exactly compensated for by replacing the restricted stopping power L∆ with an expression for
S(T)∆ , Eq 19, which includes the whole energy of the interacting electron (and not only the
energy loss) when it gets energy  ≤ ∆ after the interaction.
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Compensation is also achieved for detD assuming that in the detector equilibrium prevails for
the primary electrons that got energies ≤ ∆ after the interaction (the so called track ends). (A
primary electron is one that passes from the medium into the detector).

Track end equilibrium prevails within the detector volume if the energy of track ends
produced in the detector and carried out of it equals the energy that electrons passing into the
cavity from the medium with energies ≤ ∆ deposit in the detector, see Fig 3.

Equilibrium will not exist even if the fluence of electrons with energies ∆< T≤  2∆ (producing
track ends) were constant in the detector. Those electrons with energies ≤ ∆ that pass from the
medium into the detector does not only contain "primary" electrons at track ends (including
δ -particles created with energies above ∆ ) but also δ  -particles created with energies less
than ∆ .  Furthermore, the creation and slowing down of electrons with energy ≤ ∆ are
different in media of different atomic compositions .

Note:  In an article by Nahum 1978 the energy deposition from track ends is discussed. In Eq1
of this article, ∆⋅Σ ∆N corresponds to the double integral in the middle of our Eq 20. Nahum
assumes "track end equilibrium" in the cavity, i e., the energy carried out of the cavity by
track ends is compensated by energy deposited in the cavity by electrons with energies  ≤∆
passing into the cavity.

In Fig 4, the experimentally determined ionisation per unit mass of air in an air filled cavity
and the calculated ionization per unit mass in the same cavity by using the Spencer Attix
theory is shown. The atomic number of the wall material is parameter.

As shown in Fig 4, the variation of detD as a function of the cavity size (wall separation)
increases with increasing atomic number of the wall material. The smaller the cavity the better
is the correspondence between theory and experiment.

The reason for the increasing discrepancy between theory and experiment (particularly for the
higher atomic number elements Sn and Pb) with increasing size of the cavity was discussed
above. Above all we have to take into account that the cavity disturbs the fluence of electrons
in the medium especially for those electrons with energies close to the cut-off energy ∆.

Fig 3.   Primary electrons, that after an
interaction in the detector get energy ≤ ∆, are
represented by a track starting inside the
detector while those with energies ≤ ∆
passing from the medium into the detector
are represented by a track starting outside the
detector volume.
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For a total judgement of the validity of the theory the following sources of errors must be
taken into account.

a) When calculating the equilibrium fluence of the electrons and the restricted collision
stopping power, the Möller cross section for collisions between free electrons is used to
calculate the generation of δ-particles with energies > ∆. Realistic results for the
equilibrium fluence and the restricted stopping power could be expected only if ∆ is large
compared to the binding energy of most of the atomic electrons. Regarding the energy
limit ∆ there are two contradictory requirements: ∆ should not be too to small to allow
accurate use of  Möller cross section. On the other hand, ∆  should not be too large to
comply with the requirement that the cavity must not disturb the equilibrium fluence of
electrons in the medium.

b) The generation of Auger electrons is not taken into account when the equilibrium fluence
of electrons is calculated. The Auger electrons are expected to contribute more to the low
energy part of the equilibrium fluence, Fig 5. The discrepancy between measured and
calculated slowing-down spectra in Fig 5 may not only be caused by a build up of Auger
electrons (neglected in the theory). It might also depend on the poor description of the
generation of δ-particles by means of the Möller cross section.

c) When the cavity size increases, the contribution to absorbed dose in the cavity from
electrons generated by photons in the cavity increases. In the general cavity theory of
Burlin the energy absorbed in the cavity from these electrons is considered. The relation

medDDdet is in the theory of Burlin given as a weighted sum of [ ] ASmedDD −det valid

for a Bragg-Gray cavity and [ ]eqmedDDdet valid for a cavity assuming electron

equilibrium. The Burlin theory is in accordance with Spencer-Attix when the energy limit
∆ <2-3% of the maximum energy of electrons generated by monoenergetic photons. The
contribution to absorbed dose from electrons released by photons in the cavity is
negligible for detector sizes smaller than that corresponding to this energy limit. This is

Fig 4: The ionization per unit mass of air as function of the
size of the air cavity (wall separation). The points, circles
etc, represent experimental results and the solid lines
calculations using Spencer-Attix theory. The radiation
quality is 60Co. The results from experiments and theory are
normalized to values for carbon as wall material. (from
Attix-Roesch, Radiation Dosimetry, Vol I, 8 fig 3 p 364)
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valid for all air cavities in Fig 4.

Fig 5. Example of an experimental slowing-down spectrum, and comparison with theoretical
results using the free-electron cross section expressions of Spencer and Fano (Courtesey of
Birkhoff.)

    The figure taken from LV Spencer, Acta Radiol Theor Phys Biol  10, (1971),1.

d) The effect of the energy losses of the electrons to bremsstrahlung is neglected in the
theory. Especially with high atomic numbers and at high photon energies  ≥ 1 MeV these
effects are not fully negligible.

7. Generalization  of the Spencer-Attix cavity theory

Spencer Attix- cavity theory is widely used in many dosimetric situations beside the one
described above, giving the relation medDDdet in photon irradiated media under conditions
of  CPE. As soon as the detector is regarded thin enough not to disturb the fluence of charged
particles in the medium, the Spencer-Attix theory is applicable in order to approximately
determine the relation medDDdet . In media irradiated by high energy photons the
requirement that the detector be small compared to the range of most electrons is easy to
fulfill. When CPE does not exist in the medium or when the medium is externally irradiated
with charged particles, the relation for medDDdet is given by:
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When CPE does not exist in the medium or when the medium is externally irradiated by
charged particles, it is more difficult to derive the energy spectrum of the differential fluence

medT ,Φ . In most situations, Monte Carlo calculations of the electron transport can solve this
problem.

When a medium is irradiated with heavy charged particles, i. e., protons generating high
energy δ-particles (with ranges large compared to the detector size), a summation over
different particles, i. e.,  protons and electrons is needed for the derivation of medDD /det .

Note: When electron equilibrium does not prevail in the medium, the expression for
medD cannot be shown to be exact. It will not be possible to show that use of the special

restricted stopping power in the Spencer-Attix theory precisely compensates for cutting the
integration at the energy ∆ .
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