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Abstract

Perfect codes and minimal distance of a code have great importance in the study of theory

of codes. The perfect codes are classified generally and in particular for the Lee met-

ric. However, there are very few perfect codes in the Lee metric. The Lee metric has

nice properties because of its definition over the ring of integers residue modulo q. It is

conjectured that there are no perfect codes in this metric for q > 3, where q is a prime

number.

The minimal distance comes into play when it comes to detection and correction of

error patterns in a code. A few bounds on the number of codewords and minimal distance

of a code are discussed. Some examples for the codes are constructed and their minimal

distance is calculated. The bounds are illustrated with the help of the results obtained.
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1 Introduction
Coding theory is relatively a new field. It was first studied in the 1940s. When the data

is transmitted through a channel, there is a possibility of error occurance. These errors

may be caused by the noise produced by the channel such as bad weather, poor telephone

lines, etc. The aim of coding theory is to study the methods to detect and correct these

errors.

There are several types of metrics that are used in construction of codes. We only con-

sider two of them, namely the Hamming metric and the Lee metric. The main difference

in the structure of these metrics is the way we calculate the distance between any two

codewords. While we are using the Hamming metric, an error value (non zero) is not

given the importance but error means a change of an entry in the transmitted codeword.

The same weight is given to all (non zero) error values even in the q-ary symmetric chan-

nel. The Lee metric is defined over the ring of integers residue modulo q. In this metric

change of an entry by ±1 is considered as one error. This type of error is often found in

channels using phase shift key modulation. This is the reason that the Lee metric is more

suitable for such channels. The Hamming metric and the Lee metric are the same if they

are taken over GF(2) or GF(3), where GF is so called Galois field.

A perfect code means a code satisfying the Hamming bound (discussed in chapter 6)

with equality. There exists perfect codes in both the Hamming and the Lee metric over

GF(2) and GF(3). The Hamming codes, the Golay codes and the extended Golay codes

are the examples of perfect codes. But according to [1] and [4] it is conjectured that

there are no more perfect codes in the Lee metric for GF(q) where q > 3. The minimal

distance of code C is the smallest possible distance between any two different codewords

of C. The minimal distance gives us the idea about the ability of a code to detect and

possibly correct errors.

To deal with the above mentioned things, one needs to know quiet a few mathemat-

ical concepts of algebraic structures which are discussed in chapter 2. In chapter 3, an

introduction to the coding theory is given. We discuss basic things related to the coding

theory including nearest neighbour decoding principle, detecting and correcting error pat-

terns and parity check code, etc. Finite fields have great use in coding theory. Chapter 4

is about finite fields. Theorems about structure of finite fields are given with basic def-

initions. An important class of codes, called linear codes, are studied in chapter 5. The

structure of generating and parity check matrices is discussed. The generating matrix is

used to generate the Hamming codes and the Golay codes, for instance. To correct the

error patterns, parity check matrices play an important role.

The last four chapters are the core of the whole work. We classify the perfect codes

generally in chapter 6. They include the Hamming codes and the Golay codes. As an

example of a non perfect code, we discuss Reed-Solomon code. Chapter 8 discusses

bounds on the number of codewords and the minimal distance of a code. The Hamming

bound (Sphere packing bound), Singleton bound and the Gelbert-Varshamov bound is

given with examples. Finally, chapter 7 and 9 are focused on the Lee metric. The perfect

codes in the Lee metric are discussed in chapter 7. The minimal distance in the Lee metric

is given in the last chapter. In this chapter few bounds with proofs are discussed.

The aim of this thesis is to classify perfect codes and finding the minimal distance of a

code in general (the Hamming metric) and particularly in the Lee metric. The classifica-

tion of perfect codes and finding minimal distance of a code in the Lee metric is the main

task of this work.
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2 Preliminaries
In this chapter we are going to define some basic and special type of algebraic structures,

like groups, rings and fields. These algebraic structures have great importance in cod-

ing theory. In the next section we will see the uses and applications of these algebraic

structures. The material in the chapter is taken from [2], [8] and [5].

2.1 Groups

In this section of groups, we will define groups, subgroups, also some properties of

groups. We will also discuss some important theorems on groups.

Definition 2.1. Groups
Let G be a non empty set and ∗ be a binary operation on G. Then G with binary operation

∗ is called group if it satisfies the following properties:

i. ∗ is associative in G,i.e. for all a,b,c ∈ G, we have

(a ∗b) ∗ c = a ∗ (b ∗ c).

ii. G contains an identity element with respect to ∗. For any a ∈ G there exist e ∈ G
such that

a ∗ e = e ∗a = a.

iii. Every element in G has it’s inverse in G, with respect to ∗. For any a ∈ G there

exist a′ ∈ G such that

a ∗a′ = a′ ∗a = e.

If all above properties are fulfilled then G is called group under the binary operations

∗ and it is written as (G, ∗).
Definition 2.2. Order of a group
If G is group, then the number of elements in G, if G is finite, is called the order of the

group and it is denoted as |G|.
Definition 2.3. Abelian Group
If the binary operation ∗ is commutative , then (G, ∗) is called an abelian group.

Now we consider an example to illustrate the definition of the group in a simple way.

Example 2.1. Let us consider the set Q+ and the binary operation ∗ defined by a ∗b= ab
3 .

Then

i. For all a,b,c ∈Q+

(a ∗b) ∗ c = a ∗ (b ∗ c) =
abc
9

,

which shows that ∗ is associative

ii. 3 is identity element.

iii. The inverse of any a ∈Q+ is a′ = 3
a

Hence Q+ is group with respect to the binary operation ∗.

(Z,+), (Q,+), (R,+) are all examples of groups. All of them are abelian groups.
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2.1.1 Properties of groups

Now we discuss some properties of groups and state some theorems about groups. In

the first theorem we will establish cancellation laws and to prove this theorem, the thing

which we know is the definition of the group. So we will use this definition to prove our

first theorem.

Theorem 2.1. If G is a group with binary operation ∗, the left and right cancellation
laws hold in G, that is for all a,b,c ∈ G

a ∗b = a ∗ c =⇒ b = c,

and
b ∗a = c ∗a =⇒ b = c.

Proof. Suppose a ∗b = a ∗ c. Then by iii, there exists a′, and

a′ ∗ (a ∗b) = a′ ∗ (a ∗ c).

By using associative law,

(a′ ∗a) ∗b = (a′ ∗a) ∗ c.

By using iii, we get

e ∗b = e ∗ c.

By the definition of e in ii,

b = c.

Similarly we can do for b ∗a = c ∗a.

Theorem 2.2. If G is a group with binary operation ∗, and if a and b are any elements of
G, then the linear equations a ∗ x = b and y ∗a = b have unique solutions x and y in G.

The next theorem is about the uniqueness of inverse and identity element in a group.

Theorem 2.3. If G is group and ∗ is a binary operation, then the identity element in G is
unique such that

e ∗a = a ∗ e = a,

for all a ∈ G.

Theorem 2.4. If G is group and ∗ is a binary operation, then the inverse of each element
in G is unique such that

a′ ∗a = a ∗a′ = e,

for all a ∈ G.

2.2 Subgroups

From the theory of groups, sometimes it is noticed that smaller groups are contained

within larger groups. For example, the group Z under addition is contained within (Q,+),
which in turn contained in (R,+). In this case of a group contained in the other group,

means that the smaller group satisfy all the properties of the group under the same binary

operation defined on the larger one. For (Z,+), which is contained in (R,+), it is very

important to notice that the operation + on integers a and b as elements of (Z,+) produces

the same element a+ b as would result if you were to think of a and b as elements in

(R,+).

3



Definition 2.4. Let G be a group with the binary operation ∗ and H be subset of G. If H
with the induced operation from G is itself a group, then H is called a subgroup of G. It

is denoted as H ≤ G.

Examples:
The group Z under addition is the subgroup of Q and Q is a subgroup of R, further R is

subgroup of C. All these example are about the groups under addition. It is written as

Z≤Q≤ R≤ C.

2.3 Cyclic groups

The goal of this section is to define cyclic groups, and present some properties of cyclic

groups. We have defined the order of a finite group before. Here the order of an element

will be defined.

Definition 2.5. A group G is called cyclic if its every element is generated by some

element a ∈ G, i.e for some a ∈ G if G = 〈a〉 = {an |n ∈ Z}. The element a is called

generator of the cyclic group G.

Example 2.2. Consider the group Z∗
5 = {1,2,3,4}. We can see that

31 = 3, 32 = 4, 33 = 2 and 34 = 1.

This shows that group Z∗
5 is cyclic and 3 is a generator. It can be written as 〈3〉= Z∗

5.

Definition 2.6. Order of an Element
Let a be an element of a cyclic group G. If the cyclic subgroup generated by this element,

i.e. 〈a〉 is a finite subgroup of G then the order of a, denoted by o(a), is the order | 〈a〉 | of

this cyclic subgroup.

2.3.1 Properties of cyclic groups

Cyclic groups have some properties, here we will only state those properties where the

proofs of these properties can be found in Fraleigh [2].

Theorem 2.5. If G is a group and if it is cyclic, then it is abelian.

Theorem 2.6. Let G be a cyclic group. Then a subgroup of G is cyclic.

Theorem 2.7. For a cyclic group G = 〈a〉 of order n

o(ak) =
n

gcd(n,k)

for all integers k.

Theorem 2.8. If G is a cyclic group of n elements and d is a positive divisor of n, then
there is a uniquely determined subgroup of order d in G.

4



2.4 Lagrange’s theorem

In this section a very important theorem of Lagrange, which is of great importance and

have vast application even in coding theory, will be stated. Before going to the proof of

the theorem we will define the concept of cosets and some important lemmas. These will

help us to prove this theorem.

Definition 2.7. Cosets
Let G be a group and H be subgroup of G then for each a ∈ G the set aH = {ah|h ∈ H}
is called the left coset of H that contains a. Similarly the set Ha = {ha|h ∈ H} is called

the right coset of H containing a.

Before going to the Lagrange theorem, we need to state a lemma which states that

the number of elements in any left coset of a subgroup H are the same as the number of

elements in H. The lemma is stated as

Lemma 2.9. Let G be a group of finite order and H be a subgroup of G. then for each
a ∈ G,

|aH|= |H|.
Theorem 2.10. Let H be a subgroup of G. Let the relation ∼L be defined on G by

a ∼L b if and only if a−1b ∈ H.

Let ∼R be defined by
a ∼R b if and only if ab−1 ∈ H.

Then ∼L and ∼R are both equivalence relation on G, and the corresponding equivalence
classes are exactly the left and right cosets, respectively.

Remark: The equivalence relation ∼L in Theorem 2.10 defines a partition of G.

Theorem 2.11. (Langrange)
Let G be a group of finite order and H be a subgroup of G. Then the order of the subgroup
divides the order of the group, i.e. |H| divides |G|.
Proof. Let G be a group of order n and H be a subgroup of order m. Let a1H,a2H, · · ·arH
be the different left cosets of H, We may write G as

G = a1H ∪a2H ∪·· ·∪arH.

As the left cosets according to the Theorem 2.10 form a partition in G, therefore the left

cosets are pairwise disjoint, so we have

|G|= |a1H|+ |a2H|+ · · ·+ |arH|.
By using the above lemma, we get

|G|= |H|+ |H|+ · · ·+ |H|.
This implies

|G|= r · |H| ⇐⇒ n = r ·m,

which gives the proof.

Corollary. Let G be a finite group. Then the order of an element in the group divides the
order of the group, i.e o(a) divides |G| for all a ∈ G.

Proof. As we know that order of an element of a cyclic group is equal to the order of the

cyclic group generated by that element. Therefore by Langrange’s theorem order of that

element divides the order of the group.

5



2.5 Rings and fields

From the study of groups, we observe that on groups a single binary operation is de-

fined and this binary operation satisfies all the properties of group which are stated in the

definition of group.

In this section we are going to define an algebraic structure on which two binary oper-

ations namely addition and multiplication are defined. This algebraic structure is called a

ring.

Definition 2.8. Ring
Let R be a set, and let + and · be two binary operation on R. A ring is a triple (R,+,· ), such

that

i. (R,+) is an abelian group.

ii. multiplication is associative in R, i.e. for all a,b,c ∈ R

a · (b · c) = (a ·b) · c

iii. · is distributive over +. This means that the left distributive law

a · (b+ c) = a ·b+a · c,

and the right distributive law

(b+ c) ·a = b ·a+ c ·a,

both hold.

Example 2.3. The set of integers Z under the ordinary addition and multiplication of

numbers is a ring. Also the set of rational numbers (Q) and set of real numbers (R) are

rings under the same binary operations as Z.

Example 2.4. Let F be the set of all functions f : R → R. Then F under the binary

operation +, where + is usual function addition

( f +g)(x) = f (x)+g(x),

is an abelian group. The multiplication on F is defined as

( f g)(x) = f (x)g(x).

Then F under the binary operations usual addition and multiplication of functions is a

ring.

2.5.1 Properties of rings

Theorem 2.12. If R is a ring with additive identity 0, then for all a,b ∈ R we have

i. 0 a = a 0= 0,

ii. a (−b)=(−a) b = −(ab),

iii. (−a) (−b) = ab.

6



Proof. i. We first show that a0 = 0

a 0 + a 0 = a (0+0) left distributive law

= a 0 = a 0 + 0 0 is additive identity

As we know that R with respect to addition is group, therefore cancellation laws

holds in R. Applying the left cancellation law on the above equation yields

a 0 = 0,

as required. Similarly we can show that 0 a = 0.

ii. We first show that a(−b) = −ab, by definition −ab is the element when added to

ab gives 0. By the left distributive law yields,

a(−b)+ab = a(−b+b)
= a 0 −b is inverse ofb
= 0 from (i)

which shows that a(−b) is the inverse of ab. But we know that −ab is also the

inverse of ab, we also know that inverse is always unique in a group. Therefore

a(−b) =−ab. Similarly we can show that (−a)b =−ab.

iii. Now we prove that (−a)(−b) = ab. Consider

(−a)(−b)−ab = (−a)(−b)+(−a)b due to (ii)

By using left distributive law the above equation becomes

(−a)(−b)−ab = (−a)(−b+b)
= (−a)0 −b is inverse ofb
= 0

which shows that (−a)(−b) is an inverse of −ab. But we know that ab is also

inverse of −ab. Since inverse is always unique therefore (−a)(−b) = ab.

From the rings which we have studied so far, we observe that the ring R contains

identity element w.r.t addition but it does not need to contain identity element w.r.t multi-

plication. So by adding more things in the definition of ring, we define a new ring with a

richer structure.

Definition 2.9. Ring with unity
If a ring R contains an identity element 1 = 0 w.r.t multiplication, then this element is

called a unity. The ring is then called a ring with unity.

Definition 2.10. Commutative ring
A ring R is said to be commutative, if for all a,b ∈ R

ab = ba.

7



2.5.2 Polynomial rings

Now we are going to define another type of rings, that is rings of polynomials. A poly-

nomial ring is a set R[x] of all polynomials in one or more variables with coefficients

in another ring R under the usual operations of polynomial addition and multiplication,

these operations will be defined later. Before going to the definition of polynomial rings

we need to define polynomial.

Definition 2.11. Polynomial
Let R be a ring. Then by a polynomial f (x) with coefficients in the ring R we mean an

infinite formal sum
∞

∑
i=0

aixi = a0 +a1x1 + · · ·+anxn + · · · ,

where the coefficients ai for all i are elements of the ring and where ai = 0 for all but a

finite number of values of i. The set of such polynomials is denoted by R[x].

The degree of a polynomial f (x) in R[x] is the largest i for which ai = 0 and the degree

of a polynomial f (x) is denoted by deg f (x). Usually a polynomial of degree n is written

as

f (x) = a0 +a1x1 + · · ·+anxn.

Now we define the operations of polynomial addition and multiplication. If we have two

polynomials f (x) = ∑∞
i=0 aixi and g(x) = ∑∞

i=0 bixi, the sum of these two polynomials is

defined as:

f (x)+g(x) =
∞

∑
i=0

cixi where ci = ai +bi ∀i, (2.1)

and the product is defined as:

f (x)g(x) =
∞

∑
i=0

dixi where di =
i

∑
k=0

akbi−k ∀i. (2.2)

Observe that both ci and di are 0 for all but a finite number of values of i. Also ∑i
k=0 akbi−k

need not equal ∑i
k=0 bkai−k if R is not commutative. With the definition (2.1) and (2.2) we

have the following theorem.

Theorem 2.13. The set of all polynomials R[x] over a ring R with coefficients in R is a
ring with respect to the operation defined in (2.1) and (2.2). If R is ring with unity, then
the unity of R is the unity in R[x]. Furthermore if R is commutative, then R[x] is also
commutative.

Definition 2.12. Polynomial ring
The ring R [x] defined in the above theorem is called a polynomial ring over a field R.

Definition 2.13. Division algorithm
Let F be a field. Suppose f (x) and g(x) are two polynomials in F [x], where g(x) = 0.

there are uniquely determined polynomials q(x),r(x) ∈ F [x] such that

f (x) = g(x)q(x)+ r(x),

where r(x) = 0 or the degree of r(x) is less than the degree of g(x).

Theorem 2.14. Factor theorem
An element of a field F is a zero of f (x) ∈ F [x] iff (x−a)| f (x), where a ∈ F.

8



Definition 2.14. Subring
Let R be a ring. A subset S of R is called a subring of R, if S is a ring with respect to the

restriction of the addition and the multiplication on R to S. It can be written as S ≤ R.

Definition 2.15. Ideal
Let R be a ring and I a subring of R. We say that I is an ideal of R, is both ar and ra
belong to I, for all a ∈ I and r ∈ R.

Definition 2.16. Principal Ideals
Let I be an ideal in a commutative ring with unity, then I is called a principal ideal if there

is an a ∈ Rsuch that

I = 〈a〉= {ra |r ∈ R}.
Definition 2.17. Maximal Ideal
Let R be a ring. An ideal M of R is said to be maximal, if M = R, and if there are no ideals

I such that M ⊂ I ⊂ R.

2.5.3 Fields

We have almost what is required for defining the field, but still we need to define one

more thing and that is unit. In the next definition we define unit and then we will be able

to define field.

Definition 2.18. Unit
Let R be a ring with unity. If an element a of R has an inverse with respect to multiplica-

tion, then the element a is called a unit. Mathematically it is written as there exist b in R
such that

ab = ba = 1.

Definition 2.19. Field
A commutative ring with unity, in which all non zero elements in the ring are units is

called field.

Example 2.5. The rings Q, R, C are fields but the ring Z is not field.

If we consider the ring Zn of residue classes modulo n, we have the following theorem:

Theorem 2.15. The ring Zn is a field, if and only if n is a prime.

2.6 Vector spaces

In this section, one of the important fundamentals of linear algebra will be discussed. This

is called vector spaces and this is of great importance and have many applications. We

can see its importance from the fact that even linear algebra is generally considered as the

theory of vector spaces. Details can be found in [5] or [8].

Definition 2.20. Vector Spaces Let F be a field and V be a non empty set. We assume

that V is closed w.r.t addition, i.e. for any u,v ∈V implies that u+ v ∈V. We also assume

that for any a ∈ F and u ∈ V , au ∈ V . The set V is called vector space over F is the

following conditions hold:

i. V is an abelian group with respect to addition.

ii. For any a ∈ F and u,v ∈V ,

a(u+ v) = au+av.

9



iii. For any a,b ∈ F and v ∈V ,

(a+b)v = av+bv.

iv. For any a,b ∈ F and v ∈V ,

a(bv) = (ab)v.

v. There exist identity element in F with respect to multiplication such that,

1v = v for anyv ∈V.

Here the elements of field are called scalars and the elements of V are called vectors.

From (i) it follows that the identity element is unique and every element of V has its

inverse in V with respect to addition of vectors. The multiplication of a vector by a scalar

is called scalar multiplication. The left side of (iv) reveals that it is scalar multiplication

and in the parentheses on right hand side is the multiplication of field elements. The

conditions (ii) and (iii) shows that scalar multiplication is distributive over addition of

vectors and scalars, as in the condition (ii) on the left hand side in parentheses is addition

of vectors and in (iii) is addition of scalars.

Example 2.6. Let F be a field and n be any positive integer. Consider the set of all ordered

n-tuples denoted by F(n) over field F , that is

F(n) = {(a1,a2,a3, · · · ,an)|ai ∈ F, i = 1,2,3, · · · ,n}.
The vector addition and scalar multiplication of a vector by an element in F is introduced

as follows:

(a1,a2,a3, · · · ,an)+(b1,b2,b3, · · · ,bn) = (a1 +b1,a2 +b2,a3 +b3, · · · ,an +bn),

c(a1,a2,a3, · · · ,an) = (ca1,ca2,ca3, · · · ,can), c ∈ F.

Then F(n) is a finite dimensional vector space over F with respect to addition and scalar

multiplication defined above.

Example 2.7. Let F [x], the set of all polynomials with coefficients from F . Also let

p(x) = a0 +a1x+ · · ·+anxn ∈ F [x],

and

g(x) = b0 +b1x+ · · ·+bnxn ∈ F [x],

The usual addition of polynomials and the scalar multiplication is defined as:

p(x)+g(x) = c0 + c1x+ · · ·+ cnxn ∈ F [x],

where cn = an +bn. And for c ∈ F :

cp(x) = ca0 + ca1x+ · · ·+ canxn.

Then F [x] is vector space over F .

Theorem 2.16. Let V be a vector space over a field F. Then the following conditions
hold:

i. For all v ∈V , 0 v=0.

ii. For all c ∈ F, c 0=0.

iii. (−1)v =−v, for all v in V .

iv. for all c belonging to F and v belonging to V , cv=0 implies that either c = 0 or
v = 0.
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2.7 Subspaces

Definition 2.21. Subspace
A subset of a vector space over a field F is a subspace of the vector space, if the subset

itself is a vector space under the operation induced from the vector space.

The next theorem provides a simple criteria for a non empty subset of a vector space

to be a vector space.

Theorem 2.17. For a vector space V over a field F, the non empty subset W of V is
subspace iff the following condition hold:

i. For any w1,w2 in W, w1 +w2 ∈W.

ii. For any c in F and w in W, cw ∈W.

Proof. First we suppose that W is a subspace, then the conditions (i) and (ii) clearly hold.

Conversely, we suppose that W is a non empty subset of a vector space V over a field

F such that (i) and (ii) hold. For −1 ∈ F , −w = (−1)w ∈W , then

0 = w−w,

which implies that 0 ∈W . Also for any w ∈W

−w = 1 ·0+(−1)w.

Which shows that W has additive identity element and every element of W has its inverse.

All the properties of addition and scalar multiplication hold in W , and it is easy to verify.

Hence W is subspace of a vector space V .

Now we state two important results. First about the intersection of collection of sub-

spaces is a subspace, and for any two subspaces of a vector space their union is again a

subspace.

Proposition 2.18. Let V be a vector space and let {Wi|i ∈ I} be a collection of of sub-
spaces of V. Then their intersection ∩i∈IWi is a subspace.

Proposition 2.19. For any two subspaces W1 and W2 of a vector space V , the union
W1 ∪W2 is a subspace of V iff W1 ⊆W2 or W2 ⊆W1.

2.8 Dimension and basis

In this section we will define the dimension of a vector space and basis. Before defining

basis we need to define two more things, the linearly independence and spanning property.

So these two things will be defined before basis.

Definition 2.22. Linearly Dependent
Let V be a vector space over a filed F . The n vectors x1,x2, · · · ,xn ∈V are called linearly

dependent if there exist n elements c1,c2, · · · ,cn ∈ F which are not all equal to zero such

that

c1x1 + c2x2 + · · ·+ cnxn = 0.
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Definition 2.23. Linearly independent
Let V be a vector space over field F . The n vectors x1,x2, · · · ,xn ∈ V are called linearly

independent if there exist n elements c1,c2, · · · ,cn ∈ F such that

c1x1 + c2x2 + · · ·+ cnxn = 0,

implies that

c1 = c2 = · · ·= cn = 0.

Definition 2.24. Spanning property
Let V be a vector space over a field F . The set {v1,v2, · · · ,vn} spans V , if for every x ∈V
there are c1,c2, · · · ,cn ∈ F such that

x = c1v1 + · · ·+ cnvn. (2.3)

In other word it can be defined as the set 〈v1,v2, · · · ,vn〉 . of all linear combinations of

the vectors in a given set {v1,v2, · · · ,vn}.
Definition 2.25. A vector space V over a field F is said to be a finite dimensional if there

are finite number of elements x1,x2, · · · ,xn in V such that V = 〈x1,x2, · · ·xn〉. If no such

finite set of elements exists then V is called infinite dimensional.

Definition 2.26. Basis
Let V be a vector space over a field F . A subset B of V is a basis of V if the following

conditions hold:

i. B spans V .

ii. B is linearly independent subset of V .

The numbers ci in (2.3) are called the coordinates of the vector x with respect to the basis

B, and by the second property it is clear that they are uniquely determined.

Proposition 2.20. A finite subset B of a vector space over a field F is a basis of V iff every
element of V is a unique linear combination of the elements of B.
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3 Introduction to coding theory
Some methods are used to send information from one place to another. It is quite natural

that error arises during the transmission. The study of methods to transmit the information

more efficiently and precisely is called the coding theory. It helps us to minimize the noise

and to provide more accurate information. It helps us to control the noise in compact disc

recordings, the transmission of information through telephone lines, the transmission of

data from one computer to another or the information received from the distant sources

like a satellite. In the begning of the history of coding theory, it was used in the Voyager

spacecraft to send noise pictures of Jupiter and Saturn. The material in this chapter is

taken from [6].

We need a source to send and receive information from one place to another. Such

source is said to be a channel. Examples of channels are telephone lines and the atmo-

sphere. Sometimes it happens that the sent information is different from the received one,

it is because of the noise on the channel. There may be several reasons behind the creation

of noise. Some of the reasons are weather, sunlight, poor typing, poor telephone lines,

etc.

The aim of the study of coding theory is to detect and correct the errors caused by

the noise on the channel. The diagram below gives the general idea about information

transmission system. The main and important part of study is the noise on the channel

and without noise, the study of coding theory is aimless. After handling the noise in a

proper way we look forward to maintain the following things.

1. fast encoding,

2. easy transmission of data,

3. easy error detection and correction, and

4. fast decoding.

In our daily life, we use words in written or spoken form. We use these words for com-

munication or to send information which we already have. In this case the channels are

the space and the paper. During communication poor speech, bad grammar, bad hearing

and bad hand writing causes the noise on the channel.

3.1 Basic assumptions

We state some fundamental definitions and assumptions which we will apply throughout

the text.

Definition 3.1. fields: A set F having at least two elements and two binary operations

namely addition and multiplication defined on it, is called field if the following conditions

are satisfied.
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i. F is a commutative ring with respect to addition and multiplication and contains

multiplicative identity; and

ii. every non-zero element of F is invertible w.r.t. multiplication.

If p is a prime integer, consider the set Fp = {0,1,2, · · · p−1} of p elements in which

addition
⊕

and multiplication
⊙

are defined modulo p. For p = 2, we denote the field F2

by B (’b’ for binary). Thus B = {0,1} with binary operations addition and multiplication

defined by 0+0=0, 1+0=1=1+0, 1+1=0, 1× 1=1, 0× 1 = 0× 0 = 0. Throughout this

chapter, we are concerned with the field B of two elements. There also exist other finites

fields and we will study these later.

Let Bn, where n is a positive integer, denote the set of all ordered n-tuples or sequences

of length n i.e. for a ∈ B, a = a1, · · ·an, with ai belonging to the field B.

In many cases, the information to be sent is transmitted by a sequence of zeros and

ones. We call a 0 or a 1 a digit.

Definition 3.2. code words: Let E : Bm →Bn be an encoding function and D : Bn →Bm be

the decoding function . The elements of the set Bn are called codewords and the elements

in the set Bm are called simply the message words.

A binary code is a set C of words. The code consisting of all words of length two is

C = {00,10,01,11}.
A code having all its words of the same length is called block code. The number of digits

in a codeword is called its length. The number of codewords in a code C is denoted by

|C|. In the study of coding theory, need certain assumptions about the channel. The whole

study is based on these assumptions.

The first assumption is that a code word of length n consisting of 0’s and 1’s is received

as a word of length n consisting of 0’s and 1’s, however this is not necessary that the

same word is received as it was sent. The second is that there should be no difficulty

to understand the meaning of the first word transmitted. For example, if we are using

codewords of length 2 and receive 011011, we know that the words received are, in order,

01, 10, 11. This assumption assures that the word 011 can not be received because a

digit has been lost during the transmission. The third and the final assumption is that the

probability of any one digit wrongly transmitted does not effect the other digits.

If the channel is perfect and have no noise then the digit received will be the same

as the digit sent. It would be nice if the channel is perfect and noiseless, because for the

perfect channel there would be no need for the coding theory. But every channel has some

sort of noise, some are less noisy and some are more noisy.

If we send 0 and 1 in the channel and the probability of receiving the correct digit

is independent of the digits 0 and 1. Then, such channel is called binary symmetric

channel (BSC). The probability that the digit sent is the digit received, is denoted by p
and 1− p denotes the probability that the digit received is not the digit sent, 0 ≤ p ≤ 1.

The probability p shows the reliability of a binary symmetric channel.

The diagram 3.1 may clarify how a BSC operates:

A channel is more reliable than another if it has the higher probability than the other.

For p = 1, the sent and the received information will be exactly the same . In such case,

we say that the channel is perfect and of no interest to us. Also a channel with p = 0

is of no interest. It is easy to convert a channel with 0 ≤ p ≤ 1/2 into a channel with

1/2 ≤ p ≤ 1. Henceforth we will always assume that we are using a BSC with probability

p satisfying 1/2 ≤ p ≤ 1. Now we introduce two important terms distance and weight of

a code word:
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Figure 3.1:

Definition 3.3. Distance
Let a and b be the words of length n. The Hamming distance, or simple distance, between

a and b is the number of places in which a and b are different. We denote the distance

between a and b by d(a,b). Mathematically it can be defined as

d(a,b) =
n

∑
i=1

xi

{
xi = 0, if ai = bi

xi = 1, if ai = bi

where a = a1a2 · · ·an and b = b1b2 · · ·bn.

Example 3.1. If a = 01101 and b = 00111, then d(a,b) = 2.

Example 3.2. If a = 10011011 and b = 11001101, then d(a,b) = 4.

Definition 3.4. Weight
Let a be a word of length n, we define the weight wt(a) of a as the number of times the

digit 1 occurs in a. In general the number of non zeros entries in a codeword if it is not

binary, is called the weight of the word.

Example 3.3. If a = 110101, then wt(a) = 4.

Example 3.4. If a = 10011011, then wt(a) = 5.

Note that for the binary codes, the distance between a and b is the same as the weight

of the error pattern c = a+b:

Lemma 3.1. If a and b are words of length n, then d(a,b)= wt(a+b)

Proof. Let a = a1a2 · · ·an and b = b1b2 · · ·bn be any two words of length n. For any i,
1 ≤ i ≤ n, ai + bi = 1 iff ai = bi. Hence the pair (ai,bi) contributes 1 to wt(a+ b) iff it

contributes 1 to d(a,b). Therefore, d(a,b) = wt(a+b)

Corollary. If a and b are codewords of length n, then d(a+ c,b+ c) = d(a+b).

Lemma 3.2. If a, b, c ∈ Bn, then d(a,b)≤ d(a,c)+d(b,c).

Definition 3.5. Nearest-neighbor decoding principle
The nearest-neighbor decoding principle means that if we receive a word which is not

a codeword, then we wish to replace that word with nearest codeword. We do this by

calculating the distances of the received word with all codewords and replace the word

with a codeword having minimum distance, if such codeword is unique. In a case of two

codewords with same minimum distance from the received word, we say that this is a

decoding failure.

In the case of binary symmetric channel in which all code words are equally likely to

be transmitted and the single-symbol error probability is less than 1, the principle is called

the maximum likelihood decoding principle.
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3.2 Correcting and detecting error patterns

In this section we consider the possible ways of correcting and detecting errors. The basic

concepts that are involved in the process of correcting and detecting errors will also be

discussed. Formally it will be done in next sections.

If a codeword is sent and the received word is not a codeword, it means that during the

transmission some error has occurred, so we have detected an error. And if the received

word is a codeword then perhaps no error has occurred during the transmission. In this

case the error can not be detected.

Example 3.5. Let C = {0000,0101,1011,1111} be a code. We suppose that 1101 is the

received word. It is clear that the received word is not a codeword, this means that some

error has occurred. Since 1101 is not a codeword, we can form the codeword 1011 by

changing one digit. All other codewords can be formed but to do this we have to change

more than one digit. Therefore we say that the transmitted codeword was 1111, so we

correct 1101 to 1111 by replacing 1 instead of 0.

Definition 3.6. Detected and undetected errors
Let a be any codeword and e be an error. Then we say that an error e is detected if

a+ e is not a code word. And if a+ e is again a codeword, then we say that the error is

undetected.

If a word is transmitted having length n, and if k are the number of entries that are

received incorrectly then we say that k errors has occurred. We create a word e of the

weight k by putting 1 at positions that are corresponding to k errors and by putting 0 on

the other places. So we create a word e of weight k. The non-zero positions in the error

vector where we put 1 gives a set of error having weight k. Clearly we can say that a set

of k errors can be detected if we detect an error word of weight k.

Theorem 3.3. The necessary and sufficient condition for a code C to detect all k or fewer
errors is that the minimum distance between any two codewords be k + 1 or more, i.e
d(C)≥ k+1.

Proof. Let C be the set of all code words (of length n) of the given code. Suppose that

∀b,b′ ∈C such that b = b′, d(b,b′) ≥ k+1. Let b ∈C be transmitted and e = e1e2 · · ·en
be the error word caused by the channel during the transmission with

wt(e) =

(
n

∑
i=1

ei

)
≤ k.

Then the received word is b+ e and

d(b+ e,b) = wt(b+ e+b) = wt(e+2b) = wt(e)≤ k.

According to our supposition distance between any two words in C is at least k+1. There-

fore b+ e is not a codeword, so we say that an error e is detected.

Conversely, we suppose that the code is able to detect all sets of k or fewer errors.

This mean that b+ e is not a codeword for any code word b and a word e with wt(e)≤ k.

Suppose that b and b′ be any two codewords such that d(b,b′)≤ k. Let e be an error word

such that e = b+ b′. Then wt(e) ≤ k. Also b+ e = b+ b+ b′ = b′− a code word. This

shows that the error vector e is undetected. This is a contradiction, hence

d(b,b′)≥ k+1 ∀b,b′ ∈C b = b′.
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Corrected errors can also be defined as:

Definition 3.7. A code C can correct an error word e if for every code word b, D(b+e)= b
where D is the decoding function of the code. We also say that a set of k errors is corrected

if the corresponding error word of weight k is corrected.

Definition 3.8. Parity check code
The parity check code (m,m+ 1), is the code given by the encoding function E : Bm →
Bm+1 defined by

E(a1a2 · · ·am) = a1a2 · · ·amam+1

where

am+1 =

{
1, if wt(a) =wt(a1a2 · · ·am) is odd

0, if wt(a) is even

Example 3.6. Consider the (2, 3) parity check code. Then the encoding function E is

00 → 000,01 → 011,10 → 101,11 → 110

Thus the set of all code words is

C = {000,011,101,110}
There are only three possible error vectors of weight 1, which are given by

001,010,100

and if any one of the error vectors given above added to any code word does not yield a

code word. Thus every single error is detected by this code.

Now suppose that the code word 101 is transmitted and the channel adds to it the error

vector 010. The received word is then 111. But it is clear that the same word will be

received if 110 or 011 were transmitted and the channel had added the error vector 001 or

100 respectively. It is also obvious that the received word is equidistant from three code

words, so this error is not corrected.

Theorem 3.4. A binary code with minimum distance d = 2k+ 1 can correct up to k or
fewer errors.

Proof. We consider a code C of length n with the minimum distance d = 2k+1 and let e
be an error word of weight at most k. Let b be the transmitted code word and the received

word is r = b+ e. If b′ is any code word other than b i.e b = b′, then

d(r,b′) = d(b+ e,b′)
= wt(b+ e+b′)
= wt(b+b′+ e)

Now

wt(b+b′) = d(b,b′)≥ 2k+1

and wt(e)≤ k. Therefore

wt(b+b′+ e)≥ k+1

i.e.

d(r,b′)≥ k+1

Also

d(r,b) = wt(r+b) = wt(b+b+ e) = wt(e)≤ k

Hence b is the nearest code word to r, the received word and by the maximum likelihood

decoding principle D(r) = b. Thus, the error vector e with wt(e)≤ k is corrected.
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3.3 Maximum likelihood decoding

We have two basic problems of coding theory and now we are going to give more precise

formulation of these problems. We assume that we are at the receiving end of a binary

symmetric channel (BSC) and we want to receive a message from the transmitter at the

other end. In fact the design of the transmitter is now of the basic problems.

We have no control on two quantities. One is the probability p of correctly transmitted

digit and the second is the possible number of transmitted messages.

3.3.1 Encoding

We make some choices to determine a code which can be used for sending the message.

Firstly a positive integer k which is the length of each binary word corresponding to a

message is chosen. Since a binary code of length k can have maximum 2k elements,

therefore k must be chosen such that |M| ≤ |Bk|, where |M| is the number of elements in

the set M. Secondly, the addition of parity check digits to each word of length k is done to

make sure that the certain number of errors can be corrected or detected. In other words

the transmitter transmits the codeword of length n when he selects the message word of

length k.

3.3.2 Decoding

Suppose a word a in Bn is received. A method called maximum likelihood decoding

(MLD), for deciding which word b in C was sent actually is described as follows.

1. Complete Maximum Likelihood Decoding (CMLD)

If there is one and only one word b in C closer to a than any other word in C, we

decode a as b. That is, if d(b,a)< d(b1,a) for all b1 in C, b1 = b, then decode a as

b. If there are several words in C close to a, i.e. at the same distance from a, then

we select arbitrarily one of them and conclude that it was the codeword sent.

2. Incomplete Maximum Likelihood Decoding (IMLD)

Again if there is one and only one word b in C closest to a, then we decode a as b.

But if there are several words in C close to a, then we request a retransmission. In

some cases we might even ask for a retransmission if the received word a is too far

from any word in the code.
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4 Finite fields
4.1 Introduction

In this chapter, we try to get acquainted with algebraic concept of finite fields. Finite fields

are used heavily in the study of coding theory. This concept will serve as our primary tools

for constructing codes, for instance, a construction of a double-error correcting binary

code, whose description and analysis uses finite fields. A few basic definitions of algebraic

structures are discussed in the first chapter.

Some important definitions related to finite fields are given in the beginning of the

chapter. It will be shown that the multiplicative group of finite fields is cyclic. We also

prove that the size of any finite field must be a power of a prime and that this necessary

condition is sufficient, that is, every power of a prime is a size of some finite field.

Definition 4.1. Extension of a field
Let K be a field and F be a subfield of K. Then K is called an extension of the field F .

It is denoted by K|F . The field K can be regarded as a vector space over F by using the

multiplication in K. The dimension of the vector space K over F is called the degree of

extension K of F and is denoted by [K : F ].

Definition 4.2. The intersection of all subfields of any field is called the prime subfield.

The prime field is unique and is the smallest subfield of the field. Generally, a field

having no proper subfield is called a prime field.

4.2 Prime fields

For a prime p, we let GF(p) (Galois field of size p) denote the ring of integer residues

modulo p (the ring is also denoted by Zp).

By Euclid’s algorithm for integers, for every integer a ∈ {1,2, · · · , p−1} there exist inte-

gers s and t such that

sa+ t p = 1.

The integer s, taken modulo p, is the multiplicative inverse a−1 of a in GF(p). Therefore,

GF(p) is a field.

Example 4.1. In GF(7) we have

2 ·4 = 3 ·5 = 6 ·6 = 1 ·1 = 1.

Also, a6 = 1 for every non-zero a ∈GF(7). The multiplication group of GF(7) is cyclic,

and the elements 3 and 5 are the generators of this field, since

30 = 1 = 50 33 = 6 = 53

31 = 3 = 55 34 = 4 = 52

32 = 2 = 54 35 = 5 = 51.

Let F be a field. The symbols 0 and 1 stand for the additive and multiplicative identity

elements of F , respectively. The multiplicative group of F will be denoted by F∗, and

the multiplicative order of an element a ∈ F∗, if it exists, will be denoted by O(a). In

particular, this order exists whenever F is finite, in which case we get the following result.

Proposition 4.1. Let F be a finite field. For every a ∈ F, a = 0

a|F |−1 = 1.

Proof. It is obvious that 0|F | = 0. For a ∈ F∗, we know by Lagrange’s Theorem that O(a)
divides |F∗|. Hence a|F∗| = 1.
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4.3 Polynomials

We talk about the polynomial over a field F . The definitions including polynomial, zero

polynomial, degree of polynomial and some examples of irreducible polynomials will be

given. We recall the definition of polynomial from the chapter 2.

Let F be a field. An expression of the form

a(x) = a0 +a1x+a2x2 · · ·+anxn

is called a polynomial of degree n over F in the indeterminate x, where a0,a1,a2, · · ·an ∈
F . The a′is are called coefficients of the polynomial a(x). The degree of a polynomial a(x)
is defined as the highest power of the variable x with non zero coefficients and is denoted

by deg a(x). We denote the set of all polynomials over a field F by F [x].

Definition 4.3. Zero polynomial
A polynomial whose all coefficients are zero is said to be zero polynomial.

Definition 4.4. Monic polynomial
Let a(x) be a non zero polynomial over the field F. We say that a(x) is monic if the

coefficient of xdega is 1.

Let a(x) and b(x) be two polynomials over F and a(x) = 0. We can find unique poly-

nomials q(x), the quotient, and r(x), the remainder, by using the long division such that

b(x) = a(x)q(x)+ r(x),

where deg r < deg a.
By

b(x)≡ c(x) (mod a(x))

we mean that b(x) is congruent to c(x). It means, in other words, that a(x) divides b(x)−
c(x). Euclid’s algorithm can also be applied to polynomials, in a same manner an we do

for integers, to find their greatest common divisor (gcd).

Definition 4.5. Zero of a polynomial
Let a(x) be a polynomial over F. An element α ∈ F is said to be zero of a(x), if a(α) = 0.

For example let a(x) = x2 +1 ∈ F2. Then 1 ∈ F is zero of a(x), since a(1) = 0.

Definition 4.6. Irreducible polynomial
A non constant polynomial f (x) ∈ F [x], where F is a field, is called irreducible if

f (x) = g(x)h(x) for g(x), h(x) ∈ F [x] =⇒ deg g(x) = 0 or deg h(x) = 0

The polynomial f (x) is called reducible if it does not satisfy the above condition.

Theorem 4.2. Let F be a field and f (x) ∈ F [x] be an irreducible polynomial. Then
F [x]/〈 f (x)〉 is a field.

Proof. Let I denote the ideal 〈 f (x)〉 of F [x] generated by f (x). If I = F [x], then 1 =
f (x)g(x) for some g(x) ∈ F [x]. By compairing the degrees of the both sides we see that

f (x) is a constant polynomial which is not true. So F [x]/I has at least two elements and
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it is a commutative ring with identity.

Let g(x) ∈ F [x], g(x) /∈ I. Then

J = {a(x) f (x)+b(x)g(x) : a(x),b(x) ∈ F [x]}

is an ideal of F [x] and there exist h(x) ∈ F [x] such that J = 〈h(x)〉. since one can show

that every ideal in a polynomial ring over a field is a principal ideal. Now

f (x) = 1× f (x)+0×g(x)

is in J and therefore

f (x) = a(x)h(x) for some a(x) ∈ F [x]

Irreducibility of f (x) shows that degh(x) = 0 or dega(x) = 0. If dega(x) = 0, then a(x)
is a unit in F [x] so that h(x) ∈ I which implies that J = I. This is a contradiction because

g(x) ∈ J but g(x) /∈ I. Hence h(x) is a unit in F [x] and J(x) = F [x]. Therefore

1 = a(x) f (x)+b(x)g(x) for some a(x),b(x) ∈ F [x]

and

1+ I = (b(x)+ I)(g(x)+ I)

Thus g(x)+ I is invertible and F [x]/I is a field.

Lemma 4.3. Let a(x),b(x), and c(x) be polynomials over F such that c(x) = 0 and
gcd(a(x),c(x)) = 1. Then

c(x) | a(x) ·b(x) =⇒ c(x) | b(x).

Proof. It is given that gcd(a(x),c(x)) = 1, therefore by Euclidean algorithm there are

polynomials s(x), and t(x) over F such that

s(x) ·a(x)+ t(x) · c(x) = gcd(a(x),c(x)) = 1

Since we are to divide by c(x) therefore, we can write

s(x) · a(x)≡ 1 (mod c(x)).

Now multiplying both sides by b(x), we get

s(x) · a(x) · b(x)≡ b(x) (mod c(x)).

Now, since

s(x) · a(x) · b(x)≡ 0 (mod c(x)),

we must have

b(x) ≡ 0 (mod c(x)).

This shows that c(x) | b(x).
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4.4 Primitive elements of finite fields

A very important property of the multiplicative group of a finite field is that this group is

cyclic. This will be discussed in this section. A finite field can be generated by a single

element of the field. There may be more elements such that the elements of a finite field

can be written as powers of these elements.

Definition 4.7. Primitive element
Let F be a finite field and let a ∈ F . Then a is said to be primitive element of cyclic group

F∗ if a generates F∗, i.e each element of F can be written as a power of a. The element a
will generate all elements of F∗.
The definition of primitive element can also be stated as follows:

If

F∗ = 〈a〉= {an | n ∈ Z} for some a ∈ F,

then a is called a primitive element of F if F = 〈a〉∪{0}.
If a is a primitive element in F, then ai is primitive element if and only if gcd(i, |F∗|) = 1.
Hence the number of primitive elements in F = GF(q) is φ(q− 1), where φ is Euler

function defined below.

Let Z be set of positive integers and let φ : Z+ → Z be the Euler function. The φ(n) is the

number of elements in the set {1,2, · · · ,n} that are relatively prime to n.

Example 4.2. We have F∗
7 = {1,2 · · · ,6}. By trial and error, we find that each element of

F∗
7 can be written as powers of 3 (mod 7), so 3 is a primitive element of F∗

7 .

Example 4.3. Let P(x) = x4 + x + 1. We construct the field GF(24) over F = GF(2)
modulo the polynomial P(x). It will contain 16 elements. Since, we are taking mod(x4 +
x+1), we have x4 = x+1. The sixteen elements of GF(24) are listed below

GF(24) = {0, 1, x, x2, x3, 1+ x, x+ x2, x2 + x3, 1+ x+ x3, 1+ x2, x+ x3, 1+ x+ x2,

x+ x2 + x3, 1+ x+ x2 + x2, 1+ x2 + x3, 1+ x3} .

In the above finite field, each element can be expressed as a power of x modulo the poly-

nomial (x4 + x+1). Hence x is the primitive element.

Example 4.4. Let F be the field of 5 elements. Here f (x) = x2 +2 is irreducible in F [x],
since no element of F is a root of f (x). Hence

K = F [x]/〈 f (x)〉
is of the order 25. An arbitrary element of K will be of the following form

ax+b+ 〈 f (x)〉 a, b ∈ F

We write x+ 〈 f (x)〉 = y. Then y2 = 3, y3 = 3y, y4 = 4, y5 = 4y, y6 = 2, y7 = 2y, y8 = 1.
We see that y does not generate all elements of K, so y is not a primitive element of K.

4.5 Splitting field

We give the definition of the splitting field along with some theorems about splitting fields.

Definition 4.8. Splitting field
Let F be a field and f (x) ∈ F [x]. An extension field K of F is called a splitting field of

f (x) if
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(i) f (x) factors as a product of linear factors over K and

(ii) if α1,α2, · · ·αm are zeros of f (x) then K = F(α1,α2, · · ·αm).

Proposition 4.4. Let f (x) be an irreducible polynomial over a field F. Then there exist an
extension K of F in which f (x) has a zero.

Theorem 4.5. [7, p 62]
Let F be a field and f (x) ∈ F [x]. Then there exists a splitting field of f (x) over F.

Proof. We prove this theorem by induction on the degree of f (x). If deg f (x) = 1, then

obviously F itself is splitting field of f (x). Suppose now that deg f (x) = n ≥ 2. Then by

Proposition 4.4 it follows that there is an extension of F which f (x) has a zero α1. Let

F1 = F(α1).

Then

f (x) = (x−α1)g(x)

where g(x) ∈ F1[x] and deg g(x) = n− 1. By our hypothesis g(x) has a splitting field K
over F1, i.e. g(x) factors as a product of linear factors over K and

K = F1(α2,α3, · · ·αn)

where α2,α3, · · ·αn are the roots of g(x). But then α1,α2,α3, · · ·αn are the roots of f (x),
K = F(α1,α2,α3, · · ·αn) and f (x) factors as a product of linear factors over K. Hence K
is a splitting field of f (x).

Theorem 4.6. For any non constant polynomial f (x) over a field F, there exists an exten-
sion K of F in which f (x) has a zero.

Proof. For an irreducible polynomial over a field F, there is an extension K of F in which

that polynomial has a root.

Let g(x) ∈ F [x] be an irreducible factor of f (x). Then there is an extension K of F in

which g(x) has a root α. But then α is also a root of f (x).

Definition 4.9. Characteristic of a field
Let F be a field. The characteristic of F, denoted by c(F), is the order of the element 1

in the additive group of F, provided that this order is finite. If 1 does not have a finite

additive order, then c(F) is defined to be zero.

For example, c(GF(7)) = 7, and c(R) = 0.

Proposition 4.7. [4, p 63]
If F is a field with c(F)> 0, then c(F) is a prime.

Proof. Suppose that c(F) = mn for some positive integers m and n. Then

0 =
mn

∑
i=1

1 = (
m

∑
i=1

1)(
n

∑
i=1

1).

Therefore, either (∑m
i=1 1) = 0 or (∑n

i=1 1) = 0, which implies that either m or n is at least

c(F) (= mn). But this is possible only when either n or m equals 1.
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4.6 Structure of finite fields

Definition 4.10. Minimal polynomials
Let K be an extension of a field F. An element α ∈ K is called algebraic over F if there

exists a polynomial f (x) ∈ F [x] which has α as a zero.

Let α ∈ K be algebraic over F and we consider

A = { f (x) ∈ F [x] : f (α) = 0}.

Then A is an ideal of F [x] and F [x] is a principal ideal domain. Let m1(x) ∈ F [x] be a

generator of the ideal A. If a is the coefficient of the highest power of x in m1, then m(x) =
a−1m1(x) is a monic polynomial with deg m(x) = deg m1(x) which is also generator of

A. If

m(x) = r(x)s(x) for some r(x),s(x) ∈ F [x]

then either r(α) = 0 or s(α) = 0. It means that m(x)| r(x) or m(x)| s(x). But

deg m(x) = deg r(x)+deg s(x)

and therefore either deg r(x) = 0 or deg s(x) = 0. Hence m(x) is irreducible. Also m(x)
is monic, irreducible polynomial of the least degree which has α as a root,by its choice.

Such polynomial with these properties is called minimal polynomial of α over F.

Theorem 4.8. The order of a finite field is pn where p is a prime and n is a positive
integer.

Proof. Let F be a finite field. Of course F is a finite group with respect to addition,

therefore we can apply Lagrange’s theorem on finite groups, we have that O(F) a = 0 for

all a ∈ F. This is similar to say that we add a, order of F times. We choose m to be the

smallest positive integer with ma = 0 for every a ∈ F. Let e denote the identity element of

F. Suppose that m = rs, where r, s are integers with r > 1, s > 1. Then

0 = me = (rs)e = (re)(se).

Therefore either re = 0 or se = 0. For any a ∈ F and positive integer k, ka = (ke)a.
Therefore, either ra = 0 for all a ∈ F or sa = 0 for all a ∈ F , which is contradiction to the

choice of m. Hence m must be a prime p. It can be easily seen that

K = {re : 0 ≤ r < p}

is a subfield of F. Since F is finite, F is a finite dimensional vector space over K. If

dimKF = n, and x1,x2, · · · ,xn is a basis of F over K, then every element of F can be

uniquely written as

a1x1 +a2x2 + · · ·+anxn, where ai ∈ K

Since each ai has exactly p choices and choice of any a j is independent of the choice of

other ai, there are exactly pn elements in F.

Let F be a field of order pn. Then F∗ = F −{0} is a multiplicative group of order

pn −1. Therefore, by Lagrange theorem we have,

apn−1 = 1 for all a ∈ F∗
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Remark. A finite field F is called a Galois field and if F is a field of order pn, we write

F = GF(pn).

Lemma 4.9. Let G be a non cyclic Abelian group of finite order, say m. Then there is a
proper divisor k of m such that xk = 1 for all x ∈ G.

Theorem 4.10. In any finite field F = GF(pn), the multiplicative group F∗ of all non zero
elements is cyclic.

Proof. We know that F∗ is an Abelian group of order q−1, where q = pn. If we consider

that F∗ is not cyclic, then there exists an integer r, with 1 < r < q−1 such that ar = 1 for

every a ∈ F∗ by lemma 4.9. Hence every a ∈ F will be a root of the polynomial xr+1 − x
and therefore

x−a | xr+1 − x for all a ∈ F

Also for a,b ∈ F and a = b, x−a,x−b are relatively coprime. Therefore

∏
a∈F

(x−a) | xr+1 − x

But

deg ∏
a∈F

(x−a) = O(F) = q and r+1 < q−1+1 = q

From above statement, we see that a polynomial of degree q divides a polynomial of

degree less than q, which is a contradiction. Hence there is no r with 1 < r < q−1 such

that ar = 1 for all a ∈ F, and so F∗ is cyclic.

Corollary. Every finite field contains a primitive element.
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5 Linear Codes
In this section we introduce a new and broad class of codes called linear codes. We will

also discuss some powerful mathematical tools that will help us to resolve some of the

previously discussed problems of coding theory when applied to codes in this class.

5.1 Linear codes

Definition 5.1. A code C is called a linear code if for any two codewords u and v in C,

u+ v is in C.

In other words we can say that linear code is a code which is closed under addition of

codewords. For example if we consider a code C = {00,11}, then all the four sums

00+00 00+11 11+00 11+11.

are in C, which shows that C is a linear code. On the other hand, consider a code C1 =
{000,001,101}. This is not linear code because 001+101 is not in C1. According to the

closure law under addition for a code C to be linear the sum u+ u = 0 must be in C for

any u ∈C. Therefore a linear code must contain the zero word. But some times if a code

contain the zero word, then it does not guarantee that the code is linear as in case of a code

C1. We observe from the linear and non linear codes that a linear code has one advantage

over non linear code. The advantage is that in the case of linear codes it is easy to find the

distance as compare to the non linear codes. The distance is defined in chapter 3.

In the following section we will see that the linear codes have many advantages over

the arbitrary codes and are highly structured. Here are some problems, difficult to solve

in general, but relatively easy for linear codes:

i. There is a procedure MLD that is simpler and faster for linear codes.

ii. For a linear code, encoding process is faster and it requires less storage space than

for arbitrary non-linear codes.

iii. It is easy to describe the set of error patterns that a linear code will detect.

iv. It is much easier to describe the set of error patterns a linear code will correct than

it is for arbitrary non-linear codes.

For studying linear codes the most important tools come from linear algebra. We will

discuss in this chapter some basic facts from linear algebra and we will try to show their

relevance to coding theory.

In sec:3.1, the field F2 is denoted as B = {0,1} which contains only two elements 0

and 1. It is also mentioned that Bn is the set of all ordered n-tuples or sequences of length

n. So we can define a vector space Bn on a field B, with the operations of vector addition

and scalar multiplication, which satisfy all the properties of a vector space. In the section

2.6 of vector spaces, we have already discussed about vector spaces, subspace, and also

some basic definitions.

Now we consider two important subspaces of the vector space Bn which will provide

interesting examples of linear codes. If S is non empty subset of a vector space V , then

the linear span of S is defined as the set of linear combinations of a vectors in a given set

S = {v1,v2, · · · ,vn}, ans it is denoted as 〈S〉. If S is empty the we define 〈S〉= {0}.

From the theory of linear algebra it is clear that for any subset S of a vector space V , the

linear span of S is a subspace of the vector space and it is called the subspace generated

by S. For the vector space Bn, since 〈S〉 is subspace of Bn, so we call 〈S〉 the subspace of

linear codes generated by S. We have the following theorem for the vector space Bn.
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Theorem 5.1. For any subset S of Bn, the code C=〈S〉 generated by S consists on the
following words: the zero word, all words in S, and all sums of two or more words in S.

Example 5.1. Let S = {010,011,111}. The the code generated by S consists of

C = 〈S〉= {000,010,011,111,001,100,101,110}.

Definition 5.2. Scalar or dot Product
For any two vectors a = {a1,a2, · · ·an} and b = {b1,b2, · · ·bn,} in Bn. Then the scalar

product of a and b is denoted as a ·b and is defined as

(a ·b) = a1b1 + · · ·+anbn.

The two vectors are orthogonal if there dot product is zero, i.e for any two vectors a
and b implies that a ·b = 0. For example consider 011 and 111 belonging to B3, as in the

previous example. The dot product is then

011 ·111 = 0+1 ·1+1 ·1 = 0+1+1 = 0.

Hence the vectors 011 and 111 are orthogonal.

Definition 5.3. Orthogonal complement
Let S be set of vectors in Bn. A vector u ∈ Bn is orthogonal to a set S, if u is orthogonal to

every vector in S. The set of all vectors orthogonal to every vector in S is called orthogonal

complement of S and is denoted by S⊥. For the vector space Bn, if C =
〈
S⊥
〉
, then we

write 〈C〉 = 〈S〉 and 〈C〉 is called the dual code of C. A code C is called self-dual if

C =C⊥.

Now we will check the linear independence of linear codes, basis and dimension will

also be discussed. Here just the examples of the linear codes will be discussed where

these things will be applied. Linear independence, basis and dimension are defined in

section 2.6.

Example 5.2. In this example, we check the linear independence of a code. Consider

S = {1011,1101,1011}. Let a1, a2 and a3 be the scalars, such that

a1(1001)+a2(1101)+a3(1011) = 0000.

By equating the components on both sides, we get

a1 +a2 +a3 = 0,

a2 = 0,

a3 = 0,

a1 +a2 +a3 = 0.

by solving for a1, a2 and a3 yields a1 = a2 = a3 = 0. Which shows that S is linearly

independent.

Similarly, we can see that the code S = {110,011,101,111} is linearly dependent.

There exist constants a1 = 1, a2 = 1, a3 = 1 and a4 = 0 such that

1(110)+1(011)+1(101)+0(111) = 000.
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5.2 Bases for a Code Generated by S and its Dual Code

In this section we will find methods to find bases for a linear code C and its dual 〈C〉. In

the theory of linear codes these methods have great importance.

Consider that S is a non empty subset of Bn. In the next two algorithms, we will see

how to find basis for a linear code generated by S. All the algorithms which are going to

be discussed are taken from Ref. [3].

Algorithm 5.2. If a matrix whose rows are the words in S. The number of non zero rows
of a matrix when it is transformed to row echelon form (REF) by applying elementary row
operations, is called basis for C = 〈S〉.

Example 5.3. Let S = {11101,10110,01011,11010}. We find basis for the linear code

C = 〈S〉.

A =

⎛
⎜⎜⎝

11101

10110

01011

11010

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

11101

01011

01011

00111

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

11101

01011

00111

00000

⎞
⎟⎟⎠ . [3, p38]

If we see from the above example, the last matrix is REF form of the matrix A. Hence

{11101,01011,00111} is a basis of the linear code C, since the rows of a matrix are

words in C. By applying elementary row operations, we interchange rows (words) or

simply replace. Then as a result we get the rows or word which are again in C. Therefore

the algorithm works. It is also clear from linear algebra that the non zero rows in a matrix

in REF are linearly independent.

In the previous algorithm it was considered that rows of a matrix are words in C. In

next algorithm we will see that if columns of a matrix are words in C, then it is also

possible to find basis for a linear code.

Algorithm 5.3. Form a matrix A whose columns are the words in S. Transform the matrix
to row echelon form (REF) by applying elementary row operations and locate the leading
columns in REF. Then the original columns of A corresponding to these leading columns
form a basis for C = 〈S〉.

Now we need to find basis of the dual code C⊥. The next algorithm will tell us the

method to find basis for the dual code.

Algorithm 5.4. From the matrix A whose rows are the words in S, use elementary row
operations to place A in reduced row echelon form (RREF). Let G be the k × n matrix
consisting of all the non zero rows of the RREF. Let X be the k× (n− k) matrix obtained
from G by deleting the leading columns of G. Let H be an n× (n− k) matrix formed as
follows:

i. in the rows of H corresponding to the leading columns of G, place, in order, the
rows of X;

ii. in the remaining n− k rows of H, place, in order the rows of the (n− k)× (n− k)
identity matrix I.

Then the columns of H form a basis for C⊥.
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Example 5.4. Let S= {11101,10110,01011,11010}. We form a matrix A whose columns

are words in S and transform it into RREF form.

A=

⎛
⎜⎜⎝

1 1 1 0 1

1 0 1 1 0

0 1 0 1 1

1 1 0 1 0

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1 1 1 0 1

0 1 0 1 1

0 0 1 1 1

0 0 0 0 0

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1 1 0 1 0

0 1 0 1 1

0 0 1 1 1

0 0 0 0 0

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1 0 0 0 1

0 1 0 1 1

0 0 1 1 1

0 0 0 0 0

⎞
⎟⎟⎠ ,

which is in RREF. Now we write the matrix G as G = (I3 X) where

X =

⎛
⎝0 1

1 1

1 1

⎞
⎠ .

The 5× (5−3) matrix H is

H =

⎛
⎜⎜⎜⎜⎝

0 1

1 1

1 1

1 0

0 1

⎞
⎟⎟⎟⎟⎠ .

By algorithm 5.4, the columns of H form a basis for C⊥.

5.3 Generating matrices

In this section we will find a generating matrix of a linear code C and we will see how

messages can be transmitted by using this matrix.

Definition 5.4. Rank
The rank of a matrix A over B is the number of non zero rows when it is transformed into

row echelon form.

The dimension of the code C is the dimension of C, as a subspace of Bn. A linear code

if it has length n, dimension k and distance d is denoted by (n,k,d).

Definition 5.5. Generating matrix
Any matrix whose rows form a basis for C is called the generating matrix, where C is the

linear code of length n and dimension m.

The generating matrix can also be defined in the following way:

Theorem 5.5. Let G be a k×n binary matrix. Then the mapping E : Ak → An defined by

E(x) = xG

will do as an encoding mapping for a linear (n,k)-code, if and only if every m = 1,2, · · · ,k
we have that if a1,a2, · · · ,am are m different rows of G, then

a1b1 +a2b2 + · · ·+ambm = 0 =⇒ bi = 0 ∀i,

where bi ∈ {0,1}.

Definition 5.6. A binary k×n matrix G that fulfills the conditions of the previous theorem

is a called a generating matrix of a linear (n,k)-code.
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The important thing to remember about generating matrix for an (n,k)-code is that it

must have k rows and n columns.

Theorem 5.6. A matrix G is a generator matrix for some linear code C if and only if the
rows of G are linearly independent; that is, if and only if the rank of G is equal to the
number of rows of G. [3, p 42].

Theorem 5.7. Any matrix which is row equivalent to the generator G is also a generating
matrix of a linear code C.

Example 5.5. Consider a linear code C = {0000,1110,0111,1001}. We find the gener-

ating matrix for C. By using algorithm 5.2,

A =

⎛
⎜⎜⎝

0000

1110

0111

1001

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1110

0111

1001

0000

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1110

0111

0111

0000

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

1110

0111

0000

0000

⎞
⎟⎟⎠ .

So

G =

(
1110

0111

)
,

is a generating matrix for C. By using the algorithm (5.4), reduced row echelon form of

the matrix A is ⎛
⎜⎜⎝

1001

0111

0000

0000

⎞
⎟⎟⎠ ,

therefore the matrix

G1 =

(
1001

0111

)
is also a generator matrix for C.

5.4 Parity- check matrices

In this section we will discuss another method to find the matrix that is associated with a

linear code and it is closely connected with the generator matrix. This new matrix will be

helpful and of great importance in designing decoding scheme.

Definition 5.7. If columns of a a matrix H form a basis for the dual code C⊥, then H is

called parity- check matrix.

The parity check matrix can also be defined as

Definition 5.8. Let G be a generating matrix of type (k,n) for a linear (n,k)- code. A

binary matrix H of type n× (n− k) such that

GH ≡ O (mod 2),

where O is the zero matrix, is called a parity-check matrix.

If the length of the linear code C is n and dimension m, then any parity- check matrix

for C must have n rows, n−m columns and rank n−m, since the sum of the dimensions

of C and C⊥ is n.
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Theorem 5.8. For a linear code C a matrix H is a parity-check matrix if and only if the
columns of the matrix H are linearly independent.

Theorem 5.9. Let C be a linear code and n be the length of C. Let H be the parity-check
matrix, then C consists of all words u ∈ Bn such that uH = 0.

By using algorithm (5.4) we can find a parity-check matrix for a linear code C if a

generating matrix for C is given. The matrix H which was constructed in algorithm (5.4)

is the parity- check matrix, since from the same algorithm, the columns of H form a basis

for C⊥.

Example 5.6. Consider a 3×5 generating matrix

G =

⎛
⎝1 0 0 0 1

0 1 0 1 1

0 0 0 1 0

⎞
⎠= (I3 A) ,

where

A =

⎛
⎝0 1

1 1

1 0

⎞
⎠ .

The parity-check matrix is

H =

⎛
⎜⎜⎜⎜⎝

0 1

1 1

1 0

1 0

0 1

⎞
⎟⎟⎟⎟⎠

Example 5.7. In example (5.5) we found the generator matrix for the code

C = {0000,1110,0111,1001}.
We found that

G1 =

(
1 0 0 1

0 1 1 1

)
= (I X),

is a generator matrix for C which is RREF. By algorithm (5.4), we construct matrix H as:

H =

(
X
I

)
=

⎛
⎜⎜⎝

0 1

1 1

1 0

0 1

⎞
⎟⎟⎠ ,

is a parity check matrix for C.

Now we try to summarize our discussion about generator matrix and parity-check ma-

trix for a linear code in the following theorem. We also try to characterize the relationship

between a generator matrix and parity-check matrix, and the relationship between these

matrices for a linear code and its dual code.

Theorem 5.10. For a linear code C, the matrix G is generating matrix and H is a parity-
check matrix if and only if

i. the rows of G are linearly independent,

ii. the columns of H are linearly independent,

iii. If G is of type k×n then H is of type n× (n− k) and

iv. GH = 0.
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5.5 Equivalent codes

Let G be a m×n matrix with m < n. suppose the first m columns form the m×m identity

matrix Im, so

G = (Im,X).

Then the matrix G is in RREF and has linearly independent rows. Thus we can say the

matrix G is a generator matrix for some linear code of length n and dimension m. The

matrix of this kind is said to be in standard form.

Definition 5.9. Systematic code
A code C generated by the generator matrix G defined by G = (Im,X) is called a system-

atic code.

A code word in standard form has many advantages. From the following theorem, we

can see the advantage of having generator matrix in standard form.

Theorem 5.11. If G is a generator matrix of a linear code of dimension m and length n,
and if G is in standard form, then the first m digits in the code word v = uG form the word
u in Bm. [3, p 49].

Example 5.8. Let

G = (I4 X),

where

I4 =

⎛
⎜⎜⎝

1000

0100

0010

0001

⎞
⎟⎟⎠ ,

and

X =

⎛
⎜⎜⎝

101

100

110

011

⎞
⎟⎟⎠ .

If the message is u = 0111, then uG = 0111001 = [u001]. And if u = 1011, then uG =
1011000

If we have a code word v = uG according to the theorem 5.11, the first m digits of the

code word are called information digits, since they actually contain the message u, while

the last n−m digits of v = uG are called redundancy or parity-check digits.

We have seen that a linear code with generator matrix in standard form have advan-

tages. Now it can also happen that a linear code C does not have a generator matrix in

standard form, then in this situation what we can do?

Let us consider a code C having four number of words and length of code word is let

say three, and also C has no generator matrix in standard form. We do the following that

we transform the code into the other code. It can be done in different ways, for example

we fix first digit in a codeword and change the other two. We so the same thing with all

codeword, by doing this the code C will be transformed into the code, say C′.
The code C′ will be different from the word C, but they share many properties with

each other. Both are linear, have same length and will have the same dimension. The both

codes will also have same distance. But here the code C′ has an advantage over C, the

advantage is that C′ has generating matrix in standard form. If G is the generator matrix
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of C, then the generator matrix for C′ can be obtained by dong the same operation what

we did on C to get C′.
Similarly if a code C has a length n, we can obtain a new code C′ of the same length.

The resulting code C′ is said to be equivalent to C. Now we summarize the above discus-

sion in the following theorem.

Theorem 5.12. Given C (linear) a code C′ can be found having a standard generating
matrix such that C and C′ are equivalent.

Proof. If G is a generator matrix for C, transform G in reduced row echelon form. Re-

arrange the columns of the reduced row echelon form so that the leading columns come

first and form an identity matrix. The result is a matrix G′ in standard form which is a

generator matrix for a code C′ equivalent to C.

5.6 Distance of a linear code

The distance of a linear code is the minimum weight of any nonzero codeword. The

distance of a linear code can also be determined from a parity-check matrix for the code.

Theorem 5.13. Let H be a parity-check matrix for a linear codeC. Then C has distance
d iff any set of d − 1 rows of H is linearly independent, and at least one set of d rows of
H is linearly independent.
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6 Perfect codes
Definition 6.1. A vector having minimum Hamming weight in a coset of a linear code C
is called a coset leader.

The syndrome of a vector u is defined to be S(u) = uHT where H is the parity check

matrix. The following lemma allows us to determine the coset easily.

Lemma 6.1. Two vectors u and v belong to the same coset of a linear code C if and only
if they have the same syndrome.

Proof. Two vectors u and v to belong to the same coset if and only if their difference

belongs to the code C; that is, u−v ∈C. This happens if and only if (u−v)HT = 0, which

is equivalent to S(u) = uHT = vHT = S(v).

Definition 6.2. Hamming sphere
A Hamming sphere of radius k centered at a codeword c is denoted by BH(c,k) and is

defined as

BH(c,k) = {x |dH(x,c)≤ k}.
i.e all vectors having Hamming distance k or less to the codeword c.

Here we have used the notation dH for the Hamming distance. The reason of using this

notation is that in the next chapters we will introduce another metric, so called the Lee

metric. To avoid the confusion for the reader we used this notation instead.

In the following lemma, we calculate the number of vectors in the Hamming sphere

BH(c,k).

Lemma 6.2. A sphere BH(c,k) in n-dimensional q-ary space has(
n
0

)
+

(
n
1

)
(q−1)+ · · ·

(
n
r

)
(q−1)r

elements.

Proof. We calculate two things. First the number of vectors having distance 1 from c.

Then the number of vectors having distance m from c.

The vectors at distance 1 from c are those ones that are different from c in exactly one

location. Since, here are n possible locations and due to q-ary we have q−1 ways to make

an entry different. So the total number of vectors at Hamming distance 1 is n(q−1).
Now there are ( n

m) ways in which we can choose m locations to differ from the values

of c. For all of such m locations, we have q− 1 choices of symbols different from the

corresponding symbol of c. Therefore, we have(
n
m

)
(q−1)m

vectors having Hamming distance m from c. We also have to include the vector c too, we

know that (n
0) = 1. Hence our required result will be(

n
0

)
+

(
n
1

)
(q−1)+ · · ·

(
n
r

)
(q−1)r.
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Theorem 6.3. Hamming bound
Let C be a q-ary (n,M,d) code with d ≥ 2k+1. Then

M ≤ qn

∑k
j=0(

n
j )(q−1) j

. (6.1)

Proof. We draw a Hamming sphere of radius k centered at each codeword. According to

the statement, the minimum distance d ≥ 2k+1. Therefore these spheres will be disjoint.

We are working with q symbols so the total number of vectors in all the Hamming sphere

can not exceed qn, where n is of course the length of a codeword. Therefore, we get

(number of codewords)(number of elements per sphere) = M
k

∑
j=0

(n
j )(q−1) j ≤ qn.

Example 6.1. We compute an upper bound for the size or dimension M of a linear code

C of length n = 6 and distance d = 3. From d = 3 = 2k+1 we get k = 1. The Hamming

bound gives

|C| ≤ 26

(6
0)+(6

1)
=

64

1+6
=

64

7
.

But |C| must be a power of 2, so |C| ≤ 8, and M ≤ 3.

Definition 6.3. Perfect codes
A code C of length n and minimal Hamming distance d = 2k+ 1 is called perfect if it

satisfies the Hamming bound (6.1) with equality.

Now we give two important examples on perfect codes. The codes in these examples

are called trivial perfect codes. Therefore they are not important.

Example 6.2. Let k = 0. Then

(n
0) = 1 = 20,

so

|C|= 2n/(n
0) = 2n.

The only code having length n and with 2n codewords is C = Kn. Kn is a perfect code.

Example 6.3. Let the length of the code is n = 2t +1. Then(
n

n− i

)
=

n!

(n−1)!(n− (n− i))!
=

n!

(n− i)!i!
=

(
n
i

)
.

Thus it can be written as (
n
0

)
=

(
n
n

)
,

(
n
1

)
=

(
n

n−1

)
, · · · ,

and, for n = 2t +1 implies (
n
t

)
=

(
n

n− t

)
=

(
n

t +1

)
.
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Therefore (
n
0

)
+ · · ·+

(
n
t

)
=

1

2

((
n
0

)
+ · · ·+

(
n
n

))
=

1

2
.2n = 2n−1.

Hence by using (6.1), we get

|C|= 2n

(n
0)+ · · ·+(n

t )
=

2n

2n−1
= 2.

The above equation shows that any perfect code having length and distance 2k+ 1 has

exactly two codewords.

6.1 Hamming codes

One important class of single error correcting codes is Hamming codes. These codes can

easily be encoded and decoded. In the beginning these codes were used to control errors

in long distance calls. The parameters for binary Hamming codes are codes of length

n = 2m −1, dimension k = 2m −m−1 and minimum distance d = 3.
We can easily describe the Hamming codes by a parity check matrix. To construct a

binary Hamming code of length n = 2m−1, we construct a matrix of order m×n in which

all non zero binary m- tuples are written in columns.

Example 6.4. Let us find the parity check matrix H for a [15, 11] binary Hamming code.

We list all non-zero 15-tuple as the columns of the matrix⎛
⎜⎜⎝

0 1 1 1 0 1 1 0 0 1 1 0 0 1 0

1 0 1 1 1 0 1 0 1 0 1 0 0 0 1

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

1 1 1 0 0 0 0 1 1 1 1 0 1 0 0

⎞
⎟⎟⎠

The above matrix is a parity check matrix, by interchanging columns in the above matrix

so that we get 4×4 identity matrix. This matrix will generate a systematic code.

H =

⎛
⎜⎜⎝

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

1 1 1 0 0 0 0 1 1 1 1 0 1 0 0

0 1 1 1 0 1 1 0 0 1 1 0 0 1 0

1 0 1 1 1 0 1 0 1 0 1 0 0 0 1

⎞
⎟⎟⎠

One can now easily calculate a generator matrix from the parity check matrix H. The

decoding algorithm for Hamming code that corrects up to single bit error is as below.

Compute the syndrome s = yHT for any received vector y. If s = 0, it means that there

are no errors. If s = 0, it will determine the position of the column of parity check matrix

H that is the transpose of the syndrome. In this case we change the determined bit in

received word or vector and get the code.

Example 6.5. From the previous example, assume that we receive the word

y = (0 0 0 0 0 0 0 0 0 0 1 1 0 0 1).

The syndrome s = yHT will be s = (0110). This is the transpose of the second column of

H, so we change the second bit of y and get the code word as (0 1 0 0 0 0 0 0 0 0 1 1 0 0 1).

We can conclude that we have found the error and also corrected it.

36



6.2 Golay codes

The Golay codes G23 and G24 are very famous binary codes. Infact, the extended Golay

code G24[24, 12, 8] was used by the Voyager I and Voyager II space crafts to provide very

nice photographs of Jupiter and Saturn in 1980’s. The Golay code G23[23, 12, 7] is very

closely related to G24. We first analyze the construction of G24 and then modify it to get

G23. We see how the generating matrix is constructed for G24.

6.2.1 The extended Golay codes

The generating matrix for G24 is 12×24 matrix given below

G=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

All the entries of above matrix are integers mod 2. Obviously the first 12 columns are

identity matrix of order 12. We need to think a little bit when it comes to the remaining

columns of G. The last eleven columns are obtained in the following way. We take the

squares of the elements of Z = {0,1 · · · ,10} mod 11. The squares are 0, 1, 3, 4, 5, 9.

We set this vector as the last 11 entries in the first row of G, and for the remaining rows,

except the last one, we just cyclically permute the entries of this vector. The reason for

using squares mod 11 is to determine which place will get 1. The 13th column and the

12th row in above matrix are included because they increase the number of codewords and

the minimum distance. Two of the properties of G24 are given in the following theorem.

Theorem 6.4. The extended Golay code G24 is a self dual [24, 12] binary code.

Proof. The length of the rows of G is 24. Since G contains the 12× 12 identity matrix,

this means that the 12 rows of G are linearly independent. Hence G24 has dimension 12

and we can write it as [24, 12, d] code for some d. We will later prove that it has minimum

distance d = 8.
Let r1 and r such that r1 = r, where r1 is the first row of G and r is any row of the

remaining 11 rows. An easy check show that that r1 has exactly four 1s common with

r, and each has four 1s that are matched with 0s in the other vector. If we add r1 and r
then in the sum r1 + r, the four 1s which are common cancel ( give zero) mod 2, and the

remaining four 1s from each which are matched with 0s give total of eight 1s. Therefore

the weight of r1+ r is 8. Also, the common four 1s contribute to the dot product of r1 and

r i.e r1 · r, so

r1 · r = 1 ·1+1 ·1+1 ·1+1 ·1 = 4 ≡ 0 (mod 2).

Now consider any two distinct rows of G, say u and v, other than the last row. The

first 12 and the last 11 entries of v are obtained by permuting the corresponding entries of

u and also of the first row cyclically. The weight of the vectors of the values of the dot
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product remains fixed, if we permute the entries cyclically, the calculations of sum and

dot product which has been done before for r1 and r can be applied to u and v. Therefore,

1. wt(u+ v) = 8

2. u · v ≡ 0 (mod 2).

The conditions (1) and (2) holds for any two distinct rows u, v of G, even if any of

u and v is the last row of G. We note that every row of G has an even number of 1s, so

condition (2) holds even if u = v.

Let c1 and c2 be any elements in G24 then both of them are linear combination of rows

of G, so c1 ·c2 is a linear combination of numbers of the form u ·v. But since (2) holds for

all such u and v, therefore C ⊆ C⊥. Also C and C⊥ have same dimension because C is a

12-dimensional subspace of 24-dimensional space and C⊥ has dimension 24− 12 = 12.

Hence C =C⊥.

Lemma 6.5. For any two binary operators v1,v2 of same length

wt(v1 + v2) = wt(v1)+wt(v2)−2(v1 · v2), (6.2)

where (v1 · v2) means the usual dot product of two vectors.

Proof. Here we are adding v1 and v2 (mod 2). Therefore v1 + v2 will have entries 1 only

when one of the vectors v1, v2 has entry 1 and the other has entry 0 at the corresponding

positions. On the other hand wt(v1) equals number of places v1 has 1s and similarly wt(v2)
equals number of places v2 has 1s. For this reason, wt(v1)+wt(v2) will include those 1s

that cancels each other when we calculated wt(v1+v2). There are actually [v1 ·v2] entries

in v1 and also the same number in v2 which are included in wt(v1)+wt(v2) but are not

included in wt(v1 + v2).
Summing up all things together in equation (7.3), we get the equation (7.3) satisfied.

We are now able to prove that the weight of all vectors in G24 is multiple of 4. We do

this in the following theorem.

Theorem 6.6. The weight of any word in G24 is a multiple of 4.

Proof. We take a word g in G24. We can write it as the following sum

g ≡ u1 +u2 + · · ·+uk (mod mod2),

where u1,u2, · · · ,uk are distinct rows of the generating matrix G. To prove the theorem,

we show will that wt(g)≡ 0 (mod 4) by induction on k.

The case k = 1 is true, since the weights of all rows of G are multiples of 4. Now we

suppose that all the vectors which can be written as a sum of k−1 rows of G have weight

≡ 0 (mod 4), i.e any vector u in the form

u = u1 +u2 + · · ·+uk−1

has a multiple of 4 as its wight. By using lemma 6.5

wt(g) = wt(u+uk) = wt(u)+wt(uk)−2(u ·uk)≡ 0+0−2(u ·uk) (mod 4).

But u ·uk ≡ 0 (mod 2) . Therefore, 2(u ·uk)≡ 0 (mod 4).
We have shown that if g is a sum of k rows of G then wt(g) ≡ 0 (mod 4). Hence by

the principal of induction all sums of rows of G have weight a multiple of 4. This proves

the theorem.
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Discussion: We form two matrices from G in the following way, where G is the matrix given in

the section 6.2.1 . A matrix B consists of the last 12 columns of G.

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 1 1 0 0 0 1 0

1 0 1 1 0 1 1 1 0 0 0 1

1 1 0 1 1 0 1 1 1 0 0 0

1 0 1 0 1 1 0 1 1 1 0 0

1 0 0 1 0 1 1 0 1 1 1 0

1 0 0 0 1 0 1 1 0 1 1 1

1 1 0 0 0 1 0 1 1 0 1 1

1 1 1 0 0 0 1 0 1 1 0 1

1 1 1 1 0 0 0 1 0 1 1 0

1 0 1 1 1 0 0 0 1 0 1 1

1 1 0 1 1 1 0 0 0 1 0 1

0 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rows of B are linearly independent mod 2. The matrix A below is 11× 11

matrix formed from the last 11 elements of the first 11 rows of G. These are linearly

dependent mod 2. If we sum all 11 rows, we obtain 0 mod 2. So this is the linearly

dependent relation.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 1 0 0 0 1 0

0 1 1 0 1 1 1 0 0 0 1

1 0 1 1 0 1 1 1 0 0 0

0 1 0 1 1 0 1 1 1 0 0

0 0 1 0 1 1 0 1 1 1 0

0 0 0 1 0 1 1 0 1 1 1

1 0 0 0 1 0 1 1 0 1 1

1 1 0 0 0 1 0 1 1 0 1

1 1 1 0 0 0 1 0 1 1 0

0 1 1 1 0 0 0 1 0 1 1

1 0 1 1 1 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will use the matrices A and B in the next theorem.

Theorem 6.7. The minimum weight or minimum distance in G24 is 8.

Proof. Let g be a codeword in G24. Then g will have 1s in ith, jth and so on kth positions

if g is the sum of ith, jth and so on kth rows, 1 ≤ i, j,k ≤ 12. It is because the first 12

columns of G make an identity matrix. Therefore wt(g)≥ s if g is a sum of s rows.

Let us suppose that wt(g) = 4. Then g is sum of at most 4 rows of G. Since the weight

of each row in G is at least 8, it is obvious that g cannot be a single row of G. And we

proved earlier that wt(g) = 8 if it is the sum of two rows of G.

If g is sum of three rows then there are two cases to consider.

1) The last row of G is not part of the sum of g.

2) The last row of G is part of the sum of g.

In the first case, three 1s from the 13th column are used. Three more 1s contribute to g
from the first 12 positions for each of these rows, since wt(g) = 4. Therefore that last 11

entries of g are 0. By the above discussion, the sum of only three rows of the matrx A
cannot be zero. We conclude that this case is not possible.
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In the second case, the last 11 entries of g are obtained from two rows and the vector

(1,1, · · · ,1). Since the weight of the sum of two rows of G is 8 and have contribution of

2 to the weight from 13th column implies that rows of A has weight 6. When the vector

(1,1, · · · ,1) is added mod 2. It change all 1s to 0s and 0s to 1s. Therefore the weight of

last 11 entries of g is 15. This gives the impossibility of this case too, since wt(g) = 4.

The last thing that we consider is that g is sum of 4 rows of G. Then the first 12 entries

of g have four 1s and last 12 entries of g are 0. This is also not possible by the same

argument given before.

So we have proved that there is no codeword having weight 4. By previous theorem we

know that weights are multiple of 4 and the smallest such possibly is 8. Hence minimum

weight of G24 is 8.

6.2.2 The (non- extended) Golay code G23

If we remove the last entry of each codeword in G24, we get the non-extended Golay code

G23. The generating matrix for this code is obtained if the last column of the generating

matrix G for G24 is removed. The generating matrix G′ is given below:

G′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 6.8. The non-extended Golay code G23 is a linear [23, 12, 7] code.

Proof. Since the generating matrix G′ for G23 is obtained by deleting the last column from

generating matrix G for G24, therefore each codeword will have length 23. The set of all

vectors in G23 is linearly independent. The matrix G′ contains the 12×12 identity matrix

therefore the rows of G′ are linearly independent as it was in the case of G. Because of the

linear independence it spans a 12-dimensional vector space. A codeword g′ in G23 can be

obtained from a codeword g in G24 by deleting the last entry of g. Since wt(g)≥ 8 and g′
has one less entry than g so wt(g′)≥ 7.

6.3 Ternary Golay code

Another example of a perfect code is the ternary Golay code. Ternary Golay codes are

also of two types, known as ternary Golay code and the extended Golay code. The ternary

Golay code is a perfect [11, 6, 5] ternary linear code. The extended ternary Golay code is

obtained if we add a zero check sum check digit to the codewords of [11, 6, 5] code.
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The generating matrix G for the ternary Golay code [11, 6, 5] is given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 0 1 2 2 1

0 0 1 0 0 0 1 0 1 2 2

0 0 0 1 0 0 2 1 0 1 2

0 0 0 0 1 0 2 2 1 0 1

0 0 0 0 0 1 1 2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

All the entries of the above matrix are integers mod 3. The first six columns are the

identity matrix of order 6. The last five entries of the first row are simply 1s. The last

five entries of the second row are obtained from Z3 in the order 0, 1, 2, 2, 1. The last five

entries of last four rows are obtained by cyclically permuting the last five elements in the

second row.

The extended ternary Golay code is obtained by adding a zero sum check digit to the

simple ternary Golay code. The parameters for extended ternary Golay code are [12, 6,

6]. The generating matrix will look like

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 0 1 2 2 1

0 0 1 0 0 0 1 1 0 1 2 2

0 0 0 1 0 0 1 2 1 0 1 2

0 0 0 0 1 0 1 2 2 1 0 1

0 0 0 0 0 1 1 1 2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

6.4 Reed- Solomon codes (a non- perfect code)

We now talk about a non-perfect code. Reed-Solomon codes are one of the most practical

codes. They have been used in spacecraft communications and in compact discs.

Let F be a finite field having q elements and n = q−1. We know that every finite field

has a primitive root (see chapter 4). Let α be a primitive roof of F and choose d such that

1 ≤ d < n and let

g(x) = (x−α)(x−α2) · · ·(x−αd−1).

Then g(x) generates code C of length n over the finite field F. This generated code is

called Reed-Solomon code.

Now we take a look at an example and apply the Hamming bound on the parameters

of the code.

Example 6.6. Consider the field of seven elements i.e F = Z7 = {0,1, · · · ,6}. We have

therefore q = 7 and n = q−1 = 6. Since 3 is a prime element of F, we choose α = 3. We

construct a Reed-Solomon code having minimal distance d = 5. We have the following

generating polynomial

g(x) = (x−3)(x−32)(x−33)(x−34)

= (x−3)(x−2)(x−6)(x−4)

= x4 −3x3 +6x2 −3x−4

= x4 +4x3 +6x2 +4x+3.

Hence the generating matrix will be

G =

(
3 4 6 4 1 0

0 3 4 6 4 1

)
.
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There will be 72 = 49 codewords in this code. The way to construct the generating matrix

G from the generating polynomial g(x) is discussed in [6, page 430].

Since a code is said to be perfect if it satisfies Hamming bound with equality. The

Hamming bound is

M ≤ qn

∑k
j=0(

n
j )(q−1) j

.

Since d = 5, this yields k = 2.

49 = M ≤ 76

(6
0)+(6

1)6+(6
2)6

2
,

49 = M ≤ 203.8 ≈ 204.

Since the equality does not hold, wo the code considered in this example is not a perfect

code.

Example 6.7. If we take d = 3 in the previous example. Then the generating polynomial

will be

g(x) = (x−3)(x−32) = x2 +2x+6,

and the generating matrix is

G =

⎛
⎜⎜⎝

6 2 1 0 0 0

0 6 2 1 0 0

0 0 6 2 1 0

0 0 0 6 2 1

⎞
⎟⎟⎠

There will be 74 = 2401 codewords. Applying Hamming bound we get,

2401 = M ≤ 3197.7 ≈ 3180.

Again we see that the code is not perfect.
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7 Perfect codes in Lee metric

In this and the last chapter, we consider the codes in the Lee metric. In 1950s Lee metric

was described for the first time by Lee. We begin with the definition of the Lee distance

and Lee weight and see how it is different with comparison to the Hamming metric and

Hamming weight.

We already have defined Hamming metric, Hamming distance and Hamming weight

in chapter 3. The material in this chapter is mainly taken from [4] and [1].

Definition 7.1. Lee distance
Let x, y be two words in Zq, where q ≥ 2 is a prime and let n be a positive integer. The

Lee distance between x and y is denoted by dL(x,y) and defined as:

dL(x,y) =
n

∑
i=1

min(|xi − yi|,q−|xi − yi|). (7.1)

Just like Hamming distance, Lee distance also satisfies the following properties of a

metric. For all x, y, z belonging to Zn
q, we have

i) dL(x,y)≥ 0 and dL(x,y) = 0 if and only if x = y,

ii) dL(x,y) = dL(y,x),

iii) dL(x,y)≤ dL(x,z)+dL(z,y).

The minimum Lee distance of a code C is the minimum of the distances between any two

codewords, i.e

dL(C) = mindL(c1,c2) where c1 = c2.

Example 7.1. For codewords 1342 and 1025 in F4
7, we have

dL(1342,1025) = min(0,7−0)+min(3,7−3)+min(2,7−2)+min(3,7−3),

= 0+3+2+3,

= 8.

If q = 2 or q = 3, then the Lee metric and the Hamming metric are the same thing. In

other words we say, that they coincides.

Definition 7.2. Lee metric
Let α ∈ Zq. The Lee weight of α takes non negative integer values and is defined as

wL(α) = |α|=
{

α, if 0 ≤ α ≤ q/2

q−α, otherwise

For simplicity we consider that Z+
q contains the elements in 0 ≤ α ≤ q/2 and Z−

q
denotes the remaining elements in Zq \{0}.

Example 7.2. We consider an example for Lee weight. Let q = 7, then we have Z7 =
{0,1,2,3,4,5,6}, and the Lee weights of the elements of Z7 are given by

wL(0) = 0, wL(1) = wL(6) = 1, wL(2) = wL(5) = 2, wL(3) = wL(4) = 3.
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Let c = (c1c2 · · ·cn) be a codeword in Zn
q. The Lee weight of c is defined as the sum of

Lee weights of its digits i.e

wL(c) =
n

∑
i=1

|ci|.

The Lee distance defined above can also be defined in terms of Lee weight, i.e

wL(x− y) = dL(x,y).

We can define Hamming weight and Lee weight over the alphabet having number of

elements that is not prime or a power of a prime. But, while constructing codes in Lee

metric, the restriction on number of elements in alphabet is crucial. It restricts us to be

with in a finite field. We know that the order of a finite field is always of the form qn,

where q is a prime and n is a positive integer. Also the integer mod q form a field if and

only if q is prime.

When it comes to Lee metric, it is more suitable to phase modulation schemes. In

this kind of channels signals are transmitted through additive gaussian noise. There is

great chance that the noise will corrupt the transmitted letter into another letter of slightly

different phase but not into a letter of greatly different phase.

Definition 7.3. Lee sphere
Let C ⊆ Fn

p. A Lee sphere of radius k centered at a codeword c is denoted by BL(c,k) and

is defined as

BL(c,k) = {x |dL(x,c)≤ k}.
i.e all vectors having Lee distance k or less.

Now we give the proposition that describe the size of Lee sphere. In other words it

tells us that how many elements the Lee sphere of certain radius contains.

Proposition 7.1. The number of elements in a Lee sphere in Zn
q having radius t < q/2 is

VL(n, t) =
n

∑
i=0

2i(n
i )(

t
i )

where ( t
i ) = 0 if i > t.

Proof. Consider a subset J ⊆ {1,2, · · · ,n} and this set contains i elements. Let the set BJ
consist of all the words in BL(0, t) such that an entry of a word in BJ is indexed by some

j ∈ J if and only if it is nonzero. Let B+
J denote the set of all those words in BJ whose non

zero entries are all from Z+
q . From t < q/2 it follows that

|BJ|= 2i · |B+
J |.

Now, the number of elements in S+J is equal to the number of words of length i over

positive integers such that the sum of entries in each word is at most t. That is

|S+J |= |Q(t, i)|,

where Q(t, i) will be of the following form

Q(t, i) =

{
(m1m2 · · ·mi) |m1,m2, · · · ,mi ∈ Z+,

i

∑
s=i

ms ≤ t

}
.
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The size of the set Q(t, i) will be equal to ( t
i ) because (m1m2 · · ·mi) ranges over the ele-

ments of Q(t, i) and the set

{m1,m1 +m2, · · · ,m1 +m2 + · · ·+mi}
ranges over all the subsets of {1,2, · · · , t} of size i. We thus have,

VL(n, t) = |BL(0, t)|= ∑
J⊆{1,2,··· ,n}

|BJ|= ∑
J

2|J| · |B+
J |

=
n

∑
i=0

∑
J:|J|=i

2i( t
i ) =

n

∑
i=0

2i(n
i )(

t
i )

7.1 Sphere-packing bound in the Lee metric

The proposition 7.1 is about the size of Lee sphere and it will appear in Sphere-packing

bound, therefore this proposition is useful. The following theorem is about the Sphere-

Packing bound.

Theorem 7.2. (Sphere-Packing bound in the Lee metric)
Let C be an (n,m) code of size M > 1 over Zq and let t =

⌊
BL(C)−1

2

⌋
. Then,

M ·VL(n, t)≤ qn. (7.2)

Proof. We consider two Lee spheres BL(c1) and BL(c2) centered at two distinct code-

words c1,c2 ∈C. The spheres of radius t =
⌊

BL(C)−1
2

⌋
centered at two distinct codewords

as shown in figure 7.1 must be disjoint i.e

BL(c1)∩BL(c2) = φ .

Figure 7.1: Spheres of radius t centered at distinct code codewords c1 and c2

Hence, total volume of these spheres given by the left hand side of equation 7.2 is

M ·VL(n, t) = ∑
c∈C

|BL(c, t)|=
∣∣∣ ⋃

c∈C

BL(c, t)
∣∣∣≤ qn.
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Figure 7.2: Lee sphere of radius 4 in two-dimensional space.

Theorem 7.3. For any given t, there exists a perfect t- Lee-error- correcting code of block
length n = 2 over the alphabet of integers mod q = 2t2 +2t +1.

Proof. We can represent the error patterns (E0,E1) for which |E0|+ |E1| ≤ t in the figure

7.2. In this figure, we take the Lee sphere of radius 4.

The error patterns will be of the following forms

1. E0 ≥ 0, E1 > 0

2. E0 < 0, E1 ≥ 0

3. E0 ≤ 0, E1 < 0

4. E0 > 0, E1 ≤ 0

5. E0 = E1 = 0

The number of error patterns in 1, 2, 3 or 4 is

t

∑
i=0

i = t(t +1)/2,

so the total number of error patterns of Lee weight ≤ t is

V 2
t = 1+4t(t +1)/2 = q.

Therefore, any t-Lee-error-correcting code which has q codewords of length n = 2 over

the alphabet of integers mod q = 2t2 +2t +1 must be perfect.

Corollary. If 2t2 + 2t + 1 divides q, there exist a perfect t- Lee error-correcting code of
length n = 2 over the alphabet of integers mod q. [1]

Proof. Since q divides 2t2 + 2t + 1, therefore there exist k such that q = k(2t2 + 2t + 1).
We may take the set of codewords k2(2t2 +2t +1) of the form [C0 + i(2t2 +2t +1),C1 +
j(2t2 + 2t + 1)], where 0 ≤ i < k and 0 ≤ j < k and C = [C0,C1] is a codeword in the

perfect t-Lee-error- correcting code over the alphabet of integers mod 2t2 +2t +1.
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7.2 Berlekamp codes

We introduce another type of codes reffered to as Berlekamp codes. The Berlekamp code

with certain parameters is one of the very few perfects codes in the Lee metric.

Let F = GF(q), where q is a prime, be a finite field. Also let Φ be a finite extension

field of F . Take the elements β1,β2, · · · ,βn from Φ such that βi = 0, for 1 ≤ i ≤ n, and

βi +β j = 0 for all 1 ≤ i < j ≤ n.

Consider the linear [n,n− γ] code C over Φ with a parity check matrix

HBer =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 β2 · · · βn
β 3

1 β 3
2 · · · β 3

n
β 5

1 β 5
2 · · · β 5

n
· · · ·
· · · ·
· · · ·

β 2γ−1
1 β 2γ−1

2 · · · β 2γ−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.3)

The intersection C∩Fn is called a Berlekamp code. It is denoted by CBer.

Theorem 7.4. Let CBer = 0 be defined over F = GF(q), q is a prime, be the parity check
matrix 7.3. If we have γ < q/2 then

dL(CBer)≥ 2γ +1.

Example 7.3. Let F = GF(q) and Φ = GF(qn) where q is an odd prime and m a positive

integer. We construct the (n,k) Berlekamp code C over F by the parity-check matrix 7.3

with γ = 1 and n = 1
2(pm − 1). We have n− k ≤ m for this code. We have, by using the

proposition 7.1

|CBer| ·VL(n,1) = |CBer| · (1+2n)≥ qn−m · (1+2n) = qn.

Since F = GF(q) contains qn elements, so CBer in this case make the whole space. there-

fore we can say that Berlekamp code with γ = 1 and n = 1
2(|Φ|− 1) is a perfect code in

the Lee metric.

The Hamming metric is used in orthogonal modulation schemes. As an alternate to

the Hamming metric, the Lee metric was developed. The Lee metric basically is useful

for the channels that use phase-shift key modulation. Codes in the Lee metric are also

considered good for the channels with synchronization errors.

We discussed earlier that Lee metric and Hamming metric coincide over GF(2) and

GF(3). Therefore, all perfect codes in the Hamming metric over GF(2) and GF(3) are

also perfect in the Lee metric. The Golay codes and the Hamming codes over these fields

are the examples of such codes. unfortunately, there are no more known perfect codes

for the Lee metric when it comes to q > 3. It is conjectured that for q > 3, there are no

perfect codes in the Lee metric over Zq with code length greater than 2 and minimum Lee

distance greater than 3.
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8 Minimal distance
In chapter 3 we had a look at (n,M,d)-codes, where n is the length of the codeword,

M the number of codewords and d is the distance between any two different codewords.

Such a code can correct up to k errors if d ≥ 2k+ 1. Since correction of errors depends

on d, we want d to be large enough to correct maximum number of errors. By adding

redundant digits to codewords, (for example repetition codes) the possibility if detecting

and correcting errors increases. But, on the other hand it will take more time to transmit

these codes.

The information rate or code rate for a code C of length n is given by

R =
log2 |C|

n
.

The information ranges between 0 and 1, since we can assume that 1 ≤ |C|= M ≤ 2n. If

the number of codewords M is large enough as well then the information rate will also be

close to 1. Hence, we wish M to be large too. This would help the bandwidth to be used

efficiently. If we increase d it leads to increase n or decrease M.

In this chapter, we study the restriction of n, M and d. We won’t care about practical

matters. The material in this chapter in mainly taken from [6].

8.1 Singleton bound

We begin with a bound on the number of codewords M. This bound is called the Singleton

bound. This result was given by R. Singleton in 1964.

Theorem 8.1. Let C be a q-ary (n,M,d) code. Then

M ≤ qn−d+1.

Proof. Let c′ = (a1,a2 · · · ,ad) is a word of length d, consisting of the first d bits of c
c = (a1, · · · ,an). If c1, c2 are two codewords such that c1 = c2, then they differ in at least

d positions. Since c1 = c2 and we have obtained c′1 and c′2 by removing first d −1 entries

from c1 and c2. Therefore c′1 and c′2 must be different from each other in at least one

place, so c′1 = c′2. The number of c′s that can be obtained in this way is M, the number of

codewords. There will be at least qn−d+1 such vectors c′ because these vectors have total

n−d +1 positions. This gives us M ≤ qn−d+1, which is required.

Corollary. The information or code rate for a q- ary (n,m,d) code is at most 1− d−1
n .

From this corollary, we observe that the code rate will be small if the relative minimal

distance d/n is large.

A code C satisfying the Singleton bound with equality is called a maximum distance

separable (MDS) code. The Singleton bound can also be written as

qd ≤ qn+1/M,

so an MDS code has the largest possible value of d for a given n and M.

8.2 Gibert- Varshamov bound

Definition 8.1. Let the alphabet A have q elements. Given n and d with d ≤ n,the largest

M such that an (n,M,d) code exists is denoted by Aq(n,d).
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We can always find at least one (n,M,d) code: Fix an element a0 of A . Let C be the

set of all vectors (a,a, · · ·a,a0, · · · ,a0) (with d copies of a and n− d copies of a0 ) with

a ∈ A . There are q such vectors, and they are at distance d from each other, so we have

an (n,q,d) code. This gives the trivial lower bound Aq(n,d)≥ q.
We know discuss amother lower bound which is known as Gilbert- Varshamov bound.

Theorem 8.2. Given n,d with n ≥ d for Aq(n,d), there exists a q-ary (n,M,d) code with

M ≥ qn

∑d−1
j=0(

n
j )(q−1) j

.

This means that
Aq(n,d)≥ qn

∑d−1
j=0(

n
j )(q−1) j

.

[6, page 405]

Proof. Consider a vector c1 and remove all vectors in A n that are inside a Hamming

sphere of radius d−1 about c1. Now take another vector c2 from the remaining vectors in

An. Since we have removed all vectors which are at distance d−1 from c1, d(c2,c1)≥ d.

Now we do the same thing for c2. Remove all the vectors having distance at most d − 1

from c2 and c1 and choose another vector c3 from the remaining ones. Since we have

removed vector in both the cases so we will not have d(c3,c1)≤ d−1 or d(c3,c2)≤ d−1.

We continue the process of choosing vectors and remove them from the remaining ones.

For one chosen vector,
d−1

∑
j=0

(n
j )(q−1) j

vectors will be removed from the space. Therefore, for M such chosen vectors the total

number of removed vectors will be

M
d−1

∑
j=0

(n
j )(q−1) j.

By lemma 7.3, the total number of vectors for q-ary (n,m,d) code is qn. Hence the total

number of vectors which can be removed cannot exceed qn i.e

M
d−1

∑
j=0

(n
j )(q−1) j ≥ qn.

This proves the result.

Therefore, there exists a code {c1, · · · ,cM} with M codedwords satisfying the preced-

ing inequality. Since Aq(n,d) is the largest such M, it also satisfies the inequality.

There is one minor technicality that should be mentioned. We actually have con-

structed an (n,M,e) code with e ≥ d. However, by modifying a few entries of c2 if

necessary, we can arrange that d(c2,c1) = d. The remaining vectors are then chosen by

the above procedure. This produces a code where the minimal distance is exactly d.

Example 8.1. We again consider the example 6.6 given in chapter 6. We apply both

Singleton and Gilbert-Varshomov bound on the parameters and see whether it satisfies

these bounds.
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The generating matrix given in example 6.6 is

G =

(
3 4 6 4 1 0

0 3 4 6 4 1

)
.

We list all 49 codewords below.

{{0,0,0,0,0,0},{0,3,4,6,4,1},{0,6,1,5,1,2},{0,2,5,4,5,3},{0,5,2,3,2,4},
{0,1,6,2,6,5},{0,4,3,1,3,6},{3,4,6,4,1,0},{3,0,3,3,5,1},{3,3,0,2,2,2},
{3,6,4,1,6,3},{3,2,1,0,3,4},{3,5,5,6,0,5},{3,1,2,5,4,6},{6,1,5,1,2,0},
{6,4,2,0,6,1},{6,0,6,6,3,2},{6,3,3,5,0,3},{6,6,0,4,4,4},{6,2,4,3,1,5},
{6,5,1,2,5,6},{2,5,4,5,3,0},{2,1,1,4,0,1},{2,4,5,3,4,2},{2,0,2,2,1,3},
{2,3,6,1,5,4},{2,6,3,0,2,5},{2,2,0,6,6,6},{5,2,3,2,4,0},{5,5,0,1,1,1},
{5,1,4,0,5,2},{5,4,1,6,2,3},{5,0,5,5,6,4},{5,3,2,4,3,5},{5,6,6,3,0,6},
{1,6,2,6,5,0},{1,2,6,5,2,1},{1,5,3,4,6,2},{1,1,0,3,3,3},{1,4,4,2,0,4},
{1,0,1,1,4,5},{1,3,5,0,1,6},{4,3,1,3,6,0},{4,6,5,2,3,1},{4,2,2,1,0,2},

{4,5,6,0,4,3},{4,1,3,6,1,4},{4,4,0,5,5,5},{4,0,4,4,2,6}}
We see that the minimal distance is d = 5. It is also given that n = 6 and q = 7. By

applying the singleton bound, we get

M ≤ 76−5+1,

which implies that

M ≤ 72 = 49.

Which shows that maximum number of codewords is 49. Hence the Singleton bound is

satisfied with equality.

Now we apply the Gilbert- Varshomov bound on the same parameters. The Gilber-

Varshomov bound gives

M ≥ 76

(6
0)+(6

1)6+(6
2)6

2 +(6
3)6

3 +(6
4)6

4
= 4.83,

this implies M ≈ 5.

Example 8.2. We consider the example 8.1 again but with the minimum distance d = 3.

We first apply the Singleton bound. We have,

M ≤ 76−3+1,

which implies

M ≤ 74 = 2401.

Now we apply Gilbert-Varshamov bound, this gives

M ≥ 76

(6
0)+(6

1)6+(6
2)6

2
= 203.89 ≈ 204,

implies that M ≥ 204.
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Observation:- From examples 8.1 and 8.2, we observe that for small minimum dis-

tance we have enumerous increase in the number of codewords for both Singleton and

Gilbert-Varshamov bounds. The codewords will be more dense because the minimum

distance between them is small.

On the other hand, if the minimum distance is increased we have less number of

codewords for both bounds. It may be noted here that Singleton and Gilbert-Varshamov

bounds are upper and lower bounds respectively for the number of codewords in a code.
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9 Minimal distance in Lee Metric
In this chapter, we will establish conditions on the parameters of codes in Lee metric. We

develop some important bounds on the parameters of codes in the Lee metric. The bounds

which will be discussed are the Gilbert-Varshamov bound and Plotkin’s low-rate average

distance bound. The material in this chapter is mainly taken from [1] and [4].

9.1 Gilbert-Varshamov bound in the Lee metric

In the next theorem we discuss Gilber-Varshamov bound. This bound is in the Lee metric

over prime fields of odd size.

Theorem 9.1. (Gilbert-Varshamov bound in the Lee metric)
Let p be an odd prime and let n,k, and d be positive integers such that

pn−k+1 −1

p−1
>

VL(n,d −1)−1

2
. (9.1)

Then there exists a linear (n, k) code C over F =GF(p) with dL(C)≤ d.

Proof. Initially we choose C0 = {0}, we use iterations method to construct a sequence of

codes C1,C2, · · · ,Ck such that each code Ci in the sequence is linear (n, i) code over F and

has minimum Lee distance d i.e dL(Ci)≥ d.

We suppose that for some i ≤ k, the codes C1,C2, · · · ,Ci−1 are constructed. Let the set

Ci−1(e) is given by

Ci−1(e) = {c+a · e : c ∈Ci−1,a ∈ F∗},
where e is any word belonging to Fn \Ci−1. Note that the sets Ci−1(e) are distinct and

must be disjoint because Ci−1(e) is a union of p−1 distinct cosets of Ci−1 in Fn. For all

e ∈ Fn \Ci−1, the number of distinct sets Ci−1(e) that can be created is given by

1

p−1

(
pn

|Ci−1| −1

)
=

pn−i+1 −1

p−1
>

VL(n,d −1)−1

2
(9.2)

The right-hand side of (9.2) shows the size of the set B∗
L(0,d −1), which is the set of all

nonzero words in BL(0,d −1) and has leading nonzero entry in F+. As (9.2) shows that

the number of distinct sets Ci−1(e) is larger than
VL(n,d−1)−1

2 , it follows that there exist at

least one set Ci−1(e0) such that Ci−1(e0)∩B∗
L(0,d −1) = φ .

Moreover

c ∈Ci−1(e0) ⇐⇒ −c ∈Ci−1(e0),

and

0 /∈Ci−1(e0).

So, it follows that

Ci−1(e0)∩BL(0,d −1) = φ .

Thus the union of Ci−1 and Ci−1(e0) form a linear (n, i) code Ci, and this code has mini-

mum Lee distance d.

Example 9.1. We construct a linear (4,2)-code over the field GF(5). All possible code-

words by using the generating matrix

G =

(
2 3 1 0

0 2 3 1

)
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are listed below

{{0,0,0,0},{0,2,3,1},{0,4,1,2},{0,1,4,3},{0,3,2,4},
{2,3,1,0},{2,0,4,1},{2,2,2,2},{2,4,0,3},{2,1,3,4},
{4,1,2,0},{4,3,0,1},{4,0,3,2},{4,2,1,3},{4,4,4,4},
{1,4,3,0},{1,1,1,1},{1,3,4,2},{1,0,2,3},{1,2,0,4},
{3,2,4,0},{3,4,2,1},{3,1,0,2},{3,3,3,3},{3,0,1,4}}.

First we calculate the minimal Lee distance by using the formula (7.1). For instance we

calculate the Lee distance between first two codewords.

dL(0000,0231) = min(|0−0|,5−|0−0|)+min(|0−2|,5−|0−2|)
+min(|0−3|,5−|0−3|)+min(|0−1|,5−|0−1|)

= min(0,5−0)+min(2,5−2)+min(3,5−3)+min(1,5−1)

= 0+2+2+1

= 5

Similarly by calculating the Lee distance between all codewords, we see that the minimal

Lee distance is dL = 4.
Now we apply the Gilbert-Varshamov bound in the Lee metric. Here we have p = q =

5, n = 4 and k = 2. To apply the expression 9.1 we need to calculate volume VL of the

Lee sphere and the formula for the volume is given in the proposition 7.1. To calculate

volume me must have t < q/2 according to the proposition 7.1 but in this example we

have t = dL −1 = 4−1 = 3 which does not satisfy t < q/2.

We consider another example with the different generating matrix and smaller minimal

distance which satisfy the condition t < q/2.

Example 9.2. We use the generating matrix

G =

(
1 0 3 4

0 1 1 1

)

to construct a linear (4,2)−code over the field GF(5). All possible codewords are given

as

{{0,0,0,0},{0,1,1,1},{0,2,2,2},{0,3,3,3},{0,4,4,4},
{1,0,3,4},{1,1,4,0},{1,2,0,1},{1,3,1,2},{1,4,2,3},
{2,0,1,3},{2,1,2,4},{2,2,3,0},{2,3,4,1},{2,4,0,2},
{3,0,4,2},{3,1,0,3},{3,2,1,4},{3,3,2,0},{3,4,3,1},
{4,0,2,1},{4,1,3,2},{4,2,4,3},{4,3,0,4},{4,4,1,0}}.

The minimal Lee distance for this code is dL = 2 and there t = dL −1 = 1. This value of

t satisfies the condition t < q/2 given by the proposition 7.1. We calculate the volume of

the Lee sphere and it is VL = 9. Here we have p = q = 5, n = 4 and k = 2. Now we apply

the Gilbert-Varshamov bound (9.1)

54−2+1 −1

5−1
>

9−1

2
=⇒ 31 > 4.

Hence the Gilbert-Varshamov bound is satisfied.
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9.2 Plotkin’s low-rate average distance bound

The Plotkin’s bound for the Lee metric was first obtained by Graham and Wyner (1968).

There is an observation according to Plotkin about the minimum distance that the average

distance between all pairs of different codewords always exceeds the minimum distance

between any two codewords. This observation forms basis for a bound on the minimum

distance. This bound is taken from [1].

Suppose that the code C contains C(1),C(2), · · ·C(k) codewords, where

C(i) = [C(i)
0 ,C(i)

1 , · · · ,C(i)
n−1],

where C(i)
0 ,C(i)

1 , · · · ,C(i)
n−1 are the digits of C(i). The total distance (dt) between pairs or

codewords is given by

dt =
k

∑
i=1

k

∑
j=1

d(C(i),C( j))

=
k

∑
i=1

k

∑
j=1

n−1

∑
m=0

d(C(i)
m ,C( j)

m )

=
n−1

∑
m=0

k

∑
i=1

k

∑
j=1

d(C(i)
m ,C( j)

m )

For I = 0,1, · · · ,q−1, we let J(m)
I denote the number of occurances of the Ith channel

letter among the letters C(1)
m ,C(2)

m · · · ,C(k)
m . The probability vector

P(m) = [J(m)
0 ,J(m)

1 , · · · ,J(m)
q−1]/K,

then denotes the composition of the mth letter of a codeword selected from the code at

random. We then have

k

∑
i=1

k

∑
j=1

d(C(i)
m ,C( j)

m ) = K2
q−1

∑
i=0

q−1

∑
j=0

Pm
i Pm

j Di, j

= K2PmDP(m)t

where Di, j is the i, jth entry of the matrix D. It is the distance between the ith channel

input letter and the jth channel input letter. For example for q = 6 we have the following

matrix for the Lee metric

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 2 1

1 0 1 2 3 2

2 1 0 1 2 3

3 2 1 0 1 2

2 3 2 1 0 1

1 2 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

The total distance is

dt =
n−1

∑
m=0

PmDP(m)t .

This total distance includes the sum over K2 pairs of codewords. K of these pairs consist

of the same codewords, and K2 −K pairs consist of different codewords. The average
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distance among the K(K −1) pairs of different codewords is therefore given by

dav =
K2

K(K −1)

n−1

∑
m=0

P(m)DP(m)t ≤ n
1−K−1

PDPt .

Let P denote the vector, for which P(m)DP(m)t is the largest. Since the minimum distance

cannot exceed the average distance,

dmin ≤ n
1−K−1

PDPt .
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10 Conclusion
In this thesis, we studied and analyze the perfect codes and the minimal distance of a code

in general and for the Lee metric in particular. First, we tried to classify perfect codes in

general and studied their properties. Then, we studied the bounds on minimal distance

and number of code words in a code. A few bounds are discussed with examples.

In case of the Lee metric, first the perfect codes are classified. The perfect codes in

the Lee metric are very few. There are perfect codes in the Lee metric over GF(2) and

GF(3). According to [1] and [4], it is conjectured that there are no more perfect codes in

the Lee metric for GF(q), q > 3, with code length greater than 2 and minimum distance

greater than 3.

Finally, bounds in the Lee metric are given in the end. These bounds are related to the

minimal distance of a code in the Lee metric.
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