Socioeconomic inequalities in fruit and vegetable consumption in Stockholm County
- a comparative descriptive analysis

Lina Gonçalves
Juni 2010
Abstract

This thesis described socioeconomic inequalities in fruit and vegetable consumption in Stockholm County. A comparative descriptive analysis was carried out with the use of secondary data from the 2006 Stockholm County Public Health Survey. The data was analyzed through cross tabulations that were conducted in SPSS. The findings showed that people with high socioeconomic position consumed fruit and vegetables more frequently than those of low socioeconomic position. Differences in fruit and vegetable consumption were found for the three measures of socioeconomic position; education, occupation and income. These differences were pronounced to a larger extent across different education levels compared to levels of occupation and income. Further research is needed to investigate which factors may explain the observed differences.

Key words: fruit and vegetable consumption, socioeconomic position, inequalities, public health survey.
Sammanfattning

Nyckelord: frukt- och grönsakskonsumtion, socioekonomisk position, ojämlikheter, folkhälsoenkät.
Preface

Writing this thesis has been a fantastic learning experience. I would like to thank my Supervisor Gloria Macassa to whom I will be forever grateful for her constructive guidance and encouragement throughout this entire process. I am also very grateful for getting access to data from the 2006 Stockholm County Public Health Survey, via the Karolinska Institute.
Contents

1. Introduction .. 1
 1.1 Background .. 1
 1.2 Objective .. 3
 1.2.3 Research Question ... 3
2. Method .. 4
 2.1 Design ... 4
 2.2 Setting and Sample ... 4
 2.3 Data ... 5
 2.4 Procedure and variable description ... 5
 2.4.1 Fruit and vegetable consumption ... 6
 2.4.2 Socioeconomic position ... 6
 2.4.3 Education level ... 6
 2.4.4 Occupation ... 7
 2.4.5 Income .. 7
 2.4.6 Age and Sex ... 7
 2.5 Data Analysis .. 7
 2.6 Ethical Considerations ... 8
3. Results ... 9
 3.1 Fruit consumption by socioeconomic position ... 9
 3.2 Vegetable consumption by socioeconomic position ... 10
4. Discussion ... 11
 4.1 Result Discussion ... 11
 4.2 Methodology discussion ... 12
 4.3 General discussion ... 14
5. Conclusion .. 15
6. References ... 16
7. Appendices .. 19

Table 1. Descriptive summary for fruit (including berries) consumption by SEP among men aged 18-84 in Stockholm County, SPHCS 2006 .. 19
Table 2. Descriptive summary for fruit (including berries) consumption by SEP among women aged 18-84 in Stockholm County, SPHCS 2006 ... 20
Table 3. Descriptive summary for consumption of a portion of vegetables or root vegetables by SEP among men aged 18-84 in Stockholm County, SPHCS 2006 ... 21
Table 4. Descriptive summary for consumption of a portion of vegetables or root vegetables by SEP among women aged 18-84 in Stockholm County, SPHCS 2006 ... 22
1. Introduction

Fruit and vegetable consumption is strongly associated with health as well as reduction of chronic disease and mortality [1-4]. Just as the burden of chronic disease and mortality is unequally distributed with higher prevalence among people with low socioeconomic position (SEP) compared to people with high SEP [1], the same can be said for the consumption of fruit and vegetables. An array of studies conducted in various developed countries have reported that fruit and vegetable consumption is highly associated with SEP, with lower consumption among people with low SEP [5-11]. However, few studies in Sweden have investigated socioeconomic differences in fruit and vegetable consumption. The absence of studies addressing the issue nationally is also evident in Stockholm County where no previous study has attempted to assess the socioeconomic patterning of fruit and vegetable consumption in the population. Therefore, this thesis aims at describing socioeconomic inequalities in fruit and vegetable consumption in Stockholm County.

1.1 Background

Diet and nutrition are well established determinants of good health as well as several chronic diseases. The burden of chronic diseases is increasing worldwide contributing to the largest proportion of mortality in developed countries, with cardiovascular disease being the biggest contributor followed by cancer [1]. Numerous studies have shown that consumption of fruit and vegetables have a protective effect on several cancers [2] and cardiovascular disease [3] and that sufficient consumption can reduce mortality. The World Health Organization (WHO) has reported that low intake of fruit and vegetables contributes to almost 3 million deaths a year from chronic diseases [4]. The burden of chronic disease is not equally distributed, with higher prevalence among people with low SEP [1].

An Australian national survey study showed that fruit and vegetable consumption was significantly related to household income. Lower-income groups were more likely to have not consumed fruit or vegetables in the 24 hours preceding the survey. Lower-income groups consumed less fruit and vegetables as well as a smaller variety of fruit and vegetables than higher-income groups. The study also showed that there was less desire to increase consumption among lower-income groups, with reasons being that they perceived barriers to doing so. The most occurring perceived barriers shown were price and storage. This particular study only used income as the socioeconomic indicator [5]. In another Australian study,
employment and education were used to assess socio-economic differences in nutrition knowledge, including knowledge about national fruit and vegetable recommendations. Regarding the current recommendations in Australia of consuming two servings of fruit and five servings of vegetables a day, 59% of the respondents were aware of these recommendations. Multiple regression analyses confirmed the significant independent effects of highest level of education and employment status on nutrition knowledge level. People who had completed high school or less had significantly less knowledge about nutrition and correct recommendations compared to people who had technical, trade or university qualifications. Overall, people with a tertiary degree had the highest levels of nutrition knowledge [6]. Furthermore, an American study showed significant socioeconomic differences in regards to both education and income, in daily fruit and vegetable servings consumed. People who had completed only grade school consumed fewer servings than did those who had education beyond high school and people in poor families consumed fewer servings than did those in high-income families. This specific study also showed significant ethnic differences, with for example black people consuming less fruit and vegetables than white people [7].

Similar results have been reported for Europe. For instance in a European review De Irala-Estévez et al found a positive association between a higher level of education or occupation and a greater consumption of fruit and vegetables. The mean difference in the intake of fruit was 24.3 g/person/day between men in the highest level of education and those in the lowest level of education. Comparably, this difference was 33.6 g/person/day among women. Regarding vegetable consumption the differences were 17.0 g/person/day for men and 17.1 g/person/day for women. These findings showed that the socioeconomic differences were bigger among women than men. The results went in the same direction when occupation was used as an indicator [8]. A Scottish study found that general healthy eating and compliance with national dietary recommendations was significantly related to higher SEP. Specifically, people with low education and low income were more likely not to meet the fruit and vegetable consumption recommendations [9]. A Portuguese study found that general healthy eating and fruit and vegetable consumption was consistent with higher SEP. However the study only showed a strong relationship between fruit and vegetable consumption and education level, not with income [10]. Similar results were found in a study conducted in Denmark. A significant link between income and fruit and vegetable consumption and SEP was reported but it varied with gender. While variations according to income were found in
women they were less strong as compared to the relationship between education and fruit and vegetable consumption for both men and woman [11].

Very few studies in Sweden have investigated socioeconomic differences in fruit and vegetable consumption. In the last national food consumption survey that was conducted over a decade ago it was found that the average consumption of fruit (including berries) was 148 g/day among woman and 104 g/day among men. In regards to vegetable consumption the mean intake was 113 g/day among woman and 84 g/day among men. The mean consumption of root vegetables was 14 g/day and 12 g/day respectively and the mean consumption of juices and nectars was 90 ml/day among both men and women. According to Swedish dietary recommendations the total of fruit, berries, vegetable and juice consumption should reach about ½ kg/day. The mean consumption among men reached 55 % of the recommended level and women reached 70 %. Therefore the study indicated that women generally consume more fruit and vegetables than men. The report also found that the biggest consumers were pensioners, highly educated men, men in the Gothenburg-Malmö area and women in south Sweden. The smallest consumption was found among women and men who smoked or lived in the north Sweden countryside. Differences in fruit and vegetable consumption in education and occupation were assessed but other than education level among men no significant differences were found [12]. A more recent study also indicated that women generally consumed more fruit and vegetables than men. Differences were found across age groups and education groups but none were statistically significant. However, men born in Sweden had the smallest consumption of fruit and vegetables of all sub groups [13].

The absence of studies addressing the issue nationally is also evident in Stockholm County where no previous study has attempted to assess the socioeconomic patterning of fruit and vegetable consumption in the general population. Therefore this thesis aims at describing socioeconomic inequalities in fruit and vegetable consumption in Stockholm County.

1.2 Objective
The objective of this thesis was to describe socioeconomic inequalities in fruit and vegetable consumption in Stockholm County.

1.2.3 Research Question
- Are there any differences in fruit and vegetable consumption according to individual socioeconomic position as measured by education, occupation and income?
2. Method

The research method for this study was quantitative, which means that the study emphasized on quantification in terms of data and analysis of the data. This entails an objective approach and the use of frequencies to answer the research question [14]. The study used data from the 2006 Stockholm County Public Health Survey (SCPHS) conducted by Stockholm County, Karolinska Institute and Statistics Sweden.

2.1 Design

This is a comparative descriptive study based on cross-sectional data. Descriptive statistics can be used to describe frequencies and it is a suitable design when looking at prevalence of inequalities [15]. Descriptive summaries can be used to briefly describe the data but in order to see inequalities; it invariably involves comparing data [16]. In this study frequencies of the socioeconomic patterning of fruit and vegetable consumption have been described and compared by different measures of socioeconomic position.

2.2 Setting and Sample

Stockholm County is situated on the east sea coast of Sweden. The city of Stockholm is the capital of Sweden. More than one fifth of the Swedish population lives in the county and it holds 26 municipalities [17]. The population in Stockholm County is 1 450 939 people. The sample for this study was randomly stratified using a sample program developed by Statistics Sweden. The sample consisted of people aged 18-84 registered in Stockholm County. The initial random sample was 57 009 people. Reminders were sent to minimize the non-response rate. A total of 34 707 people ultimately returned the questionnaire which gave a response rate of 61 %. For the purpose of 2006 SCPHS, this response rate was deemed sufficient by Statistics Sweden and the Karolinska Institute. The non-response rate was estimated not to affect the validity of the results [18, 19]. Therefore, the sample was also considered sufficient for the purpose of this thesis. However, the external non response-rate of 39 % is a limitation of the study and it may have affected the results as frequencies of fruit and vegetable consumption in the population may have been under- or overestimated. Generally, there is not much that can be done about non-response rates, other than taking measures to minimise it [15, 20], like in this case reminders were sent to do so. Other than that it is essential to realise that a large non-response rate is a threat to the external validity of the study and if subjects
with specific characteristics are underrepresented, the findings may be misleading [15, 20]. This is however unlikely to be the case as Statistics Sweden as well as the Karolinska Institute assessed the sample and deemed it to be large enough and adequate for drawing conclusions about the population [18, 19].

2.3 Data

This thesis used secondary data from SCPHS. The use of secondary data can be warranted by the fact that a particularly good collection of data already exists [21], like in this case where a large amount of data has been collected and the data collected facilitated this study. There are many advantages of using secondary data. One is that it saves time and effort collecting data [21] and in this case, the sample is far larger than what would be feasible to amass under the circumstances and time limits of this thesis. However, there are also disadvantages of using secondary data. One is that the researcher is not able to control the quality, reliability and validity of the data [21] but in this case the data was of particularly good quality with high validity and reliability, being collected by Statistics Sweden on behalf of Stockholm County. Another disadvantage of using secondary data is that the data may not match the research question as the data may have been collected for a different purpose [21]. The 2006 SCPHS collected data for the purpose of monitoring the health of the population in Stockholm County [18, 19] and therefore had a more generic purpose. It did nevertheless include the data necessary for the purpose of this thesis. The use of secondary data also poses the issue of the researcher having to get familiarised with the data, which can be hard to manage when dealing with a large and complex data set [21].

SCPHS is a cross-sectional survey based on a self-administered postal questionnaire. Among other health related questions as well as demographic questions, it included questions on fruit and vegetable consumption [18]. The data collection was conducted by Statistics Sweden during the period August 2006 – February 2007. In addition, information on the respondents’ education, occupation and income was retrieved from databases by Statistics Sweden [19].

2.4 Procedure and variable description

Secondary data analysis of the data collected by SCPHS was carried out by making cross tabulations of the variables chosen for this study. The dependent variables were fruit and
vegetable consumption and the main independent variables were education, occupation and income which are presented as measures of socioeconomic position.

2.4.1 Fruit and vegetable consumption
In the SCPHS questionnaire respondents were asked how often they eat fruit or berries and how often they eat a portion of vegetables or root vegetables. The following alternatives were given:

1. A few times a month
2. About once a week
3. A few times a week
4. Just about every day
5. Twice a day
6. Three times a day or more [19].

For the purpose of this study the alternatives were merged into three groups:

1. Little or never (alternative 1)
2. At least once a week (alternatives 2-3)
3. Just about every day or more (alternatives 4-6)

2.4.2 Socioeconomic position
Socioeconomic position (SEP) refers to the social and economic factors that contribute to the position individuals, groups or populations hold within the structure of society. It is a commonly used concept in public health research concerning health inequalities, and the relationship between SEP and health is well established. SEP can be measured in various ways and there is no particular universally best indicator. However, the traditional individual-level measures used are education, occupation and income. A large amount of strong and consistent epidemiologic evidence has shown the importance of these indicators as health determinants [22].

2.4.3 Education level
Education level was assessed according to the Statistics Sweden’s LISA database from 2004 and was grouped by the Swedish educational nomenclature SUN 2000 (old version). The original variable was classified into seven groups from the lowest to the highest level: primary school shorter than nine years; primary school nine or ten years; upper secondary school
maximum two years; upper secondary school more than two years and maximum three years; higher or further education shorter than three years; higher or further education three years or more and post-graduate study [23]. For the purpose of this study three groups were created: primary school or similar; secondary school or similar and university or similar.

2.4.4 Occupation
In Sweden classification of occupation categories is ruled by the Nordic Classification of Occupations, which is based on the International Standard Classification of Occupation [24]. Respondents in the SCPHS were asked about their current occupation or their main occupation when working and their main task [19]. Respondents were then divided into five groups based on the occupational information they gave: manual worker, low non manual worker, intermediate non manual worker, high non manual worker and entrepreneurs. For the analysis the group entrepreneurs was excluded as it is a socioeconomically heterogeneous group and the present study is thereby also in line with previous research in terms of classification of occupation [25].

2.4.5 Income
Income was based on the individual annual income from the year 2004 and was retrieved by Statistics Sweden [18, 19]. For the purpose of this study three groups of income were created: 0-149 900 SEK, 150 000-299 900 SEK, 300 000 SEK and more.

2.4.6 Age and Sex
The variables age and sex were included in the cross tabulations. Separate tables were made for males and females and the age variable was classified into three groups as follows: 18-24; 25-44 and 45-84 years of age.

2.5 Data Analysis
The data was analyzed through descriptive statistics using the SPSS statistical package 17.0 [26]. Cross tabulations of the dependant variables fruit and vegetable consumption and the three measures of SEP were performed and stratified by age and sex. The calculations for numbers and percentages were performed manually, and subsequently placed in to tables.
2.6 Ethical Considerations

With every questionnaire an information letter was enclosed which informed the respondents of the background and aim of the survey as well as information being retrieved from Statistics Sweden. Respondents were also informed that participation in the survey was voluntary and that the information would be anonymous and protected by data protection and secrecy laws. Thus, the responding and returning of the questionnaire was seen as informed consent. Furthermore, the SPHS was carried out after being approved by the Karolinska Institute Ethical Committee and the Ethical Committee of Stockholm County Council [19].
3. Results

Overall results of this study showed that in Stockholm County, people aged 18-84 with higher levels of SEP consume fruit and vegetables more frequently than those of lower SEP. The main results of fruit and vegetable consumption are presented below according to education, occupation and income as well as sex and age.

3.1 Fruit consumption by socioeconomic position

Compared to people with the lowest level of education, people with the highest level of education were consistently more likely to have consumed fruit just about every day or more throughout all age groups among both men (see table 1) and women (see table 2). The biggest inequalities in terms of education level were found in the age group 25-44 with a 21.3 % difference among men and a 22.8 % difference among women. In the age group 18-24 the difference was relatively small among men but among women in the same age group there was a 15 % difference. Inequalities in terms of education level were also found in all subgroups when looking at who was more likely to have only consumed fruit little or never. Again, the biggest differences were found in the age group 25-44 particularly among men where there was an 11.7 % difference.

When comparing different classifications of occupation, differences were also found between the lowest level and the highest, although these differences were not as high or consistent compared to the education variable. In fact, among men in the age group 18-24 the contrary of what was expected was found with manual workers being more likely than high non manual workers to have consumed fruit just about every day or more. In this sub-group it was the intermediate non-manual workers who consumed fruit most frequently. Just like with education, the biggest differences in terms of occupation were found in the age group 25-44 with a 16.9 % difference among men and a 17.8 % difference among women. Inequalities in terms of occupation level were also found in all sub groups when looking at who was more likely to have only consumed fruit little or never and just like with the education variable the biggest differences were found in the age group 25-44.

In relation to income, inequalities were found in all sub groups. However, among men the biggest difference was found in the age group 45-84 with 10.5 % (see Table 1) while among women the biggest difference was found in the age group 25-44 with a difference of 9.6 % (see Table 2). Furthermore, inequalities were also found in age group 18-24 but there
were very few respondents in the highest income group for both men and women in that age group.

(Table 1 and 2 about here)

3.2 Vegetable consumption by socioeconomic position

Compared to people with the lowest level of education, people with the highest level of education were consistently more likely to have consumed vegetables just about every day or more throughout all age groups among both men (see Table 3) and women (see Table 4). Although considerable differences were found in all age groups among both women and men, the biggest difference was found among men in the age group 45-84 with 19.4 % while among women aged 25-44, the difference was 27.2 %. Overall, the smallest differences for education were found in the age group 18-24.

As for occupation, similarly to fruit consumption the differences were inconsistent and less frequent compared to the education variable. In the age group 18-24 for men, opposite differences were found with manual workers consuming vegetables more frequently than high non manual workers. In this sub group it was the intermediate non manual workers who consumed vegetables the most frequently (see Table 3). Comparably, among women in the same age group, high non manual workers were more likely than manual workers to have only consumed vegetables little or never (see Table 4). On the other hand, considerable inequalities were found in the remaining sub-groups. The biggest difference among men was found in the ages 45-84 with a 23.7 % difference and this difference was just slightly higher than in ages 25-44. Among women, the biggest difference was found in the age group 25-44 with 19.3 %.

In relation to income, inequalities were found in all sub-groups. The biggest differences were found in ages 45-84 with a 19.3 % difference among men and a 16.8 % difference among women. Considerable differences were also found in the ages 25-44.

(Table 3 and 4 about here)
4. Discussion

Results of this thesis showed that there are socioeconomic differences in fruit and vegetable consumption in Stockholm County. These differences were found for all three measures of SEP with variations by age and sex.

4.1 Result Discussion

This study found inequalities in fruit and vegetable consumption by education for different age groups as well as sex. The results for the education variable were more consistent when compared with those found by occupation and income. This is consistent with findings from previous research which investigated associations between education with fruit and vegetable consumption [7-11]. In addition some studies have argued that education was the stronger predictor of fruit and vegetable consumption compared to income [10, 11]. Another study showed significant effects of highest level of education on knowledge about nutrition and current fruit and vegetable recommendations [6]. Although this thesis did not investigate possible associations of fruit and vegetable consumption and the three measures of socioeconomic position, one may argue the possibility of nutrition knowledge being a contributing factor for the observed differences by education.

When occupation was used as an indicator of socioeconomic position, results indicated differences in fruit and vegetable consumption but the results were not as consistent as for those observed by education. This is in contrast with one previous study were results went in the same direction for the occupation variable as for the education variable [8]. In fact, in this study frequencies even went in the opposite direction for some sub groups in the youngest group of ages 18-24 when occupation was used as an indicator.

There were also inequalities by income in fruit and vegetable consumption. These inequalities were found in all age groups; however, these results are limited by the fact that the youngest age group had very few respondents in the highest income group. The other two age groups did nevertheless show considerable differences. Previous research has consistently shown that income is a significant variable for fruit and vegetable consumption. However, these studies have used household income as a variable [5, 7, 9] and not individual income like in this case. One study showed that there was less desire to increase consumption among lower income groups due to perceived barriers. The most occurring perceived barriers presented were price and storage [5]. Those findings may depict possible factors that underlie
the socioeconomic inequalities found in fruit and vegetable consumption in terms of income. Furthermore, there are also studies that have shown that income has a weak or non-existent association with fruit and vegetable consumption [10, 11].

Overall findings of this study showed that the most differences were seen in the two older age groups 25-44 and 44-84. The smallest differences were seen among men in the age group 18-24. As this study focused on the socioeconomic differences in frequencies of fruit and vegetable consumption, it cannot be compared with the previous Swedish studies which investigated quantities in terms of grams consumed [12, 13]. It can however be said that the overall findings of this study are in contrast with the previous studies conducted in Sweden that found little or no significant socioeconomic differences in fruit and vegetable consumption [12, 13], with the exception of differences across education levels among men [12]. This study did find considerable socioeconomic differences in fruit and vegetable consumption among both women and men for education as well as occupation and income. However, whether or not these differences are statistically significant remains unknown as no regression analysis was performed. Even though only a comparative descriptive analysis was conducted it does nevertheless demonstrate pronounced differences that are unlikely to have been caused by random occurrences.

4.2 Methodology discussion

One of the strengths of this thesis is that it was based on analysis of the 2006 SCPHS. The survey’s design and data collection was conducted by Statistics Sweden on behalf of Stockholm County Council. This gives the study good validity, sensitivity and specificity. In addition, the data has been used to produce numerous reports as well as peer-reviewed scientific articles. However, there are disadvantages of using secondary data. One is that the researcher has to get familiarised with the data, which can be hard to manage when dealing with a large and complex data set [21]. In this case there was a large amount of data to go through and as expected it was at times complex which naturally posed challenges to the understanding of the data; however not to the extent that it was unmanageable. In addition, the technical reports of the 2006 SCPHS gave detailed information on data collection, variables etc [18, 19] which facilitated the assessment and management of the data as well as the carrying out of this thesis. The use of secondary data also poses the issue of the researcher not being able to control the quality, reliability and validity of the data [21]. This was taken into
consideration in the present study. However in this case, the use of secondary data was warranted due to the fact that a large and particularly good collection of data already existed [21]. In addition, the data effectively facilitated this study and even though the data was not collected for the specific purpose of this thesis, the parts of it that were relevant did eminently match the research question. In the questionnaire, the questions asked on the dependent variables fruit and vegetable consumption were relevant to the aim of this study as well as the research question. The data collected through the survey effectively resulted in a valid measurement of the study’s intended frequencies. As for the reliability and validity of the independent variables education, occupation and income; they posed little systematic and random error. In regards to the occupation variable, the respondents were specifically asked about their main occupation and main tasks in the questionnaire. However, the measurement of occupation may have had a better sensitivity and validity for the two older age groups since many young people aged 18-24 are unemployed in Stockholm County [24]. As for income and education, the reliability of these variables was ensured, as the data was retrieved from databases by Statistics Sweden. However, the income variable poses a limitation as it was individual income as opposed to household income which would have most likely formed a more valid measurement. Another limitation of the study is the use of cross-sectional data which poses the risk of recall bias. However, if it did occur it is unlikely to have affected the findings of this thesis.

The external non-response rate of 39 % is also a limitation. Even though the response rate was deemed sufficient by Statistics Sweden and the Karolinska Institute for the purpose of 2006 SCPHS [18, 19], it may still have affected the results of this thesis as a large amount of people have not been accounted for. A large non-response rate is a threat to the external validity and if subjects with specific characteristics are underrepresented in the sample, the findings may be misleading [15, 20]. This is however, as mentioned previously, unlikely to be the case. Furthermore, a strength of the sample is that it was randomly stratified using a sample program developed by Statistics Sweden [18, 19] and the sample included a variety of males and females of different ages with a variety of socioeconomic positions as measured by education; occupation and income, which was essential for the purpose of this study. Another limitation is that the results were not statistically tested and therefore it is as yet unknown if the findings of the study are statistically significant.
4.3 General discussion

Overall results of this thesis indicated that there are socioeconomic differences in fruit and vegetable consumption in Stockholm County. This is the first assessment of its kind in Stockholm County and the findings are in line with the findings of many previous studies in other developed countries [5, 7, 9-13]. However, further investigation should be conducted to assess what factors are associated with the reported prevalence of fruit and vegetable consumption across different levels of socioeconomic position. Further analysis could also involve performing various regression models where potential mediators and confounders would be accounted for. Nevertheless the research question raised by this thesis is of paramount importance for policy makers within Stockholm County which monitor the prevalence and incidence of chronic diseases which in turn are known to be associated with patterns of fruit and vegetable consumption.
5. Conclusion

The findings of this thesis showed that there are inequalities in prevalence of fruit and vegetable consumption by socioeconomic position as measured by education, occupation and income among people aged 18-84 living in Stockholm County. These inequalities were pronounced to a larger extent across different educational levels compared to levels of occupation and income. Furthermore, most of the differences were seen in the two older age groups 25-44 and 44-84 as compared to age group 18-24. Further analyses are warranted to investigate if the observed differences are statistically significant (using regression models) as well as the potential factors behind those differences (by controlling for other factors and possible confounders).
6. References

24. Statistics Sweden. Yrkesklassificering i FoB 85 enligt nordisk yrkesklassificering (NYK) och socioekonomisk indelning (SEI) [Occupation classification in FoB 85 according to the Nordic occupation classification (NYK) and socioeconomic classification (SEI)]. Stockholm: Statistics Sweden; 1989.

7. Appendices

Table 1. Descriptive summary for fruit (including berries) consumption by SEP among men aged 18-84 in Stockholm County, SPHCS 2006

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit consumption*</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Primary school/similar</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>74</td>
<td>11.4</td>
<td>300</td>
<td>46.2</td>
<td>274</td>
<td>42.2</td>
<td>648</td>
<td>16.5</td>
<td>224</td>
<td>47.6</td>
<td>168</td>
<td>35.7</td>
<td>470</td>
<td>131</td>
<td>8.3</td>
<td>586</td>
<td>37.3</td>
<td>851</td>
<td>54.2</td>
<td>1568</td>
<td>54.2</td>
<td>1568</td>
<td>54.2</td>
</tr>
<tr>
<td>Upper secondary school/similar</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>58</td>
<td>13.7</td>
<td>215</td>
<td>50.9</td>
<td>149</td>
<td>28.5</td>
<td>422</td>
<td>10.9</td>
<td>1041</td>
<td>46.2</td>
<td>962</td>
<td>42.7</td>
<td>2250</td>
<td>252</td>
<td>7.4</td>
<td>1207</td>
<td>35.5</td>
<td>1932</td>
<td>56.9</td>
<td>3391</td>
<td>56.9</td>
<td>3391</td>
<td>56.9</td>
</tr>
<tr>
<td>University/similar</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>7</td>
<td>8.6</td>
<td>39</td>
<td>48.1</td>
<td>35</td>
<td>43.2</td>
<td>81</td>
<td>120</td>
<td>939</td>
<td>38</td>
<td>1406</td>
<td>57</td>
<td>2465</td>
<td>113</td>
<td>3.9</td>
<td>908</td>
<td>32.1</td>
<td>1867</td>
<td>64.6</td>
<td>2888</td>
<td>64.6</td>
<td>2888</td>
<td>64.6</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>74</td>
<td>14.3</td>
<td>239</td>
<td>46.4</td>
<td>201</td>
<td>39.1</td>
<td>514</td>
<td>194</td>
<td>692</td>
<td>46.7</td>
<td>593</td>
<td>40</td>
<td>1479</td>
<td>206</td>
<td>8.7</td>
<td>871</td>
<td>37.1</td>
<td>1269</td>
<td>54</td>
<td>2346</td>
<td>54</td>
<td>2346</td>
<td>54</td>
</tr>
<tr>
<td>Low non-manual</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>10</td>
<td>9.7</td>
<td>57</td>
<td>55.3</td>
<td>36</td>
<td>43.9</td>
<td>103</td>
<td>45</td>
<td>227</td>
<td>46</td>
<td>221</td>
<td>44.8</td>
<td>493</td>
<td>35</td>
<td>5.6</td>
<td>215</td>
<td>34.7</td>
<td>368</td>
<td>59.5</td>
<td>618</td>
<td>59.5</td>
<td>618</td>
<td>59.5</td>
</tr>
<tr>
<td>Intermediate non-manual</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>9</td>
<td>14.2</td>
<td>28</td>
<td>44.4</td>
<td>26</td>
<td>41.2</td>
<td>63</td>
<td>66</td>
<td>493</td>
<td>40.9</td>
<td>645</td>
<td>53.5</td>
<td>1204</td>
<td>87</td>
<td>4.6</td>
<td>580</td>
<td>31.3</td>
<td>1185</td>
<td>63.9</td>
<td>1852</td>
<td>63.9</td>
<td>1852</td>
<td>63.9</td>
</tr>
<tr>
<td>High non-manual</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>3</td>
<td>9.3</td>
<td>18</td>
<td>56.2</td>
<td>11</td>
<td>34.3</td>
<td>32</td>
<td>58</td>
<td>526</td>
<td>38.8</td>
<td>771</td>
<td>56.9</td>
<td>1355</td>
<td>70</td>
<td>3.5</td>
<td>596</td>
<td>29.8</td>
<td>1329</td>
<td>66.6</td>
<td>1995</td>
<td>66.6</td>
<td>1995</td>
<td>66.6</td>
</tr>
<tr>
<td>Income</td>
<td></td>
</tr>
<tr>
<td>0-149900</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>133</td>
<td>11.8</td>
<td>533</td>
<td>47.6</td>
<td>452</td>
<td>40.4</td>
<td>1118</td>
<td>120</td>
<td>499</td>
<td>44.8</td>
<td>493</td>
<td>44.3</td>
<td>1112</td>
<td>113</td>
<td>9.8</td>
<td>427</td>
<td>37.3</td>
<td>604</td>
<td>52.7</td>
<td>1144</td>
<td>52.7</td>
<td>1144</td>
<td>52.7</td>
</tr>
<tr>
<td>150000-299900</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>19</td>
<td>16.9</td>
<td>50</td>
<td>44.6</td>
<td>43</td>
<td>38.3</td>
<td>112</td>
<td>220</td>
<td>10.8</td>
<td>902</td>
<td>44.4</td>
<td>908</td>
<td>44.7</td>
<td>2030</td>
<td>273</td>
<td>7.1</td>
<td>1335</td>
<td>34.8</td>
<td>2218</td>
<td>57.9</td>
<td>3826</td>
<td>57.9</td>
<td>3826</td>
</tr>
<tr>
<td>300000+</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>Total</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>6</td>
<td>118</td>
<td>5.2</td>
<td>904</td>
<td>40.2</td>
<td>1225</td>
<td>54.5</td>
<td>2247</td>
<td>166</td>
<td>4.2</td>
<td>1264</td>
<td>32.4</td>
<td>2466</td>
<td>63.2</td>
<td>3896</td>
<td>63.2</td>
<td>3896</td>
</tr>
</tbody>
</table>

*Fruit consumption:
1= little or never
2= at least once a week
3= just about every day or more
Table 2. Descriptive summary for fruit (including berries) consumption by SEP among women aged 18-84 in Stockholm County, SPHCS 2006

<table>
<thead>
<tr>
<th>Variable</th>
<th>18-24</th>
<th>25-44</th>
<th>45-84</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary school/similar</td>
<td>75</td>
<td>8.7</td>
<td>299</td>
<td>34.9</td>
</tr>
<tr>
<td>Upper secondary school/similar</td>
<td>30</td>
<td>5.9</td>
<td>147</td>
<td>28.9</td>
</tr>
<tr>
<td>University/similar</td>
<td>5</td>
<td>3.3</td>
<td>38</td>
<td>25.3</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>52</td>
<td>7.3</td>
<td>241</td>
<td>34</td>
</tr>
<tr>
<td>Low non-manual</td>
<td>11</td>
<td>6.1</td>
<td>58</td>
<td>32.4</td>
</tr>
<tr>
<td>Intermediate non manual</td>
<td>6</td>
<td>6.45</td>
<td>19</td>
<td>20.4</td>
</tr>
<tr>
<td>High non manual</td>
<td>2</td>
<td>7.6</td>
<td>7</td>
<td>26.9</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-149900</td>
<td>108</td>
<td>7.3</td>
<td>464</td>
<td>31.6</td>
</tr>
<tr>
<td>150000-299900</td>
<td>7</td>
<td>5</td>
<td>54</td>
<td>38.8</td>
</tr>
<tr>
<td>300000+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fruit consumption:
1= little or never
2= at least once a week
3= just about every day or more
Table 3. Descriptive summary for consumption of a portion of vegetables or root vegetables by SEP among men aged 18-84 in Stockholm County, SPHCS 2006

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age</th>
<th>18-24</th>
<th>25-44</th>
<th>45-84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable consumption*</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Total</td>
</tr>
<tr>
<td>Education</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Primary school/ similar</td>
<td>61</td>
<td>9.3</td>
<td>291</td>
<td>44.7</td>
</tr>
<tr>
<td>Upper secondary school/similar</td>
<td>42</td>
<td>9.9</td>
<td>188</td>
<td>44.5</td>
</tr>
<tr>
<td>University/similar</td>
<td>6</td>
<td>7.4</td>
<td>35</td>
<td>43.2</td>
</tr>
<tr>
<td>Occupation</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Manual</td>
<td>53</td>
<td>10.3</td>
<td>239</td>
<td>46.4</td>
</tr>
<tr>
<td>Low non-manual</td>
<td>8</td>
<td>7.7</td>
<td>50</td>
<td>48.5</td>
</tr>
<tr>
<td>Intermediate non-manual</td>
<td>7</td>
<td>11.1</td>
<td>23</td>
<td>36.5</td>
</tr>
<tr>
<td>High non manual</td>
<td>4</td>
<td>12.5</td>
<td>18</td>
<td>56.2</td>
</tr>
<tr>
<td>Income</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>0-149900</td>
<td>106</td>
<td>9.4</td>
<td>502</td>
<td>44.8</td>
</tr>
<tr>
<td>150000-299900</td>
<td>12</td>
<td>10.7</td>
<td>44</td>
<td>39.2</td>
</tr>
<tr>
<td>300000+</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>16.6</td>
</tr>
</tbody>
</table>

*Vegetable consumption:
1= little or never
2= at least once a week
3= just about every day or more
Table 4. Descriptive summary for consumption of a portion of vegetables or root vegetables by SEP among women aged 18-84 in Stockholm County, SPHCS 2006

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age 18-24</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable consumption*</td>
<td>18-24</td>
<td>25-44</td>
<td>45-84</td>
<td>18-24</td>
<td>25-44</td>
<td>45-84</td>
<td>18-24</td>
<td>25-44</td>
<td>45-84</td>
<td>18-24</td>
<td>25-44</td>
<td>45-84</td>
<td>Total</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Primary school/similar</td>
<td>60</td>
<td>7</td>
<td>253</td>
<td>29.5</td>
<td>544</td>
<td>63.4</td>
<td>857</td>
<td>32</td>
<td>6.3</td>
<td>180</td>
<td>35.6</td>
<td>293</td>
<td>58</td>
</tr>
<tr>
<td>Upper secondary school/similar</td>
<td>26</td>
<td>5</td>
<td>144</td>
<td>28.2</td>
<td>340</td>
<td>66.6</td>
<td>510</td>
<td>68</td>
<td>2.4</td>
<td>713</td>
<td>25.2</td>
<td>2044</td>
<td>72.3</td>
</tr>
<tr>
<td>University/similar</td>
<td>3</td>
<td>2</td>
<td>42</td>
<td>28.1</td>
<td>104</td>
<td>69.7</td>
<td>149</td>
<td>23</td>
<td>0.6</td>
<td>493</td>
<td>14.0</td>
<td>2993</td>
<td>85.2</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>42</td>
<td>5.9</td>
<td>215</td>
<td>30.2</td>
<td>453</td>
<td>63.8</td>
<td>710</td>
<td>57</td>
<td>3.4</td>
<td>485</td>
<td>29.1</td>
<td>1123</td>
<td>67.4</td>
</tr>
<tr>
<td>Low non-manual</td>
<td>8</td>
<td>4.4</td>
<td>54</td>
<td>30.1</td>
<td>117</td>
<td>65.3</td>
<td>179</td>
<td>24</td>
<td>2</td>
<td>266</td>
<td>22.9</td>
<td>870</td>
<td>75</td>
</tr>
<tr>
<td>Intermediate non manual</td>
<td>6</td>
<td>6.4</td>
<td>25</td>
<td>372</td>
<td>62</td>
<td>66.6</td>
<td>93</td>
<td>11</td>
<td>0.5</td>
<td>269</td>
<td>14.2</td>
<td>1608</td>
<td>85.1</td>
</tr>
<tr>
<td>High non manual</td>
<td>3</td>
<td>11.5</td>
<td>5</td>
<td>19.2</td>
<td>18</td>
<td>69.2</td>
<td>26</td>
<td>6</td>
<td>0.4</td>
<td>181</td>
<td>12.7</td>
<td>1228</td>
<td>86.7</td>
</tr>
<tr>
<td>Income</td>
<td></td>
</tr>
<tr>
<td>0-1499900</td>
<td>86</td>
<td>5.8</td>
<td>425</td>
<td>28.9</td>
<td>957</td>
<td>65.1</td>
<td>1468</td>
<td>66</td>
<td>3</td>
<td>556</td>
<td>25.6</td>
<td>1545</td>
<td>71.2</td>
</tr>
<tr>
<td>150000-2999900</td>
<td>8</td>
<td>5.7</td>
<td>47</td>
<td>33.8</td>
<td>84</td>
<td>60.4</td>
<td>139</td>
<td>57</td>
<td>1.6</td>
<td>733</td>
<td>20.6</td>
<td>2753</td>
<td>77.7</td>
</tr>
<tr>
<td>300000+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>100</td>
<td>2</td>
<td>7</td>
<td>0.5</td>
<td>174</td>
<td>12.5</td>
<td>1202</td>
<td>86.9</td>
</tr>
</tbody>
</table>

*Vegetable consumption:
1= little or never
2= at least once a week
3= just about every day or more