Technical report, IDE1009 , June 1, 2010

Design and Implementation of an
Audio Codec (AMR-WB) using Data
Flow Programming Language CAL in
the OpenDF Environment

Master’s Thesis in Embedded and Intelligent Systems

Hazem Ismail Abdel Aziz Ali
Mohammad Nazrul Ishlam Patoary
{hazali08, mohpat08}@student.hh.se

) GSKO‘C
() ¥
N % School of Information Science, Computer and Electrical Engineering
Halmstad University
‘S""Muts'ﬂ'g>

Design and Implementation of an
Audio Codec (AMR-WB) using Data

Flow Programming Language CAL in
the OpenDF Environment

Hazem Ismail Abdel Aziz Al
Mohammad Nazrul Ishlam Patoary
{hazali08, mohpat08} @student.hh.se

Halmstad University
Project Report IDE1009

Master’s thesis in Embedded and Intelligent Systems, 30 ECTS credits

Supervisors
Halmstad University Ericsson AB
Prof. Bertil Svensson PhD. Jerker Bengtsson PhD. Johan Eker = PhD. Harald Gustafsson
Ezaminer

Prof. Tony Larsson

June 1, 2010

School of Information Science, Computer and Electrical Engineering
Halmstad University

Preface

This project is the concluding part of Master’s in Embedded and Intelligent
Systems with specialization in Embedded Systems from Halmstad Univer-
sity, Sweden. The whole project has been held at Ericsson Research premises
in Lund, since it is a part of an European FP7 project called ”ACTORS”.
Firstly, we would like to thank our supervisors from Halmstad University
especially Professor Bertil Svensson for his continuous encouragement and
support and excellent guidance throughout our study.

Also, we are very thankful to PhD. Jerker Bengtsson for his nice com-
ments and feedback. Also, we would like to express our gratitude to our
supervisors from Ericsson Research in Lund PhD. Johan Eker and PhD.
Harald Gustafsson for providing concrete ideas and cooperating both in
terms of time and frequency and providing great guidance and supervision
throughout the entire project.

Finally, we would like to thank all our families for their support and faith
in us throughout our whole life.

Hazem Ismail Abdel Aziz Ali
Mohammad Nazrul Ishlam Patoary
Halmstad University.

ii

Abstract

Over the last three decades, computer architects have been able to
achieve an increase in performance for single processors by, e.g., in-
creasing clock speed, introducing cache memories and using instruction
level parallelism. However, because of power consumption and heat
dissipation constraints, this trend is going to cease. In recent times,
hardware engineers have instead moved to new chip architectures with
multiple processor cores on a single chip. With multi-core processors,
applications can complete more total work than with one core alone.
To take advantage of multi-core processors, we have to develop parallel
applications that assign tasks to different cores. On each core, pipeline,
data and task parallelization can be used to achieve higher perfor-
mance. Dataflow programming languages are attractive for achieving
parallelism because of their high-level, machine-independent, implicitly
parallel notation and because of their fine-grain parallelism. These
features are essential for obtaining effective, scalable utilization of
multi-core processors.

In this thesis work we have parallelized an existing audio codec - Adap-
tive Multi-Rate Wide Band (AMR-WB) - written in the C language for
single core processor. The target platform is a multi-core AMR11 MP
developer board. The final result of the efforts is a working AMR-WB
encoder implemented in CAL and running in the OpenDF simulator.
The C specification of the AMR-WB encoder was analysed with respect
to dataflow and parallelism. The final implementation was developed in
the CAL Actor Language, with the goal of exposing available parallelism
- different dataflows - as well as removing unwanted data dependencies.
Our thesis work discusses mapping techniques and guidelines that we
followed and which can be used in any future work regarding mapping
C based applications to CAL. We also propose solutions for some specific
dependencies that were revealed in the AMR-WB encoder analysis and
suggest further investigation of possible modifications to the encoder to
enable more efficient implementation on a multi-core target system.

iii

v

Contents

1

L1 _Related Waorkl e 2
L2 _Thesis Confribufion 3
[[.L3" Thesis Organizafiod 3
 Dataflow Programming| 5
B.T Dataflow Model of Computation 6
P11 Kabhn Process Neftworlk 6

212 Datatow Process Networkl 7

P.1.5 Synchronous Datatiow (0DF) 8

.2 Multi-core Platiorm and Datarnow FProgramming 9
.............................. 10

B Programming in CAl] 11
BT __The Basic Structure of an Actod oo 11
B.Z Basic Synfax of an Actorin CAI] 12
B.3 Some Simple Examples of Actord 14
nal Nondeterministic Actors 14

B.3.2 Building Deferministic Acfors: Guard Condifion 15

B.3.3 Building Deferministic Actors: Scheduld 16

B.3.4 Firing more Tokens: using Repeall 16

B.4 Compositions of Actord 17

4 Adaptive Multi-Rate Wideband Speech Codec (AMR-WB) 21

BT Backeground 21
.2 Working Principle of AMR-WB Encodey 22
B.2.T Speech Signal Pre-processing 23
Ad2.2 LPCU Analysiyo 23
B.2.3 Open Loop Pitch Analysid 24
B24 VAD Analysido 25

1.2.5 Discontinuous Transmission (D'T'X) and Comfort Noisq

A.2.06 dubframe Analysiy
A.o Working FPrinciple of the AMR-WDb Decodey]

0_Datatiow Model of the AMBK-Wh Encoden

o Mapping from C to CAl)

bl Overview

b.2 Drawing a Flow Diagram|

P.o Partitioning o e e e e e e
p.4 Global Vanables Handlingl

04| Initialization and Reset Conditiond

p.4.2 Synchronization Conditions
6.0 Loops e
b It and Switch Statementd L. .
7 Paoinferd

[Implementation of the AVMR-WDbB Encoder

[(.1 Steps ol implementation
[(.1.1 T'he Analysis and Initial Design
I(.1.2 K151 Intrinsics Library Developing
I/.1.o Hierarchical Design and Integration
I/.1.4 ‘lesting and Verication

(.2 Detalled Explanation of the AMR-WDB Encoder Flow Model
[(.2.1 Preprocessing,
2.2 LPC Analysig o oo
(.20 VAD Analysiy
[(.2.4 Discontinuous Iransmission (D'I'X)

I(.2.0 LPCUZ2 Analysiy
I(.2.6 dSubframe Analysiy

R Results
r 1 _Problems and Solutiond 0L

p.1.1 tone_flag Frame Dependencyl
p.1.2 Subtrame Analysis Parallelizationf
R 2 Care Allocation tor the AMBEB-WEBE FEncoden

9 _Conclusions

vi

33

37
38
39
40
41
41
42
43
44
46

47
47
48
48
48
50
50
20
20
o1
52
o4
o4

57
o7
o7
o8
59

61

Chapter 1

Introduction

Multi-core architectures integrate several processors on a single chip, and
they are quickly becoming widespread. Being affordable, it is now possible
for every PC user, or even a small embedded system such as a mobile phone,
to incorporate a truly parallel computer. This massive computational power
makes parallel programming a concern for more software developers than be-
fore. Since each field of application requires its own way of parallelization e.g.,
numerical applications mostly parallelized using task level parallelism, server
applications parallelized using multithreading [21]. From that perspective,
parallel programming is considered difficult since many fundamental ques-
tions must be answered before starting to develop parallel applications for
multi-cores, such as: what programming language is useful? Which paral-
lelization approach suits the application? And how can existing sequential
applications be reengineered for parallelism? [20].

In our thesis work, we conducted a case study of parallelizing an audio
codec application for multi-core processors using CAL dataflow programming
language under OpenDF environment. Ericsson AB selected the sequential
Adaptive Multi-Rate Wide Band (AMR-WB) audio codec program for the
study, because it is widely used in communication systems, and relevant
application in everyday life. Its source code specification is available in C
language, and it is well documented.

The selection of dataflow programming language for parallelizing AMR-
WB codec came from the fact that the application lies in the digital signal
processing field (DSP). The DSP field is characterized by continuous data
streams that flow across the application, where different application tasks
operate on the flow. By this, dataflow programming language achieves both
data level parallelism(DLP) and task level parallelism (TLP), which will
increase the performance gained from multi-core processors.

The selection of CAL language as an example of dataflow programming

2 CHAPTER 1. INTRODUCTION

languages for design and implementation came from Ericsson AB. Ericsson
is leading a European Fp-7 project called ” ACTORS”, developing tools and
theories for dataflow programs on multi-core systems. As part of this, a CAL
to C compiler and a runtime system are being developed for an ARM11 multi-
core platform. CAL is a dataflow language based on an actor model that
provides the proper foundation for implementation of efficient, component
based, and adaptive algorithms for both multimedia applications in consumer
electronics and industrial control systems and signal processing applications

[m].

1.1 Related Work

A case study is performed in [[4], where the MPEG-4 Simple Profile (MPEG-
4 SP) decoder was specified in CAL, according to the MPEG Reconfigurable
Video Coding (RVC) formalism. The MPEG RVC framework is a new ISO
standard, aiming to design a decoder at a higher level of abstraction than the
one provided by current generic monolithic C based specifications. Instead
of low level C/C++ code, an abstract model based on modular components
taken from the standard Video Tool Library (VTL) is the reference specifi-
cation [9]. The MPEG-4 Simple Profile decoder has been implemented on
an FPGA using a CAL-to-RTL code generator called Cal2HDL. A similar
implementation has also been done directly in VHDL. In the same case study
a comparison has been made. It was found that code generated from CAL
needs less development effort and less memory space compared to the hand-
written reference in VHDL. Thus, the work on the MPEG-4 decoder confirms
the potential of the dataflow approach.

In another case study [I1], the H.264 encoder reference C code was con-
verted to an extended Synchronous Dataflow (SDF) model, using HW/SW
codesign environment PeaCE [d] that supports automatic C code generation
from dataflow specification. The authors presented a systematic procedure
to convert a sequential C code to a dataflow specification and successfully
applied it to the H.264 encoder algorithm and obtained the dataflow speci-
fication. Lastly, they compared the synthesized code from dataflow specifi-
cation with the reference code in terms of encoding time, code size and data
size. As they did not make optimization on their dataflow specification, the
synthesized code showed worse performance and code size, but it showed a
better result on the data size.

DEsigN AND IMP. OF AN AMR-WB usiING CAL LANGUAGE 3

1.2 Thesis Contribution

The goal of this thesis work is to convert an existing single processor AMR-
WB audio codec to multi-core platform (ARM11 MPs). The approach is to
first find out the independent dataflow from the codec specification by using
a dataflow approach and then implement the codec in actor programming
language CAL. As the specification of AMR-WB audio codec was in C code,
we have proposed a systematic approach, in Chapter B, to convert reference
C code to CAL Actor Language.

In the implementation of the AMR-WB encoder, we got two major flows
of speech data which are considered as data-parallel for two cores. However,
in reality, according to our specification of the AMR-WB encoder, those two
flows of speech data have some dependencies to each other. In our work, we
specified the cause of dependencies and we have proposed some solutions to
overcome those dependencies in Chapter B.

1.3 Thesis Organization

In this thesis, we have analyzed the dataflow in AMR-WB audio codec to
find the hidden parallelism. Chapter 2 will introduce the dataflow and some
graphical model of computations. It will also introduce the OpenDF envi-
ronment that is used as a tool in our thesis work.

We implemented our encoder by using the CAL programming language.
Chapter B will introduce the CAL programming language and will show how
a hierarchical level of programming can be achieved from the actor network
design concept in CAL. In Chapter B, we shall explain the working principle
of AMR-WB audio codec in brief, aided with various plots of our speech
frame in different computational phases.

The high level dataflow of the AMR-WB encoder is described in Chap-
ter B. To find out a way to map from C to CAL language, Chapter B provides
some guidelines that help in that transformation process.

In Chapter [@ we will discuss in detail the implementation of the AMR-WB
encoder and data dependency problems throughout the design. Chapter B
discusses the proposed solutions for the data dependency problems mentioned
in Chapter [and solutions for enhancing the entire performance of the AMR-
WB encoder. Finally, our thesis ends with Chapter B that concludes the
whole work.

CHAPTER 1. INTRODUCTION

Chapter 2

Dataflow Programming

There are many applications like audio and video coding, which apply a series
of transformations to a data stream. Dataflow programming is an efficient
strategy for implementation of such kinds of applications for multi-core pro-
cessors. The dataflow programming emphasizes only the flow of data and
does not represent the flow of control explicitly. Applications implemented
in dataflow programming language consists of a set of modules that inter-
connect, forming a new module or network. The modules are self-contained
computational entities that perform a specific operation. Thus, a module is
a computational unit while a network is an operational unit. Inter-module
communication is done by passing tokens through unidirectional input and
output ports. The dataflow models offer a naturally parallel representation
that can effectively support the tasks of parallelization [I6] and thus pro-
viding a practical means of supporting multiprocessor systems and utilizing
vector instructions.

Dataflow programming language implements dataflow principles and ar-
chitecture, and models a program as a directed graph of data flowing between
modules. Such kinds of programming languages were originally developed in
order to make parallel programming easier. The Dataflow Process Network
[T8] model of computation provides a framework within which a language is
defined, called "CAL Actor Language”. Dataflow programming structures
the applications as networks of ”black box” elements that exchange data
across predefined connections by token passing.

In the case of conventional programming languages, a program is mod-
eled as a series of operations and the flow of data is effectively invisible, for
example: C, Java etc, whereas dataflow programming models the flow of
data through the network of computational elements, for example, the CAL
Actor Language. CAL is a domain specific language that provides useful
abstraction for dataflow programming with actors.

6 CHAPTER 2. DATAFLOW PROGRAMMING

The first section of this chapter will explain how dataflow can facilitate
parallel computing for the multi-core environment, then the next section
will define some graphical models of computations, and then concludes by
introducing the Open Data Flow (OpenDF) environment. The OpenDF
[§] is an environment for building and executing dataflow models, including
support for the CAL Actor Language.

2.1 Dataflow Model of Computation

The basis of dataflow programming models is explicitly specified by a directed
graph, the nodes are considered as computational units and the connection
between the nodes, i.e arcs, as channels of data. To be able to establish
the reasons for the behaviour of the computations performed, the dataflow
graph has to be put in the context of a computation model, which defines the
semantics of the communication between the nodes. The most common Mod-
els of Computation (MoC) for DSP are Kahn Process Networks, Dataflow
Process Network and Synchronous Dataflow Network.

Computational Element FIFO Channel

—{(J—

Figure 2.1: Dataflow model of computation.

2.1.1 Kahn Process Network

Process Networks is a MoC that was originally developed for modeling dis-
tributed systems and this model is also used for modeling signal processing

DEsigN AND IMP. OF AN AMR-WB usiING CAL LANGUAGE 7

systems. Process Networks are also called " Kahn Process Networks”, (KPN),
since G. Kahn first introduced this model in his thesis work in 1974 [I5]. It
is a natural model for describing signal processing systems where infinite
streams of data are incrementally transformed by processes executing in se-
quence or parallel.

In this model, concurrent determinant processes communicate only through
one-way FIFO channels with unbounded capacity and the resultant process
must be determinant. Each channel carries a possibly infinite number of
atomic data objects, or tokens. Writes to the channels are non-blocking, but
reads are blocking. If a process tries to read from an empty input, it is sus-
pended until it has enough input data and the execution context is switched
to another process.

In 1995, Lee and Parks pointed out [I&] that a model of computation
does not require multitasking or parallelism and, in reality, infinite queues in
communication channel is impractical. It is usually more efficient than com-
parable methods in functional languages. Process Networks have found many
applications in modeling of embedded systems as it is typical for embedded
systems to be designed to operate infinitely, with limited resources.

Research software, like Khoros [19] from the University of New Mexico,
and Ptolemy [17] from the University of California at Berkeley, are all based
on variants of the Process Network model. Departing from the original Pro-
cess Networks by Kahn, a number of more specific models have been derived.

There are many applications of KPNs model in modelling embedded
and high-performance computing systems, such as, for example, the Ambric
Am2045 massively parallel processor array, in which 336 32-bit processors
are interconnected by a programmable interconnect of dedicated FIFO and
the channels are strictly bounded with blocking writes.

2.1.2 Dataflow Process Network

Dataflow Process Networks is a MoC very closely related to Kahn Process
Networks. In this model, arcs represent FIFO queues as arcs in Kahn Process
Networks, but now the nodes of the graph, instead of representing processes,
represent actors. Instead of responding to the blocking-read semantics of
Process Networks, actors use firing rules that specify how many tokens must
be available on every input for the actor to fire. When an actor fires, it
consumes a finite number of tokens and produces also a finite number of
output tokens, i.e. channel capacity is not infinite.

An actor may have more than one firing rule. The evaluation of the firing
rules is sequential in the sense that rules are sequentially evaluated until at
least one of them is satisfied. Thus, an actor can only fire if one or more

8 CHAPTER 2. DATAFLOW PROGRAMMING

than one of its firing rules are satisfied.

In Dataflow Process Networks, each process consists of repeated ”firings”
of a dataflow "actor”. An actor defines a (often functional) quantum of
computation.

e Dataflow Actor: this maps input token to output token.
e Firing: this consumes input tokens and produces output tokens.
e Firing rules: these determine when an actor can fire.

In Dataflow Networks, instead of suspending a process on blocking read
or non-blocking write, processes are freely interleaved by a scheduler that
determines the sequence of actor firings. The biggest advantage is that the
cost of process suspension and resumption is avoided [I8].

2.1.3 Synchronous Dataflow (SDF)

Synchronous Dataflow (SDF) is a special case of dataflow. An actor is said
to be synchronous if the number of input tokens that are consumed on each
input and the number of output tokens that are produced on each output
can be specified a priori. A SDF graph is a network of synchronous nodes.
The same behavior repeats in a particular actor every time it is fired.

In SDF, channels can have initial tokens (delay). Every initial token
represents an offset between the token produced and the token consumed at
the other end. If a channel has an initial token, then the receiving actor will
read that initial token before it will read the token output by the sending
actor. Initial tokens are indicated on an arc by a number followed by a D
(for delay). Figure 22 demonstrates a simple SDF model that contains an
initial token.

1D

Figure 2.2: SDF with one initial token.

Here the a single delay 1D between actor A and B is specified. When
actor B first fires, it consumes the initial token from the delayed channel,
and actor B consumes A’s first output token at his second firing time. Thus,
delays on a channel can affect the precedence relationship between actors. In

DEsigN AND IMP. OF AN AMR-WB usiING CAL LANGUAGE 9

Figure 22, actor B can fire before actor A. However, in order to fire a second
time, actor A will have to fire at least once. An SDF network can contain a
feedback loop. At that time, the feedback loop must contain initial tokens
so that there will be no deadlock. Figure shows an SDF network with a
feedback loop.

1

1D

Figure 2.3: SDF with feedback & initial token.

Note that actor A will fire first due to the initial token on the arc between
actor C. Then actor B will fire by consuming the output token from actor A.
In this way, actor C will fire and, in turn, actor A. If there is no initial token
between actor C and A, then there is no actor which has sufficient tokens on
its inputs to fire and a deadlock situation will arise.

To implement an SDF model, there must be a scheduler to order the firing
of actors in the model. The firing rules of an SDF model include that an
actor have sufficient tokens on all of its inputs before the actor can be fired.
The SDF schedule must fire the actors in an order that ensures each actor
has sufficient tokens in its input ports.

2.2 Multi-core Platform and Dataflow Pro-
gramming

Dataflow model represents a parallel processing model, which combines Task
Level Parallelism (TLP) and pipeline parallelization to achieve high perfor-
mance and good scalability from a multi-core platform. If we want to deploy
a stream based application on multi-core platform we have to, at first, inves-
tigate different independent dataflows. Then we partition those independent
flows to perform task parallel processing. Finally, we organize and execute
them as several stages pipeline to exploit more parallelism.

In dataflow programming, the independent dataflows can be modeled as
parallel computation. Each independent flow of data passes through a set of
sequential computational elements (actors). These set of sequential computa-
tional elements represent a pipeline with several stages. Thus, dataflow pro-

10 CHAPTER 2. DATAFLOW PROGRAMMING

gramming is an efficient and excellent way to design and implement stream
based applications for multi-core platform.

2.3 OpenDF

There are a number of tools available for specifying and modeling the stream
based application in dataflow semantics. One such tool is the OpenDF to
model and design stream based applications like audio or video codecs. The
OpenDF environment is structured as a sequence of transformations on Ex-
tensible Markup Language (XML) documents which describe the functional-
ity of a dataflow system. The transformation, from source code to XML and
then XML to Hardware Description Language(HDL) or simulation model, or
other compiler output, uses XML documents that may be useful represen-
tations for integration with other tool flows or for export to other compiler
back-ends.

The typical user interface for the Open Dataflow tool is the Eclipse IDE
platform. In this platform there are various plugins have been developed
and deployed, which provide access to the various development, simulation
and compilation features. All the tools of the OpenDF are implemented
as a combination of Java source code and Extensible Stylesheet Language
Transformation (XSLT). The Java source provides the interfaces to logical
groupings of the XSLT transforms.

The OpenDF supports the CAL language and generates HDL (VHDL /
Verilog), C for integration with the SystemC tool chain, and embedded C

8]

Chapter 3

Programming in CAL

In this era of multi-core processing, it is a big challenge for the software de-
signers to model stream based applications in parallel computing. Program-
mers have to replace the conventional sequential programming paradigm for
parallel programming. As Edward Lee pointed out [I'7], using threads as a
model of computation makes this parallelisation process a tedious task. In
this chapter we shall introduce the CAL Actor Language (CAL), created as
a part of the Ptolemy II project at UC Berkeley. For more information about
CAL Actor Language (CAL) you can refer to the CAL Language Report [10]
and the A Gentle Introduction to CAL tutorial written by J. Janneck [I3].

3.1 The Basic Structure of an Actor

In actor oriented programming with CAL, an actor is a basic computational
entity with input and output ports, parameters, states and actions as shown
in Figure B. It communicates with other actors by sending and receiving
atomic data, called token, along unidirectional FIFO channels. When actors
are interconnected to each other, then a model is developed called ”actor
network”.

CAL is a small, domain-specific language to specify the functionality of
actors. The functionality of an actor is defined by a set of actions and their
associated firing rules. The firing rules are conditions on the presence of
tokens on the input ports and possibly also on their values. The execution
of an actor is said to be a "firing”. During a firing, tokens on the input ports
are consumed and tokens on the output ports are produced. The selection
order and the firing conditions for actions form the core of the design of an
actor. CAL provides a number of constructs for describing action selection,
which include guards (conditions on the values of input tokens and/or the

11

12 CHAPTER 3. PROGRAMMING IN CAL

Output
Port1
:ggrlﬁ\ Parameters
S -
Tokens in _’ Tokens out
I State
] Actions

Tokens in —m Tokens out
Input \ Output

Port2 Port2

Figure 3.1: Actor basic structure.

values of actor state variables), a finite state machine and priorities.

3.2 Basic Syntax of an Actor in CAL

The basic syntax to implement an actor in CAL language is shown in Fig-
ure B33

The first step to declare an actor is to use the actor keyword, followed
by a list of parameters, input and output ports . The input ports are those
in front of the ==> symbol e.g. InputPortl, InputPort2, the output ports
are those after that symbol e.g. OutputPort1, OutputPort2.

Another keyword action defines an action with its label Actionl, Action?2.
In general, an actor may have any number of actions. The input syntax (be-
fore the ==> symbol in action) InputPortl:[a] says that one token with
the name ”a” is consumed from input port InputPortl while the actor is
fired. It has to be remembered that an action will fire only when it gets
sufficient number of tokens on its input ports. The output syntax (after the
==> symbol in action) OutputPortl: [a] says that one token "a” is produced
whenever the action is fired.

The order of action firing can be controlled by making a schedule using the
keyword schedule fsm. In this schedule, at the initialState only Actionl

DEsigN AND IMP. OF AN AMR-WB usiING CAL LANGUAGE 13

actor ActorName(parameterl, parameter2)
InputPortl, InputPort2, ... ==> OutputPortl, OutputPort2,

DataType statel;
DataType state2;

Actionl : action InputPortl: [a], ... ==> OutputPortil: [a]

Statements ;

end

Action2 : action InputPort2: [a], ... ==> OutputPort2:[a]
Statements ;

end

schedule fsm initialState:
initialState (Actionl) --> state2;
state2 (Action2) --> state3;

end
end

Figure 3.2: Basic syntax of an actor.

14 CHAPTER 3. PROGRAMMING IN CAL

will fire and at the next state state2 the action Action2 will fire and so on.
The Action2 in state2 can not fire before Actionl in initialState has

been fired.

3.3 Some Simple Examples of Actors

Our first example, Add, is an actor that has two input ports (Inputl and
Input2) and one output port (Output). It has a single action that reads one
token from each of the input ports. The single output token produced by
this action is the sum of the two input tokens:

actor Add() Inputl, Input2 ==> Qutput:
action Inputl: [a], Input2: [b] ==> Output: [a + Db]
end

end

Figure 3.3: Simple Add actor.

In a dataflow programming language, an actor is considered as an operator
on a flow of data tokens. This operator acts as consumer, while token entering
on its input ports, and producer, while a flow of tokens leaving on its output
ports. In our thesis work, the stream of data is the samples of speech frame.

3.3.1 Nondeterministic Actors

As we already mentioned, actors can have any number of actions. A nonde-
terministic actor is one that, for the same input sequences per port, allows
more than one possible output dependent on, e.g. timings of token reception.
Nondeterminism can be very powerful when used appropriately, but it can
also be a very troublesome source of errors. An example of a nondeterministic
actor is given in Figure B4

Here, there are three actions in this actor named calculator. Any action
can be fired whenever they fulfill the necessary condition, i.e when one token
arrives in Inputl port Square action will fire and will produce an output
token. Again, if a token arrives at Input2 port, and then one in Inputl
port, any action can be fired. So it indicates that, although the same input
sequence is inputted to both input ports, the produced output will not be
the same. Thus, this actor is nondeterministic.

DEsigN AND IMP. OF AN AMR-WB usiING CAL LANGUAGE 15

actor calculator () Inputl, Input2 ==> Output:

Add : action Inputl: [x], Input2: [y] ==> [x+y] end

Subtract : action Inputl: [x], Input2: [x] ==> [x-y] end

Square : action Inputl: [x] ==> [x*x] end
end

Figure 3.4: Nondeterministic actor.

3.3.2 Building Deterministic Actors: Guard Condition

We can control the firing of actions by using guard condition. Guard con-
dition specifies additional criteria (condition) that need to be satisfied for
an action to fire. The condition might be the values of the input tokens or
state of the actor. Such type of condition is specified by using guards as, for
example, the same calculator actor:

actor calculator() Inputl, Input2 ==> Qutput:
int selector = 1;
Add : action Inputl: [x], Input2: [y] ==> Output: [x+y]
guard selector = 1
do
selector := selector + 1;
end
Subtract : action Inputl : [x], Input2: [y] ==> Output: [x-y]
guard selector = 2
do
selector := selector + 1;
end
Square : action Inputl : [x] ==> Output: [x*x]
guard selector = 3
do
selector := 1;
end
end

Figure 3.5: Deterministic actor using guard condition.

In the example shown in Figure B3, selector is a state with initial value
1 and we use it as our guard of each action. When tokens in both ports

16 CHAPTER 3. PROGRAMMING IN CAL

have arrived and the selector value is 1, then action Add will be fired. Thus,
we can determine our firing order of actions. In this example, at first Add
action will fire, then Sub action and then Square action will fire. Now, for
any sequence of input tokens on both input ports, this actor will produce the
same sequence of output. So this actor is a deterministic actor.

3.3.3 Building Deterministic Actors: Schedule

CAL language provides a special syntax to control the order of firing of
actions that is schedule. The new version of calculator, with the schedule
shown in Figure B4, has the same order of firing of the actions, first Add then
Subtract and then Square.

actor calculator () Inputl, Input2 ==> Qutput:
Add : action Inputl:[x], Input2:[y] ==> Output: [x+y] end

Square : action Inputl:[x] ==> Output: [x*x] end
schedule fsm initialState :
initialState (Add) —-—> statel;
statel (Subtract) --> state2;
state2 (Square) --> initialState;
end
end

Subtract : action Inputl:[x], Input2:[y] ==> Output:[x-y] end

Figure 3.6: Deterministic actor using schedule.

3.3.4 Firing more Tokens: using Repeat

All examples discussed till now were consuming and producing only one token
at a time. However, in stream based applications, sometimes it is required
to manage more than one token at time. In CAL, actors can consume and
produce more than one token at a time by using the repeat keyword, e.g.
Figure B7 shows an actor named twice, which has an action called mul2,
consumes 5 tokens and each token is multiplied by 2, and then 5 output
tokens are fired. It is not essential to keep equal the repeat value in input
port and output port i.e. any number of tokens can be consumed and any
number of tokens can be fired at a time.

DEsigN AND IMP. OF AN AMR-WB usiING CAL LANGUAGE 17

actor twice () Input ==> Qutput:
mul2: action Input:[x] repeat 5 ==> Qutput:[y] repeat 5
var List(int , size=5) y
do
y := [x[i]*2 : for i in 0..4];
end
end

Figure 3.7: Actor receiving and firing multiple tokens using repeat.

3.4 Compositions of Actors

Modeling of stream based applications can not be represented by one actor
only; it requires several actors connected to each other through channels to
maintain data flow. In this section, we will show how a network of actors

can be built in CAL.

Input1 MO1 [——p{ Inputt Output
»| 11 Multiplier
MO2 _) Input2
Input2 Result
3| 12 Selector —
AO1 > Input1
Op P Output
»| op Adder
AO2 |——p| Input2

Figure 3.8: The graphical representation of Calculator application.

To build an actor network, the first step is to instantiate the building com-
ponents of the network which are the actors; second is to create connections
among them. In addition, a network of actors might have input and output
ports who are connected to the ports of actors inside the network. As an
example, we will discuss a small Calculator application, which is shown in
Figure B3.

Consider we have two actors, Multiplier and Adder, shown in Figure B9.
Both actors have the same input and output ports Inputl, Input2 and

18 CHAPTER 3. PROGRAMMING IN CAL

Output; each actor consumes 2 tokens, a and b, and fires the result a+b
for Adder actor and axb for Multiplier actor. Selector has three input
ports i.e., I1, 12, Op and 4 output ports i.e., MO1, MO2, A01, A02. If the Op
input token m is equal to 1, the input tokens a and b on input ports I1 and I2
respectively will be directed to output ports MO1 and M02, which will result
in firing of actor Multiply. Otherwise if Op value is 2, the same input tokens
will be directed to output ports A01 and A02, which will result in firing of
actor Add.

actor Adder() Inputl, Input2 ==> Qutput:
Add: action Inputl:[al], Input2:[b] ==> Output: [a+b]
end

end

actor Multiplier() Inputl, Input2 ==> Qutput:
Mult: action Inputl:[a], Input2:[b] ==> Qutput: [a*Db]
end

end

actor Selector() I1,I2,0p ==> M01,M02,A01,A02:
int flag:=0;
Decision : action Op[m] ==> guard flag = 0 do
if m 1 then flag := 1; end
2 then flag := 2; end

if m
end
Mult : action Il:[al, I2:[b] ==> MO1l:[a], MO2: [b]
guard flag =1 do

flag := 0;
end
Add : action I1:[a], I2:[b] ==> A01:[a],A02:[b]
guard flag =2 do

flag := 0;
end

end

Figure 3.9: Calculator application basic actors .

To build the Calculator application network, we have to create instances of
all actors, that will be used. This is done by using the keyword entities

DEsigN AND IMP. OF AN AMR-WB usiING CAL LANGUAGE 19

followed by instantiation of different actors participating in this network.
After the entities section comes the structure section which describes the
different connections between actors. Figure B0, shows a complete network
file syntax for Calculator Application. While Figure BR shows the Calculator
network file graphical representation. This Calculator application network is
not deterministic.

network Calculator() Inputl, Input2, Op ==> Result :
entities
M = Multiplier();
A = AdderQ);
S = Selector();
Structure
Inputl --> S.I1;
Input2 --> S.1I2;
Op ——> S.0p;
S.MO1 --> M.Inputl;
S.M02 --> M.Input2;
S.A01 --> A.Inputl;
S.A02 --> A.Input?2;
M.Output --> Result;
S.0utput -—> Result;

end

Figure 3.10: Calculator application network file.

20

CHAPTER 3. PROGRAMMING IN CAL

Chapter 4

Adaptive Multi-Rate Wideband
Speech Codec (AMR-WB)

In this chapter we will present the functional description of the AMR-WB
speech codec. First, we will introduce the codec and then the working prin-
ciple of encoder and decoder parts, respectively. The specification of this
codec is written in C code [A].

4.1 Background

An audio or speech codec is a device or computer program capable of encod-
ing and decoding an audio signal. The objective of an audio codec algorithm
is to represent the audio signal with minimum number of bits while retain-
ing the natural quality. Thus, an audio codec effectively reduces the storage
space and the bandwidth required for transmission of the audio signal.

The Third Generation Partnership Project (3GPP) and European Telecom-
munication Standards Institute (ETSI) have chosen AMR-WB codec for
the Universal Mobile Telecommunications System (UMTS) to get wideband
speech services. At present, the audio codec used in second and third gen-
eration (3G) mobile communication systems operates with a narrow audio
bandwidth limited to 200-3400 Hz. AMR-WB introduces a wide audio band-
width of 50-7000 Hz and improved speech quality and naturalness [@]. This
codec is called ” Adaptive Multi-Rate” because it is capable of operating with
a multitude of speech coding bit-rates from 6.6 to 23.85 Kbits/s. In device
context view, AMR-WB is shown in Figure B

The AMR-WB speech codec has nine speech coding modes with bit-rates
of 6.6, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 and 23.85 kbit/s [H].

21

CHAPTER 4. ADAPTIVE MULTI-RATE WIDEBAND SPEECH CODEC
22 (AMR-WB)

°]
€25
g2
g
g5°
)
w
=]
1
R

VAD

DTX DTX Speech
control and control and Decoder
Information operation

operation

£e
g
gg

bits Speech

Speech Frame

Frame

Funetion SID SIb
Frame Frame

Transmit Side Receive Side

Figure 4.1: Device context view of AMR-WB codec.

AMR-WB includes also a background noise mode which is designed to be
used in discontinuous transmission (DTX) operation in GSM/UMTS and as
a low bit-rate source dependent mode for coding background noise in other
systems. In GSM/UMTS the bit-rate of this mode is 1.75 kbit/s.

4.2 Working Principle of AMR-WB Encoder

The codec is based on the Linear Predictive Coding (LPC) model and the
Code Excited Linear Predictive (CELP) coding model. At the beginning,
the speech signal is sampled at a rate of 16 kHz and then it is processed for
LPC analysis and CELP model.

In LPC analysis, linear prediction coefficients of an order 16 synthesis
filter are generated and then those coefficients are quantized and interpolated.
The LPC is performed once per 20 ms speech frame. In the CELP model,
the excitation signal at the input of the LP synthesis filter is constructed by
adding two excitation vectors from an adaptive and a fixed codebook. The
speech is synthesized by feeding the two properly chosen vectors from those
codebooks through the LP synthesis filter. The optimum excitation sequence
in a codebook is chosen using an analysis by synthesis search procedure in
which the error between the original and synthesized speech is minimized
according to a perceptually weighted distortion measure.

At each frame, the speech signal is analysed to extract the parameters
of the CELP model (LP filter coefficients, adaptive and fixed codebooks in-
dices and gains). A high-band gain index is computed in 23.85 Kbit/s mode.
Those parameters are encoded and transmitted. At the decoder, those pa-
rameters are decoded and speech is synthesized by filtering the reconstructed
excitation signal through the LP synthesis filters.

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 23

4.2.1 Speech Signal Pre-processing

In this phase, the speech signal is decimated from 16 kHz to 12.8 kHz which
converts a frame of 320 samples to 256 samples. After the decimation, two
preprocessing functions are applied to the signal prior to the encoding pro-
cess: high-pass filtering and pre-emphasizing. The high-pass filter serves as
a precaution against undesired low frequency components.

(a) (b)
T 15000 T
160 | | | | |
140 [l A A S S
= w | | | i i
3 120 T 5000 [e
E =
2 100 g
8 £
80 -5000 SR i U SO S o]
60
I I I I I I I 210000 I I I I I I
0 2 4 6 8 10 12 14 16 0 50 100 150 200 250 300
Frequency [kHz] Samples
(@ (d)
15000 T
160 .
o W A h L e e e e e o e .
= o | | i i
3 120 4 8 5000 - Il el .
g 5
2 100 bt - 3 0 4
a < 4 i | i
80] -5000 - o ‘ 1111 R ——
] 1
B0 []
I I I I I I I 210000 I I I I I
0 2 4 6 8 10 12 14 16 0 50 100 150 200 250 300
Frequency [kHz] Samples

Figure 4.2: a. Spectrum of input speech frame, 16kHz signal b. Input speech
frame in time domain, 16kHz ¢. Spectrum of preprocessed speech frame, 12.8
kHz signal d. Preprocessed speech frame time domain, 12.8 kHz

In pre-emphasis, a first order high-pass filter is used to emphasize higher
frequencies to whitening the signal speech. One frame of input speech signal
and corresponding frame after processing the signal is shown in Figure E=2.

4.2.2 LPC Analysis

After pre-processing the input speech signal, the emphasized signal (256 sam-
ples/s, 12.8 kHz.), is sent for LPC analysis. LP analysis is performed once
per speech frame using the autocorrelation approach. Before autocorrelation,
the speech signal is windowed by a Hamming window [{]. The autocorrela-
tion of the windowed speech signal is used to obtain LP filter coefficients

CHAPTER 4. ADAPTIVE MULTI-RATE WIDEBAND SPEECH CODEC
24 (AMR-WB)

by using Levinson-Durbin Algorithm []. For this codec, there are 16 LP
coefficients computed for the order 16 linear prediction filter. The LP filter
coefficients are converted to the Immetance Spectral Pairs (ISP) represen-
tation for quantization and interpolation purpose. After quantization and
interpolation of ISPs, they are converted back to the LP coefficient.

A weighting filter coefficient is generated based on the LP coefficients
and the pre-processed speech signal and a residual weighted speech signal is
generated for open loop pitch analysis as shown in Figure E=3.

(a) (b)
15000 T T
160
120 10000 [t | l
o [
S 120 Nl Ny 3 s000 N |
] f : : : = : : :
2 100 - g = . n nn“"\
g o e 2 ° Wy
80 [L N — 5000 - K ; ;
60 |- OSSO OO OO SRS Mo i i \
i i i i i i -10000 i i i
0 2 4 6 8 10 12 0 50 100 150 200
Frequency [kHz] Samples
(c) (d)
‘ 15000 ‘ \
10000
o [
g T 5000
5 =
2 Q.
8 g0
-5000
10000 i i i i i
0 2 4 6 8 10 12 0 50 100 150 200 250
Frequency [kHz] Samples

Figure 4.3: a. Spectrum of preprocessed speech frame b. Preprocessed speech
frame in time domain c. Spectrum of residual weighted speech signal d.
Residual weighted speech signal in time domain

4.2.3 Open Loop Pitch Analysis

On the basis of the current mode, open-loop pitch analysis is performed
once per frame, only for the mode 6.6 kHz/s and twice per frame, for higher
modes, to find estimates of the pitch lag in each frame. This is done in
order to simplify the pitch analysis and confine the close loop pitch search
to a small number of lags around the open loop estimated lags. Open loop

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 25

pitch estimation is based on the weighted speech signal which is obtained by
filtering the input speech signal through the weighting filter.

4.2.4 VAD Analysis

AMR-WB codec has a feature to save power in the mobile station and reduce
the over all interference level over the air interface called Voice Activity
Detection (VAD). In VAD analysis, a boolean VAD decision for each frame
is generated. In this phase, a tone detection function is used for indicating
the presence of a signaling tone, voiced speech or other strongly periodic
signal and generating a tone-flag. The tone detection function uses the open
loop pitch gain achieved from the open loop pitch analysis phase. If the pitch
gain is higher than the threshold value, the tone is detected and the tone flag
is set. When the tone flag is set and the speech level of a speech frame is
greater than a minimum speech level, the VAD flag is set. Thus, the VAD
decision depends on the tone-flag and the speech level of the speech frame.

4.2.5 Discontinuous Transmission (DTX) and Comfort

Noise Generation

Discontinuous Transmission is a strategy in which a mobile station transmit-
ter is to be switched off most of the time during speech pauses and a DTX
comfort noise almost similar to background noise is generated in the receiver
end. This comfort noise is generated on the basis of the parameters from the
background noise during the initial part of the speech pause.

4.2.6 Subframe Analysis

The speech frame is divided into four subframes of 5 ms each, i.e. 64 samples
in each subframe. For each subframe, the operation is briefly explained as
follows:

e The target signal is computed by filtering the LP residual through the
weighting filter as shown in Figure £-4.

e The impulse response signal of the weighted synthesis filter is com-
puted.

e Closed loop pitch analysis is then performed to find the pitch lag and
gain by using target and impulse response and searching around the
open-loop pitch lag.

CHAPTER 4. ADAPTIVE MULTI-RATE WIDEBAND SPEECH CODEC
26 (AMR-WB)

15000

10000

5000

Amplitude

-5000

-10000

0 50 100 150 200
Samples

(b)

15000

10000 s

5000 e

Amplitude

-5000 |- -‘ ‘ o

-10000 : :
0 50 100 150 200 250

Samples

Figure 4.4: a. Preprocessed speech frame, 12.8 kHz signal b. Target signal
for adaptive codebook search, 12.8 kHz signal

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 27

(a)
3000

2000

1000

Amplitude

-1000

-2000

-3000
0

Samples

(b)
3000

2000 [;]

1000

Amplitude

-1000

2000 | : i

-3000 | | | | |
0 50 100 150 200 250

Samples

Figure 4.5: Adaptive codebook search in mode 0: a. Target signal for adap-
tive codebook search, 12.8 kHz signal b. Updated target signal after removing
adaptive contribution

e The target signal is updated by removing the adaptive codebook con-
tribution as shown in Figure B3 for lowest mode (6.6 Kbits/s) and in
Figure B3 for highest mode (23.85 Kbits/s), and this new updated tar-
get is used in the fixed algebraic codebook search to find the optimum
innovation as shown in Figure B77 for lowest mode (6.6 Kbits/s) and in
Figure B for highest mode (23.85 Kbits/s).

e The gains of the adaptive and fixed codebook are indexed to transmit.

e Finally, the filter memories are updated for finding the target signal in
the next subframe.

CHAPTER 4. ADAPTIVE MULTI-RATE WIDEBAND SPEECH CODEC
28 (AMR-WB)

3000

2000

1000

Amplitude

-1000

-2000

-3000

0 50 100 150 200 250
Samples
(b)
3000

2000 [;]

1000

Amplitude

L 3 i
22000 | : i

-3000 | | | | |
0 50 100 150 200 250

Samples

Figure 4.6: Adaptive codebook search in mode 8: a. Target signal for adap-
tive codebook search, 12.8 kHz signal updated b. Target signal after removing
adaptive contribution

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 29

[
el
2
£
£
<
0 50 100 150 200 250
Samples
(b)
2000
@ 1500 []
T 1000 4
2 500y N —— .
B o500 [VY y -
E 1000 s 4
1500 m
-2000 | | | | |
0 50 100 150 200 250
Samples
(]
2000
o 1500 []
A 7
% Q [t Ao
g 500 A~ B
E 1000 s 4
-150Q - 4
22000 i i i | I
0 50 100 150 200 250
Samples

Figure 4.7: Fixed codebook search in mode 0: a. Updated target signal b.
Optimum fixed codebook innovation c¢. Optimum fixed codebook innovation
after filtering

CHAPTER 4. ADAPTIVE MULTI-RATE WIDEBAND SPEECH CODEC
30 (AMR-WB)

[
el
2
£
€
<
0 50 100 150 200 250
Samples
(b)
[
el
2
s
€
<
Samples
(c)
2000
o 1500 s B
< 1000
2 500
g 500
£ -1000 |
}888 7””' I i i |]
0 50 100 150 200 250
Samples

Figure 4.8: Fixed codebook search in mode 8: a. Updated target signal b.
Optimum fixed codebook innovation c¢. Optimum fixed codebook innovation
after filtering

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 31

4.3 Working Principle of the AMR-WB De-
coder

The encoder transmits all indices after the speech signal is encoded in the
encoder and at the decoder; those indices are extracted from the received
bit stream. The indices are decoded to obtain the codec parameters at each
transmission frame. The sequence of parameters for each frame received by
the decoder is the ISP vector, the 4 fractional pitch lag, the 4 LTP filtering
parameters, the 4 algebraic codebook indices, the 4 set of codebook gain.
For the 23.85 kbit/s mode, the high-band gain index is decoded.

The ISP vector is converted to the Linear Prediction (LP) filter coeffi-
cients and interpolated to obtain LP filters at each subframe; this is done for
the whole frame and then, at each 64-sample:

e Construct the excitation by adding the pitch lag and algebraic code-
book vectors scaled by their respective gains.

e Filter the excitation by LP synthesis filter to reconstruct the 12.8 kHz
speech signal.

e De-emphasize the reconstructed 12.8 kHz speech signal and then up-
sample to 16 kHz

CHAPTER 4. ADAPTIVE MULTI-RATE WIDEBAND SPEECH CODEC
32 (AMR-WB)

Chapter 5

Dataflow Model of the
AMR-WB Encoder

The flow model diagram of any design concerns first the input data stream
progress and operations applied on that stream throughout the design. Fig-
ure b1 shows the flow model diagram of the AMR-WB encoder. In this case,
the input stream is the audio signal in the form of frames that consist of 320
- 16 bit - PCM audio samples. Each frame starts by the Preprocessing stage
in which the audio frame is decimated and preemphasized to prepare the
frame for next analysis to extract speech parameters. Then, the preempha-
sized frame flows simultaneously in two separate paths. The 1% path is LPC,
followed by OLP, LPC2, SUBFR_Analysis, and the 2" path is wb- VAD, fol-
lowed by vad_hist, tx_dtz_handler, dtz. In the next lines, we will discuss how
the preemphasized audio frames - denoted by Speech in Figure bl - progress
through these two paths and how they relate to each other.

In the 15 path, the Speech flows through the LPC analysis stage where
the immittance spectral pairs isp/isf and LPC coefficents Az parameters are
extracted and the Perceptual Weighted Speech WSP is generated. Then, the
WSP and tone_flag of the current audio frame flows through the Open Loop
Pitch analysis OLP, where the open-loop pitch lag T_op, T_op2 parameters
are extracted and the tone_flag for the next frame computations in the 274
flow path is generated. This tone_flag updating nature creates a problem we
will discuss later. Then, the audio frame faces the subframe gate SUBFR
Gate which passes audio frames depending on the control signal dtz_mode
gnerated from the tz_dtz_handler block in the 2"d path. If the dtz_mode
is equal to 9, the SUBFR Gate consumes the tokens of the current frame
and does not allow the frame tokens to propagate through the rest of the

33

CHAPTER 5. DATAFLOW MODEL OF THE AMR-WB ENCODER

34

159y ysidijo-do
¢ w:ﬁm_
< _I
DT oh__u do = odipdo
m;ommnw zdo7) A|n
yosadg
m«nox& do) <
AT Yepur st <€——3lvoydans | #
sishleuy"y48ns <& < zdoT) s
' X3 NU&I_ ‘ﬂ_O\um_ NQO\._. . d
X8 1 yosadg
P < do— <t —
<o bysi <. do 1 L d70 dsm ln_m; dsm 9d1 < Buissasoidaid A|=_ v~
< b by < v hte— Beyouo} bejyauoy zy .W
Hzoxe Hby AALI_E y 2y g

_|\:k Hby (6=i)opowxip 7’
H 20X H

b;
¢ 551 B
< apout xip Beyy ouo} beyyauoy

xipsi

ueb gy Xp ¢ yooeds Jajpuey xp X} <— ISIy pea avA-gm <€

xapul~ua boj P o ISy pea P i

i o Beypen [N — Beyypea
WP ND eolpul ey pea Beyy peA

Figure 5.1: Dataflow model of AMR-WB encoder.

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 35

analysis. However, if dtz_mode is less than 9, that means that the dtz_mode
value ranges from 0 to 8 - the SUBFR Gate allows the current frame tokens
to propagate to the next stage LPC2 and SUBFR_Analysis.

In the 2°¢ path, the Speech goes through the voice activity detection
stage wb-VAD to check if the frame is a speech or a background noise and
generates the voice activity detection flag vad_flag, then the tx_dtz_handler
block uses the vad_flag to decide whether this frame is voice or background
noise by generating the dtz_mode control signal. If dtx_mode is equal to 9, the
discontinuous transmission dtx block is enabled to encode the audio frame
as a background noise disregarding its original encoding mode and disabling
the SUBFR Gate preventing the audio frame from further progressing in the
1%* flow path as mentioned before. Otherwise, if the dtz_mode is in the range
between 0 to 8, the dtx block is disabled, preventing extra progress on the
27 flow path and enabling the audio frame to progress on the 1% flow path.

Back again to the 15 flow path. The audio frame, after confirming it is a
speech frame, continues through the second stage of the LPC analysis (LPC2)
or the Quantized LPC Analysis, where the quantized ispq/isfq parameters
are internally extracted. Then, the Speech frame goes through the subframe
analysis SUBFR_Analysis block where it is divided into four subframes. The
closed loop pitch lag, adaptive and fixed codebook parameters, and the pitch
and algebraic codebook gains are extracted in sequence for every subframe.
The 23.05 kbit/s mode differs from other modes by extracting the higher
band gain parameter.

36 CHAPTER 5. DATAFLOW MODEL OF THE AMR-WB ENCODER

Chapter 6

Mapping from C to CAL

In our case study, the AMR-WB audio codec was given in the form of se-
quential reference C code. Our goal was to analyse the reference C code
with respect to dataflow and expose different kinds of parallelism as well as
unwanted data dependencies, and then map it to CAL Actor Language.

In the related work Section [1 in Chapter 0, we related two case studies
of implementing video codecs in CAL. The first case study [[4], was imple-
menting a standard MPEG-4 SP decoder in CAL according to the MPEG
RVC formalism. The MPEG RVC framework is a new ISO standard aiming
to design a decoder at a higher level of abstraction than the one provided
by current generic monolithic C based specifications. Instead of low level
C/C++ code, an abstract model based on modular components taken from
the standard Video Tool Library (VTL) is the reference specification [9].
This makes their approach totally different from ours, since we start from
a reference C code. The second case study [I1], was about converting of a
reference C code specification of the H.264 encoder into an extended SDF
model, using HW/SW codesign environment PeaCE [d]. In that case study
(1], they proposed a systematic approach for converting sequential C code
to a dataflow specification. That approach deals only with identifying the
dataflow model, specifying functional blocks and analyzing global variable
dependencies. This is similar to what is discussed in Sections B2, B3 and
64 in this chapter, but it is missing the ways to handle the conversion from
C language syntax to CAL language, i.e., handling pointers, loops,...etc.

In this chapter, we propose a systematic approach for mapping from ref-
erence C code to CAL Language that has been successfully applied in our
AMR-WB implementation.

37

38 CHAPTER 6. MAPPING FROM C TO CAL

6.1 Overview

A C program is a set of instructions operating in sequence on a set of data.
On the other hand, a CAL application is a set of functional blocks (actors)
that consume and produce unbounded data vectors (tokens).

X
void vec_op (int *x,) Mul
int *y, mult Hu
int *Sum,
int *Mul, —>
int len)
{
for (i = 0; i < len; i++)) Sum
{ add |—p
Sum = add(¥x , *y); y
*Mul = mult(xx , *y); _'_)
Sum++; Mul++;
X++; y++;
}
}

Figure 6.1: Sample C code to the left and its CAL representation to the
right.

Figure 61 shows a sample C code that represents add () and mult () oper-
ations over two arrays, x and y, in the function vec_op() where the resultant
Sum array and Mul array are generated by iterating in sequence through the
for loop without explicitly telling the compiler that these two operations
can run concurrently. On the other hand, the CAL representation explicitly
exposes the possible parallelism which is hidden in the C function between
the add () and mult () functions by representing them as two separate actors,
add and mult, running concurrently, that feed on the input tokens x and y
and generate the resultant output tokens Sum and Mul arrays.

From the example shown in Figure B, we can notice that the CAL
language exploits different kinds of hidden parallelism in conventional pro-
gramming languages, such as the C language. In the next sections we will
discuss a number of guidelines that will help in mapping from C language to
CAL Actor language.

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 39

6.2 Drawing a Flow Diagram

The first step to your CAL program is to analyze the C program. This
analysis must result in a flow model that exposes the flow of input data
flowing into the application and various operations applied on that flow. It
must also show if there are any other parallel flows that are independent or
branched from the main flow.

void main (int *insig) insig
{
preproc()
preproc(insig, outsig);
mode=voice_act (outsig); outsig

LPC_analysis(outsig); \ 4 ¢

if (mode == NOISE)

DTX_CNG (outsig) ; LPC_analysis(voice_acty

DTX_CNG()

Figure 6.2: Sample C code and its flow diagram.

Figure B2 shows us a section of an audio DSP application. That DSP
application receives an input stream of an audio signal insig that is pre-
processed, then checked to establish if it represents a voice signal or just
background noise. Then it extracts the LPC coefficients that are used in
generating the encoded background noise frame, or otherwise used in the ex-
tra analysis of the voice signal. These DSP operations mentioned before are
applied throughout the functions preproc(), voice_act (), LPC_analysis()
and DTX_CNG(). If we track down the input signal throughout those functions
we will discover that the application contains a main flow that represents the
analysis of the voice signal and, branching from that flow, a secondary flow
that works in parallel with the main flow to detect the background noise
signal as represented in the flow diagram in Figure 622.

40 CHAPTER 6. MAPPING FROM C TO CAL

From the example shown in Figure 62, we notice that the flow diagram
gives a very abstract high level overview on the design and what degree of
parallelism can be reached from such an application.

6.3 Partitioning

After constructing the Flow Diagram Model, we start to look for a more
detailed view of each coarse grain block alone, and begin to build it up from
middle grain blocks which we call ”partitioning”. This partitioning technique
helps in finding more possible parallel flows in our design. Even if it is
impossible to find any parallel flows, we would still benefit from partitioning,
since the partitioning technique will represent the coarse grain block as a
multistage pipeline that can execute more than one operation at a time, which
leads to an increase in performance. Throughout the partitioning process, we
have to consider similar and repetitive operations in our application and use it
in partitioning to design unified building blocks that are reusable throughout
the application.

insig
void LPC_analysis(int *insig) ¢
{ Autocorr()
r = Autocorr(insig); r¢
r = Lag_window(r) ; Lag_window()

A = Levinson(r); ¢
r

} Levinson()
R’

Figure 6.3: LPC_analysis partitioning.

Figure 623 shows the LPC_analysis() block mentioned in the previous Fig-
ure B2 in a more detailed view. We notice that it consists of several func-
tions i.e., Autocorr (), Lag_window () and Levinson(). These functions can-
not be parallelized since the input of each function depends on the output
of the other one e.g., the Lag window() input depends on the output of
Autocorr(). However, we can still benefit from partitioning them since it
will create a multistage pipeline that will increase the performance by a fac-
tor equal to the number of stages. Also partitioning will help in increasing

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 41

the reusability of the design since we can use these actor blocks in other parts
of the design.

6.4 Global Variables Handling

Sharing information between different parts of code is very common in various
applications. This property - the sharing property - is represented in many
ways, like passing parameters by value and by reference between different
functions, or by defining global variables, which can be accessed by all entities
of the application from different locations and on which various operations
can be applied, such as write and read operations.

The use of global variables in C programs and in other conventional pro-
gramming languages is of great benefit for many types of applications, but
it also introduces many dependencies between different code pieces. In CAL
applications, there are two types of variables, Local Variables and State Vari-
ables. The Local Variables are similar to the local variables used in C pro-
grams. The State Variables have a scope on the level of an actor only and
can be accessed by different actions or functions inside the actor. This means
that the notion of global variables is not supported in CAL language like in
C language.

This limitation drives us to find a way to distribute the global variables
in a way to ensure synchronization and low communication cost. We have to
analyze the behavior of these variables to make the right decision in mapping
them across the actor network and, thereafter, some guidelines that control
the placement of these variables:

6.4.1 Initialization and Reset Conditions

Global variables may have initial values that are assigned to them during
the initialization of a program and, under certain conditions, through the
execution of the program (so called "reset conditions”). It is so easy in C or
conventional applications to reset and initialize the global variable through a
single function that is called whenever the conditions are achieved. In CAL,
globals are not an option. Only state and local variables can be used. So,
to achieve reset and initialize functionalities in CAL, we have considered two
possible solutions:

1. Represent the structure that contains all the global variables in the C
program in a single actor that acts as a global memory. This global

42 CHAPTER 6. MAPPING FROM C TO CAL

memory (actor) can be accessed by different actors in the design when-
ever they need to write or read a certain variable in a fashion similar
to a memory cycle call.

2. Distribute the globals across the actor network in such a way that, if a
group of actors share some variable, only one of them has the capability
to reset that variable. The actor who is responsible for resetting is the
one that is in an early position in the flow with respect to other actors
sharing the same variable.

The global memory solution is not the optimal solution since it will create
the conventional memory integrity problems that need to use semaphores to
control access to the memory. This will lead to a decrease in the degree of
parallelism which is the main benefit of using CAL in programming. However,
distributing the globals across the actor network solution is much better since
it eliminates race conditions that will occur from the global memory solution
and also will lead to a more balanced computation load. Thus, we adopted
the second solution in our design.

6.4.2 Synchronization Conditions

Shared variables must be handled with care in C and other conventional
languages to prevent data hazards and ensure synchronization between dif-
ferent tasks running concurrently. This is done by using mutual exclusion
and semaphores. In CAL, there is no such problem due to the fact that there
are no global variables, just local and state variables that cannot be accessed
by the other actors. This means that semaphores and mutual exclusion tech-
niques are not needed in CAL.

That drives us to the conclusion that the updating manner of global
variables - which means who is doing the updating(writing) and who is just
reading the value of the variable without update - decides where to locate the
variable in the design in order to maintain synchronization. The updating
behavior can be classified in the following categories:

e Read after Write/ Fetch after Updating: Where the global vari-
able is just updated in one block of code and read in the other parts
and, in this situation, we assign the variable to the actor that represents
the updating part of the code while the others just read the updates
generated from the update actor as shown in Figure 64.

e Write after Write/ Update after Update: Where the global vari-
able is updated more than one time in different parts of the code, i.e.

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 43

—> Read Actor

Owner Actor

_) Read Actor

Figure 6.4: Distribution of global variables in read after write case.

in different actors. In this case, to keep correct and synchronized value
between different actors, we have to supply the updated value in a
feedback loop manner as shown in Figure 63.

Global updated value\
»

Update1 Actor Update2 Actor

Y

Global feedback updated value

Figure 6.5: Distribution of global variables in write after write case.

6.5 Loops

Loops are used frequently in conventional applications. They are also found
in the CAL language and utilize almost the same syntax. In this section,
we are introducing the big blocks of code that iterate for certain number of
times i.e. for loops.

This big loop can be realized as a parallel concurrent architecture that
has a number of flows exactly equal to the number of iterations, but only if
the next input data stream is not dependent on the current output, otherwise
it is represented as a single actor that contains that loop inside it. Figure 68
shows an addition over two vectors/arrays operation using a for loop. This
for loop operation can be realized by a number of parallel adders equal to
the number of iterations of the for loop n.

44 CHAPTER 6. MAPPING FROM C TO CAL

x[0]
int *Sum, *x, *y; " > Adger1 LSumL
v >
for (i=0;i<n;i++ x[1]
or (.)’ ’ .) . > sumf1]
Sum[i] := x[i] + y[il; 1 Adder 2
s

x[n-1]

Add Sum[n]
ern
yin-1]

Figure 6.6: Actor representation of loop.

The case is different for conditional loops, i.e. while loops. It can not be
represented as a parallel concurrent architecture since we can not determine
the number of iterations since it only depends on the running condition.

6.6 If and Switch Statements

if and switch statements represent the ability to choose between different
blocks of instructions according to certain conditions, which is very popular
in conventional programming. In the CAL language, the if statement utilizes
a similar syntax like conventional programming languages but, on the other
hand, the switch statement is not represented in CAL and can be replaced by
using nested if else statements. Representing these blocks of code separately
- as separate actors - is a waste of space and increases the communication
cost, since only one path will be chosen between them and they will never run
in parallel.It is better to represent such kinds of statements by encapsulating
them in a single actor with multiple guarded actions to select between them,
according to the guard condition.

Figure 621 shows a sample if else C code that represents a simple cal-
culator application Calc(), where it contains four operations, i.e. addition,
subtraction, multiplication and division. These four operations can not work
simultaneously, since they are controlled by the if else statement condition
op, where only one operation can be enabled at a time.

If we consider rewriting the Calc () function in CAL, we can not represent
it as four concurrent actors since only one actor will run at a time, so it is
better to encapsulate it in a single actor and represent these operations as
four guarded actions, as shown in Figure BR.

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE

int Calc(int a,int b,int op){
if (op == 1)
return a+b;
else if (op == 2)
return a-b;
else if (op == 3)
return ax*b;
else
return a/b;

Figure 6.7: if else sample C code.

actor Calc() int a,int b,int op ==> int res:

int mode := O;

action op: [m] ==> do
mode := m;

end

action a: [i1], b: [i2] ==> res: [11+i2]
guard mode=1 do
mode := 0;
end
action a: [i1], b: [i2] ==> res: [i1-i2]
guard mode=2 do
mode := O;
end
action a: [i1], b: [i2] ==> res: [i1*i2]
guard mode=3 do
mode := 0;
end
action a: [i1l], b: [i2] ==> res: [i1/i2]
guard mode=4 do
mode := 0;
end
end

Figure 6.8: if else CAL representation.

46 CHAPTER 6. MAPPING FROM C TO CAL

6.7 Pointers

Pointers are widely used in C applications since they simplify a lot of op-
erations like memory manipulation or in sorting algorithms. However, in
CAL, pointers are not supported, so we have to pass to the actor the tokens
needed and use indexing instead. Before doing that, we have to analyze the
behavior of a pointer, i.e., we have to know if the pointer is moving forward
or backward, for example, to determine which tokens are needed exactly.

Chapter 7

Implementation of the
AMR-WB Encoder

In this chapter, we will discuss the implementation process of the AMR-WB
encoder and the phases that it has gone through to get the final output (which
is the AMR-WB encoder represented in CAL). In the implementation process
of the AMR-WB encoder, we used the following set of tools and specification
manuals:

e OpenDF plug-in for eclipse, which is a simulator for developing and
execution of CAL applications [3].

e Eclipse IDE for Java development tool, which is used as a platform for
running the OpenDF plug-in and editing CAL applications [2].

e AMR-WB codec fixed point representation specification written in C
language.

e AMR-WB 3GPP manuals and specifications [6].

Also, we will give a detailed explanation on the structure of the main func-
tional blocks of the AMR-WB encoder and its operational role.

7.1 Steps of implementation

The implementation of the AMR-WB encoder has gone through four phases.
The first phase was the analysis phase where we understood the reference
C code and analyzed it with respect to dataflow. The second phase was
the development of the libraries that represent the exact instruction set of
the target processor. This was followed by designing of the main functional

47

48 CHAPTER 7. IMPLEMENTATION OF THE AMR-WB ENCODER

blocks of the AMR-WB encoder, which we considered as the third phase.
Finally, the fourth phase that included testing and verification of the whole
AMR-~WB encoder implementation. The next subsections will give a detailed
overview on each phase of the implementation process.

7.1.1 The Analysis and Initial Design

In this phase, we analyzed and acquired knowledge of the AMR-WB encoder
algorithm by studying the 3GPP manuals and related literature [[7], that
helped us so much in tracking the main audio stream in C code application
and in partitioning the C code in functional blocks related to the algorithm
description. By applying the guidelines mentioned in Chapter B, i.e. drawing
a flow diagram, tracking the main stream and partitioning, we came up by
an initial design shown in Figure [/

It can be noticed that it is different from the final design shown in Figure b
because, at the analysis phase, the global variable dependencies were not all
clear at that time. In the Section [[22, we will explain in detail the main blocks
of our AMR-WB encoder flow model design described in the Chapter B.

7.1.2 ETSI Intrinsics Library Developing

The AMR-WB encoder C code fixed point representation was implemented
using the ETSI Intrinsics library, which represents the exact instructions used
by the target CPU for executing any operation, e.g. addition or subtraction.
Also, all fixed point operations in the C application are done using these
ETSI Intrinsics. So, to ease the transformation from C representation to
CAL, we decided to develop this ETSI Intrinsics library in CAL to use it
when needed in our design.

7.1.3 Hierarchical Design and Integration

The implementation of the AMR-WB has been done in a hierarchical struc-
ture. Since each block consist of a several actors combined together through
different levels of network files, we will describe this design in detail in Sec-
tion [CA. Also, the design methodology followed an iterative approach since
each block had to be tested before adding it to the whole design.

49

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE

¥ sweuqns
siskleuy 449Ns

A

€ awenqgns
sishleuy™449ns

Z dwenqns
sishleuy—449ns

¢od1

A

EINOREEN

A

(6=i)apowp

d10

A

2d1

buissadoidald

| dweuqns
sishleuy™y49ns

A

X1p

J3|puey x1p~x1

11y~ peA

A

AvA-gm

A

Figure 7.1: Initial Dataflow Model of AMR-WB Encoder.

50 CHAPTER 7. IMPLEMENTATION OF THE AMR-WB ENCODER

7.1.4 Testing and Verification

Testing and verification is done simultaneously with the hierarchical design
and integration phase since each component of the design has been tested as a
single component (that is what is called "unit testing”) and after integration
and the output was verified with C code output.

7.2 Detailed Explanation of the AMR-WB
Encoder Flow Model

7.2.1 Preprocessing

i Sig12k Pre_Sig12k
Sig12k N ig

Sig16k_in .
Decim12k8 3> HP50_12k8 > Preemph F———>

Figure 7.2: Preprocessing actor representation.

The preprocessing is the 1% functional stage in the AMR-WB encoder; it is
considered as a preparation stage that prepares the speech signal for further
processing throughout the entire encoder. Figure [2 shows the input speech
signal, Sigl6K_in, to the encoder in the form of 16KHz PCM 16 bit 320
samples speech frames. The 1% operation applied on the input speech frame
is the decimation Decim12K$8, where upsampling by 4, then by filtering the
output through lowpass FIR filter that has the cut off frequency at 6.4 kHz.
Then, the signal is downsampled by 5 and we get the decimated output
12.8KHz signal Sig12K. Next Sigl 2K is highpass filtered through HP50_12K8
stage to remove the undesired low frequency components and, finally, the
speech frame goes through a 1% order highpass filter Preemph to emphasize
high frequency components in an operation called "Preemphasis” resulting
in a pre-emphasized speech frame Pre_Sig12K.

7.2.2 LPC Analysis

As Shown in Figure [[3, the LPC analysis starts by the auto-correlation
Autocorr stage, where the pre-emphasized output speech frame Pre_Sigl2K

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 51

id
"yl 1P Decim2 [Pyl scale wsp F",{om,wsp,gen }"_"'fp
ax_Ws})

Figure 7.3: LPC Analysis actor representation.

from preprocessing is auto-correlated and lag windowed throughout Autocorr
and Lag_window stages, generating the auto-correlation coefficients r, which
are used in the Levinson Durbin algorithm Levinson stage to get the Linear
Prediction Coefficients (LPC) A of size 17 word. This LPC coefficient vector
A is used to generate the Imittance Spectral Pairs ISP through the Az_isp
stage, then interpolated using Int_isp to get a 68 word LPC Az (17 word for
each subframe). At the same time, the ISP is transformed to the frequency
domain to get the ISF.

Finally, the LPC analysis stage ends with generating the Perceptual
Weighted Speech WSP from the LPC Az through the residual weighting
filter Residu_Weight stage followed by the deemphasis and decimation stages
Deemph?2, LP_Decim?2 to prepare the WSP for the Open Loop Pitch analysis
OLP.

7.2.3 VAD Analysis

Speech level
P Filter_bank calc_ip_level

vadre
9 estimate_speech

. power_sum speech_level
power_ip_cal vad_decision
tone_fla tone_fla vad_flag
_flag _tlag >
speech_level

tone_flag
—>

-

-

Figure 7.4: VAD Analysis actor representation.

The purpose of the Voice Activity Detection (VAD) stage shown in Figure [,
is to determine whether the speech frame represents a signaling tone, voice
or background noise frame. This is achieved by using the parameters of the
speech encoder to compute the Boolean VAD flag VAD_flag. The VAD_flag
is computed by dividing the pre-emphasized input speech frame into 12 fre-
quency sub-bands, where the signal level is calculated for each sub-band level.

52 CHAPTER 7. IMPLEMENTATION OF THE AMR-WB ENCODER

The tone_flag, calculated from the normalized open-loop pitch gains, which
are calculated by open-loop pitch analysis of the speech encoder, which indi-
cates presence of a signaling tone, voiced speech, or other strongly periodic
signal, is supplied to the power_ip_cal in addition to the pre-emphasized input
speech frame to calculate its power, power_sum. If the power_sum is less than
the power threshold, the tone_flag is cleared, otherwise we must keep the old
value, then supply the new value of the tone_flag to the vad_decision and the
open loop pitch OLP analysis stage, which uses the tone_flag value for the
next frame computations. This passing of the tone_flag value between the
VAD stage and the OLP stage creates a closed feedback loop between the
two main flows in the design. This feedback loop will affect the parallelism
between the two main flows and the pipelining in each flow, since the OLP
stage will wait for the updated tone_flag value from the VAD stage and, in
sequence, the VAD stage will wait for the updated value of tone_flag from
the OLP stage, which means that they can not work simultaneously and
bubbles will be created in the pipeline in each flow due to waiting durations.

After calculating the sub-band levels, the background noise level is esti-
mated in each band, based on the tone_flag, the power of the speech frame
power_sum and the previous frame estimated speech_level generating the
vad_flag and the updated value of speech_level, according to the signal to
noise ratio. If the speech_level is lower than a minimum threshold, so it is
increased, otherwise keeps the old value. Finally, the estimate_speech cal-
culates the speech_level of the current frame, according to the sum of the
input sub-band levels generated from calc_ip_level stage. We can also notice
the speech_level feedback loop between the vad_decision and estimate_speech
stages, which will result in bubbles in the pipeline and decrease the perfor-
mance.

7.2.4 Discontinuous Transmission (DTX)

ditx_cntrl

Figure 7.5: DTX actor representation.

The Discontinuous Transmission (DTX) shown in Figure [3 is not executed
continuously; it only executes if a background noise frame is detected by
the VAD stage. To represent this mode of execution, the DTX stage is

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 53

controlled by a gate at the beginning called dtx_cntrl, where its duty is to
prevent normal voice or signaling tone frames from proceeding further into
the DTX and allow only background noise frames to proceed. This gate is
controlled by the control signal, m_dtx. If its value is equal to 9, it means
that the current frame is a background noise frame and the gate allows it
to proceed, otherwise it consumes the frame tokens and prevents the frame
from going further.

In the case of a background noise frame, the residual signal, ezc, is cal-
culated from the 4" subframe LPC coefficient, Az and the pre-emphasized
speech frame, Pre_Sig12K. Then, the residual signal, ezc, is shifted and ac-
cumulated to get the L_tmp value, that is used in the dtz_buffer, in addition
to, the ISF and the vad_flag, to buffer the ISF and the frame energy in the
isf_hist and the log_en_hist parameters respectively. These two parameters,
the isf_hist and the log_en_hist, are used by the dtz_enc to encode the back-
ground noise frame and, extract its feature parameters, which are, dithering
control, C'N_dith, frame energy index, log_en_inder and, the ISF index, in-
dice. Finally, the ISF is converted back to the ISP to get the quantized LPC
coefficients in background noise mode Ag_dtx, which is used with 16 KHz
speech to get the high band gain from synthesis.

As mentioned before, the DTX stage remains idle at non-background
noise frames, but there are two stages that execute even in normal modes,
which are dtz_buffer and synthesis. These two stages share some global vari-
ables that need to be updated at both background noise and normal modes
and their working conditions are mutually exclusive. This means that they
either serve at background noise mode or normal modes non-simultaneously.
This working behavior impelled us to build them in a way that makes them
work in both situations to share these variables locally, which decreases the
communication overheads and space.

The dtx_buffer stage runs in normal modes when the vad_flag is equal to
0, which indicates signaling tone frames not speech frames. In this condition,
the LPC2 stage sends the isf- LPC2 and the accumulated quantized residual
signal value L_tmp_LPC2 to the dtz_buffer to buffer the ISF and frame en-
ergy. On the other hand, the synthesis stage runs only in normal mode at
the highest quality mode (mode 8) where it computes the high band gain,
HB_gain, that is included in the generated encoded frame at that mode.

54 CHAPTER 7. IMPLEMENTATION OF THE AMR-WB ENCODER

7.2.5 LPC2 Analysis

— stab_fac
stab —

Q_new

vad_flag

isfq

FII

L_tmp
- . Azq & sft_accu f—p
Qpisf_2s isf_isp ispq| ispold_q_updt Int_isp | —3 exc_gen
- ispoldg

exc

isf_index

Figure 7.6: LPC2 Analysis actor representation.

The LPC2 analysis shown in Figure [Z8 represents the 2" phase of the LPC
analysis or the Quantized LPC analysis. In that stage, the unquantized isf
pairs quantized through the Qpisf-2s stage generating isfq and extracting
the isfindex parameter which is considered one of the components of the
encoded output frame. Then, the usfq transformed to the Quantized Imit-
tance Spectral pairs, ispg, where it is interpolated to get the Quantized LPC
coefficients, Azq. These quantized LPC coefficients, Azq, are used in gener-
ating the quantized residual signal, exc, which is sent to the dtz_buffer in the
DTX stage in the form of the accumulated quantized residual signal value
L_tmp to buffer the isfq and energy of the signaling tone frame as discussed
in Section [Z4. Also, the quantized residual signal, exc, is used to generate
the target signal in subframe analysis.

7.2.6 Subframe Analysis

Prej\gLﬂ" Computing Target Signal | o

for Adaptive Codebook ~ f—1
Search

ato fiter .
> tot
ate synthesis speech "mem sy’ | SigheK
pitch_lag index pitch_gain
mem_syn

exc_upd

Adaptive Codebook [X12 | Innovative Codebook | ¥2
Search 1 Search 1

H
High mode analysis |——»

Figure 7.7: Subframe Analysis actor representation.

The Subframe analysis stage shown in Figure [Z7 starts by dividing the pre-
emphasized speech frame Pre_Sigl12K into four subframes. Each subframe
goes into defined sequence of operations, starting by preparing the target

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 55

signal xn, that proceeds through the Adaptive Codebook Search to extract the
closed loop pitch lag pitch_lag parameter to be encoded. Then, the remaining
updated target signal zn2 is used to extract the fixed codebook innovation
index, index, after applying the Innovative Codebook Search stage. Finally,
the fixed codebook gain index gain_pitch parameter is extracted, followed by
the updating stage that is responsible for :

e updating the filter’s memory mem_w0 responsible for finding the target
vector in the next subframe.

e finding the total excitation and calculate the updated ezc_upd.

e updating the filter’s memory synthesis speech mem_syn used in calcu-
lating the target signal zn for the next subframe.

These three updated parameters mem_w0, exc_upd and mem_syn are fed
back to the begining of the subframe analysis process to repeat and apply the
same operations on the next subframe. At this point, the problem appears,
the feedback loop nature prevents the subframe analysis from being pipelined
(subframe to frame dependency) since the updated parameters of the 4%
subframe are used for the calculation’s next new frame. It also prevents
parallelizing the subframe analysis stage by instantiating a stage for each
subframe, as the initial design in Figure [, due to each subframe being
dependent on the updated values of the previous subframe (subframe to
subframe dependancy).

One more operation left in the subframe analysis is the High mode anal-
ysis, where the highband gain index, HB_Gain parameter, is extracted at
the highest quality mode only, Mode 8. This high mode analysis is not com-
pletely done in this stage; the final part of it is done in the synthesis stage
in the DTX part, since synthesis stage - as we mentioned in Section (24 -
shares the operation both on DTX and subframe analysis.

56 CHAPTER 7. IMPLEMENTATION OF THE AMR-WB ENCODER

Chapter 8

Results

The AMR-WB Encoder flow model shown in Figure B, and its implemen-
tation described in Chapter [, exploited two main features - the parallelism
and pipelining - to enhance the performance compared to the C code repre-
sentation designed for single core processor. The parallelism is represented
in the two main flows, LPC - SUBFR_Analysis and wb-VAD - dtz, that run
simultaneously, while the pipelining is represented in the design through the
multiple stages that each flow consists of, and which allow the encoder to
handle more than one frame at a time when the pipeline is full.

The design utilizes the exposed parallelism, but the performance gain is
limited due to frame and subframe dependences, as described in Chapter [@.
In this chapter, we will discuss proposed solutions for some of these problems.
Also, we will discuss the processor core allocation problem.

8.1 Problems and Solutions

8.1.1 tone_flag Frame Dependency

The tone_flag, as we mentioned in Section 273, is a parameter that indicates
the presence of a signaling tone, high voiced speech or other strongly periodic
signal. The tone_flag loops between the OLP stage and the wb-VAD, the wb-
VAD provides the tone_flag value of the current frame n to the OLP, and
the OLP provides the value of the tone_flag for the next frame n+1 to the
wb-VAD, and so on. This looping manner of the tone_flag will lead to a non
continuous flow on both branches of the design, since each branch waits for
the updated value from the other.

57

58 CHAPTER 8. RESULTS

— > wb-VAD

tone_flag

Updated bits of tone_flag

preprocessing LPC OLP

Y

Y

speech

Figure 8.1: tone_flag frame dependency solution.

To eliminate that dependency, we re-analyzed the wb-VAD and OLP and we
found that the wb-VAD accesses the tone_flag by read and write operations,
but the OLP accesses the tone_flag by write operation only, which means
that the OLP does not use the tone_flag variable in any computations, it
just updates it if the speech frame contains high gain tones by setting few
certain bits in the tone_flag. So, instead of providing the tone_flag value from
the wb-VAD to the OLP, we can eliminate this dependency and just send
the updated bits values to the wb-VAD to update the tone_flag. By this, we
resolved the dependency of the main stream flow (LPC - SUBFR_Analysis)
on the secondary flow (wb-VAD - dtz), which will enhance the performance
of the overall design. Figure B shows the updated design.

8.1.2 Subframe Analysis Parallelization

The subframe analysis stage from the preliminary analysis appears to be
parallelized into four stages that can run concurrently. Since the speech frame
is split into four subframes, each subframe is processed to extract the speech
parameters that will be encoded. However, the reality is totally the reverse,
the subframe analysis stage can not be parallelized due to the subframe
dependencies discussed in Section [Z6. These dependencies resulted from
the nature of the audio signal processing and the predictive nature of the
AMR-WB algorithm that is adopted from Algebraic Code Excited Linear
Prediction (ACELP) that depend on the previous frames to adjust its filters
for the next frames.

DEsiGN AND IMP. OF AN AMR-WB usiNG CAL LANGUAGE 59

8.2 Core Allocation for the AMR-WB En-

R Core-3
” wb-VAD, dtx Stages
Ut S h Preprocessed or
Sr'mpu | peec Core-1 Preemphazised A
'gna > Preprocessing Stage Signal

Core-2
LPC, SUBFR_Analysis
Stages

€« Stagel —y

Y.

€ Stage2 —yy

Figure 8.2: AMR-WB core allocation for target processor ARM11 MPs.

The AMR-WB encoder can be mapped on a processor with up to eight
cores. Since we have seven encoder stages (preprocessing, LPC, OLP, LPC2,
SUBFR_Analysis, wb-VAD, dtz), each one of them could be assigned its own
core. The eighth core can be reserved for the decoder. Since our target pro-
cessor (ARM11 MPs) is a four core processor, we propose the core allocation
shown in Figure B2. Three cores are allocated for the encoder and the fourth
is reserved to the decoder. From Figure B we notice that Core-1 is allocated
exclusively for the preprocessing stage. The result is forwarded to Core-2
and Core-3. Core-2 and Core-3 process the two major parallel flows in our
design. Core-2 has been allocated forLPC, OLP, LPC2, SUBFR_Analysis
stages, and Core-3 has been allocated for wb-VAD and dtz stages. Some
of these stages are running under all conditions, e.g. LPC, OLP and wb-
VAD, and the remaining stages, LPC2, the SUBFR_Analysis and dtz, run in
a switching manner, which means that, when the LPC2, SUBFR_Analysis
stages are running, the dtx is not running, and vice versa. The intercommu-
nication among those two cores (Core-2 and Core-3) and Core-1 is balanced
since both Core-2 and Core-3 receive the same inputs (pre-processed signal)
from Core-1. The intercommunication between Core-2 and Core-3 is very
light compared to the communication between Core-1 and either Core-2 or
Core-3, since this communication link only works at normal speech frames

60 CHAPTER 8. RESULTS

in the high quality mode (Mode 8), excluding other modes and background
noise frames. The load balance between Core-2 and Core-3 is not even, since
the computation complexity of Core-2 workload is larger compared to Core-
3. However, if we tried to follow the balanced load on both cores, e.g., to
move any of the stages on Core-2 to Core-3, the communication overhead
would increase, which would have a serious negative effect on the overall
performance.

Chapter 9

Conclusions

This thesis presents an example for converting a single-processor stream ap-
plication to multi-core environment by using a dataflow programming ap-
proach. In our work, we started by analysing the C Language AMR-WB en-
coder specification. The result is a flow model that shows two main dataflows
in the encoder that allow parallelism, which means less execution time for
each audio frame. Also, the flow model defined a number of stages in each
flow that allow pipelining. This means that more than one frame can be
handled at a time when the pipeline is full. The parallelism and pipelining
features that have been exposed are essential to get the best performance
from any multi-core environment.

The specification of the AMR-WB codec was in C-code. So, in this thesis
work, we also provided a systematic approach that we used to map from
C-code to dataflow CAL Actor language. That approach concerns how to
investigate different flows of data across an application, how to handle and
distribute global variables among different actors in your design, how to
manage pointers,... etc. Those specified strategies will be very helpful for
future work in conversion from C to dataflow language CAL.

Throughout our analysis and implementation, we exposed unwanted de-
pendences - frame and subframe dependences - due to the predictive nature
of the AMR-WB algorithm. We proposed solutions for some of these prob-
lems, and the rest of the dependences may need modifications on the encoder
algorithm to suit multi-core environment.

Our implemented encoder in CAL shows bit exact result with existing
encoder (written in C). Since we use the parallelism and pipelining features
that are missing in the single core representation we expect that the encoder
CAL implementation will provide better performance in multi-core environ-
ments compared to the C implementation.

61

62 CHAPTER 9. CONCLUSIONS

Finally, there is much work that can be done in the future for testing and en-
hancing the performance of AMR-WB codec for multi-core. With regard to
testing, the CAL representation of AMR-WB encoder needs to be compiled
and tested on the target multi-core processor (ARM11 MPs) and record all
the performance results and compare them to single processor performance.
Also, the decoder part of the AMR-WB audio codec needs to be implemented
in CAL and tested on the target processor. With regard to enhancing per-
formance, the AMR-WB codec needs to be reanalyzed and modified on the
level of the algorithm, not the C reference specification, to eliminate further
unwanted dependences discovered in the C reference specification and which
can not be solved by applying conventional techniques.

Bibliography

1]

[6]

Actors Project, Adaptivity and Control of Resources in Embedded Sys-
tems, homepage http://www.actors-project.eu/, checked on May 2010.

Eclipse IDE for Java EE Developers, homepage
http://www.eclipse.org/, checked on May 2010.

OpenDF' plug-in for Eclipse IDE for Java Development, homepage
http://opendf.sourceforge.net /eclipse , checked on May 2010.

PeaCE (Ptolemy extension as Codesign Environment), homepage
http://peace.snu.ac.kr/research /peace/.

3rd Generation Partnership Project (3GPP), 3GPP TS 26.190
Adaptive Multi-Rate ~ Wideband ~ (AMR-WB) speech codec;
Transcoding functions, v8.0.0 ed., December 2008, homepage
http://www.3gpp.org/ftp/Specs/html-info/26-series.htm, checked
on May 2010.

o Adaptive Multi-Rate ~ Wideband — (AMR-WB) speech
codec 3GPP Manuals, v8.0.0 ed., December 2008, homepage
http://www.3gpp.org/ftp/Specs/html-info/26-series.htm, checked
on May 2010.

B. Bessette, R. Salami, R. Lefebvre, M. Jelinek, J. Rotola-Pukkila,
J. Vainio, H. Mikkola, and K. Jarvinen, “The adaptive multirate wide-
band speech codec (amr-wb),” Speech and Audio Processing, IEEE
Transactions on, vol. 10, no. 8, pp. 620-636, Nov 2002.

S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. von Platen,
M. Mattavelli, and M. Raulet, “Opendf: a dataflow toolset for recon-
figurable hardware and multicore systems,” SIGARCH Comput. Archit.
News, vol. 36, no. 5, pp. 29-35, 2008.

63

64

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. S. Bhattacharyya, J. Eker, J. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG Reconfigurable Video Coding
Framework,” Journal of Signal Processing Systems, 2009.

J. Eker and J. Janneck, “CAL language report,” Electronics Re-
search Lab, Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley California, Berke-
ley, CA 94720, USA, Technical Memorandum, December 2003,
http://embedded.eecs.berkeley.edu/caltrop/docs/LanguageReport/.

H. Hwang, T. Oh, H. Jung, and S. Ha, “Conversion of reference ¢ code
to dataflow model h.264 encoder case study,” in Design Automation,
2006. Asia and South Pacific Conference on, jan. 2006, p. 6 pp.

C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong,
Y. Zhao, and H. Zheng, “Overview of the ptolemy project,” Electron-
ics Research Lab, Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley California, Berkeley, CA
94720, USA, Technical Memorandum UCB/ERL M03/25, July 2003,
http://ptolemy.eecs.berkeley.edu/.

J. W. Janneck, A gentle introduction to dataflow programming,
Ist ed., Programming Solutions Group Xilinx, March 2007,
http://www.opendf.org.

J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet,
“Synthesizing hardware from dataflow programs: An mpeg-4 simple pro-
file decoder case study,” in Signal Processing Systems, 2008. SiPS 2008.
IEEE Workshop on, Oct. 2008, pp. 287-292.

G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Information Processing "74: Proceedings of the IFIP Congress,
J. L. Rosenfeld, Ed. New York, NY: North-Holland, 1974, pp. 471-475.

E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235-1245, September 1978.

E. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 3342,
May 2006.

E. Lee and T. Parks, “Dataflow process networks,” Proceedings of the
IEFEE, vol. 83, no. 5, pp. 773-801, May 1995.

[19]

[20]

[21]

P. J. Mercurio, “Visualization tools,” University of New Mexicos Khoros,
Technical Memorandum, April 1992.

V. Pankratius, A. Jannesari, and W. Tichy, “Parallelizing bzip2: A case
study in multicore software engineering,” Software, IEEFE, vol. 26, no. 6,
pp. 70 =77, nov.-dec. 2009.

A. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh,
“Parallelism via multithreaded and multicore cpus,” Computer, vol. 43,
no. 3, pp. 24 32, march 2010.

65

	Introduction
	Related Work
	Thesis Contribution
	Thesis Organization

	Dataflow Programming
	Dataflow Model of Computation
	Kahn Process Network
	Dataflow Process Network
	Synchronous Dataflow (SDF)

	Multi-core Platform and Dataflow Programming
	OpenDF

	Programming in CAL
	The Basic Structure of an Actor
	Basic Syntax of an Actor in CAL
	Some Simple Examples of Actors
	Nondeterministic Actors
	Building Deterministic Actors: Guard Condition
	Building Deterministic Actors: Schedule
	Firing more Tokens: using Repeat

	Compositions of Actors

	Adaptive Multi-Rate Wideband Speech Codec (AMR-WB)
	Background
	Working Principle of AMR-WB Encoder
	Speech Signal Pre-processing
	LPC Analysis
	Open Loop Pitch Analysis
	VAD Analysis
	Discontinuous Transmission (DTX) and Comfort Noise Generation
	Subframe Analysis

	Working Principle of the AMR-WB Decoder

	Dataflow Model of the AMR-WB Encoder
	Mapping from C to CAL
	Overview
	Drawing a Flow Diagram
	Partitioning
	Global Variables Handling
	Initialization and Reset Conditions
	Synchronization Conditions

	Loops
	If and Switch Statements
	Pointers

	Implementation of the AMR-WB Encoder
	Steps of implementation
	The Analysis and Initial Design
	ETSI Intrinsics Library Developing
	Hierarchical Design and Integration
	Testing and Verification

	Detailed Explanation of the AMR-WB Encoder Flow Model
	Preprocessing
	LPC Analysis
	VAD Analysis
	Discontinuous Transmission (DTX)
	LPC2 Analysis
	Subframe Analysis

	Results
	Problems and Solutions
	tone_flag Frame Dependency
	Subframe Analysis Parallelization

	Core Allocation for the AMR-WB Encoder

	Conclusions

