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Abstract

As we know that nature made the things optimized in all point of views, also
it is supposed that nature works under some evolutionary process.

Since there was no such Evolutionary Structural Optimization (ESO)
method having strong mathematical background, that’s why these are not
much reliable. The purpose of this thesis work is a little effort to introduce
such an ESO method having a strong mathematical background.

In this thesis work Optimization as a thermodynamic system, we are in-
troducing a new method for topology optimization by using concept of Free
Energy and Dissipation Potential from non-smooth thermodynamics system.
For better understanding we may call it as Evolutionary Structural Topology
Optimization (ESTO), and this project work is done in the following steps.

An evolution problem is formulated in terms of free energy and dissipa-
tion potential for a non-smooth thermodynamical system. Free energy is
taken as an objective function for a general structural optimization problem.
Derivation of a well posed evolution problem for which evolution is such that
objective function always decreases. An optimality criteria method is de-
rived for given evolution problem and it is implemented in a FEM program
TRINITAS. And the behaviour of the so called evolutionary parameters such
as Forward and Backward plastic constants is analyzed.
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Chapter 1

Introduction

1.1 Structural optimization

Making an assemblage of materials sustain loads in the best possible way
is called structural optimization [1]. There are three types of structural op-
timization problems: size, shape and topology. Topology optimization is a
developing technique. The most common algorithms used for topology op-
timization are Optimality Criteria Method and Methods of moving asymp-
totes.

In general Evolutionary Structural Optimization(ESO) has no volume
constraints. Also ESO can be easily implemented into any general purpose
finite element analysis program. In contrast to most other methods, the
ESO involves no mathematical programming techniques in the optimization
process [2].

1.1.1 Sizing optimization

In size optimization for plates or membrane, thickness is optimized and for
beams, height, width and radius of cross section area is optimized.

1.1.2 Shape optimization

In shape optimization inner or outer shape of design domain is optimized.

1.1.3 Topology optimization

In topology optimization, number of holes and their configuration in design
domain is discussed. Topology optimization tries to find the best use of
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material for a body. The objective is to minimize the compliance of structure
or maximize stiffness.

In topology optimization, the design variables are the amounts of material
in each cell. Material is only added where it is needed to carry loads.

1.2 Why topology optimization?

In general a low weight and high stiffness design requires from structural opti-
mization. But change in shape and size may not lead our design criterion for
reduction of structural weight. So one way to achieved this goal is topology
optimization. For topology optimization the designer creates only the design
space. The efforts for the modelling and preparation are extremely low [3].
Topology optimization is often achieves greater savings and design improve-
ments than shape optimization. The topology optimization problem solves
the basic engineering problem of distributing a limited amount of material
in a design space, where a certain objective function has to be optimized [4].
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Chapter 2

Convex Analysis

2.1 Introduction

In this chapter we are discussing some important topics of convex analysis
such as convex set, convex function, optimum solution of convex optimiza-
tion problem and Lyapunov function for dynamical system which leads us
to formulate minimization problems in terms of free energy and dissipation
potential in the next chapter.

2.2 Convex set

A set X ⊂ R
n is said to be convex if, for any x1, x2 ∈ X and for any λ ∈ [0, 1],

such that

λx1 + (1− λ)x2 ∈ X

Otherwise X is non-convex.

2.3 Convex function

Let X ⊂ Rn be a convex set. A function f : X → R is said to be convex if
for all x1, x2 ∈ X and for all λ ∈ [0, 1], there exist

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Similarly, f is said to be strictly convex if strict inequality (<) holds above
instead (≤).

Geometrically, if x1, x2 ∈ X, then the segment in Rn+1 joining (x1, f(x1))
to (x2, f(x2)) lies above the graph of f .
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2.4 Derivative of convex function

Differentiability plays a very important role in optimization for two related
reasons

(a) Necessary conditions for optimality involve derivatives.

(b) Optimization algorithms involve derivative.

For a function f : Rn → R, first derivative (or gradient) is denoted by ▽f
and second derivative (or Hessian matrix) of f is denoted as ▽2f .

A convex function needs not be a differentiable. e.g. f(x) =| x | is not
differentiable at x = 0.

2.4.1 Non-smooth or non-differentiable function

A function is said to be non-smooth if it is not continuously differentiable in
the given interval. The concept of sub-differential is used for such kind of
functions.

2.4.2 Sub-differential of a function

For any function f the sub-differential at x is denoted by ∂f(x) and defined
as a set of vectors v ∈ R

n such that

∂f(x) = {v : f(y)− f(x) ≥ vT (y − x) ∀ y ∈ X}

For example sub-differential of f(x) =| x | at x = 0 is a closed interval [−1, 1].

2.4.3 Properties of sub-differential

(a) Sub-differential is a non-empty, closed and convex set.

(b) When f is differentiable then ∂f(x) = {▽f(x)}, a singleton set.

The elements of sub-differential are called sub-gradients.

2.5 Optimization problem

In general a minimization problem under inequality constraints is defined as

(P)





min
x
f0(x)

such that

fi(x) ≤ 0 ; i = 1, 2, ........, ℓ

x ∈ X

(2.5.1)
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where f0 is an objective function and fi : R
n → R, i = 1, ......., ℓ are constraint

functions. Here fi : R
n → R, i = 0, 1, ......., ℓ are assumed to be continuous

differentiable functions, and

X = {x ∈ R
n : xmin

j ≤ xj ≤ xmax
j ; j = 1, 2, ...., n}

where xmin
j ≤ xj ≤ xmax

j ; j = 1, 2, ...., n are so-called box constraints, if xmin
j

and xmax
j have values −∞ and +∞ respectively, then there will be no box

constraints.

S = {x̄ ∈ X : fi(x̄) ≤ 0; i = 1, 2, ....., ℓ}

is called the feasible set for problem (P).
Note:- max f0(x) = −min (−f0(x))
A point x∗ is said to be local minimum of f0 if

f0(x
∗) ≤ f0(x̄) ∀ | x∗ − x̄ |< ε

and it is said to be global minimum of f0 if

f0(x
∗) ≤ f0(x̄) ∀ x̄ ∈ S

Note:- The Problem (P) is convex if and only if fi; i = 0, 1, ....., ℓ are
convex functions and S is a convex set.

2.5.1 Necessary and sufficient conditions

For convex (P), necessary and sufficient condition for x∗ to be the optimal
point is

▽f0(x
∗)T (x− x∗) ≥ 0 ∀ x ∈ X

Also for unconstrained convex optimization problems, local (hence global)
optima are located at stationary point x∗. i.e. a points for which the gradient
of f is zero [5].

▽f0(x
∗) =

[
∂f0(x

∗)

∂x1
, ........,

∂f0(x
∗)

∂xn

]T
= 0 (2.5.2)

Example 1:- A convex problem needs not have a solution, unless the
feasible set X is compact. i.e. X is bounded and closed. For example if
f0 = 1/x is minimized subject to the closed, but unbounded set x ≥ 1,
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then no solution exist, but if the same function is minimized subject to the
compact set [1, 2] then solution will be x∗ = 1/2.

Example 2:- Convexity of feasible set X is also very important, because
if the strictly convex function x21 + x22 is minimized subject to non-convex
and compact set 1 ≤ x21 + x22 ≤ 2 , then there are infinite number of global
minima are all points (x∗1, x

∗
2) with x

2
1 + x22 = 1 [1].

2.5.2 Karush-Kuhn-Tucker (KKT) conditions

To identify a local (hence global) minimum of a convex problem (P), first we
define the Lagrangian function L : Rn × Rl → R of problem (P)

L(x, λ) = f0(x) +

ℓ∑

i=1

λifi(x) (2.5.3)

where λi; i = 1, 2, ....., ℓ are called Lagrange multipliers. The KKT-conditions
of problem (P) are defined as

∂L(x, λ)

∂xj
≤ 0 , if xj = xmax

j (2.5.4)

∂L(x, λ)

∂xj
= 0 , if xmin

j ≤ xj ≤ xmax
j (2.5.5)

∂L(x, λ)

∂xj
≥ 0 , if xj = xmin

j (2.5.6)

λifi(x) = 0 (2.5.7)

fi(x) ≤ 0 (2.5.8)

λi ≥ 0 (2.5.9)

x ∈ X (2.5.10)

Also

∂L(x, λ)

∂xj
=
∂f0(x)

∂xj
+

ℓ∑

i=1

λi
∂fi(x)

∂xj
∀ j = 1, 2, ...., n (2.5.11)
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or

∇L(x, λ) = ∇f0(x) +
ℓ∑

i=1

λi∇fi(x) (2.5.12)

Each point (x∗, λ∗) ∈ Rn×Rℓ that satisfies all conditions (2.5.4) to (2.5.10)
is said to be a KKT point . Box constrains can also be included in fi(x) ≤
0; i = 1, 2, ...., ℓ by writing xj − xmax

j ≤ 0 and xmin
j − xj ≤ 0; j = 1, 2, ...., n.

2.5.3 KKT conditions and convex programming prob-
lems

In general, KKT conditions are not sufficient for local minimality, but for
convex programming problem following properties hold.

(a) Local and global minima are same

(b) KKT point is always an optimal point

(c) Karush-Kuhn-Tucker (KKT) Conditions are necessary and sufficient for
local (and hence global) minimality, provided that constraints are differ-
entiable, but the differentiability assumption can be dropped, because
we can use sub-gradients in place of derivatives [6].

2.6 Dynamical system

A dynamical system consists of a set of all possible states, together with rules
that define the present state in term of past states [9].

2.7 Lyapunov function

A Lyapunov function for a dynamical system is a special function having
following properties

(a) It maps any state of a particular dynamical system into a real number

(b) Its values, as a dynamical system evolves in time, is non-increasing on
the dynamical system trajectories

Lyapunov functions are used for studying the stability properties of dynam-
ical systems and are specially useful for the analysis of high-dimensional
non-linear dynamical systems [8].

12



Chapter 3

Problem Formulation

3.1 Introduction

In this chapter first of all, simultaneous and nested formulation for general
structural optimization are presented. Then an evolution problem is for-
mulated in terms of free energy and dissipation potential for non-smooth
thermodynamical system by means of dynamical system approach. Optimal-
ity criteria method is used to generate a sequence of subproblems for given
problem. Since for any structure, plastic evolution of material can be inter-
polated between solid and void, so Solid Isotropic Material with Penalization
(SIMP) approach is used for topology optimization, since this approach has
been proven to generalize easily to the alternative applications [7].

3.1.1 Simultaneous formulation

In general, structural optimization problem in simultaneous formulation can
be expressed as

(SO)sf






min
ρ,u

f0(ρ, u)

such that

K(ρ)u = F

fi(ρ, u) ≤ 0 ; i = 1, 2, ........, ℓ

ρ ∈ X = {ρ ∈ Rn : ρmin
j ≤ ρj ≤ ρmax

j ; j = 1, 2, ...., n}

(3.1.1)

Where f0(ρ, u) is an objective function, fi(ρ, u) ≤ 0 ; i = 1, 2, ........, ℓ are
constraints functions, F = K(ρ)u is quasi-static equilibrium equation, ρ =
(ρ1, ρ2, ......ρn)

T is a vector of design variable, u is vector of nodal displace-
ment, F is corresponding force vector andK(ρ) is symmetric positive-semidefinite
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stiffness matrix that depends on ρ.

C = {ρ∗ ∈ X : fi(ρ
∗) ≤ 0 ; i = 1, 2, ....., ℓ}

is called feasible set for problem (SO)sf .

3.1.2 Nested formulation

By using u = u(ρ) = K(ρ)−1F in (SO)sf we get nested formulation of struc-
tural optimization as

(SO)nf





min
ρ
f̂0(ρ, u(ρ))

such that

f̂i(ρ) ≤ 0 ; i = 1, ...., ℓ

ρ ∈ X

(3.1.2)

where f̂i(ρ) = f̂i(ρ, u(ρ)), i = 0, ...., ℓ.
Nested formulation for variable thickness sheet problem can be written

as

(Psheet
s )nf





min
ρ
f0(ρ, u(ρ))

such that
∫

Ω

ρ dΩ =

N∑

e=1

∫

Ωe

ρ dA

≈

N∑

e=1

ρeae = ρTa = V

ρ ≤ ρe ≤ ρ, e = 1, ...., N

(3.1.3)

Where a = [a1, ...., aN ]
T is an area vector for discrete structural domain

Ωe and V be the total volume.

3.1.3 SIMP method

The global stiffness matrix K(ρ) for this method can be expressed as

K(ρ) =
N∑

e=1

ρqeKe

where N is the number of elements in the discretized structure and Ke is
element stiffness matrix for single value of design variable ρe. In this method
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we have values ρe = ǫ ≈ 0 or ρe = 1, 0 means hole and 1 means material in
the structure and q is SIMP exponent or relative volume exponent. To make
the global stiffness matrix K(ρ) non-singular, the set of design variable C
can be defined as

C = {ρ : ǫ ≤ ρe ≤ 1, e = 1, ...., N}

where ǫ is smallest positive real number used to make the global stiffness
matrix K(ρ) non-singular.

For structural optimization problems, it requires to introduce a volume
constraint, which can be defined in the following set as

CV = {ρ ∈ C :
N∑

e=1

aeρe ≤ V }

Note: Volume constraint does not require for evolutionary structural
optimization.

3.2 Objective function, free energy and dis-

sipation potential

It is clear from (SO)sf that, in general the objective function depends on
both design variable ρ and displacement u, that is

f = f(ρ, u)

where

u = u(ρ) = K(ρ)−1F

Objective and constraints function can also be written as

fe = fe(u, ρ) = f(u, ρ) + IC(ρ)

C = {ρ | ρ ≤ ρ ≤ ρ}

where IC is an indicator function over convex set C such that

IC(ρ) =

{
0 if ρ ∈ C

∞ if ρ /∈ C

To define a Lyapunov function for dynamical system, let us construct an
equation defining an evolution ρ = ρ(t) such that

d

dt
f̃(ρ(t)) ≤ 0 (3.2.1)

where

f̃(ρ(t)) = f(u(ρ), ρ)
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3.2.1 Free energy

Consider a closed thermodynamic system, free energy ψ for the system is
defined as the difference between internal energy (U) and product of entropy
(η) and temperature (θ).

ψ = U − ηθ (3.2.2)

That is,
Free Energy (Useful Energy) = Total Energy - Unusable Energy
Differentiating (3.2.2) with respect to t (time) we get

ψ̇ = U̇ − η̇θ − ηθ̇ (3.2.3)

By the first law of thermodynamics

U̇ = X · ẋ+Q (3.2.4)

The dot product X · ẋ represents the rate of work done on the system, where
X is a total thermodynamical force applied to the system, conjugate with
the kinematical vector x and Q is heat supply per unit time to the system.

By 2nd law of thermodynamics

η̇ ≥
Q

θ
(3.2.5)

where η is entropy of the system
By using (3.2.4) and (3.2.5) in (3.2.3) we have

ψ̇ ≤ X · ẋ− ηθ̇

For X = 0 and θ̇ = 0

⇒ ψ̇ ≤ 0 (3.2.6)

From (3.2.1) and (3.2.6) we can suppose that f̃ is a free energy of a thermo-
dynamical system.

By the chain rule

d

dt
f̃ =

∑

i

∂f̃

∂ρi
ρ̇i (3.2.7)

Since

−ri ∈
∂f̃

∂ρi
+ ∂ICi

(ρi) (3.2.8)
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if and only if




−ri =
∂f̃

∂ρi
+ λi + λi

λi ≥ 0, ρ ≤ ρi, λi(ρ− ρi) = 0

λi ≥ 0, ρ ≥ ρi, λi(ρi − ρ) = 0

(3.2.9)

Where ri is thermodynamic force.
(3.2.8) and (3.2.9) resembles KKT conditions in section 2.5.3.
Since

λiρ̇i = 0 (3.2.10)

and

λiρ̇i = 0 (3.2.11)

when (3.2.10) satisfied by the following

λi(ρ− ρi) = 0 ⇒ λ̇i(ρ− ρi)− λiρ̇i = 0

when ρ = ρi the first term is zero and we are done. when ρ < ρi this in-

equality holds in a neighborhood of ”t” and therefore λ̇i = 0 and again we
are done. Similarly (3.2.11) can also be proved.

3.2.2 Dissipation inequality

By using (3.2.7) and (3.2.9) we get

−
d

dt
f̃ =

∑

i

(λi + λi + ri)ρ̇i (3.2.12)

By using (3.2.10) and (3.2.11) in (3.2.12) we get

−
d

dt
f̃ =

∑

i

riρ̇i (3.2.13)

from (3.2.6) and (3.2.13) we got

∑

i

riρ̇i ≥ 0

that is

rT ρ̇ ≥ 0 (3.2.14)
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which is dissipation inequality and we construct the system so that it holds
for all thermodynamics process at any time t.

Moreover (3.2.14) holds if

ri ∈ ∂Di(ρ̇i) (3.2.15)

where D is dissipative potential with 0 = Di(0), 0 ∈ ∂Di(0) and it is convex
function.

From (3.2.8) and (3.2.15) we got the dynamical system

0 ∈
∂f̃

∂ρi
+ ∂ICi

(ρi) + ∂Di(ρ̇i) (3.2.16)

For numerical integration of time dependent equation (3.2.16), we need to
discretized it with respect to time t into n steps of length ∆t

0 ∈ T (ρi) =
∂f̃

∂ρi
+ ∂ICi

(ρi) + ∂Di(
ρi − ρni
∆t

) (3.2.17)

Solution ρn+1(tn+1) is obtained by inserting ρn(tn) in (3.2.17).
Since T (ρi) resembles to the unconstrained convex optimization problem

and 0 ∈ T (ρi), so by definition of section 2.5.1, we can say (3.2.17) defines
the unilateral stationary point for the following minimization problem

min
ρ∈C

G(ρ) (3.2.18)

where

G(ρ) = f̃(ρ) + ∆t
∑

i

Di(
ρi − ρni
∆t

) (3.2.19)

So we can say that a general objective function can be written in terms of
free energy and dissipation potential.

3.3 Particular example

To solve (3.2.18) with SIMP topology optimization, we consider a classical
example of topology optimization. that is,

f̃(ρ) =
1

2
F Tu(ρ)+µ

∑

i

aiρi; where F = Ku and K =
∑

i

ρqiKi (3.3.1)

Here F is a constant force, 1

2
F Tu(ρ) is a strain energy similar to thermody-

namic free energy of the system, the positive constant µ controls the relative
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importance of two terms in (3.3.1)[10]. Since it is a simple form of the com-
pliance minimization problem, so this problem was used as fundamental test
case in the initial development of the topology optimization method [7].

Di(ρ̇) =
1

2
ciρ̇i

2 +

{
d+ρ̇i if ρ̇ ≥ 0

−d−ρ̇i if ρ̇ < 0
(3.3.2)

where d+, d− and ci are so called Forward Plastic Constant, Backward Plastic
Constant and Viscosity Constant respectively. The first term ofDi represents
viscous behaviour while the second term shows plastic behaviour.

3.4 Optimality criteria (OC) method

In general, structural optimization problems are non-convex, also for larger
problems it is impossible to write objective and constraints functions explic-
itly as a function of design variable, so it requires to generate sequence of
convex explicit subproblems that are approximations of original problem and
solve these subproblem instead [1].

There are a number of sequential convex approximation methods, but we
are using here Classical Optimality Criteria Method, which is one of particular
case, the OC method is most suitable for the given problem.

To solve (3.2.18) we linearize the first term of (3.3.1), in the intervening
variable ρ−α

i , α > 0. This gives

f̃(ρ) ≈ constant +
∑

i

(bki ρ
−α
i + µaiρi) (3.4.1)

Where

bki =
1

α
(q(ρki )

q−11

2
uk

T

Kiu
k)(ρki )

1+α ≥ 0 (3.4.2)

The subproblem becomes

min
ρ≤ρi≤ρ

ϕi(ρi)

where

ϕi(ρi) = bki ρ
−α
i +µaiρi+

1

2
ci
(ρi − ρni )

2

∆t
+

{
d+(ρi − ρni ) if ρi ≥ ρni
−d−(ρi − ρni ) if ρi ≤ ρni

(3.4.3)

To find stationary point of (3.4.3), differentiating it with respect to ρi and
equating it to zero. There are five cases as follow,
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3.4.1 Case 1

For ρi ≥ ρni

∂ϕ(ρi)

∂ρi
= µai + ci(

ρi − ρni
∆t

) + d+ − αbki ρ
−α−1
i = 0 (3.4.4)

3.4.2 Case 2

When ρi ≤ ρni

∂ϕ(ρi)

∂ρi
= µai + ci(

ρi − ρni
∆t

)− d− − αbki ρ
−α−1
i = 0 (3.4.5)

For special case ci = 0 we get two explicit solutions for two cases

ρi =
( αbki
µai + d+

) 1

1+α when ρi ≥ ρni (3.4.6)

and

ρi =
( αbki
µai − d−

) 1

1+α when ρi ≤ ρni (3.4.7)

by using (3.4.2) in (3.4.6) and (3.4.7) we get

ρk+1
i =

[ 1

µai + d+

{
q(ρki )

q−11

2
(uk)TKiu

k
}] 1

1+αρki ; ρi ≥ ρni

and

ρk+1
i =

[ 1

µai − d−

{
q(ρki )

q−1 1

2
(uk)TKiu

k
}] 1

1+αρki ; ρi ≤ ρni

For ρni ≤ ρi ≤ ρ we call the solution of (3.4.1) as 1ρ̂i
k+1

i.e.

1ρ̂i
k+1 =

[ 1

µai + d+

{
q(ρki )

q−1 1

2
(uk)TKiu

k
}] 1

1+αρki

And for ρ ≤ ρi ≤ ρni , solution of (3.4.1) is ρ̂2i
k+1

i.e.

2ρ̂i
k+1 =

[ 1

µai − d−

{
q(ρki )

q−11

2
(uk)TKiu

k
}] 1

1+αρki
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3.4.3 Case 3

When 1ρ̂i
k+1 ≤ ρni ≤ 2ρ̂i

k+1 then

ρk+1
i = ρni

3.4.4 Case 4

When 1ρ̂i
k+1 ≥ ρ then

ρk+1
i = ρ

3.4.5 Case 5

When 2ρ̂i
k+1 ≤ ρ then

ρk+1
i = ρ

For ci 6= 0 (3.4.1) can not be solved explicitly, so it is solved by using
some numerical approach such as Bisection method. The updating formula
for given problem now becomes

ρk+1
i =





ρ if 1ρ̂i
k+1 ≥ ρ

ρ if 2ρ̂i
k+1 ≤ ρ

1ρ̂i
k+1 if ρni <

1ρ̂i
k+1 < ρ

2ρ̂i
k+1 if ρ < 2ρ̂i

k+1 < ρni
ρni if 1ρ̂i

k+1 ≤ ρni ≤ 2ρ̂i
k+1

(3.4.8)

Also we can observe that at least for ci = 0 it holds that 1ρ̂i
k+1 < 2ρ̂i

k+1, so
the situations above are disjoint.

3.5 Standard optimality criteria method

Since

Di ≡ 0 ⇐⇒ ci = d± = 0

So for Di ≡ 0 we come to the solution of standard OC method as given below

ρk+1
i =





ρ if ρ̂i < ρ

ρ̂i if ρ ≤ ρ̂i ≤ ρ

ρ if ρ̂i > ρ
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where

ρ̂i =

(
αbki
µai

) 1

1+α

SIMP method gives the values ρ = 1 (material) and ρ = 0 (hole) for each
cell in the discretized structure.

For standard OC method 1

2
(uk)TKiu

k (i.e. Specific strain energy) is con-
stant for every finite element at convergence, so to get such a state iterative
method tries to modify thickness, less stiff element expected to have high
strain energy, so by making these elements thicker we get required stiffness
[1].

3.6 Flow chart

Since n is number of time step but k is used for iteration number, ρn value of
design variable at nth time step, ρki shows value of ith component of density
vector ρk = [ρk1, ...ρ

k
i , ..., ρ

k
N ] at kth iteration.

Initial guess for design variable ρn = ρ∗; ǫ ≤ ρ∗ ≤ 1, plastic evolution of
design variable can be utilized in the way that it can be started from filled
design domain and takes away parts that are not needed or conversely it can
be started from an empty design domain (i.e. ρn = ǫ ) and adds or removes
material under evolutionary constants (d+ and d−).

When dissipation potential is zero (i.e. D ≡ 0) given problem is solved
by using standard OC Method.

The algorithm for given problem is implemented in TRINITAS by using
FORTRAN programming language in Microsoft visual studio environment
and it works according to the flow chart as shown in the figure 3.6.1.
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Figure 3.6.1: Flow Chart
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Chapter 4

Discussion and conclusion

4.1 Introduction

In this chapter we are discussing and concluding about the results obtained
by using different values of underlying parametric values and their relation
with others parameters. The constraints on these parameters and conclu-
sions about the affected results for specific parametric values are also part
of this chapter. The FEM program TRINITAS is used for parametric study.
TRINITAS developed by Bo Torstenfelt.

4.2 Parametric study

There are four parameters taken under discussion and these are

• Lagrange Multiplier (µ)

• Forward Plastic Constant (d+)

• Backward Plastic Constant (d−)

• Initial Guess (ρn)

These are non-negative constants. We are using just two values for relative
volume exponent (i.e. q = 1 and q = 3) for our analysis. But we need to
recommend the optimal values for given parameters. Also there are some
constraints on these parameters, such as for any value of Lagrange Multiplier
and Backward Plastic Constant, following inequality should be confirmed.

µai =
µLW

n
> d− (4.2.1)
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Figure 4.3.1: Design Domain

Where L,W, n and ai are length, width, number of elements and element
volume respectively for a design domain. There is no such constraint on
Forward Plastic Constant. We are considering ρn in following way

ρ ≤ ρn ≤ ρ

where ρ, ρ are lower and upper bounds for design variable.

4.3 Example 1

4.3.1 Geometry

Consider a square as design domain (L = 0.5 and W = 0.5) to analyze these
parameters.

4.3.2 Material properties

Material symmetry: Isotropic, Youngs Modulus = 0.20E+12, Poisson Ratio
= 0.3.

4.3.3 Boundary conditions

Fixed left end line in both x and y direction, Point Load =-10 unit applied
on right end corner.

4.3.4 Mesh properties

We are using here 1024 2D 4-node quadrilateral membrane elements as shown
in the figure 4.3.1.
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Figure 4.5.1: Special case

4.4 Behavioral study of parameters

We are analyzing the behaviour of these parameters one by one in such a way
that the values of one parameter is changed but fixed the others parametric
values.

4.5 Behaviour of µ

First of all we are discussing the affect of µ on design domain for both case
that is when q = 1 and q = 3.

Let the following parametric values
ρ = ǫ = 0.001
ρ = 1
ρn = 0.333
d+ = d− = 0
are fixed under the variation of µ. But ρ = 0.001 is supposed to be fixed

through out this parametric study.

4.5.1 Case 1

When µ < 0.1E − 11 or µ = 0 and for any value of q, d+ and ρn we observe
that all elements have same values as shown in the figure 4.5.1.
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Figure 4.5.2: q = 3, FR = 0 Figure 4.5.3: q = 3, FR = 0.02

4.5.2 Case study for filter radius (FR)

When q = 3 with Filter Radius (FR) = 0, the results obtained are not so
good because there exist two numerical problems, one is oscillation of ele-
ments as shown in the figure 4.5.2 and other problem called as checkerboard
as shown in the figures 4.5.5, so to overcome these problems at the same
time, we need to choose the suitable value of FR. Thus we got oscillating
and checkerboard free design by using FR = 0.02 as shown in the figures 4.5.2
and 4.5.7 respectively. The concept of filtering was taken from image pro-
cessing techniques. It is a most efficient technique to remove checkerboards
[1].

It is observed that there is no such difference in the results when FR = 0
or FR = 0.01 as shown in the figures 4.5.5 and 4.5.6. For FR = 0.02 the
result is presented in figure 4.5.7. We have to choose a suitable value for FR
so that we can control the loss of useful information. We can observe from
figure 4.5.7 that by using FR = 0.02 we are losing less amount of information
and can overcome checkerboard problem. So we are choosing FR = 0.02 for
further analysis.

Note:- When q = 1, then there is no need to choose FR > 0, because
there is no such checkerboard problem as shown in the figure 4.5.4.

4.5.3 Case 2

For q = 1 and µ = 0.1E − 07, result is shown in figure 4.5.4, when q = 3,
results are shown in the figures 4.5.5 to 4.5.7.
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Figure 4.5.4: q = 1, FR = 0, µ = 0.1E − 07 Figure 4.5.5: q = 3, FR = 0, µ = 0.1E − 07

Figure 4.5.6: q = 3, FR = 0.01, µ =

0.1E − 07

Figure 4.5.7: q = 3, FR = 0.02, µ =

0.1E − 07
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Figure 4.5.8: q = 1, µ = 0.1E − 08 Figure 4.5.9: q = 3, µ = 0.1E − 08

Figure 4.5.10: q = 1, µ = 0.1E − 06 Figure 4.5.11: q = 3, µ = 0.1E − 06

4.5.4 Case 3

When µ = 0.1E − 08, the results are given in the figures 4.5.8 and 4.5.9.

4.5.5 Case 4

When µ = 0.1E − 06, the results are given in the figures 4.5.10 and 4.5.11.
Remark:- It is clear from figures 4.5.9, 4.5.7 and 4.5.11, that by increas-

ing value of µ, the thickness of structural topology decreasing.
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Figure 4.6.1: q = 1, d+ = 0.1E − 08 Figure 4.6.2: q = 3, d+ = 0.1E − 08

Figure 4.6.3: q = 1, d+ = 0.1E − 09 Figure 4.6.4: q = 3, d+ = 0.1E − 09

4.6 Behaviour of d+

Let µ = 0.1E−06 and d− = 0 are fixed, but d+ varies as shown in the figures
4.6.1 to 4.6.10

Remark:- The results obtained by choosing d+ ≥ 0.1E−09 having same
structural topology and thickness, but having different color as shown in the
4.6.1 to 4.6.6. Also the results obtained by choosing 0 ≤ d+ ≤ 0.1E − 10
topology have thinner element (as shown in the figures 4.6.7 to 4.6.10) as
compared to the results obtained by choosing d+ ≥ 0.1E − 09.
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Figure 4.6.5: q = 1, d+ ≥ 0.1E − 07 Figure 4.6.6: q = 3, d+ ≥ 0.1E − 07

Figure 4.6.7: q = 1, d+ = 0.1E − 10 Figure 4.6.8: q = 3, d+ = 0.1E − 10

Figure 4.6.9: q = 1, 0 ≤ d+ ≤ 0.1E − 11 Figure 4.6.10: q = 3, 0 ≤ d+ ≤ 0.1E−11
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Figure 4.7.1: q = 1, d− = 0.1E − 10 Figure 4.7.2: q = 3, d− = 0.1E − 10

4.7 Behaviour of d−

Its very sensitive to choose the value of d−, because here it is required to sat-
isfy the inequality (4.2.1), the inequality not only depends on the dimension
of design domain, but also depends on the number of elements that divides
the design domain. So it is required to follow the inequality during selection
of any value of d−. To present some results the required data is taken from
section 4.3.4 and used in inequality (4.2.1).

4.7.1 Case 1

First of all µ = 0.1E − 06 and d+ = 0 are taken fixed but d− varies as follow
from the figures 4.7.1 to 4.7.4.

4.7.2 Case 2

Since it requires to satisfy the inequality 4.2.1, also we supposed ai and n are
constant for this problem, so to use other values for d−, we need to control
value of µ in such that the inequality 4.2.1 satisfied. The results for this case
are given in figures 4.7.5 to 4.7.18.

4.7.3 Case 3

When µ = 0.1E − 06, d− = 0.1E − 10 and for any value of d+ ≥ 0.1E − 08,
the results obtained are shown in figures 4.7.19 and 4.7.20.
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Figure 4.7.3: q = 1, d− = 0.1E − 11 Figure 4.7.4: q = 3, d− = 0.1E − 11

Figure 4.7.5: q = 1, d− = 0.1E − 06,

µ = 0.01

Figure 4.7.6: q = 3, d− = 0.1E − 06, µ =

0.01
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Figure 4.7.7: q = 1, d− = 0.1E − 05, µ =

0.01

Figure 4.7.8: q = 3, d− = 0.1E − 05, µ =

0.01

Figure 4.7.9: q = 1, d− = 0.1E − 06,

µ = 0.1

Figure 4.7.10: q = 3, d− = 0.1E − 06,

µ = 0.1
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Figure 4.7.11: q = 1, d− = 0.1E − 05,

µ = 0.1

Figure 4.7.12: q = 3, d− = 0.1E − 05,

µ = 0.1

Figure 4.7.13: q = 1, d− = 0.1E − 09,

µ = 0.1E − 05

Figure 4.7.14: q = 3, d− = 0.1E − 09,

µ = 0.1E − 05
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Figure 4.7.15: q = 1, d− = 0.1E − 08,

µ = 0.1E − 04

Figure 4.7.16: q = 3, d− = 0.1E − 08,

µ = 0.1E − 04

Figure 4.7.17: q = 1, d− = 0.1E + 04,

µ = 0.1E + 08

Figure 4.7.18: q = 3, d− = 0.1E + 04, µ =

0.1E + 08
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Figure 4.7.19: q = 1, d− = 0.1E − 10, d+ ≥

0.1E − 08

Figure 4.7.20: q = 3, d− = 0.1E − 10,

d+ ≥ 0.1E − 08

4.7.4 Case 4

When µ = 0.1E−06, d− = 0.1E−10 and for any value of 0 < d+ ≤ 0.1E−09,
the results obtained are shown in figures 4.7.21 to 4.7.26.

Remark:- It is observed from case study of d− that µ value is always
greater than d− value and the exponential difference between d− and µ values
is at least 4 to satisfy the inequality 4.2.1. For example from figure 4.7.18,
d− = 0.1E + 04 and µ = 0.1E + 08.
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Figure 4.7.21: q = 1, d− = 0.1E − 10,

d+ = 0.1E − 09

Figure 4.7.22: q = 3, d− = 0.1E − 10,

d+ = 0.1E − 09

Figure 4.7.23: q = 1, d− = 0.1E − 10,

d+ = 0.1E − 10

Figure 4.7.24: q = 3, d− = 0.1E − 10,

d+ = 0.1E − 10
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Figure 4.7.25: q = 1, d− = 0.1E − 10,

d+ ≤ 0.1E − 11

Figure 4.7.26: q = 3, d− = 0.1E − 10,

d+ ≤ 0.1E − 11

4.8 Behaviour of ρn

Let µ = 0.1E−06, FR = 0.02 and ρ = 0.001 are taken to be fixed under the
study of ρn.

4.8.1 Case 1

When ρ = ρn = 1, the results are shown in the figures 4.8.1 to 4.8.4

4.8.2 Case 2

When ρ = ρn = 0.001 = ǫ, the results are shown in the figures 4.8.5 to 4.8.10.

4.8.3 Case 3

When ρn = 0.7, the results are shown in the figures 4.8.11 to 4.8.18.

4.8.4 Case 4

When ρn = 0.5, the results are shown in the figures 4.8.17 to 4.8.22.
Remark:- From figures 4.8.5 to 4.8.10, it is clear that for ρn = ρ the

results obtained are not good in engineering point of view. So it is required
to take care during selection of initial guess.
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Figure 4.8.1: q = 1, d− = 0, d+ ≥ 0,

ρn = 1

Figure 4.8.2: q = 3, d− = 0, d+ ≥ 0,

ρn = 1

Figure 4.8.3: q = 1, d− = 0.1E − 10,

d+ ≥ 0, ρn = 1

Figure 4.8.4: q = 3, d− = 0.1E − 10,

d+ ≥ 0, ρn = 1
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Figure 4.8.5: q = 1, 0 ≤ d− < 0.1E − 10,

d+ ≥ 0, ρn = 0.001

Figure 4.8.6: q = 3, 0 ≤ d− < 0.1E − 10,

d+ ≥ 0, ρn = 0.001

Figure 4.8.7: q = 1, d− = 0.1E − 10,

d+ = 0.1E − 09, ρn = 0.001

Figure 4.8.8: q = 3, d− = 0.1E − 10,

d+ = 0.1E − 09, ρn = 0.001
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Figure 4.8.9: q = 1, d− = 0.1E − 10,

d+ = 0.1E − 07, ρn = 0.001

Figure 4.8.10: q = 3, d− = 0.1E − 10,

d+ = 0.1E − 07, ρn = 0.001

Figure 4.8.11: q = 1, d− = 0.1E − 10,

d+ ≥ 0.1E − 10, ρn = 0.7

Figure 4.8.12: q = 3, d− = 0.1E − 10,

d+ ≥ 0.1E − 10, ρn = 0.7
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Figure 4.8.13: q = 1, d− = 0, d+ >

0.1E − 08, ρn = 0.7

Figure 4.8.14: q = 3, d− = 0, d+ >

0.1E − 08, ρn = 0.7

Figure 4.8.15: q = 1, d− = 0.1E − 10,

d+ > 0.1E − 08, ρn = 0.7

Figure 4.8.16: q = 3, d− = 0.1E − 10,

d+ > 0.1E − 08, ρn = 0.7
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Figure 4.8.17: q = 1, d− = 0.1E − 10,

d+ = 0.1E − 10, ρn = 0.5

Figure 4.8.18: q = 3, d− = 0.1E − 10,

d+ = 0.1E − 10, ρn = 0.5

Figure 4.8.19: q = 1, d− = 0, d+ >

0.1E − 08, ρn = 0.5

Figure 4.8.20: q = 3, d− = 0, d+ >

0.1E − 08, ρn = 0.5
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Figure 4.8.21: q = 1, d− = 0.1E − 10,

d+ > 0.1E − 08, ρn = 0.5

Figure 4.8.22: q = 3, d− = 0.1E − 10,

d+ > 0.1E − 08, ρn = 0.5

4.9 Example 2

4.9.1 Geometry

We are using now a rectangular design domain (L = 0.6 and W = 0.4) to
analyze these parameters.

4.9.2 Material properties

Material symmetry: Isotropic, Youngs Modulus = 0.20E+12, Poisson Ratio
= 0.3

4.9.3 Boundary conditions

Fixed left end line in both x and y direction, Point Load =-10 unit applied
on mid point of right side.

4.9.4 Mesh properties

We are using here 2048 2D 4-node quadrilateral membrane elements as shown
in the figure 4.9.1.

4.10 Case study

Let FR = 0.02 and ρ = 0.001 are taken to be fixed for all analysis.
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Figure 4.9.1: Design Domain

4.10.1 Case 1

Let ρn = 0.3333, the results are shown in the figures 4.10.1 to 4.10.14.

Remark:- It is clear from figure 4.10.2 and 4.10.4 that by introducing
d+ > 0, we got thicker topology elements as compared to d+ = 0. When
q = 3 the results obtained for any value of d+ ≥ 0.1E − 08 and d− = 0 are
same, so just one result is presented in the figure 4.10.8.

Remark:- When µ > 0.1E − 06, ρ < ρn < ρ, d+ ≥ 0 and d− > 0 with
inequality (4.2.1), results obtained are similar and presented in the figures
4.10.9 and 4.10.10.

Remark:- Since µ = 0.1E−06 so it is required to choose d− = 0.1E−10.
When µ < 0.1E − 06 then to satisfies inequality (4.2.1), d− tends to zero
because the exponential difference between µ and d− value is at least 04. So
we are using µ = 0.1E − 06 for further analysis.

4.11 Behaviour of ρn

Let µ = 0.1E − 06, FR = 0.02 and ρ = 0.001 are taken to be fixed.

4.11.1 Case 1

When ρ = ρn = 1, the results are shown in the figures 4.11.1 to 4.11.4.
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Figure 4.10.1: q = 1, d− = 0, d+ = 0,

µ = 0.1E − 06

Figure 4.10.2: q = 3, d− = 0, d+ = 0,

µ = 0.1E − 06

Figure 4.10.3: q = 1, d− = 0, d+ =

0.1E − 10, µ = 0.1E − 06

Figure 4.10.4: q = 3, d− = 0, d+ =

0.1E − 10, µ = 0.1E − 06
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Figure 4.10.5: q = 1, d− = 0, d+ =

0.1E − 09, µ = 0.1E − 06

Figure 4.10.6: q = 3, d− = 0, d+ =

0.1E − 09, µ = 0.1E − 06

Figure 4.10.7: q = 1, d− = 0, d+ ≥

0.1E − 08, µ = 0.1E − 06

Figure 4.10.8: q = 3, d− = 0, d+ ≥

0.1E − 08, µ = 0.1E − 06
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Figure 4.10.9: q = 1, d− > 0, d+ ≥ 0,

µ > 0.1E − 06, ρ < ρn < ρ

Figure 4.10.10: q = 3, d− > 0, d+ ≥ 0,

µ > 0.1E − 06, ρ < ρn < ρ

Figure 4.10.11: q = 1, d− = 0.1E − 11,

d+ = 0, µ = 0.1E − 07

Figure 4.10.12: q = 3, d− = 0.1E − 11,

d+ = 0, µ = 0.1E − 07
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Figure 4.10.13: q = 1, d− = 0, d+ = 0,

µ = 0.1E − 07

Figure 4.10.14: q = 3, d− = 0, d+ = 0,

µ = 0.1E − 07

Figure 4.11.1: q = 1, d− = 0, d+ ≥ 0,

ρn = 1

Figure 4.11.2: q = 3, d− = 0, d+ ≥ 0,

ρn = 1

Figure 4.11.3: q = 1, d− = 0.1E − 10,

d+ ≥ 0, ρn = 1

Figure 4.11.4: q = 3, d− = 0.1E − 10,

d+ ≥ 0, ρn = 1
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Figure 4.11.5: q = 1, d− = 0, d+ = 0,

ρn = 0.001

Figure 4.11.6: q = 3, d− = 0, d+ = 0,

ρn = 0.001

Figure 4.11.7: q = 1, 0 ≤ d− ≤ 0.1E−10,

d+ ≥ 0.1E − 06, ρn = 0.001

Figure 4.11.8: q = 3, 0 ≤ d− ≤ 0.1E−10,

d+ ≥ 0.1E − 06, ρn = 0.001

Remark:- When ρn = ρ then there is no difference between the results
obtained by using d+ = 0 and d+ > 0, thats why we are presented just one
result for each case as shown in the figures 4.11.1 to 4.11.4.

4.11.2 Case 2

When ρ = ρn = 0.001, the results are shown in the figures 4.11.5 to 4.11.8.

4.11.3 Case 3

When ρn = 0.7, the results are shown in the figures 4.11.9 to 4.11.14.
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Figure 4.11.9: q = 1, d− = 0, d+ = 0,

ρn = 0.7

Figure 4.11.10: q = 3, d− = 0, d+ = 0,

ρn = 0.7

Figure 4.11.11: q = 1, d− = 0, d+ > 0,

ρn = 0.7

Figure 4.11.12: q = 3, d− = 0, d+ > 0,

ρn = 0.7
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Figure 4.11.13: q = 1, d− = 0.1E − 10,

d+ = 0, ρn = 0.7

Figure 4.11.14: q = 3, d− = 0.1E − 10,

d+ = 0, ρn = 0.7

Figure 4.11.15: q = 1, d− = 0, d+ = 0,

ρn = 0.5

Figure 4.11.16: q = 3, d− = 0, d+ = 0,

ρn = 0.5

Remark:- It observed that structural topology for d+ > 0 is thicker than
for d+ = 0 as shown in the figure 4.11.10 and 4.11.12. So it is consider that
by introducing d+ > 0, material can be added where structural topology feel
the need for it.

4.11.4 Case 4

When ρn = 0.5, the results are shown in the figures 4.11.15 to 4.11.20.
Remark:- For q = 3, d+ > 0, d− = 0 and µ = 0.1E − 06 we got same result
for any initial guess ρ < ρn < ρ as shown in the figures 4.11.2, 4.11.12 and
4.11.18.
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Figure 4.11.17: q = 1, d− = 0, d+ > 0,

ρn = 0.5

Figure 4.11.18: q = 3, d− = 0, d+ > 0,

ρn = 0.5

Figure 4.11.19: q = 1, d− = 0.1E − 10,

d+ > 0, ρn = 0.5

Figure 4.11.20: q = 3, d− = 0.1E − 10,

d+ > 0, ρn = 0.5
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Remark:- For q = 3, d+ ≥ 0, d− = 0.1E − 10 and µ = 0.1E − 06 we
got same result for any initial guess ρ < ρn < ρ as shown in the figures
4.11.4,4.11.14 and 4.11.20. But for q = 1 the results are different as shown
in the figures 4.11.3,4.11.13 and 4.11.19.

4.12 Overall conclusion

In this thesis work a new evolutionary structural topology optimization tech-
nique is introduced, in which c and d± represent viscous and plastic behaviour
respectively in the response of applied load applied on given design domain.
Here we suppose that there does not exist any viscous affect (i.e. c = 0),
but there exist plastic affect (i.e. d± 6= 0) in the reaction of constant applied
load.

We studied the behaviour of these two parameters d+ and d− with respect
to others parameters such as ρn and µ. There are some findings during
analysis

• FR = 0.02 is a most suitable value to overcome checkerboards problem.

• d− = 0.1E − 10 is a most suitable value correspond to µ = 0.1E − 06

• µ = 0.1E−06 and d− = 0 correspond to d+ > 0 gives reasonable results
for any initial guess except for ρn = ρ

• ρn = ρ is not a good initial guess

Since two examples are taken to analyze this new ESTO approach. We
observed that given parameters have almost same affect with respect to oth-
ers parameters in both examples. So we can conclude that this new ESTO
approach is applicable for all problems where topology optimization is re-
quired.

4.13 Future work

In our complete evolutionary structural topology optimization the following
parameters are involved

• Lagrange Multiplier (µ)

• Forward Plastic Constant (d+)

• Backward Plastic Constant (d−)

55



• Initial Guess (ρn)

• Viscosity constant (c)

• Time increment (∆t)

• Load (F (t))

We analyzed just first four parameters. Since ∆t 6= 0 involves only if c 6=
0, but we supposed c = 0 through out our analysis, also we considered
F=constant load. But to reach on an exact ESTO, it requires to study both
plastic and viscous behaviour with time dependent load (i.e. c 6= 0, ∆t 6= 0
and F = F (t)) at the same time.
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